JP2011101839A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst Download PDF

Info

Publication number
JP2011101839A
JP2011101839A JP2009257278A JP2009257278A JP2011101839A JP 2011101839 A JP2011101839 A JP 2011101839A JP 2009257278 A JP2009257278 A JP 2009257278A JP 2009257278 A JP2009257278 A JP 2009257278A JP 2011101839 A JP2011101839 A JP 2011101839A
Authority
JP
Japan
Prior art keywords
noble metal
supported
composite oxide
exhaust gas
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009257278A
Other languages
Japanese (ja)
Inventor
Masaaki Akamine
真明 赤峰
Keiji Yamada
啓司 山田
Masahiko Shigetsu
雅彦 重津
明秀 ▲高▼見
Akihide Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009257278A priority Critical patent/JP2011101839A/en
Publication of JP2011101839A publication Critical patent/JP2011101839A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the capacity or durability of an exhaust gas purifying catalyst. <P>SOLUTION: Rh doped CeZr type composite oxide powder, wherein CeZr composite oxide particles containing Pr, La, Y or Nd or compounded with Al<SB>2</SB>O<SB>3</SB>are doped with Rh in a solid solution state, and noble metal supported heat-resistant powder, wherein a noble metal (Pt or Pd) is supported on heat-resistant particles comprising La-containing Al<SB>2</SB>O<SB>3</SB>particles, BaSO<SB>4</SB>particles or composite particles of a CeZr type composite oxide and Al<SB>2</SB>O<SB>3</SB>, are contained in the catalyst layer 2 of a honeycomb carrier 1. The noble metal supported heat-resistant power is contained in the upstream side range of the exhaust gas stream of the catalyst layer 2 and the support amount of the noble metal per the unit volume of the honeycomb carrier is smaller than that of the upstream side range or zero within the downstream side range succeeding to the upstream side range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst.

エンジン排気ガス中のHC(炭化水素)、CO及びNOx(窒素酸化物)を浄化する触媒は約200℃から約1100℃までの広範な温度域で高い浄化率を有することが求められる。そのため、Pt、Pd、Rh等の希少金属を触媒金属として用いるとともに、これら触媒金属を活性アルミナ、酸化ジルコニウム、或いは酸素吸蔵放出能を有するCe系酸化物等の耐熱性酸化物粒子に担持させた状態で担体上の触媒層に含ませることが行なわれている。しかし、触媒が高温の排気ガスに晒されると、少しずつではあるが、触媒金属が凝集してその表面積が低下し、触媒性能が低下することが知られている。そのため、通常はこの凝集を見越して触媒金属を触媒層に多めに含ませることがなされている。   A catalyst that purifies HC (hydrocarbon), CO, and NOx (nitrogen oxide) in engine exhaust gas is required to have a high purification rate in a wide temperature range from about 200 ° C. to about 1100 ° C. Therefore, rare metals such as Pt, Pd, and Rh are used as catalyst metals, and these catalyst metals are supported on heat-resistant oxide particles such as activated alumina, zirconium oxide, or Ce-based oxides having oxygen storage / release ability. In this state, the catalyst layer on the support is included. However, it is known that when the catalyst is exposed to high-temperature exhaust gas, the catalytic metal is agglomerated and its surface area is reduced, and the catalytic performance is lowered. For this reason, usually, a large amount of catalyst metal is included in the catalyst layer in anticipation of this aggregation.

一方、最近では、触媒金属が凝集しないようにする工夫もなされ、例えば、特許文献1,2には、RhをCeZr系複合酸化物にドープさせるとともに、一部の触媒金属をその複合酸化物の表面に露出させることが記載されている。かかるRhドープCeZr系複合酸化物によれば、Rhの凝集が抑制されるだけでなく、CeZr系複合酸化物の酸素吸蔵放出量の増大及び酸素吸蔵放出速度の向上も同時に実現される。これは、排気ガス空燃比(A/F)の変動があっても、触媒まわりを排気ガスの浄化に好適なストイキ近傍の雰囲気に素早く戻すことができるという、自動車ならではの課題解決に大きな効果を奏する。   On the other hand, recently, a device has been devised to prevent the catalyst metal from agglomerating. For example, Patent Documents 1 and 2 dope Rh with CeZr-based composite oxides, and part of the catalyst metals of the composite oxides. It is described that it is exposed to the surface. According to such an Rh-doped CeZr-based composite oxide, not only the aggregation of Rh is suppressed, but also an increase in the amount of oxygen stored and released and an improvement in the oxygen storage-release rate of the CeZr-based composite oxide are realized at the same time. This has a great effect on solving the problems unique to automobiles, such that even if there is a change in the exhaust gas air-fuel ratio (A / F), the atmosphere around the catalyst can be quickly returned to the atmosphere near the stoichiometric atmosphere suitable for purifying the exhaust gas. Play.

また、排気ガス浄化用触媒では、主に酸化触媒能が利用されるPtやPdと、主に還元触媒能が利用されるRhとを組み合わせることがなされている。例えば、PtとRh、PdとRh、という二種の触媒金属を組み合わせたバイメタル触媒、或いはPt、Pd及びRhの組み合わせであるトリメタル触媒が知られている。また、上記特許文献1,2ではPtやPdは活性アルミナに担持されている。   Further, in the exhaust gas purifying catalyst, Pt or Pd that mainly uses oxidation catalytic ability is combined with Rh that mainly uses reduction catalytic ability. For example, a bimetallic catalyst in which two types of catalytic metals Pt and Rh and Pd and Rh are combined, or a trimetallic catalyst that is a combination of Pt, Pd, and Rh is known. In Patent Documents 1 and 2, Pt and Pd are supported on activated alumina.

特開2006−35043号公報JP 2006-35043 A 特開2008−62156号公報JP 2008-62156 A

ところで、排気ガス浄化用触媒では、触媒金属が希少金属であることから、浄化性能を損なうことなく、触媒金属の使用量をできるだけ少なくすることが求められる。この点は上述のバイメタル触媒やトリメタル触媒でも同じである。これに対して、ハニカム担体に対する触媒金属の担持量を排気ガス入口側で多くし、出口側で少なく、又は零にすることにより、触媒金属の使用量をできるだけ少なくする手法があるが、いくつかの問題がある。   By the way, in the exhaust gas purifying catalyst, since the catalytic metal is a rare metal, it is required to reduce the usage amount of the catalytic metal as much as possible without impairing the purification performance. This also applies to the bimetal catalyst and the trimetal catalyst described above. On the other hand, there is a technique for reducing the amount of catalyst metal used as much as possible by increasing the amount of catalyst metal supported on the honeycomb carrier on the exhaust gas inlet side and reducing it to zero or zero on the outlet side. There is a problem.

すなわち、ハニカム担体全長にわたってRhを担持させた触媒層を形成した後、その触媒層の排気ガス入口側にPt又はPdを含浸法によって担持させると、その含浸時に触媒層からRhが一部溶出し、該RhがPt又はPdと一緒になって触媒層に担持された状態になり易い。その場合、触媒が高温の排気ガスに晒されると、溶出したRhとPt又はPdとの合金化を招いて触媒活性が低下するという問題がある。PtやPdを担持させた活性アルミナを上記担体の排気ガス入口側にウォッシュコートする場合でも、上記Rh溶出の問題は避けられない。また、ハニカム担体の排気ガス入口側を上下二層の触媒層構造とし、その上層にRhを担持した状態で、上下両層にPt又はPdを含浸担持させる場合は、その含浸時に上層のRhが一部溶出して下層に担持され、触媒の耐久性低下等を招くという問題もある。   That is, after forming a catalyst layer carrying Rh over the entire length of the honeycomb carrier and then carrying Pt or Pd on the exhaust gas inlet side of the catalyst layer by the impregnation method, a part of Rh is eluted from the catalyst layer during the impregnation. The Rh tends to be supported on the catalyst layer together with Pt or Pd. In that case, when the catalyst is exposed to high-temperature exhaust gas, there is a problem that the catalyst activity is lowered due to alloying of the eluted Rh and Pt or Pd. Even when activated alumina carrying Pt or Pd is wash-coated on the exhaust gas inlet side of the carrier, the Rh elution problem is unavoidable. In addition, when the honeycomb carrier has an upper and lower two-layer catalyst layer structure on the exhaust gas inlet side and Rh is supported on the upper layer, both upper and lower layers are impregnated and supported with Pt or Pd. There is also a problem that a part of the catalyst is eluted and supported on the lower layer, resulting in a decrease in catalyst durability.

また、RhドープCeZr複合酸化物の場合、Ce含有比を高めると酸素吸蔵放出量は多くなるものの、耐熱性の低下が懸念され、Zr含有比を高めると耐熱性は高まるものの、酸素吸蔵放出量の低下が懸念される。PtやPdを担持させる耐熱性粒子についてもサポート材としての性能を高めることが求められる。   In addition, in the case of Rh-doped CeZr composite oxide, increasing the Ce content ratio increases the oxygen storage / release amount, but there is a concern about the decrease in heat resistance, and increasing the Zr content ratio increases the heat resistance, but the oxygen storage / release amount. There is concern about the decline. The heat-resistant particles that support Pt and Pd are also required to improve the performance as a support material.

そこで、本発明は、上述のバイメタル触媒やトリメタル触媒において、ハニカム担体における排気ガス入口側のPtやPdの担持量を多くする(出口側での当該担持量を少なくする、又は零にする)場合の上記問題に対策し、触媒の性能向上ないしは耐久性向上を図る。   Therefore, the present invention provides a case where the carrying amount of Pt or Pd on the exhaust gas inlet side of the honeycomb carrier is increased in the bimetal catalyst or trimetal catalyst described above (the carrying amount on the outlet side is reduced or made zero). To improve the performance or durability of the catalyst.

本発明は、上記課題を解決するために、RhドープCeZr系複合酸化物を効果的に利用した。   The present invention effectively utilizes Rh-doped CeZr-based composite oxides in order to solve the above problems.

すなわち、上記課題を解決する手段は、CeとZrとを含有するCeZr系複合酸化物粒子にRhが固溶しているRhドープCeZr系複合酸化物粉末と、耐熱性粒子にPt及びPdの少なくとも一方の貴金属が担持された貴金属担持耐熱性粉末とがハニカム担体の触媒層に含まれている排気ガス浄化用触媒であって、
上記Rhが固溶しているCeZr系複合酸化物粒子は、さらにPr、La、Y及びNdから選ばれる少なくとも一種を含有し、又はAlが複合化されてなり、
上記貴金属を担持する耐熱性粒子は、Laを含有する活性Al粒子、BaSO粒子、並びにCeZr系複合酸化物とAlとの複合化物粒子から選ばれる少なくとも一種であり、
上記RhドープCeZr系複合酸化物粉末は、上記ハニカム担体の排気ガス入口から排気ガス出口に至る上記触媒層の全長にわたって分散して含まれ、
上記貴金属担持耐熱性粉末は、上記触媒層における上記排気ガス入口から上記全長の1/10以上1/3以下の排気ガス流の上流側範囲と、該上流側範囲に続いて上記排気ガス出口に至る下流側範囲とのうち、少なくとも上流側範囲に含まれ、下流側範囲では上記ハニカム担体単位容量当たりの上記貴金属の担持量が、上流側範囲よりも少ないか又は零であることを特徴とする。
That is, the means for solving the above-described problem is that Rh-doped CeZr-based composite oxide powder in which Rh is dissolved in CeZr-based composite oxide particles containing Ce and Zr, and at least Pt and Pd in the heat-resistant particles. One of the noble metal-supported heat-resistant powders on which one of the noble metals is supported is an exhaust gas purification catalyst contained in the catalyst layer of the honeycomb carrier,
The CeZr-based composite oxide particles in which Rh is solid-solved further contain at least one selected from Pr, La, Y and Nd, or Al 2 O 3 is compounded.
The heat-resistant particles supporting the noble metal are at least one selected from active Al 2 O 3 particles containing La, BaSO 4 particles, and composite particles of CeZr-based composite oxide and Al 2 O 3 ,
The Rh-doped CeZr-based composite oxide powder is dispersed and contained over the entire length of the catalyst layer from the exhaust gas inlet to the exhaust gas outlet of the honeycomb carrier,
The noble metal-supported heat-resistant powder is supplied from the exhaust gas inlet in the catalyst layer to the upstream range of the exhaust gas flow that is 1/10 or more and 1/3 or less of the total length, and to the exhaust gas outlet following the upstream range. The downstream range is included in at least the upstream range, and in the downstream range, the amount of the noble metal supported per unit honeycomb carrier capacity is less than or equal to the upstream range. .

かかる排気ガス浄化用触媒にあっては、触媒層の下流側範囲の上記貴金属担持量が上流側範囲よりも少ないか又は零であるにも拘わらず、HC、CO及びNOxの浄化が効率よく行なわれる。そのため、本発明によれば、所期の触媒性能を確保しつつ、触媒全体としてのPtやPdの使用量を少なくし、コスト低減を図ることができる。   In such an exhaust gas purifying catalyst, HC, CO, and NOx are efficiently purified even though the amount of the noble metal supported in the downstream range of the catalyst layer is less than the upstream range or zero. It is. Therefore, according to the present invention, it is possible to reduce the amount of Pt and Pd used as a whole catalyst and to reduce costs while ensuring the desired catalyst performance.

すなわち、触媒層の上流側範囲(ハニカム担体入口側)では、排気ガスが乱流状態になって触媒層内に拡散し易いところ(なお、下流側範囲で排気ガス流れが層流に近い状態になっている)、この上流側範囲にPt又はPdが多く含まれているから、排気ガス中のHC及びCOが効率良く酸化浄化され、これに伴って、排気ガス中のNOxのRhによる還元も進む。また、上流側範囲でHC及びCOの酸化が活発に行なわれることにより、下流側範囲の温度が上昇し易くなり、該下流側範囲でのHCやCOを還元剤とするRhによるNOxの還元も進み易くなる。   That is, in the upstream range (honeycomb carrier inlet side) of the catalyst layer, the exhaust gas is in a turbulent state and easily diffuses into the catalyst layer (note that the exhaust gas flow is close to the laminar flow in the downstream range. Since the upstream range contains a large amount of Pt or Pd, HC and CO in the exhaust gas are efficiently oxidized and purified. Along with this, NOx in the exhaust gas is reduced by Rh. move on. In addition, active oxidation of HC and CO in the upstream range facilitates the temperature increase in the downstream range, and NOx reduction by Rh using HC or CO as a reducing agent in the downstream range is also possible. It becomes easy to go.

そうして、CeZr系複合酸化物にRhを固溶させたから、該CeZr系複合酸化物の酸素吸蔵放出能の改善、並びにRhのシンタリング抑制の効果が得られるだけでなく、Rhの溶出が避けられ、該RhとPt又はPdとの合金化が防止される。また、Pt又はPdは耐熱性粒子に担持された状態で触媒層に含まれているから、該Pt又はPdのシンタリングが抑制され、また、Rhとの合金化防止にも有利になる。   Thus, since Rh was dissolved in the CeZr-based composite oxide, not only the improvement of the oxygen storage / release ability of the CeZr-based composite oxide and the suppression of Rh sintering were obtained, but also the elution of Rh. It is avoided and alloying of the Rh with Pt or Pd is prevented. Moreover, since Pt or Pd is contained in the catalyst layer in a state of being supported on the heat-resistant particles, sintering of the Pt or Pd is suppressed, and it is advantageous for preventing alloying with Rh.

また、上記RhドープCeZr系複合酸化物は、排気ガスの空燃比が変動する雰囲気下での使用を続けると、それ自身が放出する活性の高い酸素のために、触媒活性が徐々に低下していくという問題がある。これは、当該CeZr系複合酸化物粒子の表面に露出しているRhが活性酸素によって酸化されていき、活性の高い還元状態に戻らなくなるためと考えられる。これに対して、本発明の場合、触媒層の下流側範囲ではPt又はPdの担持量が上流側範囲よりも少ないか又は零であるから、該下流側範囲に至った排気ガス中のHCやCOがRhの賦活(還元)に働き易く、触媒活性の低下が抑制される。   Further, when the Rh-doped CeZr-based composite oxide continues to be used in an atmosphere where the air-fuel ratio of the exhaust gas varies, the catalytic activity gradually decreases due to the highly active oxygen released by itself. There is a problem of going. This is presumably because Rh exposed on the surface of the CeZr-based composite oxide particles is oxidized by active oxygen and does not return to a highly active reduced state. On the other hand, in the case of the present invention, the amount of Pt or Pd supported in the downstream range of the catalyst layer is less than or equal to that in the upstream range. CO tends to act on activation (reduction) of Rh, and a decrease in catalyst activity is suppressed.

しかも、上記RhドープCeZr系複合酸化物粉末のCeZr系複合酸化物は、Pr、La、Y及びNdから選ばれる少なくとも一種を含有したもの、又はAlと複合されたものであるから、良好な酸素吸蔵放出能及び耐熱性を示す。Pr、La、Y及びNdから選ばれる少なくとも一種を含有するケースでは、これら希土類金属のCeZr複合酸化物への固溶により、耐熱性が高くなるとともに、当該複合酸化物の結晶が歪み、そのことによって、酸素吸蔵放出能が高くなるという効果が得られる。当該希土類金属としては、Ndが最も好ましく、これにY、La、Prが順に続く。CeZr系複合酸化物とAlとの複合化物の場合、Alが立体障害となることによってCeZr系複合酸化物一次粒子のシンタリングが抑制され(酸素吸蔵放出能の低下が抑制され)、また、RhがAlに固溶すること(酸素吸蔵放出能ないし触媒性能が低下すること)が抑制される。 Moreover, since the CeZr-based composite oxide of the Rh-doped CeZr-based composite oxide powder contains at least one selected from Pr, La, Y, and Nd, or is composited with Al 2 O 3 . Good oxygen storage / release capacity and heat resistance. In the case of containing at least one kind selected from Pr, La, Y and Nd, the solid solution of these rare earth metals in the CeZr composite oxide increases the heat resistance, and the crystals of the composite oxide are distorted. As a result, the effect of increasing the ability to store and release oxygen can be obtained. As the rare earth metal, Nd is most preferable, followed by Y, La, and Pr in this order. In the case of a composite of CeZr-based composite oxide and Al 2 O 3 , sintering of the primary particles of CeZr-based composite oxide is suppressed by suppressing the steric hindrance of Al 2 O 3 (the decrease in oxygen storage / release capability is suppressed). In addition, it is suppressed that Rh is dissolved in Al 2 O 3 (oxygen storage / release ability or catalytic performance is lowered).

Pt及びPdの少なくとも一方の貴金属を担持する耐熱性粒子としては、Laを含有する活性Al(La含有Al)粒子が最も好ましく、これにCeZr系複合酸化物とAlとの複合化物粒子、及びBaSO粒子が順に続く。La含有Al粒子の場合、その耐熱性が高く且つ多数の細孔を有し表面積が大であることから、PtやPdを高分散に担持することができ、該PtやPdのシンタリングが抑制される。CeZr系複合酸化物とAlとの複合化物粒子は、CeZr系複合酸化物一次粒子とAl一次粒子とが凝集してなるものであり、Al一次粒子によってCeZr系複合酸化物一次粒子のシンタリングが抑制され、長期間の使用によっても高い比表面積が維持される。BaSO粒子の場合、活性Alほどの大きな比表面積は備えていないが、高温の排気ガスに晒されても、比表面積の低下が実質的になく、PtやPdのサポート材としては極めて安定であり、しかも、エンジンオイルから排気ガス中に混入するP、Zn、Sによる被毒(触媒の劣化)も少なくなる。 As the heat-resistant particles supporting at least one of Pt and Pd, active Al 2 O 3 (La-containing Al 2 O 3 ) particles containing La are most preferable, and CeZr-based composite oxide and Al 2 O are preferable. 3 composite particles, followed by BaSO 4 particles. In the case of La-containing Al 2 O 3 particles, Pt and Pd can be supported in a highly dispersed state because of its high heat resistance, a large number of pores, and a large surface area. The ring is suppressed. Composite compound particles of CeZr-based mixed oxide and Al 2 O 3 is for the CeZr-based mixed oxide primary particles and Al 2 O 3 primary particles formed by agglomerating, CeZr-based by Al 2 O 3 primary particles Sintering of the composite oxide primary particles is suppressed, and a high specific surface area is maintained even after long-term use. In the case of BaSO 4 particles, the specific surface area as large as active Al 2 O 3 is not provided, but even when exposed to high-temperature exhaust gas, the specific surface area does not substantially decrease, and as a support material for Pt and Pd, It is extremely stable, and poisoning (deterioration of the catalyst) due to P, Zn, and S mixed from the engine oil into the exhaust gas is reduced.

好ましい実施形態では、上記触媒層は上記上流側範囲では上下に積層された複数の層からなり、上記貴金属担持耐熱性粉末は、上記RhドープCeZr系複合酸化物粉末を含有する層よりも下層に設けられていることを特徴とする。すなわち、貴金属担持耐熱性粉末の貴金属(Pt又はPd)はRhに比べてシンタリングを生じ易いところ、該貴金属担持耐熱性粉末は下層に設けられているから、Pt又はPdのシンタリングの抑制に有利になる。   In a preferred embodiment, the catalyst layer is composed of a plurality of layers stacked one above the other in the upstream range, and the noble metal-supported heat-resistant powder is below the layer containing the Rh-doped CeZr-based composite oxide powder. It is provided. That is, the noble metal (Pt or Pd) of the noble metal-supported heat-resistant powder is more susceptible to sintering than Rh. However, since the noble metal-supported heat-resistant powder is provided in the lower layer, it suppresses sintering of Pt or Pd. Become advantageous.

本発明によれば、RhドープCeZr系複合酸化物粉末を触媒層全長にわたって設ける一方、Pt及びPdの少なくとも一方の貴金属が担持された貴金属担持耐熱性粉末は上記触媒層の少なくとも上流側範囲に設け、且つ該上流側範囲に続く下流側範囲では、ハニカム担体単位容量当たりの上記貴金属の担持量を上記上流側範囲よりも少ないか又は零になるようにしたから、RhとPt又はPdとの合金化、並びにPt又はPdのシンタリングを抑制しつつ、排気ガスが乱流状態になって触媒層内に拡散し易い上記上流側範囲を有効に利用して排気ガスの浄化を図ることができ、しかも、排気ガス空燃比の変動によるRhドープCeZr系複合酸化物の触媒活性の低下も抑制され、所期の触媒性能を確保しながら、触媒のコスト低減を図る上で有利になる。   According to the present invention, the Rh-doped CeZr-based composite oxide powder is provided over the entire length of the catalyst layer, while the noble metal-supported heat-resistant powder on which at least one of Pt and Pd is supported is provided in at least the upstream range of the catalyst layer. In addition, in the downstream range following the upstream range, the amount of the noble metal supported per unit honeycomb carrier capacity is set to be smaller or zero than the upstream range, so an alloy of Rh and Pt or Pd. The exhaust gas can be purified by effectively using the upstream range where the exhaust gas is in a turbulent state and easily diffuses into the catalyst layer, while suppressing sintering and Pt or Pd sintering. In addition, the catalyst activity of the Rh-doped CeZr-based composite oxide is also prevented from lowering due to fluctuations in the exhaust gas air-fuel ratio, and the cost of the catalyst is reduced while ensuring the desired catalyst performance. Advantageous to become.

本発明の実施形態1に係る排気ガス浄化用触媒の触媒層構成を示す断面図である。It is sectional drawing which shows the catalyst layer structure of the exhaust gas purification catalyst which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る排気ガス浄化用触媒の触媒層構成を示す断面図である。It is sectional drawing which shows the catalyst layer structure of the exhaust gas purification catalyst which concerns on Embodiment 2 of this invention.

以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
<実施形態1>
図1に示すエンジンの排気ガス浄化用触媒において、1はハニカム担体であり、該ハニカム担体1のセル壁面1aに、該ハニカム担体1の排気ガス入口から排気ガス出口に至る担体全長にわたって触媒層2が形成されている。触媒層2は、排気ガス入口から該触媒層全長の1/10以上1/3以下の排気ガス流の上流側範囲2aと、該上流側範囲2aに続いて排気ガス出口に至る下流側触媒層2bとでは、その構成が相異なる。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.
<Embodiment 1>
In the engine for exhaust gas purification of the engine shown in FIG. 1, reference numeral 1 denotes a honeycomb carrier, and a catalyst layer 2 is formed on the cell wall surface 1 a of the honeycomb carrier 1 over the entire length of the carrier from the exhaust gas inlet to the exhaust gas outlet of the honeycomb carrier 1. Is formed. The catalyst layer 2 includes an upstream range 2a of an exhaust gas flow of 1/10 to 1/3 of the total length of the catalyst layer from an exhaust gas inlet, and a downstream catalyst layer that extends from the upstream range 2a to an exhaust gas outlet. The configuration is different from 2b.

すなわち、上流側範囲2aは、酸素吸蔵放出能を有するRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とを混合して含有する。下流側範囲2bは、RhドープCeZr系複合酸化物粉末を含有し、貴金属担持耐熱性粉末を含有しない。   That is, the upstream range 2a contains a mixture of Rh-doped CeZr-based composite oxide powder having oxygen storage / release ability and noble metal-supported heat-resistant powder. The downstream range 2b contains Rh-doped CeZr-based composite oxide powder and does not contain noble metal-supported heat-resistant powder.

RhドープCeZr系複合酸化物粉末は、CeとZrとを含有するCeZr系複合酸化物粒子にRhが固溶したものである。このCeZr系複合酸化物粒子は、さらにPr、La、Y及びNdから選ばれる少なくとも一種を含有し、又はAlが複合されてなる。Alが複合されたCeZr系複合酸化物粒子は、CeZr系複合酸化物の一次粒子とAlの一次粒子とが凝集してなるものである。 The Rh-doped CeZr-based composite oxide powder is obtained by dissolving Rh in CeZr-based composite oxide particles containing Ce and Zr. The CeZr-based composite oxide particles further contain at least one selected from Pr, La, Y, and Nd, or are composed of Al 2 O 3 composited. The CeZr-based composite oxide particles in which Al 2 O 3 is composited are formed by agglomeration of primary particles of CeZr-based composite oxide and primary particles of Al 2 O 3 .

貴金属担持耐熱性粉末は、耐熱性酸化物粒子にPt及びPdの少なくとも一方の貴金属が担持されたものである。その耐熱性粒子は、Laを含有する活性Al粒子(La含有Al)、BaSO粒子、並びにCeZr系複合酸化物とAlとの複合化物粒子(CeZrAl)から選ばれる少なくとも一種である。 The noble metal-supported heat-resistant powder is obtained by supporting at least one of Pt and Pd on a heat-resistant oxide particle. The heat-resistant particles are selected from La-containing active Al 2 O 3 particles (La-containing Al 2 O 3 ), BaSO 4 particles, and composite particles of CeZr-based composite oxide and Al 2 O 3 (CeZrAl). Is at least one kind.

[実施例及び比較例]
−RhドープCeZr系複合酸化物粉末−
RhドープCeZr系複合酸化物粉末として、CeZrPr複合酸化物粒子にRhが固溶したRh−CeZrPr、CeZrLa複合酸化物粒子にRhが固溶したRh−CeZrLa、CeZrY複合酸化物粒子にRhが固溶したRh−CeZrY、CeZrNd複合酸化物粒子にRhが固溶したRh−CeZrNd、並びにRhが固溶したCeZr複合酸化物とAlとの複合化物であるRh−CeZrAlの各粉末を準備した。
[Examples and Comparative Examples]
-Rh-doped CeZr-based composite oxide powder-
Rh-doped CeZr-based composite oxide powders include Rh-CeZrPr in which Rh is solid-solved in CeZrPr composite oxide particles, Rh-CeZrLa in which Rh is solid-solved in CeZrLa composite oxide particles, and Rh in the CeZrY composite oxide particles. Rh—CeZrY, Rh—CeZrNd in which Rh was dissolved in CeZrNd composite oxide particles, and Rh—CeZrAl that was a composite of CeZr composite oxide in which Rh was dissolved and Al 2 O 3 were prepared. .

Rh−CeZrPr、Rh−CeZrLa、Rh−CeZrY及びRh−CeZrNdはいずれも共沈法によって調製した。すなわち、Rh−CeZrPrの例で説明すると、Ce、Zr、Pr及びRhの各硝酸塩を含む溶液にアンモニア水を攪拌しながら添加して中和させ、得られた共沈物を水洗した後、大気雰囲気において150℃の温度で一昼夜乾燥させ、粉砕し、さらに500℃の温度に2時間保持する焼成を行なうことにより、当該Rh−CeZrPrを得るという方法である。ドープされたRhのうちの少なくとも一部は当該複合酸化物粒子の表面に露出している。いずれのRhドープCeZr系複合酸化物も、Rhを除く組成比はCeO:ZrO:(Pr又はLa又はY又はNd)=45:45:10(質量%)であり、Rhドープ量は0.1質量%である。 Rh-CeZrPr, Rh-CeZrLa, Rh-CeZrY and Rh-CeZrNd were all prepared by a coprecipitation method. That is, in the example of Rh—CeZrPr, ammonia water is added to a solution containing nitrates of Ce, Zr, Pr and Rh while stirring to neutralize, and the resulting coprecipitate is washed with water, In this method, the Rh—CeZrPr is obtained by drying in an atmosphere at a temperature of 150 ° C. for a whole day and night, pulverization, and firing at a temperature of 500 ° C. for 2 hours. At least a part of the doped Rh is exposed on the surface of the composite oxide particle. In any Rh-doped CeZr-based composite oxide, the composition ratio excluding Rh is CeO 2 : ZrO 2 : (Pr 2 O 3 or La 2 O 3 or Y 2 O 3 or Nd 2 O 3 ) = 45: 45: 10 (Mass%) and the Rh doping amount is 0.1 mass%.

Rh−CeZrAlは次の方法によって調製した。すなわち、硝酸Al水溶液にアンモニア水を攪拌しながら添加して、アルミナ粒子の前駆体である水酸化Alの沈殿を得た。この沈殿を生じた溶液に、アンモニア水溶液を添加した後、Ce、Zr及びRhの各硝酸塩水溶液を添加して混合し、Ce、Zr及びRhの各水酸化物の共沈物と上記水酸化Alとの混合物を得た。この混合沈殿物を水洗し、大気雰囲気において150℃の温度で一昼夜乾燥させ、粉砕し、さらに500℃の温度に2時間保持する焼成を行なった。これにより、Ce及びZrを含有し且つRhがドープされ、該ドープRhうちの少なくとも一部が粒子表面に露出したRhドープCeZr複合酸化物の一次粒子とアルミナの一次粒子とが凝集してなる当該Rh−CeZrAlを得た。Rhを除く組成比はCeO:ZrO:Al=25:25:50(質量%)であり、Rhドープ量は0.1質量%である。 Rh-CeZrAl was prepared by the following method. That is, ammonia water was added to an aqueous solution of Al nitrate while stirring to obtain a precipitate of Al hydroxide, which is a precursor of alumina particles. After adding an aqueous ammonia solution to the solution resulting from the precipitation, an aqueous solution of nitrates of Ce, Zr and Rh was added and mixed, and the coprecipitate of each of the hydroxides of Ce, Zr and Rh and the above-mentioned Al hydroxide A mixture with was obtained. The mixed precipitate was washed with water, dried in an air atmosphere at a temperature of 150 ° C. for a whole day and night, pulverized, and further calcined at a temperature of 500 ° C. for 2 hours. As a result, the primary particles of Rh-doped CeZr composite oxide containing Ce and Zr, doped with Rh, and at least a part of the doped Rh exposed on the particle surface and the primary particles of alumina are aggregated. Rh-CeZrAl was obtained. The composition ratio excluding Rh is CeO 2 : ZrO 2 : Al 2 O 3 = 25: 25: 50 (mass%), and the Rh doping amount is 0.1 mass%.

−貴金属担持耐熱性粉末−
貴金属担持耐熱性粉末として、各々Pdを担持したLa含有Al、BaSO、及びCeZrAl、並びに各々Ptを担持したLa含有Al、BaSO、及びCeZrAlの各粉末を準備した。なお、CeZrAlは、上述のCeZr複合酸化物(Rhドープなし)の一次粒子とアルミナの一次粒子とが凝集してなる複合酸化物であり、その組成比はCeO:ZrO:Al=25:25:50(質量%)である。また、La含有Alは、Laを4質量%含有するものである。
-Precious metal-supported heat-resistant powder-
Noble metal-supporting heat-resistant powder, each containing La carrying Pd Al 2 O 3, BaSO 4 , and CeZrAl, and La-containing carrying each Pt Al 2 O 3, BaSO 4 , and were prepared powders of CeZrAl. CeZrAl is a composite oxide formed by agglomerating primary particles of the above-mentioned CeZr composite oxide (without Rh doping) and primary particles of alumina, and the composition ratio thereof is CeO 2 : ZrO 2 : Al 2 O 3. = 25: 25: 50 (mass%). La-containing Al 2 O 3 contains 4% by mass of La 2 O 3 .

−排気ガス浄化用触媒(供試材)の調製−
RhドープCeZr系複合酸化物粉末(Rh−CeZrPr、Rh−CeZrLa、Rh−CeZrY、Rh−CeZrNd及びRh−CeZrAlのいずれか一)と、貴金属担持耐熱性粉末(Pd担持La含有Al、Pd担持BaSO、Pd担持CeZrAl、Pt担持La含有Al、Pt担持BaSO及びPt担持CeZrAlのいずれか一)と、貴金属を担持していない無担持耐熱性粉末(La含有Al、BaSO、CeZrAl、La含有Al、BaSO及びCeZrAlのいずれか一)とを適宜組み合わせて、上流側範囲2a(図1参照)の長さが相異なる各種の実施例及び比較例の触媒を調製した。
-Preparation of exhaust gas purification catalyst (test material)-
Rh-doped CeZr-based composite oxide powder (any one of Rh-CeZrPr, Rh-CeZrLa, Rh-CeZrY, Rh-CeZrNd and Rh-CeZrAl), noble metal-supported heat-resistant powder (Pd-supported La-containing Al 2 O 3 , Pd-supported BaSO 4 , Pd-supported CeZrAl, Pt-supported La-containing Al 2 O 3 , any one of Pt-supported BaSO 4 and Pt-supported CeZrAl), and unsupported heat-resistant powder that does not support noble metals (La-containing Al 2 O 3 , BaSO 4 , CeZrAl, La-containing Al 2 O 3 , BaSO 4, and CeZrAl), and various examples and comparisons in which the length of the upstream range 2 a (see FIG. 1) is different. An example catalyst was prepared.

上流側範囲2aは貴金属担持耐熱性粉末を含有し、下流側範囲2bよりも貴金属量が多くなっているから、以下では、上流側範囲2aの長さを「リッチ長さ」という。   Since the upstream range 2a contains noble metal-supported heat-resistant powder and the amount of noble metal is larger than that of the downstream range 2b, the length of the upstream range 2a is hereinafter referred to as “rich length”.

調製したのは、リッチ長さが触媒層全長の1/10、1/5又は1/3である実施例の各触媒と、リッチ長さが触媒層全長の1/20、1/2又は1/1である比較例の各触媒である。ハニカム担体としては、いずれもセル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製で、直径118.4mm、長さ91mm、容量1Lのものから直径25.4mm、長さ91mm、容量46mLのものを切り出したコアサンプルを用いた。この点は後述する他の実施形態の実施例及び比較例も同じである。なお、比較例の「1/1」は触媒層がその全長にわたってRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とを混合して含有し、図1に示す下流側範囲2bがないケースである。 Each of the catalysts in the examples in which the rich length is 1/10, 1/5, or 1/3 of the total length of the catalyst layer, and the rich length is 1/20, 1/2, or 1 of the total length of the catalyst layer Each catalyst of the comparative example is / 1. As the honeycomb carrier, all are made of cordierite having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ), a diameter of 118.4 mm, A core sample having a diameter of 25.4 mm, a length of 91 mm, and a capacity of 46 mL was cut from a sample having a length of 91 mm and a capacity of 1 L. This is the same in the examples and comparative examples of other embodiments described later. In addition, “1/1” in the comparative example is a case where the catalyst layer contains a mixture of the Rh-doped CeZr-based composite oxide powder and the noble metal-supported heat-resistant powder over the entire length, and does not have the downstream range 2b shown in FIG. It is.

リッチ長さの割合が1/10である触媒の調製;
RhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とを混合して、ハニカム担体の排気ガス入口から担体全長の1/10の上流側範囲にコーティングし、残る9/10の下流側範囲に、RhドープCeZr系複合酸化物粉末と、貴金属が担持されていない無担持耐熱性粉末(貴金属担持耐熱性粉末と同種の耐熱性粉末)とを混合してコーティングした。なお、RhドープCeZr系複合酸化物粉末など触媒粉末のコーティングは、該触媒粉末にバインダ及び水を加えてスラリー化して行なった(以下、同じ)。
Preparation of a catalyst with a rich length ratio of 1/10;
Rh-doped CeZr-based composite oxide powder and precious metal-supported heat-resistant powder are mixed and coated from the exhaust gas inlet of the honeycomb carrier to the upstream range of 1/10 of the total length of the carrier, and the remaining downstream range of 9/10 The Rh-doped CeZr-based composite oxide powder was mixed with a non-supported heat-resistant powder on which noble metal was supported (the same kind of heat-resistant powder as the noble metal-supported heat-resistant powder). The coating of the catalyst powder such as the Rh-doped CeZr composite oxide powder was performed by adding a binder and water to the catalyst powder to form a slurry (hereinafter the same).

ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/Lであり、そのうちの1/10相当量を上流側1/10の範囲に担持し、残る9/10相当量を下流側9/10の範囲に担持した。貴金属担持耐熱性粉末と無担持耐熱性粉末とを合わせた担持量は50g/Lであり、そのうちの5g/L分が貴金属担持耐熱性粉末であって、これを上流側1/10の範囲に担持し、残る45g/L分が無担持耐熱性粉末であって、これを下流側9/10の範囲に担持した。従って、触媒層はその全長にわたって厚さが同じである。そして、上流側1/10の範囲への貴金属担持耐熱性粉末5g/L分の担持によって、担体全体としての貴金属担持量が1.0g/Lとなるように、耐熱性粉末に対する貴金属の担持量を調整した。   The supported amount per liter of honeycomb carrier is 100 g / L of Rh-doped CeZr-based composite oxide powder, of which 1/10 equivalent amount is supported in a range of 1/10 upstream, and the remaining 9/10 equivalent amount is It was carried in the range of 9/10 downstream. The total supported amount of the noble metal-supported heat-resistant powder and the non-supported heat-resistant powder is 50 g / L, of which 5 g / L is the noble metal-supported heat-resistant powder, and this is in the range of 1/10 upstream. The remaining 45 g / L was unsupported heat-resistant powder, and this was supported in the range of 9/10 on the downstream side. Accordingly, the catalyst layer has the same thickness over its entire length. The amount of noble metal supported on the heat-resistant powder is 1.0 g / L as the entire carrier is supported by 5 g / L of the noble metal-supported heat-resistant powder in the upstream 1/10 range. Adjusted.

リッチ長さの割合が異なる他の触媒の調製;
リッチ長さの割合が1/20から1/2までである他の触媒も上記リッチ長さの割合が1/10である触媒と同様の方法で調製した。すなわち、いずれも、ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/Lであり、貴金属担持耐熱性粉末と無担持耐熱性粉末とを合わせた担持量は50g/Lである。そして、RhドープCeZr系複合酸化物粉末100g/L分を上流側のリッチ長さと下流側範囲の長さとの割合に応じて振り分け、上記50g/Lに占める貴金属担持耐熱性粉末の量と無担持耐熱性粉末の量との比率も、上流側のリッチ長さと下流側範囲の長さとの割合に応じたものにした。
Preparation of other catalysts with different rich length ratios;
Other catalysts having a rich length ratio of 1/20 to 1/2 were prepared in the same manner as the catalyst having the rich length ratio of 1/10. That is, in each case, the supported amount per 1 L of the honeycomb carrier is 100 g / L of the Rh-doped CeZr-based composite oxide powder, and the combined amount of the noble metal-supported heat-resistant powder and the unsupported heat-resistant powder is 50 g / L. It is. Then, 100 g / L of the Rh-doped CeZr-based composite oxide powder is distributed according to the ratio between the rich length on the upstream side and the length of the downstream range, and the amount of the noble metal-supported heat-resistant powder in the 50 g / L and the unsupported The ratio with the amount of the heat-resistant powder was also in accordance with the ratio between the upstream rich length and the downstream range length.

この場合、上流側のリッチ長さの割合が小さくなるほど、上流側範囲に対する貴金属担持耐熱性粉末の担持量が少なくなるが、いずれの触媒も担体全体としての貴金属担持量が1.0g/Lとなるようにするために、上流側範囲に対する担持量が少ない貴金属担持耐熱性粉末ほど、その耐熱性粉末に対する貴金属担持量が多くなるようにした。   In this case, the smaller the ratio of the rich length on the upstream side, the smaller the supported amount of the noble metal-supported heat-resistant powder with respect to the upstream range, but each catalyst has a noble metal support amount of 1.0 g / L as the entire support. In order to achieve this, the amount of noble metal-supported heat-resistant powder with a smaller amount supported on the upstream side region is set to have a larger amount of noble metal supported on the heat-resistant powder.

リッチ長さの割合が1/1である触媒は、RhドープCeZr系複合酸化物粉末100g/L分と、貴金属担持耐熱性粉末50g/L分とを混合して触媒層を形成した。この場合の貴金属担持耐熱性粉末は、50g/Lの担持量で担体全体としての貴金属担持量が1.0g/Lとなるものであり、従って、その耐熱性粉末に対する貴金属担持量は、上流側範囲のみに担持する他の貴金属担持耐熱性粉末に比べて最も少ない。   The catalyst having a rich length ratio of 1/1 was formed by mixing 100 g / L of Rh-doped CeZr-based composite oxide powder and 50 g / L of noble metal-supported heat-resistant powder to form a catalyst layer. The noble metal-supported heat-resistant powder in this case has a supported amount of 50 g / L and the supported amount of the noble metal as a whole carrier is 1.0 g / L. Fewer than other noble metal-supported heat-resistant powders supported only in the range.

−排気ガス浄化性能評価−
実施例及び比較例の各触媒について、大気雰囲気において1000℃の温度に24時間加熱するエージングを行なった。次いで、これら触媒をモデルガス流通反応装置に取り付け、評価用モデルガスによってHC、CO及びNOxの浄化に関するライトオフ温度T50を測定した。T50は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。評価用のモデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。
−Evaluation of exhaust gas purification performance−
About each catalyst of an Example and a comparative example, the aging which heats to the temperature of 1000 degreeC in air | atmosphere for 24 hours was performed. Next, these catalysts were attached to the model gas flow reactor, and the light-off temperature T50 relating to the purification of HC, CO, and NOx was measured with the model gas for evaluation. T50 is the gas temperature at the catalyst inlet when the temperature of the model gas flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. The model gas for evaluation was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min.

実施例の結果を表1に示し、比較例の結果を表2に示す。なお、表1,2において、「Al2O3」は「Al」のことであり、「BaSO4」は「BaSO」のことである。また、「リッチ長さ」の欄の「全長」は、触媒層がその全長にわたってRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とを混合して含有するケース(「1/1」のケース)である。表の表記に関しては後に出てくる他の表も同じである。 Table 1 shows the results of the examples and Table 2 shows the results of the comparative examples. In Tables 1 and 2, “Al 2 O 3 ” means “Al 2 O 3 ” and “BaSO 4 ” means “BaSO 4 ”. The “full length” in the “rich length” column is the case where the catalyst layer contains a mixture of the Rh-doped CeZr-based composite oxide powder and the noble metal-supported heat-resistant powder over the entire length (“1/1” Case). The table notation is the same for other tables that appear later.

Figure 2011101839
Figure 2011101839

Figure 2011101839
Figure 2011101839

HC、CO及びNOxいずれの浄化に関しても、RhドープCeZr系複合酸化物粉末及び貴金属担持耐熱性粉末の種類が同じであるケースでは、リッチ長さの割合が1/10、1/5及び1/3である各実施例触媒は比較例触媒よりもT50が低い。リッチ長さの割合がT50に及ぼす影響を具体的に検討すると、1/10であるときのT50が最も低く、これに1/5、1/3、1/2、1/20が順に続き、1/1(全長)のT50が最も高くなっている。   Regarding the purification of HC, CO and NOx, in the case where the types of the Rh-doped CeZr-based composite oxide powder and the noble metal-supported heat-resistant powder are the same, the ratio of rich length is 1/10, 1/5 and 1 / Each example catalyst of 3 has a lower T50 than the comparative catalyst. When the influence of the rich length ratio on T50 is specifically examined, T50 when 1/10 is the lowest, followed by 1/5, 1/3, 1/2, 1/20 in this order, The T50 of 1/1 (full length) is the highest.

次にRhドープCeZr系複合酸化物粉末のCeZr系複合酸化物の種類がT50に及ぼす影響を、リッチ長さの割合が1/10であり且つ貴金属担持耐熱性粉末の貴金属がPdであるケースでみると、Ndを含有するRh−CeZrNdのT50が最も低い。T50の評価成分がHC、CO及びNOxのいずれであるかにより、或いは貴金属を担持する耐熱性粒子の種類により、多少のバラツキがあるものの、基本的には、Rh−CeZrNdの次にT50が低いのはRh−CeZrYであり、これにRh−CeZrLa及びRh−CeZrPrが順に続いている。Rh−CeZrAlは、T50の評価成分がHC、CO及びNOxのいずれであるかにより、或いは貴金属を担持する耐熱性粒子の種類により、その性能にバラツキがある。   Next, the effect of the type of CeZr-based composite oxide of the Rh-doped CeZr-based composite oxide powder on T50 is shown in the case where the ratio of rich length is 1/10 and the noble metal in the noble metal-supported heat-resistant powder is Pd. When it sees, T50 of Rh-CeZrNd containing Nd is the lowest. Although there is some variation depending on whether the evaluation component of T50 is HC, CO, or NOx, or depending on the type of heat-resistant particles supporting noble metal, basically, T50 is the next lower than Rh-CeZrNd. Is Rh-CeZrY, followed by Rh-CeZrLa and Rh-CeZrPr in this order. Rh—CeZrAl varies in its performance depending on whether the evaluation component of T50 is HC, CO, or NOx, or depending on the type of heat-resistant particles supporting a noble metal.

他のリッチ長さ割合に関して、Rh−CeZrY、Rh−CeZrLa及びRh−CeZrAlを比較すると、T50は概ねRh−CeZrAlが最も低く、これにRh−CeZrY及びRh−CeZrLaが順に続く傾向がみられる。   When Rh-CeZrY, Rh-CeZrLa, and Rh-CeZrAl are compared with respect to other rich length ratios, T50 generally has the lowest Rh-CeZrAl, followed by Rh-CeZrY and Rh-CeZrLa.

次に貴金属担持耐熱性粉末の耐熱性粒子の種類がT50に及ぼす影響をみると、La含有Alを用いたときのT50が最も低く、これにCeZrAl及びBaSOが順に続いている。また、耐熱性粒子に担持する貴金属で比較すると、Pdを担持したときの方がPtを担持したときよりも、T50は低くなっている。
<実施形態2>
本実施形態のエンジンの排気ガス浄化用触媒に係る触媒層構造は図2に示されている。すなわち、触媒層2はハニカム担体1のセル壁面1aに排気ガス入口から排気ガス出口に至る担体全長にわたって形成されているが、実施形態1とは違って、排気ガス入口から該触媒層全長の1/10以上1/3以下の排気ガス流の上流側範囲2aでは、RhドープCeZr系複合酸化物粉末を含有する上層2a1と、貴金属担持耐熱性粉末を含有する下層2a2の二層構造になっている。上流側範囲2aに続く排気ガス出口に至る下流側触媒層2bは、実施形態1と同じく、RhドープCeZr系複合酸化物粉末を含有し、貴金属担持耐熱性粉末を含有しない。
Next, looking at the effect of the kind of heat-resistant particles of the noble metal-supported heat-resistant powder on T50, T50 is the lowest when La-containing Al 2 O 3 is used, followed by CeZrAl and BaSO 4 in this order. Further, when compared with the noble metal supported on the heat-resistant particles, T50 is lower when Pd is supported than when Pt is supported.
<Embodiment 2>
The catalyst layer structure relating to the exhaust gas purifying catalyst of the engine of this embodiment is shown in FIG. That is, the catalyst layer 2 is formed on the cell wall surface 1a of the honeycomb carrier 1 over the entire length of the carrier from the exhaust gas inlet to the exhaust gas outlet. In the upstream range 2a of the exhaust gas flow of / 10 or more and 1/3 or less, it has a two-layer structure of an upper layer 2a1 containing Rh-doped CeZr-based composite oxide powder and a lower layer 2a2 containing noble metal-supported heat-resistant powder. Yes. The downstream catalyst layer 2b that reaches the exhaust gas outlet following the upstream range 2a contains the Rh-doped CeZr-based composite oxide powder and does not contain the noble metal-supported heat-resistant powder, as in the first embodiment.

[実施例及び比較例]
−排気ガス浄化用触媒(供試材)の調製−
実施形態1と同様にして調製した各種のRhドープCeZr系複合酸化物粉末、貴金属担持耐熱性粉末及び貴金属無担持耐熱性粉末を適宜組み合わせて、リッチ長さ(上流側範囲2aの長さ)の割合が相異なる各種の実施例及び比較例の触媒を調製した。その触媒の調製方法は、上流側範囲2aに関し、これを上下二層にするために、ハニカム担体に対して先に貴金属担持耐熱性粉末を担持し、後からRhドープCeZr系複合酸化物粉末を担持する点が先の実施形態1と異なるのみで、他は同じである。
[Examples and Comparative Examples]
-Preparation of exhaust gas purification catalyst (test material)-
Various combinations of Rh-doped CeZr-based composite oxide powders, noble metal-supported heat-resistant powders and noble metal-free-supported heat-resistant powders prepared in the same manner as in Embodiment 1, and having a rich length (the length of the upstream range 2a) Catalysts of various examples and comparative examples having different ratios were prepared. The catalyst preparation method is related to the upstream range 2a. In order to make the upper and lower two layers, a noble metal-supported heat-resistant powder is first supported on the honeycomb carrier, and then the Rh-doped CeZr-based composite oxide powder is Only the point of carrying is different from that of the first embodiment, and the others are the same.

−排気ガス浄化性能評価−
実施例及び比較例の各触媒について、実施形態1と同じ条件でエージングを行ない、同じ条件でHC、CO及びNOxの浄化に関するライトオフ温度T50を測定した。実施例の結果を表3に示し、比較例の結果を表4に示す。
−Evaluation of exhaust gas purification performance−
About each catalyst of an Example and a comparative example, aging was performed on the same conditions as Embodiment 1, and the light-off temperature T50 regarding purification | cleaning of HC, CO, and NOx was measured on the same conditions. The results of Examples are shown in Table 3, and the results of Comparative Examples are shown in Table 4.

Figure 2011101839
Figure 2011101839

Figure 2011101839
Figure 2011101839

実施形態1と同じく、HC、CO及びNOxいずれの浄化に関しても、RhドープCeZr系複合酸化物粉末及び貴金属担持耐熱性粉末の種類が同じであるケースでは、リッチ長さの割合が1/10、1/5及び1/3である各実施例触媒の方が比較例触媒よりもT50が低い。リッチ長さの割合がT50に及ぼす影響、RhドープCeZr系複合酸化物粉末のCeZr系複合酸化物粉末の種類がT50に及ぼす影響、並びに貴金属担持耐熱性粉末の耐熱性粒子の種類がT50に及ぼす影響に関しても、実施形態1と同様の傾向がみられる。   As in the first embodiment, regarding the purification of HC, CO, and NOx, in the case where the types of the Rh-doped CeZr-based composite oxide powder and the noble metal-supported heat-resistant powder are the same, the ratio of the rich length is 1/10, Each Example catalyst which is 1/5 and 1/3 has a lower T50 than the comparative example catalyst. Effect of rich length ratio on T50, effect of CeZr-based composite oxide powder of Rh-doped CeZr-based composite oxide powder on T50, and type of heat-resistant particles of noble metal-supported heat-resistant powder on T50 Regarding the influence, the same tendency as in the first embodiment is observed.

但し、本実施形態2では、実施形態1よりも、総じてT50が低くなっている。これは、本実施形態では、貴金属担持耐熱性粉末が下層2a2に設けられていて、そのPt又はPdのシンタリングが上層2a1によって抑制された結果と考えられる。   However, in the second embodiment, T50 is generally lower than that in the first embodiment. In this embodiment, this is considered to be a result of the noble metal-supported heat-resistant powder being provided in the lower layer 2a2, and the sintering of the Pt or Pd being suppressed by the upper layer 2a1.

<実施形態3>
本実施形態は、図1に示す上流側範囲2aをRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末との混合型としたエンジンの排気ガス浄化用触媒において、下流側範囲2bもRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末との混合型とし、且つ下流側範囲2bのハニカム担体単位容量当たりの貴金属(Pt及びPdの少なくとも一方)担持量を上流側範囲2aよりも少なくしたものである。
<Embodiment 3>
This embodiment is an exhaust gas purifying catalyst for an engine in which the upstream range 2a shown in FIG. 1 is a mixed type of Rh-doped CeZr-based composite oxide powder and noble metal-supported heat-resistant powder, and the downstream range 2b is also Rh-doped. A mixed type of CeZr-based composite oxide powder and noble metal-supported heat-resistant powder was used, and the amount of noble metal (at least one of Pt and Pd) supported per honeycomb carrier unit capacity in the downstream range 2b was smaller than that in the upstream range 2a. Is.

[実施例]
−排気ガス浄化用触媒(供試材)の調製−
実施形態1と同様にして調製した各種のRhドープCeZr系複合酸化物粉末と、耐熱性粉末に対する貴金属担持量が異なる各種の貴金属担持耐熱性粉末とを適宜組み合わせて、リッチ長さ(上流側範囲2aの長さ)の割合が1/10及び1/3である2つのケースの各種実施例の触媒を調製した。すなわち、上流側範囲2aには、RhドープCeZr系複合酸化物粉末と、耐熱性粉末に対する貴金属担持量が相対的に多い高濃度貴金属担持耐熱性粉末とを混合してコーティングし、下流側範囲2bには、RhドープCeZr系複合酸化物粉末と、耐熱性粉末に対する貴金属担持量が相対的に少ない低濃度貴金属担持耐熱性粉末とを混合してコーティングした。
[Example]
-Preparation of exhaust gas purification catalyst (test material)-
Various combinations of Rh-doped CeZr-based composite oxide powders prepared in the same manner as in Embodiment 1 and various precious metal-supported heat-resistant powders having different precious metal-supporting amounts with respect to the heat-resistant powder can be combined in a rich length (upstream range). The catalysts of the various examples in two cases with a ratio of (length 2a) of 1/10 and 1/3 were prepared. That is, the upstream range 2a is coated with a mixture of Rh-doped CeZr-based composite oxide powder and high-concentration noble metal-supported heat-resistant powder having a relatively large amount of noble metal supported relative to the heat-resistant powder. The Rh-doped CeZr-based composite oxide powder and a low-concentration noble metal-supported heat-resistant powder with a relatively small amount of noble metal-supported to the heat-resistant powder were mixed and coated.

具体的に説明すると、ハニカム担体1L当たりの担持量は、いずれの触媒も、RhドープCeZr系複合酸化物粉末が100g/L、高濃度貴金属担持耐熱性粉末と低濃度貴金属担持耐熱性粉末とを合わせて50g/Lである。   Specifically, the supported amount per liter of honeycomb carrier is 100 g / L of Rh-doped CeZr-based composite oxide powder, high-concentration noble metal-supported heat-resistant powder, and low-concentration noble metal-supported heat-resistant powder. The total is 50 g / L.

リッチ長さの割合が1/10であるケースでは、RhドープCeZr系複合酸化物粉末100g/L中の1/10相当量を上流側1/10の範囲に担持し、残る9/10相当量を下流側9/10の範囲に担持した。また、高濃度貴金属担持耐熱性粉末と低濃度貴金属担持耐熱性粉末とを合わせた担持量50g/L中の5g/L分が高濃度貴金属担持耐熱性粉末であって、これを上流側1/10の範囲に担持し、残る45g/L分が低濃度貴金属担持耐熱性粉末であって、これを下流側9/10の範囲に担持した。従って、触媒層はその全長にわたって厚さが同じである。   In the case where the ratio of rich length is 1/10, 1/10 equivalent amount in 100 g / L of Rh-doped CeZr-based composite oxide powder is supported in the range of 1/10 upstream, and the remaining 9/10 equivalent amount Was carried in the range of 9/10 downstream. In addition, 5 g / L of the supported amount 50 g / L of the high concentration precious metal-supported heat-resistant powder and the low concentration precious metal-supported heat-resistant powder is the high-concentration precious metal-supported heat-resistant powder. The remaining 45 g / L was supported on the low concentration noble metal-supported heat-resistant powder, and this was supported in the downstream 9/10 range. Accordingly, the catalyst layer has the same thickness over its entire length.

そして、高濃度貴金属担持耐熱性粉末と低濃度貴金属担持耐熱性粉末とを合わせたときに担体全体として貴金属担持量が1.0g/Lとなるように、高濃度貴金属担持耐熱性粉末及び低濃度貴金属担持耐熱性粉末各々の耐熱性粉末に対する貴金属の担持量を調整した。すなわち、上流側範囲2aの貴金属担持量を2g/Lとし、下流側範囲2bの貴金属担持量を0.89g/Lとする第1ケース、上流側範囲2aの貴金属担持量を5g/Lとし、下流側範囲2bの貴金属担持量を0.56g/Lとする第2ケース、上流側範囲2aの貴金属担持量を8g/Lとし、下流側範囲2bの貴金属担持量を0.22g/Lとする第3ケースの計3ケースの供試触媒を調製した。   The high-concentration precious metal-supported heat-resistant powder and the low-concentration precious metal-supported heat-resistant powder and the low-concentration precious metal-supported heat-resistant powder are combined so that the precious metal-supported amount is 1.0 g / L as a whole. The amount of noble metal supported on each heat-resistant powder was adjusted. That is, the noble metal loading amount in the upstream range 2a is 2 g / L, the noble metal loading amount in the downstream range 2b is 0.89 g / L, the noble metal loading amount in the upstream range 2a is 5 g / L, Second case in which the noble metal loading in the downstream range 2b is 0.56 g / L, the noble metal loading in the upstream range 2a is 8 g / L, and the noble metal loading in the downstream range 2b is 0.22 g / L. A total of 3 cases of test catalysts were prepared.

第1ケースの例で説明すると、上流側範囲2a(担体全長の1/10範囲)での担持量が2.0g/Lであるから、担体全体としてみれば、貴金属担持量が0.2g/Lになり、下流側範囲2b(担体全長の9/10範囲)での担持量が0.89g/Lであるから、担体全体としてみれば、貴金属担持量が0.8g/Lになり、トータルでは1.0g/Lになる。第2ケース及び第3ケースも同様に担体全体としてみるトータルでは貴金属担持量が1.0g/Lになる。   In the case of the first case, since the loading amount in the upstream range 2a (1/10 range of the total length of the carrier) is 2.0 g / L, the total loading of the noble metal is 0.2 g / L. L, and the loading amount in the downstream side range 2b (9/10 range of the total length of the carrier) is 0.89 g / L. Then, it becomes 1.0 g / L. Similarly, in the second case and the third case as well, the total amount of the noble metal supported is 1.0 g / L as the whole carrier.

リッチ長さの割合が1/3であるケースでは、RhドープCeZr系複合酸化物粉末100g/L中の1/3相当量を上流側1/3の範囲に担持し、残る2/3相当量を下流側2/3の範囲に担持した。また、高濃度貴金属担持耐熱性粉末と低濃度貴金属担持耐熱性粉末とを合わせた担持量50g/L中の1/3相当分が高濃度貴金属担持耐熱性粉末であって、これを上流側1/3の範囲に担持し、残る2/3相当分が低濃度貴金属担持耐熱性粉末であって、これを下流側2/3の範囲に担持した。従って、触媒層はその全長にわたって厚さが同じである。   In the case where the ratio of rich length is 1/3, 1/3 equivalent amount in 100 g / L of Rh-doped CeZr-based composite oxide powder is supported in the range of 1/3 upstream, and the remaining 2/3 equivalent amount Was carried in the range of 2/3 of the downstream side. Further, 1/3 of the supported amount 50 g / L of the high concentration precious metal-supported heat-resistant powder and the low concentration precious metal-supported heat-resistant powder is the high-concentration precious metal-supported heat-resistant powder. / 3, and the remaining 2/3 equivalent is a low-concentration noble metal-supported heat-resistant powder, which is supported in the downstream 2/3 range. Accordingly, the catalyst layer has the same thickness over its entire length.

そして、高濃度貴金属担持耐熱性粉末と低濃度貴金属担持耐熱性粉末とを合わせたときに担体全体として貴金属担持量が1.0g/Lとなるように、高濃度貴金属担持耐熱性粉末及び低濃度貴金属担持耐熱性粉末各々の耐熱性粉末に対する貴金属の担持量を調整した。すなわち、上流側範囲2aの貴金属担持量を1.5g/Lとし、下流側範囲2bの貴金属担持量を0.8g/Lとする第1ケース、上流側範囲2aの貴金属担持量を2.4g/Lとし、下流側範囲2bの貴金属担持量を0.3g/Lとする第2ケースの各供試触媒を調製した。   The high-concentration precious metal-supported heat-resistant powder and the low-concentration precious metal-supported heat-resistant powder and the low-concentration precious metal-supported heat-resistant powder are combined so that the precious metal-supported amount is 1.0 g / L as a whole. The amount of noble metal supported on each heat-resistant powder was adjusted. That is, the precious metal carrying amount of the upstream range 2a is 1.5 g / L, the precious metal carrying amount of the downstream range 2b is 0.8 g / L, and the precious metal carrying amount of the upstream range 2a is 2.4 g. / L, and each test catalyst in the second case was prepared in which the noble metal loading in the downstream range 2b was 0.3 g / L.

−排気ガス浄化性能評価−
実施例の各触媒について、実施形態1と同じ条件でエージングを行ない、同じ条件でHC、CO及びNOxの浄化に関するライトオフ温度T50を測定した。その結果を表5に示す。
−Evaluation of exhaust gas purification performance−
About each catalyst of an Example, aging was performed on the same conditions as Embodiment 1, and the light-off temperature T50 regarding purification | cleaning of HC, CO, and NOx was measured on the same conditions. The results are shown in Table 5.

Figure 2011101839
Figure 2011101839

リッチ長さの割合が1/10である場合は、上流側範囲2aの貴金属担持量を5g/Lとし、下流側範囲2bの貴金属担持量を0.56g/Lとする第2ケースのT50が最も低く、これに上流側範囲2aの貴金属担持量を8g/Lとし、下流側範囲2bの貴金属担持量を0.22g/Lとする第3ケース、並びに上流側範囲2aの貴金属担持量を2g/Lとし、下流側範囲2bの貴金属担持量を0.89g/Lとする第1ケースが順に続いている。また、第3ケースでは実施形態1と大差がない結果となっている。   When the ratio of the rich length is 1/10, the T50 of the second case in which the noble metal loading amount in the upstream range 2a is 5 g / L and the noble metal loading amount in the downstream range 2b is 0.56 g / L The third case in which the noble metal loading in the upstream range 2a is 8 g / L, the noble metal loading in the downstream range 2b is 0.22 g / L, and the noble metal loading in the upstream range 2a is 2 g. / L, and the first case in which the amount of noble metal supported in the downstream range 2b is 0.89 g / L continues in order. In the third case, there is no significant difference from the first embodiment.

リッチ長さの割合が1/3である場合は、上流側範囲2aの貴金属担持量を2.4g/Lとし、下流側範囲2bの貴金属担持量を0.3g/Lとする第2ケースの方が、上流側範囲2aの貴金属担持量を1.5g/Lとし、下流側範囲2bの貴金属担持量を0.8g/Lとする第1ケースよりもT50は低くなっているが、実施形態1のT50の方がさらに低い。   When the ratio of the rich length is 1/3, the amount of noble metal supported in the upstream range 2a is 2.4 g / L, and the amount of noble metal supported in the downstream range 2b is 0.3 g / L. However, the T50 is lower than that in the first case in which the noble metal loading in the upstream range 2a is 1.5 g / L and the noble metal loading in the downstream range 2b is 0.8 g / L. A T50 of 1 is even lower.

<実施形態4>
本実施形態は、実施形態3において、図2示すように、上流側範囲2aをRhドープCeZr系複合酸化物粉末を含有する上層2a1と、高濃度貴金属担持耐熱性粉末を含有する下層2a2の二層としたものである。下流側範囲2bは実施形態3と同じである。
<Embodiment 4>
In the third embodiment, as shown in FIG. 2, the upstream range 2a is divided into an upper layer 2a1 containing Rh-doped CeZr-based composite oxide powder and a lower layer 2a2 containing high-concentration noble metal-supported heat-resistant powder. It is a layer. The downstream range 2b is the same as that of the third embodiment.

[実施例]
実施形態3と同様の各種のRhドープCeZr系複合酸化物粉末と、高濃度貴金属担持耐熱性粉末と低濃度貴金属担持耐熱性粉末とを適宜組み合わせて、リッチ長さ(上流側範囲2aの長さ)の割合が1/10及び1/3である2つのケースの各種実施例の触媒を調製した。その触媒の調製方法は、上流側範囲2aに関し、これを上下二層にするために、ハニカム担体に対して先に高濃度貴金属担持耐熱性粉末をコーティングし、後からRhドープCeZr系複合酸化物粉末をコーティングする点が先の実施形態3と異なるのみで、他は同じである。
[Example]
Various types of Rh-doped CeZr-based composite oxide powders as in Embodiment 3, high-concentration precious metal-supported heat-resistant powder, and low-concentration precious metal-supported heat-resistant powder are appropriately combined to provide a rich length (the length of the upstream range 2a). ) Ratios of 1/10 and 1/3 were prepared in two cases of various example catalysts. The catalyst preparation method relates to the upstream range 2a, and in order to make the upper and lower two layers, the honeycomb carrier is first coated with a high-concentration noble metal-supporting heat-resistant powder, and then the Rh-doped CeZr-based composite oxide It is the same as the third embodiment except that the powder is coated.

−排気ガス浄化性能評価−
実施例の各触媒について、実施形態1と同じ条件でエージングを行ない、同じ条件でHC、CO及びNOxの浄化に関するライトオフ温度T50を測定した。結果を表6に示す。
−Evaluation of exhaust gas purification performance−
About each catalyst of an Example, aging was performed on the same conditions as Embodiment 1, and the light-off temperature T50 regarding purification | cleaning of HC, CO, and NOx was measured on the same conditions. The results are shown in Table 6.

Figure 2011101839
Figure 2011101839

本実施形態の場合も、実施形態3と同様に、リッチ長さの割合が1/10である場合は、上流側範囲2aの貴金属担持量を5g/Lとし、下流側範囲2bの貴金属担持量を0.56g/Lとする第2ケースのT50が最も低く、これに上流側範囲2aの貴金属担持量を8g/Lとし、下流側範囲2bの貴金属担持量を0.22g/Lとする第3ケース、並びに上流側範囲2aの貴金属担持量を2g/Lとし、下流側範囲2bの貴金属担持量を0.89g/Lとする第1ケースが準に続いている。また、第3ケースでは実施形態2と大差がない結果となっている。   Also in the case of the present embodiment, similarly to the third embodiment, when the ratio of the rich length is 1/10, the amount of noble metal supported in the upstream range 2a is set to 5 g / L, and the amount of noble metal supported in the downstream range 2b is set. The T50 of the second case with 0.56 g / L is the lowest, and the noble metal loading in the upstream range 2a is 8 g / L, and the noble metal loading in the downstream range 2b is 0.22 g / L. The first case in which 3 cases and the noble metal loading amount in the upstream range 2a are 2 g / L and the noble metal loading amount in the downstream range 2b is 0.89 g / L continues in succession. In the third case, there is no significant difference from the second embodiment.

リッチ長さの割合が1/3である場合は、上流側範囲2aの貴金属担持量を2.4g/Lとし、下流側範囲2bの貴金属担持量を0.3g/Lとする第2ケースの方が、上流側範囲2aの貴金属担持量を1.5g/Lとし、下流側範囲2bの貴金属担持量を0.8g/Lとする第1ケースよりもT50は低くなっているが、実施形態2のT50の方がさらに低い。   When the ratio of the rich length is 1/3, the amount of noble metal supported in the upstream range 2a is 2.4 g / L, and the amount of noble metal supported in the downstream range 2b is 0.3 g / L. However, the T50 is lower than that in the first case in which the noble metal loading in the upstream range 2a is 1.5 g / L and the noble metal loading in the downstream range 2b is 0.8 g / L. The T50 of 2 is even lower.

なお、実施形態3,4において、耐熱性粒子に担持する貴金属としてはPdに代えてPtを採用してもよい。   In the third and fourth embodiments, Pt may be adopted instead of Pd as the noble metal supported on the heat resistant particles.

また、貴金属担持耐熱性粉末は、実施形態1〜4では、貴金属としてPt及びPdのいずれかを担持したものであるが、Pt及びPdの両者を担持したものとすることもできる。   In the first to fourth embodiments, the noble metal-supported heat-resistant powder is one that supports either Pt or Pd as a noble metal, but may be one that supports both Pt and Pd.

また、Rh−CeZrAlに関しては、Rhが固溶し且つPr、La、Y及びNdから選ばれる少なくとも一種を含有するCeZr系複合酸化物とAlとを複合化させたものであってもよい。 In addition, regarding Rh—CeZrAl, a composite of CeZr-based composite oxide containing Al at least one selected from Pr, La, Y, and Nd and Al 2 O 3 in which Rh is dissolved. Good.

1 ハニカム担体
1a セル壁面
2 触媒層
2a 上流側範囲
2a1 上層
2a2 下層
2b 下流側触媒層
1 Honeycomb carrier 1a Cell wall surface 2 Catalyst layer 2a Upstream range 2a1 Upper layer 2a2 Lower layer 2b Downstream catalyst layer

Claims (2)

CeとZrとを含有するCeZr系複合酸化物粒子にRhが固溶しているRhドープCeZr系複合酸化物粉末と、耐熱性粒子にPt及びPdの少なくとも一方の貴金属が担持された貴金属担持耐熱性粉末とがハニカム担体の触媒層に含まれている排気ガス浄化用触媒であって、
上記Rhが固溶しているCeZr系複合酸化物粒子は、さらにPr、La、Y及びNdから選ばれる少なくとも一種を含有し、又はAlが複合化されてなり、
上記貴金属を担持する耐熱性粒子は、Laを含有する活性Al粒子、BaSO粒子、並びにCeZr系複合酸化物とAlとの複合化物粒子から選ばれる少なくとも一種であり、
上記RhドープCeZr系複合酸化物粉末は、上記ハニカム担体の排気ガス入口から排気ガス出口に至る上記触媒層の全長にわたって分散して含まれ、
上記貴金属担持耐熱性粉末は、上記触媒層における上記排気ガス入口から上記全長の1/10以上1/3以下の排気ガス流の上流側範囲と、該上流側範囲に続いて上記排気ガス出口に至る下流側範囲とのうち、少なくとも上流側範囲に含まれ、下流側範囲では上記ハニカム担体単位容量当たりの上記貴金属の担持量が、上流側範囲よりも少ないか又は零であることを特徴とする排気ガス浄化用触媒。
Rh-doped CeZr-based composite oxide powder in which Rh is dissolved in CeZr-based composite oxide particles containing Ce and Zr, and noble metal-supported heat-resistant particles in which at least one of Pt and Pd is supported on heat-resistant particles An exhaust gas purifying catalyst contained in the catalyst layer of the honeycomb carrier,
The CeZr-based composite oxide particles in which Rh is solid-solved further contain at least one selected from Pr, La, Y and Nd, or Al 2 O 3 is compounded.
The heat-resistant particles supporting the noble metal are at least one selected from active Al 2 O 3 particles containing La, BaSO 4 particles, and composite particles of CeZr-based composite oxide and Al 2 O 3 ,
The Rh-doped CeZr-based composite oxide powder is dispersed and contained over the entire length of the catalyst layer from the exhaust gas inlet to the exhaust gas outlet of the honeycomb carrier,
The noble metal-supported heat-resistant powder is supplied from the exhaust gas inlet in the catalyst layer to the upstream range of the exhaust gas flow that is 1/10 or more and 1/3 or less of the total length, and to the exhaust gas outlet following the upstream range. The downstream range is included in at least the upstream range, and in the downstream range, the amount of the noble metal supported per unit honeycomb carrier capacity is less than or equal to the upstream range. Exhaust gas purification catalyst.
請求項1において、
上記上流側範囲では、上記触媒層が、上記RhドープCeZr系複合酸化物粉末を含有する層と上記貴金属担持耐熱性粉末を含有する層とを有し、且つ上記RhドープCeZr系複合酸化物粉末を含有する層が上記貴金属担持耐熱性粉末を含有する層より上側に配置されていることを特徴とする排気ガス浄化用触媒。
In claim 1,
In the upstream range, the catalyst layer has a layer containing the Rh-doped CeZr composite oxide powder and a layer containing the noble metal-supported heat-resistant powder, and the Rh-doped CeZr composite oxide powder. An exhaust gas purifying catalyst, characterized in that a layer containing is disposed above a layer containing the noble metal-supported heat-resistant powder.
JP2009257278A 2009-11-10 2009-11-10 Exhaust gas purifying catalyst Pending JP2011101839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257278A JP2011101839A (en) 2009-11-10 2009-11-10 Exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257278A JP2011101839A (en) 2009-11-10 2009-11-10 Exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JP2011101839A true JP2011101839A (en) 2011-05-26

Family

ID=44192440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257278A Pending JP2011101839A (en) 2009-11-10 2009-11-10 Exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JP2011101839A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111922A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp Control device and exhaust emission control device of internal combustion engine
WO2012120349A1 (en) * 2011-03-10 2012-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
JP2016044108A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Exhaust gas purification catalyst
CN112246242A (en) * 2020-11-11 2021-01-22 中自环保科技股份有限公司 Composite catalyst with high NO purification efficiency and preparation method thereof
US11725556B2 (en) 2021-03-05 2023-08-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111922A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp Control device and exhaust emission control device of internal combustion engine
WO2012120349A1 (en) * 2011-03-10 2012-09-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US8796172B2 (en) 2011-03-10 2014-08-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
JP2016044108A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Exhaust gas purification catalyst
CN112246242A (en) * 2020-11-11 2021-01-22 中自环保科技股份有限公司 Composite catalyst with high NO purification efficiency and preparation method thereof
US11725556B2 (en) 2021-03-05 2023-08-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
JP7355775B2 (en) 2021-03-05 2023-10-03 トヨタ自動車株式会社 Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP5428773B2 (en) Exhaust gas purification catalyst
JP5287884B2 (en) Exhaust gas purification catalyst
EP2301661B1 (en) Honeycomb catalyst for purifying exhaust gas discharged from automobile, method for producing the same, and exhaust gas purifying method using the catalyst
JP2011200817A (en) Exhaust gas purification catalyst
JP2006075724A (en) Catalyst for exhaust gas cleaning
JP6869976B2 (en) Three-way catalyst for purifying gasoline engine exhaust gas
JP2015093267A (en) Exhaust gas purification catalyst
JP5589321B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2009273988A (en) Catalyst for cleaning exhaust gas
JP2012055842A (en) Exhaust gas purifying catalyst
JP5684973B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP6748590B2 (en) Exhaust gas purification catalyst
JP2011101839A (en) Exhaust gas purifying catalyst
JP2017006905A (en) Exhaust gas purifying catalyst
JP2006055748A (en) Manufacturing method for catalyst
JP2011255270A (en) Catalyst for purifying exhaust gas
JP6146436B2 (en) Exhaust gas purification catalyst
JP2007313500A (en) Catalyst for exhaust gas purification, and method for manufacturing this catalyst
JP5531567B2 (en) Exhaust gas purification catalyst
JP5391664B2 (en) Exhaust gas purification catalyst
JP4867794B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4496873B2 (en) Exhaust gas purification catalyst
JP6175275B2 (en) Exhaust gas purification catalyst
JP5463861B2 (en) Exhaust gas purification catalyst
JP2005279437A (en) Catalyst for purifying exhaust gas