JP5531567B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP5531567B2
JP5531567B2 JP2009257298A JP2009257298A JP5531567B2 JP 5531567 B2 JP5531567 B2 JP 5531567B2 JP 2009257298 A JP2009257298 A JP 2009257298A JP 2009257298 A JP2009257298 A JP 2009257298A JP 5531567 B2 JP5531567 B2 JP 5531567B2
Authority
JP
Japan
Prior art keywords
supported
cepr
powder
particles
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009257298A
Other languages
Japanese (ja)
Other versions
JP2011101843A (en
Inventor
真明 赤峰
啓司 山田
雅彦 重津
明秀 ▲高▼見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009257298A priority Critical patent/JP5531567B2/en
Publication of JP2011101843A publication Critical patent/JP2011101843A/en
Application granted granted Critical
Publication of JP5531567B2 publication Critical patent/JP5531567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排気ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst.

エンジン排気ガス中のHC(炭化水素)、CO及びNOx(窒素酸化物)を浄化する触媒は約200℃から約1100℃までの広範な温度域で高い浄化率を有することが求められる。そのため、Pt、Pd、Rh等の希少金属を触媒金属として用いるとともに、これら触媒金属を活性アルミナ、酸化ジルコニウム、或いは酸素吸蔵放出能を有するCe系酸化物等の耐熱性酸化物粒子に担持させた状態で担体上の触媒層に含ませることが行なわれている。しかし、触媒が高温の排気ガスに晒されると、少しずつではあるが、触媒金属が凝集してその表面積が低下し、触媒性能が低下することが知られている。そのため、通常はこの凝集を見越して触媒金属を触媒層に多めに含ませることがなされている。   A catalyst that purifies HC (hydrocarbon), CO, and NOx (nitrogen oxide) in engine exhaust gas is required to have a high purification rate in a wide temperature range from about 200 ° C. to about 1100 ° C. Therefore, rare metals such as Pt, Pd, and Rh are used as catalyst metals, and these catalyst metals are supported on heat-resistant oxide particles such as activated alumina, zirconium oxide, or Ce-based oxides having oxygen storage / release ability. In this state, the catalyst layer on the support is included. However, it is known that when the catalyst is exposed to high-temperature exhaust gas, the catalytic metal is agglomerated and its surface area is reduced, and the catalytic performance is lowered. For this reason, usually, a large amount of catalyst metal is included in the catalyst layer in anticipation of this aggregation.

一方、最近では、触媒金属が凝集しないようにする工夫もなされ、例えば、特許文献1,2には、RhをCeZr系複合酸化物にドープさせるとともに、一部の触媒金属をその複合酸化物の表面に露出させることが記載されている。かかるRhドープCeZr系複合酸化物によれば、Rhの凝集が抑制されるだけでなく、CeZr系複合酸化物の酸素吸蔵放出量の増大及び酸素吸蔵放出速度の向上も同時に実現される。これは、排気ガス空燃比(A/F)の変動があっても、触媒まわりを排気ガスの浄化に好適なストイキ近傍の雰囲気に素早く戻すことができるという、自動車ならではの課題解決に大きな効果を奏する。   On the other hand, recently, a device has been devised to prevent the catalyst metal from agglomerating. For example, Patent Documents 1 and 2 dope Rh with CeZr-based composite oxides, and part of the catalyst metals of the composite oxides. It is described that it is exposed to the surface. According to such an Rh-doped CeZr-based composite oxide, not only the aggregation of Rh is suppressed, but also an increase in the amount of oxygen stored and released and an improvement in the oxygen storage-release rate of the CeZr-based composite oxide are realized at the same time. This has a great effect on solving the problems unique to automobiles, such that even if there is a change in the exhaust gas air-fuel ratio (A / F), the atmosphere around the catalyst can be quickly returned to the atmosphere near the stoichiometric atmosphere suitable for purifying the exhaust gas. Play.

また、排気ガス浄化用触媒では、主に酸化触媒能が利用されるPtやPdと、主に還元触媒能が利用されるRhとを組み合わせることがなされている。例えば、PtとRh、PdとRh、という二種の触媒金属を組み合わせたバイメタル触媒、或いはPt、Pd及びRhの組み合わせであるトリメタル触媒が知られている。上記特許文献1,2ではPtやPdは活性アルミナに担持されている。   Further, in the exhaust gas purifying catalyst, Pt or Pd that mainly uses oxidation catalytic ability is combined with Rh that mainly uses reduction catalytic ability. For example, a bimetallic catalyst in which two types of catalytic metals Pt and Rh and Pd and Rh are combined, or a trimetallic catalyst that is a combination of Pt, Pd, and Rh is known. In Patent Documents 1 and 2, Pt and Pd are supported on activated alumina.

また、特許文献3には、空気から酸素を分離するための組成物として、Ag、V、Mn、Cu、Mo、W、Pt、Tl、Pb及びBiよりなる群から選択される少なくとも1種の表面ドープ剤を少量含有するCePr複合酸化物を開示する。但し、実施例として開示されている表面ドープ剤はAgであり、他のPt等の金属を表面ドープ剤とする具体例については開示がない。一方、特許文献4には、RhドープCeZrPr複酸化物を排気ガス浄化用触媒に用いることが記載されている。   Patent Document 3 discloses at least one selected from the group consisting of Ag, V, Mn, Cu, Mo, W, Pt, Tl, Pb and Bi as a composition for separating oxygen from air. A CePr composite oxide containing a small amount of a surface dopant is disclosed. However, the surface dopant disclosed as an example is Ag, and there is no disclosure about specific examples using other metals such as Pt as the surface dopant. On the other hand, Patent Document 4 describes that Rh-doped CeZrPr double oxide is used as an exhaust gas purification catalyst.

特開2006−35043号公報JP 2006-35043 A 特開2008−62156号公報JP 2008-62156 A 特開昭50−73893号公報JP 50-73893 A 特開2007−185588号公報JP 2007-185588 A

近年、排気ガス浄化用触媒のための酸素吸蔵放出材として、上述のCeとPrとを含有するCePr系複合酸化物が注目されている。しかし、このCePr系複合酸化物は、良好な酸素吸蔵放出性能を示すものの、その耐熱性が低く、排気ガス浄化用触媒への利用が制限される。   In recent years, CePr-based composite oxides containing Ce and Pr described above have attracted attention as oxygen storage / release materials for exhaust gas purification catalysts. However, although this CePr-based composite oxide shows good oxygen storage / release performance, its heat resistance is low, and its use as an exhaust gas purifying catalyst is limited.

そこで、本発明は、上記耐熱性の問題を解決し、CePr系複合酸化物の良好な酸素吸蔵放出性能を排気ガス浄化用触媒に有効利用できるようにすることを課題とする。   Accordingly, an object of the present invention is to solve the above heat resistance problem and to make effective use of the oxygen storage / release performance of the CePr-based composite oxide for an exhaust gas purification catalyst.

本発明は、上記課題を解決するために、CePr系複合酸化物とアルミナとを複合化させるようにした。   In the present invention, in order to solve the above-mentioned problems, a CePr-based composite oxide and alumina are combined.

すなわち、上記課題を解決する手段は、担体上に触媒層が形成されている排気ガス浄化用触媒において、上記触媒層が、CeとPrとを含有するCePr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成しているCePr系アルミナ複合化物粉末と、耐熱性粒子に触媒金属としてPt及びPdの少なくとも一方が担持されてなる耐熱性粉末とを含有し、上記耐熱性粒子は、Laを含有する活性Al粒子と、BaSO粒子と、CeとZrとを含有するCeZr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成しているCeZr系アルミナ複合化物粒子とから選ばれる少なくとも一種であることを特徴とする。 That is, the means for solving the above problem is that, in an exhaust gas purifying catalyst in which a catalyst layer is formed on a carrier, the catalyst layer contains CePr-based composite oxide primary particles and alumina primary particles containing Ce and Pr. A CePr-based alumina composite powder that is agglomerated to form secondary particles, and a heat-resistant powder in which at least one of Pt and Pd is supported as a catalyst metal on the heat-resistant particles, The particles are formed by agglomerating active Al 2 O 3 particles containing La, BaSO 4 particles, CeZr composite oxide primary particles containing Ce and Zr, and alumina primary particles to form secondary particles. And at least one selected from CeZr-based alumina composite particles.

かかる排気ガス浄化用触媒の場合、CePr系アルミナ複合化物粉末を構成するCePr系複合酸化物は、CeとPrとを含有するから、良好な酸素吸蔵放出性能を示す。そして、このCePr系アルミナ複合化物粉末は、CePr系複合酸化物の一次粒子と熱的に安定なアルミナの一次粒子とが凝集してなるから、大きな比表面積を有するとともに、アルミナ一次粒子が立体障害となることによってCePr系複合酸化物一次粒子同士のシンタリングが抑制される(酸素吸蔵放出能の低下が抑制される)ことになり、優れた耐熱性を示す。よって、当該CePr系アルミナ複合化物粉末の優れた耐熱性と酸素吸蔵放出性能により、触媒金属が長期間にわたって排気ガスの浄化に効率良く働く。なお、当該CeとPrとを含有するCePr系複合酸化物一次粒子は、Ce及びPr以外の少なくとも一種の希土類金属を含有させることができる。   In the case of such an exhaust gas purifying catalyst, the CePr-based composite oxide constituting the CePr-based alumina composite powder contains Ce and Pr, and thus exhibits a good oxygen storage / release performance. The CePr-based alumina composite powder is formed by agglomeration of primary particles of CePr-based composite oxide and primary particles of thermally stable alumina, so that the alumina primary particles have steric hindrance while having a large specific surface area. As a result, sintering of CePr-based composite oxide primary particles is suppressed (decrease in oxygen storage / release capability is suppressed), and excellent heat resistance is exhibited. Therefore, due to the excellent heat resistance and oxygen storage / release performance of the CePr-based alumina composite powder, the catalyst metal works efficiently for purification of exhaust gas over a long period of time. The CePr composite oxide primary particles containing Ce and Pr can contain at least one kind of rare earth metal other than Ce and Pr.

そうして、酸素吸蔵放出能を有する耐熱性が高いCePr系アルミナ複合化物粉末と、Pt及びPdの少なくとも一方が担持されてなる耐熱性粉末との組み合わせにより、耐熱性粉末のPt又はPdが三元触媒として有効に働くA/Fウインドが拡大し、また、CePr系アルミナ複合化物粉末から放出される活性酸素によって上記Pt又はPdによるHCやCOの酸化浄化が効率良く進み、それに伴って、NOxの還元も進み易くなる。   Thus, a combination of the CePr-based alumina composite powder having high heat resistance having oxygen storage / release ability and the heat-resistant powder on which at least one of Pt and Pd is supported results in three Pt or Pd of the heat-resistant powder. The A / F window that works effectively as an original catalyst has expanded, and the oxidation and purification of HC and CO by Pt or Pd has progressed efficiently by the active oxygen released from the CePr-based alumina composite powder. It is easy to proceed with the reduction.

上記耐熱性粒子としては、Laを含有する活性Al(La含有Al)粒子が最も好ましく、これにCeZr系アルミナ複合化物粒子、及びBaSO粒子が順に続く。La含有Al粒子の場合、その耐熱性が高く且つ多数の細孔を有し表面積が大であることから、PtやPdを高分散に担持することができ、該PtやPdのシンタリングが抑制される。CeZr系アルミナ複合化物粒子の場合、アルミナ一次粒子によってCeZr系複合酸化物一次粒子のシンタリングが抑制され、長期間の使用によっても高い比表面積が維持される。BaSO粒子の場合、活性Alほどの大きな比表面積は備えていないが、高温の排気ガスに晒されても、比表面積の低下が実質的になく、PtやPdのサポート材としては極めて安定であり、しかも、エンジンオイルから排気ガス中に混入するP、Zn、Sによる被毒(触媒の劣化)も少なくなる。 The heat-resistant particles are most preferably active Al 2 O 3 (La-containing Al 2 O 3 ) particles containing La, followed by CeZr-based alumina composite particles and BaSO 4 particles in this order. In the case of La-containing Al 2 O 3 particles, Pt and Pd can be supported in a highly dispersed state because of its high heat resistance, a large number of pores, and a large surface area. The ring is suppressed. In the case of CeZr-based alumina composite particles, sintering of the CeZr-based composite oxide primary particles is suppressed by the alumina primary particles, and a high specific surface area is maintained even after long-term use. In the case of BaSO 4 particles, the specific surface area as large as active Al 2 O 3 is not provided, but even when exposed to high-temperature exhaust gas, the specific surface area does not substantially decrease, and as a support material for Pt and Pd, It is extremely stable, and poisoning (deterioration of the catalyst) due to P, Zn, and S mixed from the engine oil into the exhaust gas is reduced.

好ましい実施形態では、上記触媒金属として、上記CePr系複合酸化物一次粒子に固溶したRh、又は上記二次粒子に担持されたPt及びPdの少なくとも一方とを備えている。そのようなRh、或いはPt、Pdは排気ガスを浄化する触媒として働く。RhがCePr系複合酸化物一次粒子に固溶されると、CePr系アルミナ複合化物粉末の酸素吸蔵放出性能が高くなるとともに、高温の排気ガスに晒されたときにRhがアルミナ一次粒子に固溶すること(活性が低下すること)が避けられる。   In a preferred embodiment, the catalyst metal includes Rh solid-solved in the CePr-based composite oxide primary particles, or at least one of Pt and Pd supported on the secondary particles. Such Rh, or Pt, Pd acts as a catalyst for purifying exhaust gas. When Rh is dissolved in CePr-based composite oxide primary particles, the oxygen storage / release performance of CePr-based alumina composite powder is enhanced, and Rh is dissolved in alumina primary particles when exposed to high-temperature exhaust gas. Doing (decreasing activity) is avoided.

以上のように、本発明によれば、担体上の触媒層が、CePr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成しているCePr系アルミナ複合化物粉末と、耐熱性粒子に触媒金属としてPt及びPdの少なくとも一方が担持されてなる耐熱性粉末とを含有し、上記耐熱性粒子は、Laを含有する活性Al粒子と、BaSO粒子と、CeとZrとを含有するCeZr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成しているCeZr系アルミナ複合化物粒子とから選ばれる少なくとも一種であるから、当該CePr系アルミナ複合化物粉末の優れた耐熱性と酸素吸蔵放出性能により、触媒金属が長期間にわたって排気ガスの浄化に効率良く働く。しかも、酸素吸蔵放出能を有する耐熱性が高いCePr系アルミナ複合化物粉末と、Pt及びPdの少なくとも一方が担持されてなる耐熱性粉末との組み合わせにより、耐熱性粉末のPt又はPdが三元触媒として有効に働くA/Fウインドが拡大し、また、CePr系アルミナ複合化物粉末から放出される活性酸素によって上記Pt又はPdによるHCやCOの酸化浄化が効率良く進み、それに伴って、NOxの還元も進み易くなる。 As described above, according to the present invention, the catalyst layer on the support has CePr-based alumina composite powder in which CePr-based composite oxide primary particles and alumina primary particles are aggregated to form secondary particles; A heat-resistant particle containing at least one of Pt and Pd as a catalyst metal. The heat-resistant particle includes La-containing active Al 2 O 3 particles, BaSO 4 particles, and Ce. CeZr-based alumina particles containing at least one selected from CeZr-based alumina composite particles in which primary particles of CeZr-based composite oxide and alumina primary particles containing Ag and Zr are aggregated to form secondary particles. Due to the excellent heat resistance and oxygen storage / release performance of the composite powder, the catalytic metal works efficiently for purification of exhaust gas over a long period of time. In addition, the combination of the CePr-based alumina composite powder having high heat resistance having oxygen storage / release ability and the heat-resistant powder on which at least one of Pt and Pd is supported allows Pt or Pd of the heat-resistant powder to be a three-way catalyst. As the A / F window that works effectively as an expansion, the active oxygen released from the CePr-based alumina composite powder efficiently promotes the oxidation and purification of HC and CO by the above-mentioned Pt or Pd. It will be easier to proceed.

本発明の実施形態1に係る排気ガス浄化用触媒の触媒層構成を示す断面図である。It is sectional drawing which shows the catalyst layer structure of the exhaust gas purification catalyst which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る排気ガス浄化用触媒の触媒層構成を示す断面図である。It is sectional drawing which shows the catalyst layer structure of the exhaust gas purification catalyst which concerns on Embodiment 2 of this invention.

以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

<実施形態1>
図1に示すエンジンの排気ガス浄化用触媒において、1はハニカム担体であり、該ハニカム担体1のセル壁面1aに触媒層2が形成されている。この触媒層2は、酸素吸蔵放出能を有するCePr系アルミナ複合化物粉末と貴金属担持耐熱性粉末とを混合して含有する。
<Embodiment 1>
In the engine exhaust gas purification catalyst shown in FIG. 1, reference numeral 1 denotes a honeycomb carrier, and a catalyst layer 2 is formed on a cell wall surface 1 a of the honeycomb carrier 1. The catalyst layer 2 contains a mixture of CePr-based alumina composite powder having oxygen storage / release ability and noble metal-supported heat-resistant powder.

CePr系アルミナ複合化物粉末は、CeとPrとを含有するCePr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成してなるものである。CePr系複合酸化物一次粒子は、さらにNd、La及びYから選ばれる少なくとも一種を含有するものとすることができる。また、CePr系複合酸化物一次粒子には触媒金属として例えばRhを固溶させたものとすることができる。また、CePr系アルミナ複合化物粉末の上記二次粒子にPt及びPdの少なくとも一方を担持させることができる。   The CePr-based alumina composite powder is formed by agglomerating CePr-based composite oxide primary particles containing Ce and Pr and alumina primary particles to form secondary particles. The CePr-based composite oxide primary particles may further contain at least one selected from Nd, La, and Y. Further, for example, Rh as a catalytic metal can be dissolved in the CePr-based composite oxide primary particles. Further, at least one of Pt and Pd can be supported on the secondary particles of the CePr-based alumina composite powder.

貴金属担持耐熱性粉末は、耐熱性酸化物粒子にPt及びPdの少なくとも一方が担持されたものである。その耐熱性粒子としては、Laを含有する活性Al粒子と、BaSO粒子と、CeとZrとを含有するCeZr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成しているCeZr系アルミナ複合化物粒子とを採用することができる。 The noble metal-supported heat-resistant powder is obtained by supporting at least one of Pt and Pd on heat-resistant oxide particles. As the heat-resistant particles, active Al 2 O 3 particles containing La, BaSO 4 particles, CeZr-based composite oxide primary particles containing Ce and Zr, and alumina primary particles aggregate to secondary particles. It is possible to employ CeZr-based alumina composite particles that form s.

[触媒粉末]
−CePr系アルミナ複合化物粉末−
後述する実施例及び比較例では、RhドープCePr系アルミナ複合化物粉末、Pt担持CePr系アルミナ複合化物粉末及びPd担持CePr系アルミナ複合化物粉末を使用した。
[Catalyst powder]
-CePr-based alumina composite powder-
In Examples and Comparative Examples described later, Rh-doped CePr-based alumina composite powder, Pt-supported CePr-based alumina composite powder, and Pd-supported CePr-based alumina composite powder were used.

RhドープCePr系アルミナ複合化物粉末は、CePr系アルミナ複合化物二次粒子を形成するCePr系複合酸化物一次粒子にRhが固溶したものである。Pt担持CePr系アルミナ複合化物粉末は、上記二次粒子にPtを担持させたものである。Pd担持CePr系アルミナ複合化物粉末は、上記二次粒子にPdを担持させたものである。   The Rh-doped CePr-based alumina composite powder is a solid solution of Rh in CePr-based composite oxide primary particles forming CePr-based alumina composite secondary particles. The Pt-supported CePr-based alumina composite powder is obtained by supporting Pt on the secondary particles. The Pd-supported CePr-based alumina composite powder is obtained by supporting Pd on the secondary particles.

上記RhドープCePr系アルミナ複合化物粉末に関しては、略号で表すところの、RhドープCePrAl、RhドープCePrNdAl、RhドープCePrLaAl及びRhドープCePrYAlの4種類を準備した。   Regarding the Rh-doped CePr-based alumina composite powder, four types of Rh-doped CePrAl, Rh-doped CePrNdAl, Rh-doped CePrLaAl, and Rh-doped CePrYAl, which are represented by abbreviations, were prepared.

Pt担持CePr系アルミナ複合化物粉末及びPd担持CePr系アルミナ複合化物粉末各々に関しても、それぞれPt担持CePrAl、Pt担持CePrNdAl、Pt担持CePrLaAl及びPt担持CePrYAlの4種類、Pd担持CePrAl、Pd担持CePrNdAl、Pd担持CePrLaAl及びPd担持CePrYAlの4種類を準備した。上記略号の意味は次のとおりである。   For each of Pt-supported CePr-based alumina composite powder and Pd-supported CePr-based alumina composite powder, Pt-supported CePrAl, Pt-supported CePrNdAl, Pt-supported CePrLaAl and Pt-supported CePrYAl, Pd-supported CePrAl, Pd-supported CePrNdAlP, Four types of supported CePrLaAl and Pd-supported CePrYAl were prepared. The meanings of the above abbreviations are as follows.

「CePrAl」 ;CePr系複合酸化物一次粒子がCe及びPr以外の金属を含まないCePr系アルミナ複合化物粉末。   "CePrAl": CePr-based alumina composite powder in which the primary particles of CePr-based composite oxide do not contain any metal other than Ce and Pr.

「CePrNdAl」;CePr系複合酸化物一次粒子がCe及びPrに加えてNdを含有するCePr系アルミナ複合化物粉末。   “CePrNdAl”: CePr-based alumina composite powder in which CePr-based composite oxide primary particles contain Nd in addition to Ce and Pr.

「CePrLaAl」;CePr系複合酸化物一次粒子がCe及びPrに加えてLaを含有するCePr系アルミナ複合化物粉末。   “CePrLaAl”: CePr-based alumina composite powder in which CePr-based composite oxide primary particles contain La in addition to Ce and Pr.

「CePrYAl」 ;CePr系複合酸化物一次粒子がCe及びPrに加えてYを含有するCePr系アルミナ複合化物粉末。   “CePrYAl”: CePr-based alumina composite powder in which CePr-based composite oxide primary particles contain Y in addition to Ce and Pr.

−RhドープCePr系アルミナ複合化物粉末の調製−
RhドープCePrAlは次の方法によって調製した。すなわち、硝酸Al水溶液にアンモニア水を攪拌しながら添加して、アルミナ一次粒子の前駆体である水酸化Alの沈殿を得た。この沈殿を生じた溶液に、アンモニア水を添加した後、Ce、Pr及びRhの各硝酸塩水溶液を添加して混合し、Ce、Pr及びRhの各水酸化物の共沈物と上記水酸化Alとの混合物を得た。この混合沈殿物を水洗し、大気雰囲気において150℃の温度で一昼夜乾燥させ、粉砕し、さらに500℃の温度に2時間保持する焼成を行なった。これにより、Ce及びPrを含有し且つRhがドープされ、該ドープRhのうちの少なくとも一部が粒子表面に露出したRhドープCePr複合酸化物の一次粒子とアルミナの一次粒子とが凝集してなる当該RhドープCePrAlを得た。Rhを除く組成比はCeO:Pr:Al=25:25:50(質量%)であり、また、Rhドープ量は0.1質量%である。
-Preparation of Rh-doped CePr-based alumina composite powder-
Rh-doped CePrAl was prepared by the following method. That is, ammonia water was added to an aqueous solution of Al nitrate while stirring to obtain a precipitate of Al hydroxide, which is a precursor of alumina primary particles. Aqueous ammonia is added to the solution resulting from the precipitation, and then aqueous nitrates of Ce, Pr, and Rh are added and mixed, and the coprecipitates of the hydroxides of Ce, Pr, and Rh are mixed with the Al hydroxide. A mixture with was obtained. The mixed precipitate was washed with water, dried in an air atmosphere at a temperature of 150 ° C. for a whole day and night, pulverized, and further calcined at a temperature of 500 ° C. for 2 hours. As a result, the primary particles of Rh-doped CePr composite oxide containing Ce and Pr, doped with Rh, and at least part of the doped Rh exposed on the particle surface and the primary particles of alumina are aggregated. The Rh-doped CePrAl was obtained. The composition ratio excluding Rh is CeO 2 : Pr 2 O 3 : Al 2 O 3 = 25: 25: 50 (mass%), and the Rh doping amount is 0.1 mass%.

RhドープCePrNdAl、RhドープCePrLaAl及びRhドープCePrYAlも、上述の水酸化Alの沈殿を生じた溶液に、Ce、Pr及びRhの各硝酸塩水溶液と共に、Nd、La又はYの各硝酸塩水溶液を添加し、他はRhドープCePrAlと同様の方法で調製した。Rhを除く組成比はCeO:Pr:(Nd又はLa又はY):Al=22.5:22.5:5:50(質量%)であり、Rhドープ量は0.1質量%である。 Rh-doped CePrNdAl, Rh-doped CePrLaAl, and Rh-doped CePrYAl also add Nd, La, or Y nitrate aqueous solutions together with the aqueous nitrate solutions of Ce, Pr, and Rh to the above-described solution of precipitated Al hydroxide, Others were prepared in the same manner as Rh-doped CePrAl. The composition ratio excluding Rh is CeO 2 : Pr 2 O 3 : (Nd 2 O 3 or La 2 O 3 or Y 2 O 3 ): Al 2 O 3 = 22.5: 22.5: 5: 50 (mass%) The Rh doping amount is 0.1% by mass.

−Pt担持CePr系アルミナ複合化物粉末の調製−
Rhの硝酸塩水溶液を添加しないことの他は上記RhドープCePr系アルミナ複合化物粉末の調製法と同様にして、各々RhがドープされていないCePrAl、CePrNdAl、CePrLaAl及びCePrYAlの各粉末を調製した。そして、これら粉末にPtを蒸発乾固によって担持させることにより、Pt担持CePrAl、Pt担持CePrNdAl、Pt担持CePrLaAl及びPt担持CePrYAlの4種類を調製した。
-Preparation of Pt-supported CePr-based alumina composite powder-
Each powder of CePrAl, CePrNdAl, CePrLaAl, and CePrYAl not doped with Rh was prepared in the same manner as the preparation of the Rh-doped CePr-based alumina composite powder, except that an aqueous Rh nitrate solution was not added. Then, four types of Pt-supported CePrAl, Pt-supported CePrNdAl, Pt-supported CePrLaAl, and Pt-supported CePrYAl were prepared by supporting Pt on these powders by evaporation to dryness.

CePrAl、CePrNdAl、CePrLaAl及びCePrYAl各粉末の組成比は、上述のRhドープ型のCePrAl、CePrNdAl、CePrLaAl及びCePrYAlの各粉末と同じである。各Pt担持CePr系アルミナ複合化物粉末100g当たりのPt量は1gである。   The composition ratio of each powder of CePrAl, CePrNdAl, CePrLaAl, and CePrYAl is the same as that of the aforementioned Rh-doped CePrAl, CePrNdAl, CePrLaAl, and CePrYAl. The amount of Pt per 100 g of each Pt-supported CePr-based alumina composite powder is 1 g.

−Pd担持CePr系アルミナ複合化物粉末の調製−
上記RhがドープされていないCePrAl、CePrNdAl、CePrLaAl及びCePrYAlの各粉末にPdを蒸発乾固によって担持させることにより、Pd担持CePrAl、Pd担持CePrNdAl、Pd担持CePrLaAl及びPd担持CePrYAlの4種類を調製した。各Pd担持CePr系アルミナ複合化物粉末100g当たりのPd量は1gである。
-Preparation of Pd-supported CePr-based alumina composite powder-
Four types of Pd-supported CePrAl, Pd-supported CePrNdAl, Pd-supported CePrLaAl, and Pd-supported CePrYAl were prepared by supporting Pd by evaporation to dryness in each powder of CePrAl, CePrNdAl, CePrLaAl, and CePrYAl not doped with Rh. . The amount of Pd per 100 g of each Pd-supported CePr-based alumina composite powder is 1 g.

−貴金属担持耐熱性粉末−
貴金属担持耐熱性粉末として、各々Ptを蒸発乾固によって担持したPt担持La含有Al、Pt担持BaSO、及びPt担持CeZrAl、並びに各々Pdを蒸発乾固によって担持したPd担持La含有Al、Pd担持BaSO、及びPd担持CeZrAlを準備した。なお、CeZrAlは、上述のCeZr系アルミナ複合化物粉末であり、その組成比はCeO:ZrO:Al=25:25:50(質量%)である。La含有Alは、Laを4質量%含有するものである。各貴金属担持耐熱性粉末50g当たりのPt量及びPd量はいずれも1gである。
-Precious metal-supported heat-resistant powder-
Pt-supported La-containing Al 2 O 3 , Pt-supported BaSO 4 and Pt-supported CeZrAl each supporting Pt by evaporation to dryness, and Pd-supporting La-containing Al each supporting Pd by evaporation to dryness as noble metal-supported heat-resistant powder 2 O 3 , Pd-supported BaSO 4 , and Pd-supported CeZrAl were prepared. CeZrAl is the above-mentioned CeZr-based alumina composite powder, and the composition ratio thereof is CeO 2 : ZrO 2 : Al 2 O 3 = 25: 25: 50 (mass%). La-containing Al 2 O 3 contains 4% by mass of La 2 O 3 . The amount of Pt and the amount of Pd per 50 g of each noble metal-supported heat resistant powder is 1 g.

−比較例用の触媒粉末−
Rh担持CePr系複合酸化物粉末、Pt担持CePr系複合酸化物粉末、Pd担持CePr系複合酸化物粉末、Pt担持活性アルミナ粉末、及びPd担持活性アルミナ粉末を準備した。
-Catalyst powder for comparative example-
Rh-supported CePr-based composite oxide powder, Pt-supported CePr-based composite oxide powder, Pd-supported CePr-based composite oxide powder, Pt-supported activated alumina powder, and Pd-supported activated alumina powder were prepared.

Rh担持CePr系複合酸化物粉末は、各々Rhを蒸発乾固によって担持したRh担持CePr複合酸化物粉末(Rh担持CePr)、Rh担持CePrNd複合酸化物粉末(Rh担持CePrNd)、Rh担持CePrLa複合酸化物粉末(Rh担持CePrLa)及びRh担持CePrY複合酸化物粉末(Rh担持CePrY)の4種類である。   The Rh-supported CePr-based composite oxide powder includes Rh-supported CePr composite oxide powder (Rh-supported CePr), Rh-supported CePrNd composite oxide powder (Rh-supported CePrNd), and Rh-supported CePrLa composite oxide. There are four types of product powder (Rh-supported CePrLa) and Rh-supported CePrY composite oxide powder (Rh-supported CePrY).

Pt担持CePr系複合酸化物粉末は、各々Ptを蒸発乾固によって担持したPt担持CePrNd複合酸化物粉末(Pt担持CePrNd)及びPt担持CePrLa複合酸化物粉末(Pt担持CePrLa)の2種類、Pd担持CePr系複合酸化物粉末は、各々Pdを蒸発乾固によって担持したPd担持CePrY複合酸化物粉末(Pd担持CePrY)及びPd担持CePr複合酸化物粉末(Pd担持CePr)の2種類である。   There are two types of Pt-supported CePr-based composite oxide powders: Pt-supported CePrNd composite oxide powder (Pt-supported CePrNd) and Pt-supported CePrLa composite oxide powder (Pt-supported CePrLa) each supporting Pt by evaporation to dryness. There are two types of CePr-based composite oxide powders: Pd-supported CePrY composite oxide powder (Pd-supported CePrY) and Pd-supported CePr composite oxide powder (Pd-supported CePr) each supporting Pd by evaporation to dryness.

CePr複合酸化物の組成比は、CeO:Pr=50:50(質量%)であり、CePrNd複合酸化物、CePrLa複合酸化物及びCePrY複合酸化物各々の組成比は、CeO:Pr:(Nd又はLa又はY)=45:45:10(質量%)である。Rh担持CePr系複合酸化物粉末50g当たりのRh量は0.1g、Pt担持CePr系複合酸化物粉末50g当たりのPt量は0.5g、Pd担持CePr系複合酸化物粉末50g当たりのPd量は0.5gである。Pt担持活性アルミナ粉末及びPd担持活性アルミナ粉末各々は、活性アルミナにPt及びPd各々を蒸発乾固によって担持したものであり、Pt担持活性アルミナ粉末50g当たりのPt量は0.5g、Pd担持活性アルミナ粉末50g当たりのPd量は0.5gである。 The composition ratio of the CePr composite oxide is CeO 2 : Pr 2 O 3 = 50: 50 (mass%), and the composition ratio of each of the CePrNd composite oxide, the CePrLa composite oxide, and the CePrY composite oxide is CeO 2 : Pr 2 O 3 : (Nd 2 O 3 or La 2 O 3 or Y 2 O 3 ) = 45: 45: 10 (mass%). Rh amount per 50 g of Rh-supported CePr-based composite oxide powder is 0.1 g, Pt amount per 50 g of Pt-supported CePr-based composite oxide powder is 0.5 g, and Pd amount per 50 g of Pd-supported CePr-based composite oxide powder is 0.5 g. Each of the Pt-supported activated alumina powder and the Pd-supported activated alumina powder is obtained by supporting Pt and Pd on the activated alumina by evaporation to dryness. The amount of Pt per 50 g of the Pt-supported activated alumina powder is 0.5 g. The amount of Pd per 50 g of alumina powder is 0.5 g.

[実施例及び比較例に係る触媒の調製]
−実施例1−
RhドープCePrNdAlと、貴金属担持耐熱性粉末(Pd担持La含有Al、Pd担持BaSO、Pd担持CeZrAl、Pt担持La含有Al、Pt担持BaSO及びPt担持CeZrAlのいずれか一)とを組み合わせて混合し、ハニカム担体にコーティングすることにより、6種類の実施例1に係る触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePrNdAlが100g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、RhドープCePrNdAlによるRhが0.1g/Lである。なお、触媒粉末のコーティングは、該触媒粉末にバインダ及び水を加えてスラリー化して行なった(以下、同じ)。
[Preparation of catalysts according to Examples and Comparative Examples]
Example 1
Rh-doped CePrNdAl and noble metal-supported heat-resistant powder (one of Pd-supported La-containing Al 2 O 3 , Pd-supported BaSO 4 , Pd-supported CeZrAl, Pt-supported La-containing Al 2 O 3 , Pt-supported BaSO 4 and Pt-supported CeZrAl) ) Were mixed in combination and coated on a honeycomb carrier to prepare six types of catalysts according to Example 1. The supported amount per liter of the honeycomb carrier is 100 g / L for Rh-doped CePrNdAl, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh-doped CePrNdAl. . The catalyst powder was coated by adding a binder and water to the catalyst powder to form a slurry (hereinafter the same).

ハニカム担体としては、いずれもセル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製で、直径25.4mm、長さ50mm、容量25mLのものを用いた。この点は後述する他の実施例及び比較例も同じである。 As the honeycomb carrier, all are made of cordierite having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ), a diameter of 25.4 mm, The one with a length of 50 mm and a capacity of 25 mL was used. This also applies to other examples and comparative examples described later.

−実施例2−
RhドープCePrNdAlに代えてRhドープCePrLaAlを採用し、他は実施例1と同様にして6種類の実施例2に係る触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePrLaAlが100g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、Rhが0.1g/Lである。
-Example 2-
Six types of catalysts according to Example 2 were prepared in the same manner as Example 1 except that Rh-doped CePrNdAl was used instead of Rh-doped CePrNdAl. The supported amount per liter of honeycomb carrier is 100 g / L for Rh-doped CePrLaAl, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh.

−実施例3−
RhドープCePrNdAlに代えてRhドープCePrYAlを採用し、他は実施例1と同様にして6種類の実施例3に係る触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePrYAlが100g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、Rhが0.1g/Lである。
-Example 3-
Six types of catalysts according to Example 3 were prepared in the same manner as in Example 1 except that Rh-doped CePrYAl was used instead of Rh-doped CePrNdAl. The supported amount per 1 L of honeycomb carrier is 100 g / L for Rh-doped CePrYAl, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh.

−実施例4−
RhドープCePrNdAlに代えてRhドープCePrAlを採用し、他は実施例1と同様にして6種類の実施例4に係る触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePrAlが100g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、Rhが0.1g/Lである。
Example 4
Six types of catalysts according to Example 4 were prepared in the same manner as in Example 1 except that Rh-doped CePrNdAl was used instead of Rh-doped CePrNdAl. The supported amount per liter of honeycomb carrier is 100 g / L for Rh-doped CePrAl, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh.

−比較例1−
RhドープCePrNdAlに代えて、Rh担持CePrNd(二次粒子)と活性アルミナ(二次粒子)との混合物を採用し、他は実施例1と同様にして6種類の比較例1に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CePrNdが50g/L、活性アルミナが50g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、Rhが0.1g/Lである。
-Comparative Example 1-
Instead of Rh-doped CePrNdAl, a mixture of Rh-supported CePrNd (secondary particles) and activated alumina (secondary particles) was employed, and the other six catalysts according to Comparative Example 1 were prepared in the same manner as Example 1. did. The supported amount per liter of honeycomb carrier is 50 g / L for Rh-supported CePrNd, 50 g / L for activated alumina, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh. L.

−比較例2−
RhドープCePrLaAlに代えて、Rh担持CePrLa(二次粒子)と活性アルミナ(二次粒子)との混合物を採用し、他は実施例2と同様にして6種類の比較例2に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CePrLaが50g/L、活性アルミナが50g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、Rhが0.1g/Lである。
-Comparative Example 2-
In place of Rh-doped CePrLaAl, a mixture of Rh-supported CePrLa (secondary particles) and activated alumina (secondary particles) was adopted, and the catalyst according to six comparative examples 2 was prepared in the same manner as in Example 2. did. The supported amount per liter of honeycomb carrier is 50 g / L for Rh-supported CePrLa, 50 g / L for activated alumina, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh. L.

−比較例3−
RhドープCePrYAlに代えて、Rh担持CePrY(二次粒子)と活性アルミナ(二次粒子)との混合物を採用し、他は実施例3と同様にして6種類の比較例3に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CePrYが50g/L、活性アルミナが50g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、Rhが0.1g/Lである。
-Comparative Example 3-
Instead of Rh-doped CePrYAl, a mixture of Rh-supported CePrY (secondary particles) and activated alumina (secondary particles) was adopted, and the catalyst according to six comparative examples 3 was prepared in the same manner as in Example 3. did. The supported amount per liter of honeycomb carrier is 50 g / L for Rh-supported CePrY, 50 g / L for activated alumina, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh. L.

−比較例4−
RhドープCePrAlに代えて、Rh担持CePr(二次粒子)と活性アルミナ(二次粒子)との混合物を採用し、他は実施例4と同様にして6種類の比較例4に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CePrが50g/L、活性アルミナが50g/L、貴金属担持耐熱性粉末が50g/L、Pd又はPtが1.0g/L、Rhが0.1g/Lである。
-Comparative Example 4-
In place of Rh-doped CePrAl, a mixture of Rh-supported CePr (secondary particles) and activated alumina (secondary particles) was adopted, and the catalyst according to six comparative examples 4 was prepared in the same manner as in Example 4. did. The supported amount per liter of honeycomb carrier is 50 g / L for Rh-supported CePr, 50 g / L for activated alumina, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd or Pt, and 0.1 g / L for Rh. L.

−排気ガス浄化性能評価−
実施例及び比較例の各触媒について、大気雰囲気において1000℃の温度に24時間加熱するエージングを行なった。次いで、これら触媒をモデルガス流通反応装置に取り付け、評価用モデルガスによってHC、CO及びNOxの浄化に関するライトオフ温度T50を測定した。T50は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度(℃)である。評価用のモデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。
−Evaluation of exhaust gas purification performance−
About each catalyst of an Example and a comparative example, the aging which heats to the temperature of 1000 degreeC in air | atmosphere for 24 hours was performed. Next, these catalysts were attached to the model gas flow reactor, and the light-off temperature T50 relating to the purification of HC, CO, and NOx was measured with the model gas for evaluation. T50 is the gas temperature (° C.) at the catalyst inlet when the model gas temperature flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. The model gas for evaluation was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min.

実施例の結果を表1に、比較例の結果を表2に示す。なお、表1,2において、「Al2O3」は「Al」、「BaSO4」は「BaSO」、「Rh/」は「Rh担持」、「Pt/」は「Pt担持」、「Pd/」は「Pd担持」、「アルミナ」は「活性アルミナ」をそれぞれ意味する。この点は後述する他の表も同じである。また、表では、℃を省略した。 Table 1 shows the results of the examples and Table 2 shows the results of the comparative examples. In Tables 1 and 2, “Al 2 O 3 ” is “Al 2 O 3 ”, “BaSO 4 ” is “BaSO 4 ”, “Rh /” is “Rh carrying”, “Pt /” is “Pt carrying”, “Pd” “/” Means “Pd-supported” and “alumina” means “activated alumina”. This also applies to other tables described later. In the table, ° C. is omitted.

Figure 0005531567
Figure 0005531567

Figure 0005531567
Figure 0005531567

表1の実施例1〜4と表2の比較例1〜4とは、前者がRhドープCePr系アルミナ複合化物粉末を用いているのに対して、後者がRh担持CePr系複合酸化物粉末と活性アルミナ粉末との混合物を用いている点で相違する。両者を比較すると、CePr系複合酸化物の第三元素がNd、La、又はYであるケース、並びに第三元素を含有しないケースのいずれにおいても、使用する貴金属担持耐熱性粉末の種類が同じときは、実施例の方がT50は低い。実施例のRhドープCePr系アルミナ複合化物粉末は、RhドープCePr系複合酸化物の一次粒子とアルミナの一次粒子とが凝集してなるものであるから、比較例のRh担持CePr系複合酸化物粉末に比べて、耐熱性が高く且つRhのドープにより酸素吸蔵放出性能が優れているためである。   In Examples 1 to 4 in Table 1 and Comparative Examples 1 to 4 in Table 2, the former uses Rh-doped CePr-based alumina composite powder, while the latter uses Rh-supported CePr-based composite oxide powder. The difference is that a mixture with activated alumina powder is used. When both are compared, the case where the third element of the CePr-based composite oxide is Nd, La, or Y and the case where the third element is not contained are the same type of noble metal-supported heat-resistant powder to be used. In the example, T50 is lower. Since the Rh-doped CePr-based alumina composite powder of the example is formed by agglomerating primary particles of Rh-doped CePr-based composite oxide and primary particles of alumina, the Rh-supported CePr-based composite oxide powder of the comparative example This is because it has higher heat resistance and superior oxygen storage / release performance due to Rh doping.

次に、実施例1〜4に基いて、RhドープCePr系アルミナ複合化物粉末におけるCePr系複合酸化物一次粒子の第三元素がT50に及ぼす影響をみると、CePr系複合酸化物一次粒子が第三元素を含有する実施例1〜3が、第三元素を含有しない実施例4よりもT50は低い。また、第三元素の種類がT50に及ぼす影響をみると、T50は、Laを採用した実施例2が最も低く、これにNdを採用した実施例1及びYを採用した実施例3が順に続いている。   Next, based on Examples 1 to 4, when the influence of the third element of the CePr-based composite oxide primary particles in the Rh-doped CePr-based alumina composite powder on T50 is considered, the CePr-based composite oxide primary particles are Examples 1 to 3 containing three elements have a lower T50 than Example 4 containing no third element. In addition, looking at the effect of the type of the third element on T50, T50 is lowest in Example 2 employing La, followed by Example 1 employing Nd and Example 3 employing Y. ing.

次に、実施例1に基いて、PtやPdを担持する耐熱性粒子の種類がT50に及ぼす影響をみると、La含有Alを用いたときのT50が最も低く、これにCeZrAl及びBaSOが順に続いている。また、耐熱性粒子に担持する貴金属で比較すると、Pdを担持したときの方がPtを担持したときよりも、T50は低くなっている。この点は、実施例1と同じくRhドープCePr系アルミナ複合化物粉末を用いた実施例2〜4でも同様である。 Next, based on Example 1, when the effect of the kind of heat-resistant particles supporting Pt and Pd on T50 is examined, T50 when La-containing Al 2 O 3 is used is the lowest, and CeZrAl and BaSO 4 follows in order. Further, when compared with the noble metal supported on the heat-resistant particles, T50 is lower when Pd is supported than when Pt is supported. This is the same as in Examples 2 to 4 using the Rh-doped CePr-based alumina composite powder as in Example 1.

<実施形態2>
本実施形態のエンジンの排気ガス浄化用触媒に係る触媒層構造は図2に示されている。ハニカム担体1のセル壁面1aに形成されている触媒層2は、実施形態1とは違って、上層2aと下層2bとの二層構造になっている。本実施形態では、Pt、Pd及びRhのいずれか一の触媒金属をドープ又は担持したCeZr系複合酸化物粉末、残る2種の触媒金属の一方を担持した耐熱性粉末、並びに他方を担持した耐熱性粉末の3種類の触媒粉末を組み合わせたものであり、その3種類のうちから選ばれる2種類を上層2a及び下層2bの一方の層に、残る1種を他方の層に配置する。
<Embodiment 2>
The catalyst layer structure relating to the exhaust gas purifying catalyst of the engine of this embodiment is shown in FIG. Unlike the first embodiment, the catalyst layer 2 formed on the cell wall surface 1a of the honeycomb carrier 1 has a two-layer structure of an upper layer 2a and a lower layer 2b. In this embodiment, the CeZr-based composite oxide powder doped or supported with any one of Pt, Pd, and Rh, the heat-resistant powder supporting one of the remaining two types of catalyst metals, and the heat-resistant powder supporting the other The three kinds of catalyst powders are combined, and two kinds selected from the three kinds are arranged in one of the upper layer 2a and the lower layer 2b, and the remaining one is arranged in the other layer.

[実施例及び比較例に係る触媒の調製]
−実施例5−
Pd担持CeZrAlをハニカム担体にコーティングして下層2bを形成した後、RhドープCePr系アルミナ複合化物粉末(RhドープCePrNdAl、RhドープCePrLaAl及びRhドープCePrYAlのいずれか一)とPt担持La含有Alとを組み合わせて混合し、下層2bの上にコーティングすることにより、上層2aを形成した。この方法により、実施例5に係るRhドープCePr系アルミナ複合化物粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePr系アルミナ複合化物粉末が100g/L、Pt担持La含有Alが25g/L、Pd担持CeZrAlが25g/L、RhドープCePrNdAlによるRhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
[Preparation of catalysts according to Examples and Comparative Examples]
-Example 5
After coating the honeycomb carrier with Pd-supported CeZrAl to form the lower layer 2b, Rh-doped CePr-based alumina composite powder (one of Rh-doped CePrNdAl, Rh-doped CePrLaAl, and Rh-doped CePrYAl) and Pt-supported La-containing Al 2 O 3 was mixed and mixed, and the upper layer 2a was formed by coating on the lower layer 2b. By this method, three types of catalysts having different types of Rh-doped CePr-based alumina composite powder according to Example 5 were prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Rh-doped CePr-based alumina composite powder, 25 g / L for Pt-supported La-containing Al 2 O 3 , 25 g / L for Pd-supported CeZrAl, and 0 for Rh by Rh-doped CePrNdAl. 0.1 g / L, Pt is 0.5 g / L, and Pd is 0.5 g / L.

−実施例6−
上層2aに関し、Pt担持La含有Alに代えてPt担持CeZrAlを採用し、他は実施例5と同様にして、実施例6に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePr系アルミナ複合化物粉末が100g/L、Pt担持CeZrAlが25g/L、Pd担持CeZrAlが25g/L、RhドープCePrNdAlによるRhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Example 6
For the upper layer 2a, three types of catalysts according to Example 6 were prepared in the same manner as in Example 5 except that Pt-supported CeZrAl was adopted instead of Pt-supported La-containing Al 2 O 3 . The supported amount per 1 L of the honeycomb carrier is 100 g / L for Rh-doped CePr-based alumina composite powder, 25 g / L for Pt-supported CeZrAl, 25 g / L for Pd-supported CeZrAl, 0.1 g / L for Rh by CeRr-doped CePrNdAl, Pt is 0.5 g / L and Pd is 0.5 g / L.

−実施例7−
下層2bに関し、Pd担持CeZrAlに代えてPt担持CeZrAlを採用する一方、上層2aに関し、Pt担持La含有Alに代えてPd担持La含有Alを採用し、他は実施例5と同様にして、実施例7に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePr系アルミナ複合化物粉末が100g/L、Pt担持CeZrAlが25g/L、Pd担持La含有Alが25g/L、RhドープCePrNdAlによるRhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Example 7-
The lower layer 2b employs Pt-supported CeZrAl instead of Pd-supported CeZrAl, while the upper layer 2a employs Pd-supported La-containing Al 2 O 3 instead of Pt-supported La-containing Al 2 O 3. In the same manner, three types of catalysts according to Example 7 were prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Rh-doped CePr-based alumina composite powder, 25 g / L for Pt-supported CeZrAl, 25 g / L for Pd-supported La-containing Al 2 O 3, and 0 for Rh by Rh-doped CePrNdAl. 0.1 g / L, Pt is 0.5 g / L, and Pd is 0.5 g / L.

−実施例8−
上層2aに関し、Pd担持La含有Alに代えてPd担持CeZrAlを採用し、他は実施例7と同様にして、実施例8に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePr系アルミナ複合化物粉末が100g/L、Pt担持CeZrAlが25g/L、Pd担持CeZrAlが25g/L、RhドープCePrNdAlによるRhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Example 8-
For the upper layer 2a, three types of catalysts according to Example 8 were prepared in the same manner as in Example 7 except that Pd-supported CeZrAl was used instead of Pd-supported La-containing Al 2 O 3 . The supported amount per 1 L of the honeycomb carrier is 100 g / L for Rh-doped CePr-based alumina composite powder, 25 g / L for Pt-supported CeZrAl, 25 g / L for Pd-supported CeZrAl, 0.1 g / L for Rh by CeRr-doped CePrNdAl, Pt is 0.5 g / L and Pd is 0.5 g / L.

−実施例9−
Pd担持La含有AlとPt担持CeZrAlとを混合してハニカム担体にコーティングすることにより下層2bを形成した後、RhドープCePr系アルミナ複合化物粉末(RhドープCePrNdAl、RhドープCePrLaAl及びRhドープCePrYAlのいずれか一)を下層2bの上にコーティングして上層2aを形成した。この方法により、実施例9に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePr系アルミナ複合化物粉末が100g/L、Pt担持CeZrAlが25g/L、Pd担持La含有Alが25g/L、RhドープCePrNdAlによるRhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Example 9-
After the lower layer 2b is formed by mixing Pd-supported La-containing Al 2 O 3 and Pt-supported CeZrAl and coating the honeycomb carrier, the Rh-doped CePr-based alumina composite powder (Rh-doped CePrNdAl, Rh-doped CePrLaAl and Rh-doped) is formed. Any one of CePrYAl) was coated on the lower layer 2b to form the upper layer 2a. By this method, three types of catalysts according to Example 9 were prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Rh-doped CePr-based alumina composite powder, 25 g / L for Pt-supported CeZrAl, 25 g / L for Pd-supported La-containing Al 2 O 3, and 0 for Rh by Rh-doped CePrNdAl. 0.1 g / L, Pt is 0.5 g / L, and Pd is 0.5 g / L.

−実施例10−
下層2bに関し、Pd担持La含有Alに代えてPd担持CeZrAlを採用し、他は実施例9と同様にして、実施例10に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePr系アルミナ複合化物粉末が100g/L、Pt担持CeZrAlが25g/L、Pd担持CeZrAlが25g/L、RhドープCePrNdAlによるRhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Example 10-
For the lower layer 2b, three types of catalysts according to Example 10 were prepared in the same manner as in Example 9 except that Pd-supported CeZrAl was used instead of Pd-supported La-containing Al 2 O 3 . The supported amount per 1 L of the honeycomb carrier is 100 g / L for Rh-doped CePr-based alumina composite powder, 25 g / L for Pt-supported CeZrAl, 25 g / L for Pd-supported CeZrAl, 0.1 g / L for Rh by CeRr-doped CePrNdAl, Pt is 0.5 g / L and Pd is 0.5 g / L.

−実施例11−
下層2bに関し、Pt担持CeZrAlに代えてPt担持BaSOを採用し、他は実施例10と同様にして、実施例11に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCePr系アルミナ複合化物粉末が100g/L、Pt担持BaSOが25g/L、Pd担持CeZrAlが25g/L、RhドープCePrNdAlによるRhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Example 11-
For the lower layer 2b, three types of catalysts according to Example 11 were prepared in the same manner as in Example 10 except that Pt-supported BaSO 4 was used instead of Pt-supported CeZrAl. The supported amount per liter of honeycomb carrier is 100 g / L for Rh-doped CePr-based alumina composite powder, 25 g / L for Pt-supported BaSO 4 , 25 g / L for Pd-supported CeZrAl, and 0.1 g / L for Rh by Rh-doped CePrNdAl. , Pt is 0.5 g / L, and Pd is 0.5 g / L.

−実施例12−
Pt担持CePr系アルミナ複合化物粉末として、当該粉末100g当たりのPt量が0.1gであるPt担持CePrNdAl、Pt担持CePrLaAl及びPt担持CePrYAlを調製した。また、25g当たりのPd量が0.9gであるPd担持CeZrAl、並びに25g当たりのRh量が0.1gであるRh担持ZrLaO被覆Alを調製した。
-Example 12-
Pt-supported CePrNdAl, Pt-supported CePrLaAl, and Pt-supported CePrYAl having a Pt amount of 0.1 g per 100 g of the powder were prepared as Pt-supported CePr-based alumina composite powders. Also, Pd-supported CeZrAl having a Pd amount of 0.9 g per 25 g and Rh-supported ZrLaO-coated Al 2 O 3 having an Rh amount of 0.1 g per 25 g were prepared.

上記Pd担持CeZrAlをハニカム担体にコーティングして下層2bを形成した後、上記Pt担持CePr系アルミナ複合化物粉末(Pt担持CePrNdAl、Pt担持CePrLaAl及びPt担持CePrYAlのいずれか一)とRh担持ZrLaO被覆Alとを組み合わせて混合し、下層2bの上にコーティングすることにより、上層2aを形成した。この方法により、実施例12に係るPt担持CePr系アルミナ複合化物粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系アルミナ複合化物粉末が100g/L、Pd担持CeZrAlが25g/L、Rh担持ZrLaO被覆Alが25g/L、Rhが0.1g/L、Ptが0.1g/L、Pdが0.9g/Lである。 After the Pd-supported CeZrAl is coated on the honeycomb carrier to form the lower layer 2b, the Pt-supported CePr-based alumina composite powder (one of Pt-supported CePrNdAl, Pt-supported CePrLaAl and Pt-supported CePrYAl) and Rh-supported ZrLaO-coated Al The upper layer 2a was formed by combining and mixing 2 O 3 and coating on the lower layer 2b. By this method, three types of catalysts having different types of Pt-supported CePr-based alumina composite powder according to Example 12 were prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Pt-supported CePr-based alumina composite powder, 25 g / L for Pd-supported CeZrAl, 25 g / L for Rh-supported ZrLaO-coated Al 2 O 3 , and 0.1 g / L for Rh. , Pt is 0.1 g / L, and Pd is 0.9 g / L.

−実施例13−
上層2aに関し、Rh担持ZrLaO被覆Alに代えて、25g当たりのRh量が0.1gであるRh担持CeZrNdを採用し、他は実施例12と同様にして、実施例13に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系アルミナ複合化物粉末が100g/L、Pd担持CeZrAlが25g/L、Rh担持CeZrNdが25g/L、Rhが0.1g/L、Ptが0.1g/L、Pdが0.9g/Lである。
-Example 13-
For the upper layer 2a, instead of Rh-supported ZrLaO-coated Al 2 O 3 , Rh-supported CeZrNd having an Rh amount of 0.1 g per 25 g was employed, and the other processes were performed in the same manner as in Example 12 except that 3 Different types of catalysts were prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Pt-supported CePr-based alumina composite powder, 25 g / L for Pd-supported CeZrAl, 25 g / L for Rh-supported CeZrNd, 0.1 g / L for Rh, and 0.1 for Pt. 1 g / L and Pd are 0.9 g / L.

−実施例14−
実施例12と同じ触媒粉末を用い、Pt担持CePr系アルミナ複合化物粉末(Pt担持CePrNdAl、Pt担持CePrLaAl及びPt担持CePrYAlのいずれか一)とPd担持CeZrAlとを混合してハニカム担体にコーティングすることにより下層2bを形成した後、Rh担持ZrLaO被覆Alを下層2bの上にコーティングして上層2aを形成した。この方法により、実施例14に係るPt担持CePr系アルミナ複合化物粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系アルミナ複合化物粉末が100g/L、Pd担持CeZrAlが25g/L、Rh担持ZrLaO被覆Alが25g/L、Rhが0.1g/L、Ptが0.1g/L、Pdが0.9g/Lである。
-Example 14-
Using the same catalyst powder as in Example 12, Pt-supported CePr-based alumina composite powder (any one of Pt-supported CePrNdAl, Pt-supported CePrLaAl and Pt-supported CePrYAl) and Pd-supported CeZrAl are mixed and coated on the honeycomb support. After forming the lower layer 2b, the upper layer 2a was formed by coating the lower layer 2b with Rh-supported ZrLaO-coated Al 2 O 3 . By this method, three types of catalysts having different types of Pt-supported CePr-based alumina composite powder according to Example 14 were prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Pt-supported CePr-based alumina composite powder, 25 g / L for Pd-supported CeZrAl, 25 g / L for Rh-supported ZrLaO-coated Al 2 O 3 , and 0.1 g / L for Rh. , Pt is 0.1 g / L, and Pd is 0.9 g / L.

−実施例15−
実施例13と同じ触媒粉末を用い、上層2aに関し、Rh担持ZrLaO被覆Alに代えてRh担持CeZrNdを採用し、他は実施例14と同様にして、実施例15に係る3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系アルミナ複合化物粉末が100g/L、Pd担持CeZrAlが25g/L、Rh担持CeZrNdが25g/L、Rhが0.1g/L、Ptが0.1g/L、Pdが0.9g/Lである。
-Example 15-
Using the same catalyst powder as in Example 13, with respect to the upper layer 2a, Rh-supported CeZrNd was adopted instead of Rh-supported ZrLaO-coated Al 2 O 3 and the other three types according to Example 15 were adopted in the same manner as in Example 14. A catalyst was prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Pt-supported CePr-based alumina composite powder, 25 g / L for Pd-supported CeZrAl, 25 g / L for Rh-supported CeZrNd, 0.1 g / L for Rh, and 0.1 for Pt. 1 g / L and Pd are 0.9 g / L.

−比較例5−
上層2aに関し、RhドープCePr系アルミナ複合化物粉末に代えて、Rh担持CePr系複合酸化物粉末(Rh担持CePrNd、Rh担持CePrLa及びRh担持CePrYのいずれか一(二次粒子))と活性アルミナ(二次粒子)との混合物を採用し、他は実施例5と同様にして3種類の比較例5に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CePr系複合酸化物粉末が50g/L、活性アルミナが50g/L、Pt担持La含有Alが25g/L、Pd担持CeZrAlが25g/L、Rhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Comparative Example 5-
Regarding the upper layer 2a, instead of Rh-doped CePr-based alumina composite powder, Rh-supported CePr-based composite oxide powder (any one of Rh-supported CePrNd, Rh-supported CePrLa, and Rh-supported CePrY (secondary particles)) and activated alumina ( A catalyst according to Comparative Example 5 was prepared in the same manner as in Example 5 except that a mixture with secondary particles) was employed. The supported amount per 1 L of honeycomb carrier is 50 g / L for Rh-supported CePr-based composite oxide powder, 50 g / L for activated alumina, 25 g / L for Pt-supported La-containing Al 2 O 3 , 25 g / L for Pd-supported CeZrAl, Rh is 0.1 g / L, Pt is 0.5 g / L, and Pd is 0.5 g / L.

−比較例6−
上層2aに関し、RhドープCePr系アルミナ複合化物粉末に代えて、Rh担持CePr系複合酸化物粉末(Rh担持CePrNd、Rh担持CePrLa及びRh担持CePrYのいずれか一(二次粒子))と活性アルミナ(二次粒子)との混合物を採用し、他は実施例6と同様にして3種類の比較例6に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CePr系複合酸化物粉末が50g/L、活性アルミナが50g/L、Pt担持CeZrAlが25g/L、Pd担持CeZrAlが25g/L、Rhが0.1g/L、Ptが0.5g/L、Pdが0.5g/Lである。
-Comparative Example 6
Regarding the upper layer 2a, instead of Rh-doped CePr-based alumina composite powder, Rh-supported CePr-based composite oxide powder (any one of Rh-supported CePrNd, Rh-supported CePrLa, and Rh-supported CePrY (secondary particles)) and activated alumina ( Three kinds of catalysts according to Comparative Example 6 were prepared in the same manner as in Example 6 except that a mixture with secondary particles) was employed. The supported amount per liter of honeycomb carrier is 50 g / L for Rh-supported CePr composite oxide powder, 50 g / L for activated alumina, 25 g / L for Pt-supported CeZrAl, 25 g / L for Pd-supported CeZrAl, and 0.1 g for Rh. / L, Pt is 0.5 g / L, and Pd is 0.5 g / L.

−比較例7−
50g当たりのPt量が0.05gであるPt担持CePr系複合酸化物粉末(Pt担持CePrNd、Pt担持CePrLa、Pt担持CePrY)と、50g当たりのPt量が0.05gであるPt担持活性アルミナとを準備した。
-Comparative Example 7-
Pt-supported CePr-based composite oxide powder (Pt-supported CePrNd, Pt-supported CePrLa, Pt-supported CePrY) having a Pt amount of 0.05 g per 50 g, and a Pt-supported active alumina having a Pt amount of 50 g per 50 g; Prepared.

実施例12の上層2aに関し、Pt担持CePr系アルミナ複合化物粉末に代えて、上記Pt担持CePr系複合酸化物粉末(Pt担持CePrNd、Pt担持CePrLa及びPt担持CePrYのいずれか一(二次粒子))とPt担持活性アルミナ(二次粒子)との混合物を採用し、他は実施例12と同様にして3種類の比較例7に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系複合酸化物粉末が50g/L、Pt担持活性アルミナが50g/L、Pd担持CeZrAlが25g/L、Rh担持ZrLaO被覆Alが25g/L、Rhが0.1g/L、PtがPt担持CePr系複合酸化物粉末及びPt担持活性アルミナの両者で0.1g/L、Pdが0.9g/Lである。 Regarding the upper layer 2a of Example 12, instead of the Pt-supported CePr-based alumina composite powder, any one of the above-mentioned Pt-supported CePr-based composite oxide powder (Pt-supported CePrNd, Pt-supported CePrLa, and Pt-supported CePrY (secondary particles)) ) And Pt-supported activated alumina (secondary particles) were used, and the catalyst according to Comparative Example 7 was prepared in the same manner as in Example 12 except that. The supported amount per liter of honeycomb carrier is 50 g / L for Pt-supported CePr composite oxide powder, 50 g / L for Pt-supported activated alumina, 25 g / L for Pd-supported CeZrAl, and 25 g / L for Rh-supported ZrLaO-coated Al 2 O 3. L and Rh are 0.1 g / L, Pt is 0.1 g / L for both Pt-supported CePr-based composite oxide powder and Pt-supported activated alumina, and Pd is 0.9 g / L.

−比較例8−
実施例13の上層2aに関し、Pt担持CePr系アルミナ複合化物粉末に代えて、比較例のPt担持CePr系複合酸化物粉末(Pt担持CePrNd、Pt担持CePrLa及びPt担持CePrYのいずれか一(二次粒子))とPt担持活性アルミナ(二次粒子)との混合物を採用し、他は実施例13と同様にして3種類の比較例8に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系複合酸化物粉末が50g/L、Pt担持活性アルミナが50g/L、Pd担持CeZrAlが25g/L、Rh担持CeZrNdが25g/L、Rhが0.1g/L、PtがPt担持CePr系複合酸化物粉末及びPt担持活性アルミナの両者で0.1g/L、Pdが0.9g/Lである。
-Comparative Example 8-
Regarding the upper layer 2a of Example 13, instead of the Pt-supported CePr-based alumina composite powder, the Pt-supported CePr-based composite oxide powder of Comparative Example 7 (any one of Pt-supported CePrNd, Pt-supported CePrLa, and Pt-supported CePrY (two The catalyst according to Comparative Example 8 was prepared in the same manner as in Example 13 except that a mixture of secondary particles)) and Pt-supported activated alumina (secondary particles) was employed. The supported amount per liter of honeycomb carrier is 50 g / L for Pt-supported CePr-based composite oxide powder, 50 g / L for Pt-supported activated alumina, 25 g / L for Pd-supported CeZrAl, 25 g / L for Rh-supported CeZrNd, and 0 for Rh. 0.1 g / L, Pt is 0.1 g / L for both Pt-supported CePr-based composite oxide powder and Pt-supported activated alumina, and Pd is 0.9 g / L.

−比較例9−
実施例14の下層2bに関し、Pt担持CePr系アルミナ複合化物粉末に代えて、比較例のPt担持CePr系複合酸化物粉末(Pt担持CePrNd、Pt担持CePrLa及びPt担持CePrYのいずれか一(二次粒子))とPt担持活性アルミナ(二次粒子)との混合物を採用し、他は実施例14と同様にして3種類の比較例9に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系複合酸化物粉末が50g/L、Pt担持活性アルミナが50g/L、Pd担持CeZrAlが25g/L、Rh担持ZrLaO被覆Alが25g/L、Rhが0.1g/L、PtがPt担持CePr系複合酸化物粉末及びPt担持活性アルミナの両者で0.1g/L、Pdが0.9g/Lである。
-Comparative Example 9-
Regarding the lower layer 2b of Example 14, instead of the Pt-supported CePr-based alumina composite powder, the Pt-supported CePr-based composite oxide powder of Comparative Example 7 (any one of Pt-supported CePrNd, Pt-supported CePrLa, and Pt-supported CePrY (two The catalyst according to Comparative Example 9 was prepared in the same manner as in Example 14 except that a mixture of secondary particles)) and Pt-supported activated alumina (secondary particles) was employed. The supported amount per liter of honeycomb carrier is 50 g / L for Pt-supported CePr composite oxide powder, 50 g / L for Pt-supported activated alumina, 25 g / L for Pd-supported CeZrAl, and 25 g / L for Rh-supported ZrLaO-coated Al 2 O 3. L and Rh are 0.1 g / L, Pt is 0.1 g / L for both Pt-supported CePr-based composite oxide powder and Pt-supported activated alumina, and Pd is 0.9 g / L.

−比較例10−
実施例15の下層2bに関し、Pt担持CePr系アルミナ複合化物粉末に代えて、比較例7のPt担持CePr系複合酸化物粉末(Pt担持CePrNd、Pt担持CePrLa及びPt担持CePrYのいずれか一(二次粒子))とPt担持活性アルミナ(二次粒子)との混合物を採用し、他は実施例15と同様にして3種類の比較例10に係る触媒を調製した。ハニカム担体1L当たりの担持量は、Pt担持CePr系複合酸化物粉末が50g/L、Pt担持活性アルミナが50g/L、Pd担持CeZrAlが25g/L、Rh担持CeZrNdが25g/L、Rhが0.1g/L、PtがPt担持CePr系複合酸化物粉末及びPt担持活性アルミナの両者で0.1g/L、Pdが0.9g/Lである。
-Comparative Example 10-
For the lower layer 2b of Example 15, instead of the Pt-supported CePr-based alumina composite powder, any one of Pt-supported CePr-based composite oxide powders of Comparative Example 7 (Pt-supported CePrNd, Pt-supported CePrLa, and Pt-supported CePrY (two The catalyst according to Comparative Example 10 was prepared in the same manner as in Example 15 except that a mixture of secondary particles)) and Pt-supported activated alumina (secondary particles) was employed. The supported amount per liter of honeycomb carrier is 50 g / L for Pt-supported CePr-based composite oxide powder, 50 g / L for Pt-supported activated alumina, 25 g / L for Pd-supported CeZrAl, 25 g / L for Rh-supported CeZrNd, and 0 for Rh. 0.1 g / L, Pt is 0.1 g / L for both Pt-supported CePr-based composite oxide powder and Pt-supported activated alumina, and Pd is 0.9 g / L.

−排気ガス浄化性能評価−
上記実施例及び比較例の各触媒について、実施形態1と同じ条件でエージングを行ない、同じ条件でHC、CO及びNOxの浄化に関するライトオフ温度T50(℃)を測定した。実施例の結果を表3に示し、比較例の結果を表4に示す。表では、℃を省略した。
−Evaluation of exhaust gas purification performance−
About each catalyst of the said Example and comparative example, aging was performed on the same conditions as Embodiment 1, and the light-off temperature T50 (degreeC) regarding purification | cleaning of HC, CO, and NOx was measured on the same conditions. The results of Examples are shown in Table 3, and the results of Comparative Examples are shown in Table 4. In the table, ° C is omitted.

Figure 0005531567
Figure 0005531567

Figure 0005531567
Figure 0005531567

表3の実施例5,6と表4の比較例5,6とは、前者がRhドープCePr系アルミナ複合化物粉末を用いているのに対して、後者がRh担持CePr系複合酸化物粉末と活性アルミナ粉末との混合物を用いている点で相違する。両者を比較すると、実施形態1の場合と同じく、CePr系複合酸化物の第三元素がNd、La、又はYであるケース、並びに第三元素を含有しないケースのいずれにおいても、使用する貴金属担持耐熱性粉末の種類が同じときは、実施例の方がT50は低い。表3の実施例12〜15と表4の比較例7〜10とを比較した場合も同じである。   In Examples 5 and 6 in Table 3 and Comparative Examples 5 and 6 in Table 4, the former uses Rh-doped CePr-based alumina composite powder, while the latter uses Rh-supported CePr-based composite oxide powder. The difference is that a mixture with activated alumina powder is used. Comparing both, as in the case of Embodiment 1, the noble metal support used in any of the case where the third element of the CePr-based composite oxide is Nd, La, or Y and the case not containing the third element When the types of heat-resistant powder are the same, T50 is lower in the examples. The same applies when Examples 12 to 15 in Table 3 and Comparative Examples 7 to 10 in Table 4 are compared.

次に、実施例5に基いて、RhドープCePr系アルミナ複合化物粉末におけるCePr系複合酸化物一次粒子の第三元素の種類がT50に及ぼす影響をみると、T50は、Laを採用したケースが最も低く、これにNd及びYが順に続いている。この点は、実施例6〜11でも同様に認められ、さらに、Pt担持CePr系アルミナ複合化物粉末を用いた実施例12〜15でも同様に認められるところである。   Next, based on Example 5, when the effect of the third element type of the CePr-based composite oxide primary particles in the Rh-doped CePr-based alumina composite powder on T50 is considered, T50 is a case where La is used. The lowest, followed by Nd and Y in sequence. This point is similarly recognized in Examples 6 to 11, and is also similarly recognized in Examples 12 to 15 using Pt-supported CePr-based alumina composite powder.

次に、実施例5と実施例6とに基いて、貴金属担持耐熱性粉末の耐熱性粒子の種類がT50に及ぼす影響をみると、La含有Alを用いた実施例5の方がCeZrAlを用いた実施例6よりもT50は低い。この点は実施例7と実施例8との比較、実施例9と実施例10との比較でも同様に認められる。また、BaSOを採用した実施例11はCeZrAlを用いた実施例10よりもT50が高くなっている。以上の点は実施形態1と変わりがない。 Next, based on Example 5 and Example 6, when the influence of the kind of the heat-resistant particles of the noble metal-supported heat-resistant powder on T50 is considered, Example 5 using La-containing Al 2 O 3 is better. T50 is lower than Example 6 using CeZrAl. This point is also recognized in the comparison between Example 7 and Example 8 and in the comparison between Example 9 and Example 10. In addition, Example 11 employing BaSO 4 has a higher T50 than Example 10 using CeZrAl. The above points are the same as in the first embodiment.

また、実施例7と実施例9とを比較すると、Pd担持La含有Alを下層2bに配置した実施例9の方がそれを上層2aに配置した実施例7よりもT50は低い。同じく、実施例8と実施例10とを比較すると、Pd担持CeZrAlを下層2bに配置した実施例10の方がそれを上層2aに配置した実施例8よりもT50は低い。従って、RhドープCePr系アルミナ複合化物粉末を上層2aに配置するケースでは、Pt及びPdの各貴金属担持耐熱性粉末2種類を下層2bに配置することが好ましいということができる。 In comparison between Example 7 and Example 9, T50 than Example 7 towards the Example 9 of arranging the Pd-supporting La-containing Al 2 O 3 in the lower layer 2b is to place it in the upper layer 2a is low. Similarly, when Example 8 is compared with Example 10, T50 is lower in Example 10 in which Pd-supported CeZrAl is arranged in the lower layer 2b than in Example 8 in which it is arranged in the upper layer 2a. Therefore, in the case where the Rh-doped CePr-based alumina composite powder is arranged in the upper layer 2a, it can be said that it is preferable to arrange two kinds of Pt and Pd noble metal-supported heat-resistant powders in the lower layer 2b.

実施例11は、2種類の貴金属担持粉末として、Pd担持CeZrAlとPt担持BaSOを下層2bに配置しているが、実施例10よりもT50が高くなっているのは、貴金属担持耐熱性粉末の耐熱性粒子の一種がBaSOであるためと考えられる。 Example 11 Two types of the noble metal-supported powder, the but are arranged Pd on CeZrAl Pt-supported BaSO 4 in the lower layer 2b, and becomes high T50 than Example 10, precious-metal-supporting heat-resistant powder This is probably because BaSO 4 is one type of heat-resistant particles.

実施例12と実施例13とを比較すると、後者の方がT50は低い。また、実施例14と実施例15とを比較した場合でも、後者の方がT50は低い。従って、Rhを担持する耐熱性粒子としてはZrLaO被覆Alよりも酸素吸蔵放出能を有するCeZrNdが好ましいということができる。 Comparing Example 12 and Example 13, the latter has a lower T50. Even when Example 14 and Example 15 are compared, the latter has a lower T50. Therefore, it can be said that CeZrNd having oxygen storage / release ability is preferable to ZrLaO-coated Al 2 O 3 as the heat-resistant particles supporting Rh.

また、実施例12と実施例14とを比較すると、Pt担持CePr系アルミナ複合化物粉末を上層2aに配置した実施例12よりも、それを下層2bに配置した実施例14の方がT50は低い。実施例13と実施例15とを比較した場合でも、Pt担持CePr系アルミナ複合化物粉末を上層2aに配置した実施例13よりも、それを下層2bに配置した実施例15の方がT50は低い。従って、Rh担持材を上層2aに配置するケースでは、Pt担持CePr系アルミナ複合化物粉末はPd担持耐熱性粉末と共に下層2bに配置することが好ましい。   Further, when Example 12 is compared with Example 14, T50 is lower in Example 14 in which the Pt-supported CePr-based alumina composite powder is arranged in the lower layer 2b than in Example 12 in which it is arranged in the lower layer 2b. . Even when Example 13 and Example 15 are compared, T50 is lower in Example 15 in which Pt-supported CePr-based alumina composite powder is arranged in the lower layer 2a than in Example 13 in which it is arranged in the lower layer 2b. . Therefore, in the case where the Rh-supporting material is disposed in the upper layer 2a, the Pt-supporting CePr-based alumina composite powder is preferably disposed in the lower layer 2b together with the Pd-supporting heat-resistant powder.

なお、貴金属担持耐熱性粉末は、実施形態1,2では、貴金属としてPt及びPdのいずれかを担持したものであるが、Pt及びPdの両者を担持したものとすることもできる。   In the first and second embodiments, the noble metal-carrying heat-resistant powder carries either Pt or Pd as the noble metal, but may carry both Pt and Pd.

また、PtやPdを担持する耐熱性粒子としてのCeZrAlに関しては、Pr、La、Y及びNdから選ばれる少なくとも一種を含有するCeZr系複合酸化物一次粒子とAl一次粒子とが凝集してなるものであってもよい。 Regarding CeZrAl as the heat-resistant particles supporting Pt and Pd, CeZr-based composite oxide primary particles containing at least one kind selected from Pr, La, Y and Nd and Al 2 O 3 primary particles are aggregated. It may be.

また、Rhを担持するCeZrNdに関しても、Pr、La及びYから選ばれる少なくとも一種を含有するものとすることができる。   Further, CeZrNd carrying Rh can also contain at least one selected from Pr, La and Y.

また、上記CeとPrとを含有するCePr系複合酸化物一次粒子は、上記実施例で示したようにZrOを含まないものである。これは、ZrOを含まずともアルミナ一次粒子によってCePr系複合酸化物一次粒子のシンタリングが抑制できるためであるが、酸素吸蔵放出能が大きく低下しない、例えば5質量%以下でZrOを含ませることも可能である。 The CePr-based composite oxide primary particles containing Ce and Pr do not contain ZrO 2 as shown in the above examples. This is because the alumina primary particles can suppress sintering of the CePr-based composite oxide primary particles without containing ZrO 2 , but the oxygen storage / release ability is not significantly reduced, for example, 5% by mass or less contains ZrO 2 . It is also possible to

1 ハニカム担体
1a セル壁面
2 触媒層
2a 上層
2b 下層
DESCRIPTION OF SYMBOLS 1 Honeycomb carrier 1a Cell wall surface 2 Catalyst layer 2a Upper layer 2b Lower layer

Claims (2)

担体上の触媒層が、CeとPrとを含有するCePr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成しているCePr系アルミナ複合化物粉末と、耐熱性粒子に触媒金属としてPt及びPdの少なくとも一方が担持されてなる耐熱性粉末とを含有し、
上記耐熱性粒子は、Laを含有する活性Al 粒子と、BaSO 粒子と、CeとZrとを含有するCeZr系複合酸化物一次粒子とアルミナ一次粒子とが凝集して二次粒子を形成しているCeZr系アルミナ複合化物粒子とから選ばれる少なくとも一種であることを特徴とする排気ガス浄化用触媒。
The catalyst layer on the support comprises CePr-based alumina composite powder in which CePr-based composite oxide primary particles containing Ce and Pr and primary alumina particles aggregate to form secondary particles, and heat-resistant particles. Containing a heat-resistant powder in which at least one of Pt and Pd is supported as a catalyst metal ,
The heat-resistant particles are formed by agglomerating active Al 2 O 3 particles containing La , BaSO 4 particles, CeZr-based composite oxide primary particles containing Ce and Zr, and alumina primary particles. An exhaust gas purifying catalyst, characterized in that it is at least one selected from the formed CeZr-based alumina composite particles .
請求項1において、
さらに、触媒金属として、上記CePr系複合酸化物一次粒子に固溶したRh、又は上記二次粒子に担持されたPt及びPdの少なくとも一方とを備えていることを特徴とする排気ガス浄化用触媒。
In claim 1,
The exhaust gas purifying catalyst further comprises, as a catalyst metal, at least one of Rh solid-solved in the CePr-based composite oxide primary particles or Pt and Pd supported on the secondary particles. .
JP2009257298A 2009-11-10 2009-11-10 Exhaust gas purification catalyst Expired - Fee Related JP5531567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257298A JP5531567B2 (en) 2009-11-10 2009-11-10 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257298A JP5531567B2 (en) 2009-11-10 2009-11-10 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2011101843A JP2011101843A (en) 2011-05-26
JP5531567B2 true JP5531567B2 (en) 2014-06-25

Family

ID=44192443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257298A Expired - Fee Related JP5531567B2 (en) 2009-11-10 2009-11-10 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5531567B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117190A (en) * 2011-12-02 2013-06-13 Mazda Motor Corp Particulate filter with catalyst
JP5754691B2 (en) * 2012-02-16 2015-07-29 国立大学法人 岡山大学 Exhaust gas purification three-way catalyst
JP5949520B2 (en) * 2012-12-18 2016-07-06 マツダ株式会社 Particulate filter with catalyst
DE112014000481T5 (en) * 2013-05-27 2015-11-05 Mazda Motor Corporation Exhaust gas purifying catalyst and manufacturing method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232199A (en) * 2000-02-24 2001-08-28 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2007185588A (en) * 2006-01-12 2007-07-26 Mazda Motor Corp Catalyst for exhaust gas purification
JP4849034B2 (en) * 2007-08-08 2011-12-28 マツダ株式会社 Particulate filter with catalyst
JP5029273B2 (en) * 2007-10-10 2012-09-19 マツダ株式会社 Particulate filter
JP4858394B2 (en) * 2007-10-10 2012-01-18 マツダ株式会社 Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5023950B2 (en) * 2007-10-10 2012-09-12 マツダ株式会社 Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5023968B2 (en) * 2007-10-30 2012-09-12 マツダ株式会社 Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5023969B2 (en) * 2007-10-30 2012-09-12 マツダ株式会社 Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5428773B2 (en) * 2009-11-10 2014-02-26 マツダ株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2011101843A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5428773B2 (en) Exhaust gas purification catalyst
JP5515939B2 (en) Exhaust gas purification catalyst
JP5376261B2 (en) Exhaust gas purification catalyst
JP5322526B2 (en) Honeycomb structure type catalyst for purifying exhaust gas discharged from automobile, method for manufacturing the same, and method for purifying exhaust gas using the catalyst
JP4092441B2 (en) Exhaust gas purification catalyst
JP4648089B2 (en) Exhaust gas purification catalyst
JP5910833B2 (en) Exhaust gas purification catalyst
JP6869976B2 (en) Three-way catalyst for purifying gasoline engine exhaust gas
JP2006334490A (en) Catalyst for cleaning exhaust gas
JP2010012397A (en) Catalytic material for cleaning exhaust gas, method for producing the same, and catalyst for cleaning exhaust gas
JP5488214B2 (en) Exhaust gas purification catalyst
JP2012055842A (en) Exhaust gas purifying catalyst
JP2017006905A (en) Exhaust gas purifying catalyst
JP6748590B2 (en) Exhaust gas purification catalyst
JP5531567B2 (en) Exhaust gas purification catalyst
JP2011255270A (en) Catalyst for purifying exhaust gas
JP2010046656A (en) Catalyst for purifying exhaust gas and exhaust gas purification method using the catalyst
JP6146436B2 (en) Exhaust gas purification catalyst
JP2011101839A (en) Exhaust gas purifying catalyst
JP5488215B2 (en) Exhaust gas purification catalyst
JP5463861B2 (en) Exhaust gas purification catalyst
JP2006297260A (en) Catalyst for exhaust gas purification
JP4538726B2 (en) Exhaust gas purification catalyst
JP2010227739A (en) Catalytic material and catalyst for cleaning exhaust gas from internal-combustion engine
JP4547607B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5531567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees