JP4496873B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4496873B2
JP4496873B2 JP2004216159A JP2004216159A JP4496873B2 JP 4496873 B2 JP4496873 B2 JP 4496873B2 JP 2004216159 A JP2004216159 A JP 2004216159A JP 2004216159 A JP2004216159 A JP 2004216159A JP 4496873 B2 JP4496873 B2 JP 4496873B2
Authority
JP
Japan
Prior art keywords
catalyst
catalyst layer
exhaust gas
oxide
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004216159A
Other languages
Japanese (ja)
Other versions
JP2006035043A (en
Inventor
啓司 山田
誠治 三好
秀治 岩国
真明 赤峰
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004216159A priority Critical patent/JP4496873B2/en
Publication of JP2006035043A publication Critical patent/JP2006035043A/en
Application granted granted Critical
Publication of JP4496873B2 publication Critical patent/JP4496873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は排気ガス浄化用触媒に関するものである。     The present invention relates to an exhaust gas purification catalyst.

エンジンの排気ガス中のHC(炭化水素)、CO(一酸化炭素)及びNOx(窒素酸化物)を浄化する三元触媒には、Pt、Pd、Rh等の触媒貴金属が用いられ、PtやPdはHCやCOの酸化に働き、RhはNOxの還元に働くことが一般に知られている。また、三元触媒は理論空燃比付近で有効に働くところ、その有効に働く空燃比幅(ウィンドウ)を拡大すべく、Ce酸化物等の酸素吸蔵材を触媒に含ませることも一般に知られている。     Catalyst precious metals such as Pt, Pd, and Rh are used as a three-way catalyst for purifying HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) in engine exhaust gas. Pt and Pd It is generally known that acts on the oxidation of HC and CO, and Rh acts on the reduction of NOx. In addition, it is generally known that a three-way catalyst works effectively near the theoretical air-fuel ratio, and in order to expand the effective air-fuel ratio width (window), an oxygen storage material such as Ce oxide is included in the catalyst. Yes.

かかる排気ガス浄化用触媒に関し、特許文献1には、ハニカム基材に、γ−AlとCeOとZrOとの混合物にPtを担持させてなる触媒を有する下コート層と、Laを含有するAlからなる中空状複合酸化物にRhを含浸担持させてなる触媒を有する上コート層とを形成することが記載されている。 With respect to such an exhaust gas purifying catalyst, Patent Document 1 discloses that a honeycomb base material has an undercoat layer having a catalyst in which Pt is supported on a mixture of γ-Al 2 O 3 , CeO 2, and ZrO 2 ; And forming an upper coat layer having a catalyst formed by impregnating and supporting Rh on a hollow composite oxide made of Al 2 O 3 containing.

また、本出願人は、先に触媒材料として有用な、CeとZrとRhとを含む複酸化物、さらにはCeとZrとNdとRhとを含む複酸化物を開発した(特許文献2参照)。この文献2には、この種のRhを含有するCe系複酸化物を共沈法によって得ること、CeとZrとNdとRhとを含む複酸化物と、CeとZrとNdとを含む複酸化物にRhを後から担持させたものとを比較した場合、前者の方が酸素吸蔵性能(酸素吸蔵量及び酸素吸蔵速度)が高いこと、そうして、耐熱性が高く、三元触媒性能が高いことが記載されている。
特開2002−1120号公報 特開2004−174490号公報
Further, the present applicant has previously developed a composite oxide containing Ce, Zr, Rh, and a composite oxide containing Ce, Zr, Nd, and Rh, which are useful as catalyst materials (see Patent Document 2). ). This document 2 discloses that a Ce-based double oxide containing this type of Rh is obtained by a coprecipitation method, a double oxide containing Ce, Zr, Nd, and Rh, and a composite oxide containing Ce, Zr, and Nd. When comparing the oxide with Rh supported later, the former has higher oxygen storage performance (oxygen storage amount and oxygen storage rate), and thus higher heat resistance and three-way catalyst performance. Is described as high.
JP 2002-1120 A JP 2004-174490 A

本発明者は、上述の如くRhを含有するCe系複酸化物が三元触媒材料として有用であることから、さらに、当該複酸化物のRh量を少なくしつつ所期の三元触媒性能を得るべく、当該複酸化物についての研究・実験を進めた。     As described above, the inventor of the present invention uses the Ce-based double oxide containing Rh as a three-way catalyst material. Therefore, the present inventor further improved the desired three-way catalyst performance while reducing the amount of Rh of the double oxide. In order to obtain this, research and experiments on the complex oxide were advanced.

その結果、当該複酸化物は、RhがCe系複酸化物の結晶格子又は原子間に配置されていることから、酸素吸蔵性能及びRhのシンタリング抑制の点では有利であるものの、Rh量が少なくなると、当該触媒が比較的早く失活すること、その原因の一つは、エンジンの空燃比の変動であることがわかった。すなわち、空燃比はエンジンの運転状態に応じてリーンとリッチとの間で変動するが、これに伴って、三元触媒は高温の酸化性の高い排気ガスに繰り返し晒されることになる。従って、触媒の使用が長くなってくると、Ce複酸化物の結晶子表面に露出しているRhが次第に酸化され、そのことによって、当該Rhの還元触媒としての機能が低下していく。その場合、Rh量が少ないと、触媒の失活が早くなるものである。     As a result, the double oxide is advantageous in terms of oxygen storage performance and suppression of Rh sintering because Rh is arranged between the crystal lattices or atoms of the Ce-based double oxide, but the Rh amount is low. It has been found that when the amount decreases, the catalyst deactivates relatively quickly, and one of the causes is a change in the air-fuel ratio of the engine. That is, the air-fuel ratio fluctuates between lean and rich depending on the operating state of the engine. In association with this, the three-way catalyst is repeatedly exposed to high-temperature, highly oxidizing exhaust gas. Therefore, as the use of the catalyst becomes longer, Rh exposed on the surface of the crystallite of the Ce double oxide is gradually oxidized, whereby the function of the Rh as a reduction catalyst decreases. In that case, if the amount of Rh is small, the deactivation of the catalyst is accelerated.

そこで、本発明の課題は、Rhを含有するCe系複酸化物のRh量を少なくしても長期間にわたって所期の排気ガス浄化性能が得られるようにすること、特に上記Rhが酸化されて排気ガス浄化性能が低下することを防止することにある。     Accordingly, an object of the present invention is to achieve the desired exhaust gas purification performance over a long period of time even if the Rh amount of the Ce-based double oxide containing Rh is reduced, and in particular, the Rh is oxidized. The object is to prevent the exhaust gas purification performance from deteriorating.

本発明は、このような課題に対して、Rhを含有するCe系複酸化物に、当該Rhの酸化抑制に、さらには酸化されてしまったRhの還元に有効に働くPt又はPdを組み合わせた。     In order to solve such problems, the present invention combines the Rh-containing Ce-based double oxide with Pt or Pd that effectively suppresses the oxidation of the Rh and further reduces the oxidized Rh. .

すなわち、請求項1に係る発明は、ハニカム状担体に、Rh、Pt及びPdのうちの1種とからなる触媒貴金属と、Ce系複酸化物からなる酸素吸蔵材と、耐熱性無機酸化物とを含む触媒層が形成されている排気ガス浄化用触媒において、
上記触媒貴金属Rhの少なくとも一部は、上記Ce系複酸化物の結晶格子又は原子間に配置されて該Ce系複酸化物の結晶子表面に露出しており、
上記触媒貴金属Pt及びPdのうちの1種は、上記耐熱性無機酸化物に担持されていることを特徴とする。
That is, the invention according to claim 1 includes a honeycomb-shaped carrier, a catalytic noble metal composed of Rh and one of Pt and Pd, an oxygen storage material composed of Ce-based double oxide, and a heat-resistant inorganic oxide. In an exhaust gas purification catalyst in which a catalyst layer containing is formed,
At least a portion of the catalyst precious metals Rh is exposed to the crystallite surface of the Ce-based mixed oxide is disposed between the crystal lattice or atom of the Ce-based mixed oxide,
One of the catalyst precious metals Pt and Pd is characterized by being supported on the refractory inorganic oxide.

上記排気ガス浄化用触媒において、Pt又はPdはHCやCOの酸化に働き、RhはNOxの還元に働くところ、Rhは空燃比リーンの排気ガスに晒されると、酸化されてその触媒機能が低下する。一方、空燃比がリッチになると、それだけRhまわりでは還元剤として働くHCやCOが多くなるものの、Rhの雰囲気温度が低いときには、Rhの還元が図れない。     In the exhaust gas purifying catalyst, Pt or Pd works to oxidize HC and CO, and Rh works to reduce NOx. When Rh is exposed to an air-fuel ratio lean exhaust gas, it is oxidized and its catalytic function is lowered. To do. On the other hand, when the air-fuel ratio becomes rich, HC and CO that act as a reducing agent increase around Rh. However, when the ambient temperature of Rh is low, Rh cannot be reduced.

これに対して、Pt又はPdは、空燃比がリーンからリッチに切り換わっても上記HCやCOを酸化浄化する働きがあり、その触媒反応熱によってRhの雰囲気温度が高くなるとともに、当該触媒反応によって部分酸化した活性の高いHCが生成される。このため、酸化された状態になっているRhが排気ガス中のHCやCO、さらには部分酸化HCによって還元され易くなり、その活性が維持され、NOxの還元に有利になる。     On the other hand, Pt or Pd functions to oxidize and purify the HC and CO even when the air-fuel ratio is switched from lean to rich, and the catalytic reaction heat increases the atmospheric temperature of Rh and the catalytic reaction. As a result, high-activity HC partially oxidized is generated. For this reason, the oxidized Rh is easily reduced by HC and CO in the exhaust gas, and further partially oxidized HC, and its activity is maintained, which is advantageous for NOx reduction.

また、上述の如く、空燃比がリーンからリッチに切り換わったときに、Pt又はPdの存在によってRhまわりに酸素濃度の低い雰囲気が形成されることから、該Rhの酸化が進むことも抑制される。     Further, as described above, when the air-fuel ratio is switched from lean to rich, an atmosphere having a low oxygen concentration is formed around Rh due to the presence of Pt or Pd, so that the progress of oxidation of Rh is also suppressed. The

請求項2に係る発明は、請求項1に記載の排気ガス浄化用触媒において、
上記触媒層として、上記ハニカム状担体上で積層された内外2つの層を備え、
内側触媒層に、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物が含まれ、
外側触媒層に、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物が含まれていることを特徴とする。
The invention according to claim 2 is the exhaust gas purifying catalyst according to claim 1,
As the catalyst layer, comprising two layers inside and outside laminated on the honeycomb-shaped carrier,
The inner catalyst layer includes a heat-resistant inorganic oxide carrying one of Pt and Pd,
The outer catalyst layer includes a Ce-based double oxide in which the Rh is arranged in a crystal lattice or between atoms.

従って、排気ガス中のHCやCOは外側触媒層を通過して内側触媒層に至り、そこで、Pt又はPdによって酸化燃焼する。このHCやCOの酸化反応熱が、熱伝導により、また、対流(内側触媒層から外側触媒層への排気ガスの移動)により、内側触媒層から外側触媒層に伝達され、外側触媒層のRhの雰囲気温度が高くなる。そうして、このRhは、外側触媒層に設けられているから、Pt又はPdによって部分酸化されたHCの供給を内側触媒層から受けるとともに、排気ガス中の還元剤として働くHCやCOとも接触し易い。よって、空燃比がリーンからリッチに換わったときに、上述の部分酸化HCや排気ガス中のHCやCOによる当該Rhの還元が効率良く進むことになる。     Therefore, HC and CO in the exhaust gas pass through the outer catalyst layer and reach the inner catalyst layer, where they are oxidized and burned by Pt or Pd. The heat of oxidation reaction of HC and CO is transmitted from the inner catalyst layer to the outer catalyst layer by heat conduction and by convection (movement of exhaust gas from the inner catalyst layer to the outer catalyst layer), and Rh of the outer catalyst layer. The ambient temperature of the becomes higher. Since this Rh is provided in the outer catalyst layer, it receives supply of HC partially oxidized by Pt or Pd from the inner catalyst layer, and also contacts HC and CO that act as a reducing agent in the exhaust gas. Easy to do. Therefore, when the air-fuel ratio is changed from lean to rich, the reduction of the Rh by the partial oxidation HC or HC or CO in the exhaust gas proceeds efficiently.

請求項3に係る発明は、請求項1に記載の排気ガス浄化用触媒において、
上記触媒層として、上記ハニカム状担体上で積層された内外2つの層を備え、
内側触媒層に、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物が含まれ、
外側触媒層に、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物が含まれていることを特徴とする。
The invention according to claim 3 is the exhaust gas purifying catalyst according to claim 1,
As the catalyst layer, comprising two layers inside and outside laminated on the honeycomb-shaped carrier,
The inner catalyst layer includes a Ce-based double oxide in which the Rh is arranged between crystal lattices or atoms,
The outer catalyst layer contains a heat-resistant inorganic oxide carrying one of Pt and Pd.

この発明の場合は、排気ガス中のHCやCOが外側触媒層のPt又はPdによって酸化されるため、内側触媒層に設けられているRhに供給されるHC等の還元剤量は請求項2のケースに比べて少なくなると考えられるものの、外側触媒層でのPt又はPdによる還元剤の酸化反応熱が熱伝導により、或いは対流(外側触媒層から内側触媒層への排気ガスの移動)により内側触媒層に伝達されるため、Rhの雰囲気温度が高くなる。よって、空燃比がリーンからリッチに換わったときに、上述の部分酸化HCや排気ガス中のHC等による当該Rhの還元が効率良く進むことになる。     In the case of this invention, since HC and CO in the exhaust gas are oxidized by Pt or Pd of the outer catalyst layer, the amount of reducing agent such as HC supplied to Rh provided in the inner catalyst layer is claimed in claim 2. The heat of oxidation of the reducing agent by Pt or Pd in the outer catalyst layer is caused by heat conduction or by convection (transfer of exhaust gas from the outer catalyst layer to the inner catalyst layer). Since it is transmitted to the catalyst layer, the ambient temperature of Rh becomes high. Therefore, when the air-fuel ratio is changed from lean to rich, the reduction of the Rh by the partial oxidation HC and HC in the exhaust gas proceeds efficiently.

請求項4に係る発明は、請求項1に記載の排気ガス浄化用触媒において、
上記Rhが結晶格子又は原子間に配置されたCe系複酸化物と、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物とは、混合されて1つの触媒層に含まれていることを特徴とする。
The invention according to claim 4 is the exhaust gas purifying catalyst according to claim 1,
The Ce-based double oxide in which the Rh is arranged between crystal lattices or atoms and the heat-resistant inorganic oxide supporting one of Pt and Pd are mixed and included in one catalyst layer. It is characterized by being.

この発明の場合も、排気ガス中のHC等がCe系複酸化物まわりに存在するPt又はPdによって酸化されるため、Ce系複酸化物のRhに供給される還元剤量は少なくなると考えられるものの、RhとPt又はPdとが近接した状態になっているため、Pt又はPdによるHC等の酸化反応熱によってRhまわりが高い温度になり易い。よって、空燃比がリーンからリッチに換わったときに、上述の部分酸化HCや排気ガス中のHC等による当該Rhの還元が効率良く進むことになる。     In the case of this invention as well, HC and the like in the exhaust gas are oxidized by Pt or Pd present around the Ce-based double oxide, so that the amount of reducing agent supplied to Rh of the Ce-based double oxide is considered to be small. However, since Rh and Pt or Pd are in close proximity, the temperature around Rh tends to be high due to oxidation reaction heat of HC or the like by Pt or Pd. Therefore, when the air-fuel ratio is changed from lean to rich, the reduction of the Rh by the partial oxidation HC and HC in the exhaust gas proceeds efficiently.

請求項5に係る発明は、請求項1乃至請求項4のいずれか一に記載の排気ガス浄化用触媒において、
上記Rhが結晶格子又は原子間に配置されたCe系複酸化物は、CeとZrとNdとを含む複酸化物であり、
上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物は、活性アルミナであることを特徴とする。
The invention according to claim 5 is the exhaust gas purifying catalyst according to any one of claims 1 to 4,
The Ce-based double oxide in which Rh is arranged between crystal lattices or atoms is a double oxide containing Ce, Zr, and Nd,
The heat-resistant inorganic oxide carrying one of Pt and Pd is activated alumina.

従って、Ce系複酸化物はZrによって耐熱性が高くなり、また、Ndによって低温でのRhの触媒活性が高くなり、活性アルミナによってPt又はPdの高分散化が図れ、触媒性能の向上に有利になる。     Therefore, Ce-based double oxides have high heat resistance due to Zr, and Nd increases the catalytic activity of Rh at a low temperature, and active alumina enables high dispersion of Pt or Pd, which is advantageous for improving the catalyst performance. become.

以上のように、請求項1に係る発明によれば、触媒貴金属としてのRhをCe系複酸化物の結晶格子又は原子間に配置して該Ce系複酸化物の結晶子表面に露出させる一方、触媒貴金属としてのPt及びPdのうちの1種を耐熱性無機酸化物に担持させたから、上記Rhを含むCe系複酸化物によって、酸素吸蔵特性、耐熱性及び三元触媒性能の向上が図れるとともに、Pt又はPdを利用してRhの賦活(酸化抑制、ないしは酸化したRhの還元)が図れ、少ないRh量でも優れた触媒活性を長期間にわたって維持する上で有利になる。 As described above, according to the first aspect of the present invention, Rh as the catalytic noble metal is disposed between the crystal lattices or atoms of the Ce-based double oxide and exposed to the crystallite surface of the Ce-based double oxide. Since one of Pt and Pd as the catalyst noble metal is supported on the heat-resistant inorganic oxide, the Ce-based double oxide containing Rh can improve oxygen storage characteristics, heat resistance and three-way catalyst performance. At the same time, activation of Rh (inhibition of oxidation or reduction of oxidized Rh) can be achieved using Pt or Pd, which is advantageous in maintaining excellent catalytic activity over a long period of time even with a small amount of Rh.

請求項2に係る発明によれば、請求項1において、ハニカム状担体上で積層された内外2つの触媒層を備え、内側触媒層に、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物が含まれ、外側触媒層に、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物が含まれているから、内側触媒層でのPt又はPdによるHCやCOの酸化反応熱を利用して外側触媒層のRhの雰囲気温度を高めることができるとともに、該Rhに対して排気ガス中のHCやCOを充分に供給することができ、該Rhの酸化抑制、還元に有利になる。 According to the second aspect of the present invention, the heat resistance according to the first aspect, comprising two catalyst layers laminated on the honeycomb-shaped carrier and carrying one of the Pt and Pd on the inner catalyst layer. An inorganic oxide is contained, and the outer catalyst layer contains a Ce-based double oxide in which the above Rh is arranged in the crystal lattice or between atoms. Therefore, oxidation of HC and CO by Pt or Pd in the inner catalyst layer The reaction heat can be used to raise the ambient temperature of the Rh of the outer catalyst layer, and HC and CO in the exhaust gas can be sufficiently supplied to the Rh. Become advantageous.

請求項3に係る発明によれば、請求項1において、ハニカム状担体上で積層された内外2つの触媒層を備え、内側触媒層に、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物が含まれ、外側触媒層に、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物が含まれているから、外側触媒層でのPt又はPdによるHCやCOの酸化反応熱によって内側触媒層のRhの雰囲気温度を高めることができ、該Rhの酸化抑制、還元を図ることができる。 According to the invention of claim 3, the Ce system according to claim 1, further comprising two catalyst layers laminated on the honeycomb-shaped carrier, wherein the Rh is disposed between the crystal lattice or the atoms in the inner catalyst layer. Since a double oxide is contained and the outer catalyst layer contains a heat-resistant inorganic oxide carrying one of Pt and Pd, oxidation of HC and CO by Pt or Pd in the outer catalyst layer The reaction heat can increase the atmospheric temperature of Rh of the inner catalyst layer, and can suppress oxidation and reduction of Rh.

請求項4に係る発明によれば、請求項1において、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物と、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物とは、混合されて1つの触媒層に含まれているから、Pt又はPdによるHCやCOの酸化反応熱によってRhの雰囲気温度を高める上で有利になり、該Rhの酸化抑制、還元を図ることができる。 According to the invention of claim 4, in claim 1, the heat-resistant inorganic oxidation supporting the Ce-based double oxide in which the Rh is arranged in a crystal lattice or between atoms, and one of the Pt and Pd. Since it is mixed and contained in one catalyst layer, it is advantageous to increase the atmospheric temperature of Rh by the heat of oxidation reaction of HC or CO by Pt or Pd, and the oxidation and reduction of Rh are suppressed. Can be planned.

請求項5に係る発明によれば、請求項1乃至請求項4のいずれか一において、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物は、CeとZrとNdとを含む複酸化物であり、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物は、活性アルミナであるから、触媒の耐熱性及び低温活性の向上に有利になる。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the Ce-based double oxide in which the Rh is arranged between crystal lattices or atoms includes Ce, Zr, and Nd. The heat-resistant inorganic oxide that is a double oxide and carries one of Pt and Pd is activated alumina, which is advantageous for improving the heat resistance and low-temperature activity of the catalyst.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1には本発明に係る自動車のエンジンの排気ガス浄化用触媒1が示されている。この触媒1は、排気ガス流れ方向に貫通する多数のセル3を有する多孔質のモノリス担体(ハニカム状担体)2の各セル壁に、触媒貴金属を含有する触媒層を形成してなるものである。     FIG. 1 shows an exhaust gas purification catalyst 1 for an automobile engine according to the present invention. This catalyst 1 is formed by forming a catalyst layer containing a catalyst noble metal on each cell wall of a porous monolith support (honeycomb support) 2 having a large number of cells 3 penetrating in the exhaust gas flow direction. .

図2に模式的に示すように、当該触媒1は、上記触媒層として、セル壁5に形成された内側触媒層6と、該内側触媒層6の上に重ねられた外側触媒層7とを備えている。また、本発明は、図3に示すように、1層の触媒層8のみを形成する場合、或いは3層以上の触媒層を形成する場合もある。以下、触媒層の具体的な構成を実施例により説明する。     As schematically shown in FIG. 2, the catalyst 1 includes an inner catalyst layer 6 formed on the cell wall 5 and an outer catalyst layer 7 stacked on the inner catalyst layer 6 as the catalyst layer. I have. In the present invention, as shown in FIG. 3, only one catalyst layer 8 may be formed, or three or more catalyst layers may be formed. Hereinafter, a specific configuration of the catalyst layer will be described with reference to examples.

<実施例1−6,比較例の触媒>
−実施例1−
本例は図2に示すように内側触媒層6及び外側触媒層7の2層構造とするケースであり、内側触媒層6は、Pt及びPdのうちの1種を担持した耐熱性無機酸化物を含有し、外側触媒層7は、Rhが結晶格子又は原子間に配置されたCe系複酸化物を含有する。Rhの一部はCe系複酸化物の結晶格子又は原子間に配置されて該複酸化物の結晶子表面に露出している(特開2004−174490号公報の図6参照)。
<Examples 1-6 and Comparative Example Catalyst>
Example 1
In this example, as shown in FIG. 2, the inner catalyst layer 6 and the outer catalyst layer 7 have a two-layer structure. The inner catalyst layer 6 has a heat-resistant inorganic oxide carrying one of Pt and Pd. The outer catalyst layer 7 contains a Ce-based double oxide in which Rh is arranged between crystal lattices or atoms. A part of Rh is disposed between the crystal lattices or atoms of the Ce-based double oxide and exposed on the crystallite surface of the double oxide (see FIG. 6 of Japanese Patent Application Laid-Open No. 2004-174490).

具体的には、上記内側触媒層6の耐熱性無機酸化物は活性アルミナであり、該活性アルミナにPtが担持されている。内側触媒層6は、このPtを担持した活性アルミナ(Pt/Al)をバインダによって担体に担持させたものである。Pt/Alの担持量(上記担体1L当たりの担持量のこと。以下、同じ。)は50g/Lであり、成分の質量比はPt:Al=0.065:100である。 Specifically, the heat-resistant inorganic oxide of the inner catalyst layer 6 is activated alumina, and Pt is supported on the activated alumina. The inner catalyst layer 6 is formed by supporting the activated alumina (Pt / Al 2 O 3 ) supporting Pt on a carrier with a binder. The supported amount of Pt / Al 2 O 3 (the supported amount per 1 L of the carrier, hereinafter the same) is 50 g / L, and the mass ratio of the components is Pt: Al 2 O 3 = 0.065: 100. is there.

上記外側触媒層7のCe系複酸化物は、Ce、Zr、Nd及びRhを含有する複酸化物である。外側触媒層7はこのCe系複酸化物をバインダによって上記内側触媒層6の上に担持させたものである。Ce系複酸化物の担持量は112g/Lであり、成分の質量比はRh:CeO:ZrO:Nd=0.087:22:68:10である。 The Ce-based double oxide of the outer catalyst layer 7 is a double oxide containing Ce, Zr, Nd, and Rh. The outer catalyst layer 7 is obtained by supporting this Ce-based double oxide on the inner catalyst layer 6 with a binder. The supported amount of the Ce-based double oxide is 112 g / L, and the mass ratio of the components is Rh: CeO 2 : ZrO 2 : Nd 2 O 3 = 0.087: 22: 68: 10.

この場合、触媒貴金属の質量比はPt:Rh=1:3、両者合わせた担持量は0.13g/Lとなる。     In this case, the mass ratio of the catalyst noble metal is Pt: Rh = 1: 3, and the combined loading amount is 0.13 g / L.

上記Ce系複酸化物の製法を説明する。まず、オキシ硝酸ジルコニウム、硝酸第一セリウム、硝酸ネオジム(III)含水、及び硝酸ロジウム溶液各々の所定量と水とを混合して合計300mLとし、この混合溶液を室温で約1時間撹拌した。この混合溶液を80℃まで加熱昇温させた後、ガラス棒を用いて強く、素早く攪拌しつつ、別のビーカーに用意していた28%アンモニア水50mLを一気に加えて混合した。このアンモニア水の添加・混合は1秒以内に完了させた。アンモニア水の混合により白濁した溶液を一昼夜放置し、生成したケーキを遠心分離器にかけ、十分に水洗した。この水洗したケーキを約150℃の温度で乾燥させた後、400℃の温度に5時間保持し、次いで500℃の温度に2時間保持するという条件で焼成した。     A method for producing the Ce-based double oxide will be described. First, a predetermined amount of each of zirconium oxynitrate, cerium nitrate, water containing neodymium (III) nitrate, and rhodium nitrate was mixed with water to make a total of 300 mL, and this mixed solution was stirred at room temperature for about 1 hour. This mixed solution was heated to 80 ° C. and heated, and then vigorously stirred rapidly using a glass rod, and 50 mL of 28% ammonia water prepared in another beaker was added at once and mixed. The addition and mixing of the ammonia water was completed within 1 second. The solution clouded by mixing with aqueous ammonia was allowed to stand overnight, and the resulting cake was centrifuged and washed thoroughly with water. The cake washed with water was dried at a temperature of about 150 ° C. and then calcined under the condition that it was kept at a temperature of 400 ° C. for 5 hours and then kept at a temperature of 500 ° C. for 2 hours.

以上により得られたCe系複酸化物はRh成分を添加して生成されているから、Rhは、Ce、Zr及びNdと同じく当該複酸化物の結晶格子に配置され、換言すれば、当該複酸化物に強く結合した状態になる。あるいはRhは当該複酸化物の原子間に配置された状態になる。いずれにしても、Rhが複酸化物の表面及び内部において均一に分散した複酸化物となり、Rhの一部は当該複酸化物の結晶子表面に露出した状態になる。     Since the Ce-based complex oxide obtained as described above is formed by adding the Rh component, Rh is arranged in the crystal lattice of the complex oxide in the same manner as Ce, Zr, and Nd. It is in a state of being strongly bonded to the oxide. Or Rh will be in the state arrange | positioned between the atoms of the said double oxide. In any case, Rh becomes a double oxide uniformly dispersed on the surface and inside of the double oxide, and a part of Rh is exposed on the crystallite surface of the double oxide.

−実施例2−
本例も図2に示すように内側触媒層6及び外側触媒層7の2層構造とするケースであるが、実施例1とは違って、内側触媒層6は、Rhが結晶格子又は原子間に配置されたCe系複酸化物を含有し、外側触媒層7は、Pt及びPdのうちの1種を担持した耐熱性無機酸化物を含有する。Ce系複酸化物は実施例1と同じものであり、担持量も同じく112g/Lである。また、Pt及びPdのうちの1種を担持した耐熱性無機酸化物は実施例1と同じくPt/Alであり、担持量も同じく50g/Lである。
-Example 2-
This example is also a case where the inner catalyst layer 6 and the outer catalyst layer 7 have a two-layer structure as shown in FIG. 2, but unlike the first embodiment, the inner catalyst layer 6 has Rh of crystal lattice or interatomic. The outer catalyst layer 7 contains a heat-resistant inorganic oxide carrying one of Pt and Pd. The Ce-based double oxide is the same as in Example 1, and the supported amount is also 112 g / L. Further, the heat-resistant inorganic oxide carrying one of Pt and Pd is Pt / Al 2 O 3 as in Example 1, and the carrying amount is also 50 g / L.

−実施例3−
本例はRhが結晶格子又は原子間に配置されたCe系複酸化物と、Pt及びPdのうちの1種を担持した耐熱性無機酸化物とが混合されて、図3に示す1つの触媒層に含まれているケースである。Ce系複酸化物は実施例1と同じものであり、担持量も同じく112g/Lである。また、Pt及びPdのうちの1種を担持した耐熱性無機酸化物は実施例1と同じくPt/Alであり、担持量も同じく50g/Lである。
Example 3
In this example, a Ce-based double oxide in which Rh is arranged in a crystal lattice or between atoms and a heat-resistant inorganic oxide supporting one of Pt and Pd are mixed to form one catalyst shown in FIG. This is the case that is included in the layer. The Ce-based double oxide is the same as in Example 1, and the supported amount is also 112 g / L. Further, the heat-resistant inorganic oxide carrying one of Pt and Pd is Pt / Al 2 O 3 as in Example 1, and the carrying amount is also 50 g / L.

−実施例4−
本例は実施例1と同じく内側触媒層6及び外側触媒層7の2層構造とするケースであるが、外側触媒層7のCe系複酸化物の組成及び内側触媒層6の耐熱性無機酸化物に担持されている触媒貴金属が相違する。
Example 4
This example is a case having a two-layer structure of the inner catalyst layer 6 and the outer catalyst layer 7 as in Example 1, but the composition of the Ce-based double oxide of the outer catalyst layer 7 and the heat-resistant inorganic oxidation of the inner catalyst layer 6 The catalyst noble metal supported on the object is different.

すなわち、Ce系複酸化物は、実施例1と同じ方法で調製したが、その成分の質量比はRh:CeO:ZrO:Nd=0.058:22:68:10である。担持量は実施例1と同じく112g/Lである。一方、内側触媒層6には活性アルミナにPdを担持させたもの(Pd/Al)を採用した。その成分の質量比はPd:Al=0.13:100である。担持量は実施例1と同じく50g/Lである。触媒貴金属の質量比はPd:Rh=1:1、両者合わせた担持量は0.13g/Lとなる。 That is, the Ce-based double oxide was prepared by the same method as in Example 1, but the mass ratio of the components was Rh: CeO 2 : ZrO 2 : Nd 2 O 3 = 0.058: 22: 68: 10. . The carrying amount is 112 g / L as in Example 1. On the other hand, the inner catalyst layer 6 was made of Pd supported on activated alumina (Pd / Al 2 O 3 ). The mass ratio of the components is Pd: Al 2 O 3 = 0.13: 100. The supported amount is 50 g / L as in Example 1. The mass ratio of the catalyst noble metal is Pd: Rh = 1: 1, and the combined loading amount is 0.13 g / L.

−実施例5−
本例も内側触媒層6及び外側触媒層7の2層構造とするケースであるが、実施例4とは内外の触媒層の構成を逆にした。すなわち、内側触媒層6が実施例4と同じCe系複酸化物を112g/L含有し、外側触媒層7が実施例4と同じPd/Alを50g/L含有する。従って、触媒貴金属の質量比はPd:Rh=1:1、両者合わせた担持量は0.13g/Lとなる。
-Example 5
This example is also a case where the inner catalyst layer 6 and the outer catalyst layer 7 have a two-layer structure, but the configuration of the inner and outer catalyst layers is reversed from that in Example 4. That is, the inner catalyst layer 6 contains 112 g / L of the same Ce-based double oxide as in Example 4, and the outer catalyst layer 7 contains 50 g / L of Pd / Al 2 O 3 as in Example 4. Therefore, the mass ratio of the catalyst noble metal is Pd: Rh = 1: 1, and the combined loading amount is 0.13 g / L.

−実施例6−
本例も実施例3と同じく図3に示す混合型のケースであるが、実施例4と同じCe系複酸化物と実施例4と同じPd/Alとを、前者が112g/L、後者が50g/Lとなるように混合した。従って、触媒貴金属の質量比はPd:Rh=1:1、両者合わせた担持量は0.13g/Lとなる。
-Example 6
This example is also a mixed type case shown in FIG. 3 as in Example 3. However, the same Ce-based double oxide as in Example 4 and Pd / Al 2 O 3 as in Example 4 are used, and the former is 112 g / L. The latter was mixed so as to be 50 g / L. Therefore, the mass ratio of the catalyst noble metal is Pd: Rh = 1: 1, and the combined loading amount is 0.13 g / L.

−比較例−
比較例は、Rhが結晶格子又は原子間に配置されたCe系複酸化物と活性アルミナ(貴金属の担持なし)とが混合されて図3に示す1つの触媒層に含まれているものである。Ce系複酸化物は、実施例1と同じ方法で調製したが、その成分の質量比はRh:CeO:ZrO:Nd=0.116:22:68:10である。このCe複酸化物の担持量は実施例1と同じく112g/Lであり、従って、そのRhの担持量は0.13g/Lとなる。一方、活性アルミナの担持量は実施例1と同じく50g/Lである。
-Comparative example-
In the comparative example, a Ce-based double oxide in which Rh is arranged in a crystal lattice or between atoms and activated alumina (no noble metal supported) are mixed and contained in one catalyst layer shown in FIG. . The Ce-based double oxide was prepared by the same method as in Example 1, but the mass ratio of the components was Rh: CeO 2 : ZrO 2 : Nd 2 O 3 = 0.116: 22: 68: 10. The supported amount of this Ce double oxide is 112 g / L as in Example 1. Therefore, the supported amount of Rh is 0.13 g / L. On the other hand, the loaded amount of activated alumina is 50 g / L as in Example 1.

<触媒の評価>
上記実施例及び従来例の各触媒について、大気雰囲気において1000℃の温度に24時間加熱するエージングを行なった。そうして、これら触媒をモデルガス流通反応装置に取り付け、空燃比リッチのモデルガス(温度600℃)を20分間流した後、評価用モデルガスによってHC、CO及びNOxの浄化に関するライトオフ温度T50及び高温浄化率C500を測定した。
<Evaluation of catalyst>
Each catalyst of the above Examples and Conventional Examples was aged by heating to 1000 ° C. for 24 hours in an air atmosphere. Then, after attaching these catalysts to the model gas flow reactor and flowing an air-fuel ratio rich model gas (temperature 600 ° C.) for 20 minutes, a light-off temperature T50 relating to purification of HC, CO and NOx by the evaluation model gas. And the high temperature purification rate C500 was measured.

T50は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。C500は触媒入口ガス温度が500℃のときの浄化率である。評価用のモデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。 T50 is the gas temperature at the catalyst inlet when the temperature of the model gas flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. C500 is the purification rate when the catalyst inlet gas temperature is 500 ° C. The model gas for evaluation was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min.

T50の結果を図4に示し、C500の結果を図5に示す。HC、CO及びNOxいずれの浄化に関しても実施例1−6の各触媒の方が比較例触媒よりもT50が低く、またC500が高い。従って、Rhが結晶格子又は原子間に配置されたCe系複酸化物と、Pt又はPdを担持した活性アルミナとを併用すると、良好な三元触媒性能が得られることがわかる。     The result of T50 is shown in FIG. 4, and the result of C500 is shown in FIG. Regarding purification of HC, CO, and NOx, each catalyst of Example 1-6 has a lower T50 and a higher C500 than the comparative example catalyst. Therefore, it can be seen that a good three-way catalyst performance can be obtained by using a Ce-based double oxide in which Rh is arranged in the crystal lattice or between atoms and an activated alumina supporting Pt or Pd.

そうして、実施例1と実施例2とを比較した場合、Rhを含有するCe系複酸化物を外側触媒層に配置した前者の方がHC、CO及びNOxの浄化性が良くなっている。この点を検討するに、仮に、Pt/AlがCe系複酸化物のRhに何らの作用も及ぼさないとした場合、このHC及びCOの分解に有利なPt/Alを排気ガスと接触し易い外側触媒層に配置した方が、つまり実施例2の方が実施例1よりもHC及びCOの浄化性能が良いと考えられるが、上記図4,図5の結果は逆になっている。 And when Example 1 and Example 2 are compared, the former which arrange | positioned Ce type | system | group double oxide containing Rh in the outer side catalyst layer has improved the purification | cleaning property of HC, CO, and NOx. . To examine this point, if Pt / Al 2 O 3 has no effect on Rh of the Ce-based double oxide, Pt / Al 2 O 3 advantageous for the decomposition of HC and CO will be Although it is considered that the HC and CO purification performance is better in Example 2 than in Example 1 when arranged on the outer catalyst layer that easily contacts exhaust gas, the results of FIGS. 4 and 5 are reversed. It has become.

従って、Pt/Alはそれ自体が単独でHC、CO及びNOxの浄化を担っているだけでなく、Ce系複酸化物のRhを賦活するように働き、その働きが実施例1では実施例2よりも強く、その結果、実施例1では当該Ce系複酸化物のRhによってNOxが効率良く浄化され、同時にこのNOxの浄化に必要な還元剤としてのHC及びCOも効率良く分解されたと考えられる。 Therefore, Pt / Al 2 O 3 itself is not only responsible for purifying HC, CO, and NOx, but also acts to activate Rh of Ce-based double oxide. As a result, in Example 1, NOx is efficiently purified by Rh of the Ce-based complex oxide, and at the same time, HC and CO as reducing agents necessary for the purification of NOx are also efficiently decomposed. It is thought.

この場合、Pt/Alは、空燃比がリーンからリッチに切り換わった後でも排気ガス中のHC及びCOを酸化浄化することから、そのときの反応熱によってCe系複酸化物のRhの雰囲気温度を高めるとともに、還元性の高い部分酸化HCを当該Rhに供給してその還元を促し、それによって、当該Rhを賦活すると考えられる。 In this case, Pt / Al 2 O 3 oxidizes and purifies HC and CO in the exhaust gas even after the air-fuel ratio is switched from lean to rich. In addition to increasing the ambient temperature, it is considered that the partially oxidized HC having high reducibility is supplied to the Rh to promote the reduction, thereby activating the Rh.

そうして、実施例1の方が実施例2よりもHC、CO及びNOxの浄化性能が良くなっているのは、実施例2の場合はRhの還元に有用な排気ガス中のHCやCOが外側触媒層のPt/Alによって消費され、その分、内側触媒層のCe系複酸化物のRhに供給されるHC及びCO量が少なくなるのに対して、実施例1の場合は、Rhが外側触媒層に設けられているから、Rhに排気ガス中のHC及びCOが多量に供給されるためと考えられる。 Thus, the purification performance of HC, CO and NOx in Example 1 is better than that in Example 2. In Example 2, HC and CO in exhaust gas useful for reducing Rh are used. Is consumed by Pt / Al 2 O 3 in the outer catalyst layer, and accordingly, the amount of HC and CO supplied to Rh of the Ce-based double oxide in the inner catalyst layer is reduced. This is probably because a large amount of HC and CO in the exhaust gas is supplied to Rh because Rh is provided in the outer catalyst layer.

また、実施例3の混合型の場合、実施例1,2と同じく、Pt/AlによるHC及びCOの酸化反応熱によってRhの雰囲気温度が高まるものの、排気ガス中の還元剤がCe系複酸化物まわりに存在するPt/Alによって酸化されるため、Ce系複酸化物のRhに供給される還元剤量が少なくなり、そのために、実施例1に比べてRhの賦活性が低く、HC、CO及びNOxの浄化性能が低くなっていると考えられる。 In the case of the mixed type of Example 3, as in Examples 1 and 2, although the atmospheric temperature of Rh is increased by the oxidation reaction heat of HC and CO by Pt / Al 2 O 3 , the reducing agent in the exhaust gas is Ce. Since it is oxidized by Pt / Al 2 O 3 existing around the system double oxide, the amount of reducing agent supplied to Rh of the Ce system double oxide is reduced. Therefore, the activation of Rh compared to Example 1 is increased. It is considered that the purification performance of HC, CO and NOx is low.

また、実施例4〜6は実施例1〜3のPt/Alに代えてPd/Alを用いたケースであるが、実施例1〜3と同様の傾向を示しており、Pt/Alに代えてPd/Alを用いた場合でも、良好な結果が得られることがわかる。 Examples 4 to 6 are cases in which Pd / Al 2 O 3 was used instead of Pt / Al 2 O 3 in Examples 1 to 3, but showed the same tendency as Examples 1 to 3. It can be seen that good results can be obtained even when Pd / Al 2 O 3 is used instead of Pt / Al 2 O 3 .

本発明の実施形態に係る排気ガス浄化用触媒の斜視図である。1 is a perspective view of an exhaust gas purifying catalyst according to an embodiment of the present invention. 同触媒の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of the catalyst. 同触媒の他の例を一部拡大して示す断面図である。It is sectional drawing which expands and partially shows the other example of the same catalyst. 本発明の実施例及び比較例のライトオフ温度T50を示すグラフ図である。It is a graph which shows light-off temperature T50 of the Example and comparative example of this invention. 本発明の実施例及び比較例の高温浄化率C500を示すグラフ図である。It is a graph which shows the high temperature purification rate C500 of the Example and comparative example of this invention.

1 排気ガス浄化用触媒
2 ハニカム状担体
3 セル
5 セル壁
6 内側触媒層
7 外側触媒層
8 触媒層
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification catalyst 2 Honeycomb carrier 3 Cell 5 Cell wall 6 Inner catalyst layer 7 Outer catalyst layer 8 Catalyst layer

Claims (5)

ハニカム状担体に、Rh、Pt及びPdのうちの1種とからなる触媒貴金属と、Ce系複酸化物からなる酸素吸蔵材と、耐熱性無機酸化物とを含む触媒層が形成されている排気ガス浄化用触媒において、
上記触媒貴金属Rhの少なくとも一部は、上記Ce系複酸化物の結晶格子又は原子間に配置されて該Ce系複酸化物の結晶子表面に露出しており、
上記触媒貴金属Pt及びPdのうちの1種は、上記耐熱性無機酸化物に担持されていることを特徴とする排気ガス浄化用触媒。
A catalyst layer containing a catalytic noble metal composed of Rh and one of Pt and Pd, an oxygen storage material composed of Ce-based double oxide, and a heat-resistant inorganic oxide is formed on the honeycomb-shaped carrier. In the exhaust gas purification catalyst,
At least a portion of the catalyst precious metals Rh is exposed to the crystallite surface of the Ce-based mixed oxide is disposed between the crystal lattice or atom of the Ce-based mixed oxide,
The catalyst noble one of the genus Pt and Pd, said heat-resistant inorganic oxide is characterized by being carried on the exhaust gas purifying catalyst.
請求項1において、
上記触媒層として、上記ハニカム状担体上で積層された内外2つの層を備え、
内側触媒層に、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物が含まれ、
外側触媒層に、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物が含まれていることを特徴とする排気ガス浄化用触媒。
In claim 1,
As the catalyst layer, comprising two layers inside and outside laminated on the honeycomb-shaped carrier,
The inner catalyst layer includes a heat-resistant inorganic oxide carrying one of Pt and Pd,
An exhaust gas purifying catalyst characterized in that the outer catalyst layer contains a Ce-based double oxide in which the Rh is arranged in a crystal lattice or between atoms.
請求項1において、
上記触媒層として、上記ハニカム状担体上で積層された内外2つの層を備え、
内側触媒層に、上記Rhが結晶格子又は原子間に配置されたCe系複酸化物が含まれ、
外側触媒層に、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物が含まれていることを特徴とする排気ガス浄化用触媒。
In claim 1,
As the catalyst layer, comprising two layers inside and outside laminated on the honeycomb-shaped carrier,
The inner catalyst layer includes a Ce-based double oxide in which the Rh is arranged between crystal lattices or atoms,
An exhaust gas purifying catalyst characterized in that the outer catalyst layer contains a heat-resistant inorganic oxide carrying one of Pt and Pd.
請求項1において、
上記Rhが結晶格子又は原子間に配置されたCe系複酸化物と、上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物とは、混合されて1つの触媒層に含まれていることを特徴とする排気ガス浄化用触媒。
In claim 1,
The Ce-based double oxide in which the Rh is arranged between crystal lattices or atoms and the heat-resistant inorganic oxide supporting one of Pt and Pd are mixed and included in one catalyst layer. An exhaust gas purification catalyst characterized by comprising:
請求項1乃至請求項4のいずれか一において、
上記Rhが結晶格子又は原子間に配置されたCe系複酸化物は、CeとZrとNdとを含む複酸化物であり、
上記Pt及びPdのうちの1種を担持した耐熱性無機酸化物は、活性アルミナであることを特徴とする排気ガス浄化用触媒。
In any one of Claims 1 thru | or 4,
The Ce-based double oxide in which Rh is arranged between crystal lattices or atoms is a double oxide containing Ce, Zr, and Nd,
The exhaust gas purifying catalyst, wherein the heat-resistant inorganic oxide carrying one of Pt and Pd is activated alumina.
JP2004216159A 2004-07-23 2004-07-23 Exhaust gas purification catalyst Expired - Fee Related JP4496873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216159A JP4496873B2 (en) 2004-07-23 2004-07-23 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216159A JP4496873B2 (en) 2004-07-23 2004-07-23 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2006035043A JP2006035043A (en) 2006-02-09
JP4496873B2 true JP4496873B2 (en) 2010-07-07

Family

ID=35900606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216159A Expired - Fee Related JP4496873B2 (en) 2004-07-23 2004-07-23 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4496873B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023501A (en) * 2006-07-25 2008-02-07 Toyota Motor Corp Catalyst for purifying exhaust gas
JP4760625B2 (en) * 2006-09-06 2011-08-31 マツダ株式会社 Exhaust gas purification catalyst device
JP5232401B2 (en) * 2007-04-05 2013-07-10 株式会社キャタラー Exhaust gas purification catalyst
JP5463861B2 (en) * 2009-11-10 2014-04-09 マツダ株式会社 Exhaust gas purification catalyst
JP5428774B2 (en) * 2009-11-10 2014-02-26 マツダ株式会社 Exhaust gas purification catalyst
JP5428773B2 (en) 2009-11-10 2014-02-26 マツダ株式会社 Exhaust gas purification catalyst
JP5515939B2 (en) * 2010-03-26 2014-06-11 マツダ株式会社 Exhaust gas purification catalyst
JP2012154259A (en) * 2011-01-26 2012-08-16 Mazda Motor Corp Exhaust gas purification catalytic system
JP5594161B2 (en) * 2011-01-26 2014-09-24 マツダ株式会社 Exhaust gas purification catalyst device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281106A (en) * 1995-04-11 1996-10-29 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and its production
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JP2000300989A (en) * 1999-04-22 2000-10-31 Cataler Corp Exhaust gas cleaning catalyst
JP2002172325A (en) * 2000-09-26 2002-06-18 Daihatsu Motor Co Ltd Catalyst for flue gas cleaning
JP2003170047A (en) * 2001-09-27 2003-06-17 Tokyo Roki Co Ltd Catalyst for cleaning exhaust gas and method for manufacturing the same
JP2004174490A (en) * 2002-11-14 2004-06-24 Mazda Motor Corp Catalyst material and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281106A (en) * 1995-04-11 1996-10-29 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and its production
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JP2000300989A (en) * 1999-04-22 2000-10-31 Cataler Corp Exhaust gas cleaning catalyst
JP2002172325A (en) * 2000-09-26 2002-06-18 Daihatsu Motor Co Ltd Catalyst for flue gas cleaning
JP2003170047A (en) * 2001-09-27 2003-06-17 Tokyo Roki Co Ltd Catalyst for cleaning exhaust gas and method for manufacturing the same
JP2004174490A (en) * 2002-11-14 2004-06-24 Mazda Motor Corp Catalyst material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006035043A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP5322526B2 (en) Honeycomb structure type catalyst for purifying exhaust gas discharged from automobile, method for manufacturing the same, and method for purifying exhaust gas using the catalyst
JP4999331B2 (en) Exhaust gas purification catalyst
JP2012152702A (en) Catalyst for cleaning exhaust gas
JP2006075724A (en) Catalyst for exhaust gas cleaning
WO2017203863A1 (en) Gasoline engine exhaust gas purification three-way catalyst
JP4197029B2 (en) Exhaust gas purification catalyst, exhaust gas purification system, and exhaust gas purification method
JP2010167381A (en) Exhaust gas cleaning catalyst
JP2006068728A (en) Exhaust gas cleaning catalyst
JP4496873B2 (en) Exhaust gas purification catalyst
JP3798727B2 (en) Exhaust gas purification catalyst
JP4924500B2 (en) Exhaust gas purification catalyst body
JP3882627B2 (en) Exhaust gas purification catalyst
JPS63240947A (en) Catalyst for purifying exhaust gas
JP5003954B2 (en) Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP5391664B2 (en) Exhaust gas purification catalyst
JP2009000648A (en) Exhaust gas cleaning catalyst
JP5531567B2 (en) Exhaust gas purification catalyst
JP4810947B2 (en) Control method for internal combustion engine
JP3335755B2 (en) Exhaust gas purification catalyst
JP3872153B2 (en) Exhaust gas purification catalyst
JP4830293B2 (en) Composite oxide, method for producing the same, and catalyst for purification of exhaust gas
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP2005021793A (en) Exhaust gas cleaning catalyst
JP2016043310A (en) Nitrogen oxide occlusion material and catalyst for exhaust gas purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4496873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees