JP6282733B2 - 試料の欠陥検出及び光ルミネセンス測定のための系及び方法 - Google Patents

試料の欠陥検出及び光ルミネセンス測定のための系及び方法 Download PDF

Info

Publication number
JP6282733B2
JP6282733B2 JP2016523896A JP2016523896A JP6282733B2 JP 6282733 B2 JP6282733 B2 JP 6282733B2 JP 2016523896 A JP2016523896 A JP 2016523896A JP 2016523896 A JP2016523896 A JP 2016523896A JP 6282733 B2 JP6282733 B2 JP 6282733B2
Authority
JP
Japan
Prior art keywords
radiation
sample
sensor
defects
photoluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016523896A
Other languages
English (en)
Other versions
JP2016525214A (ja
JP2016525214A5 (ja
Inventor
ロメイン サペイ
ロメイン サペイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Corp filed Critical KLA Corp
Publication of JP2016525214A publication Critical patent/JP2016525214A/ja
Publication of JP2016525214A5 publication Critical patent/JP2016525214A5/ja
Application granted granted Critical
Publication of JP6282733B2 publication Critical patent/JP6282733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6495Miscellaneous methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • G01N2201/0662Comparing measurements on two or more paths in one sample

Landscapes

  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

関連出願の相互参照
本出願は、以下に列記される出願(複数可)(「関連出願」)からの最先の有効出願日(複数可)の利益に関し、かつこれを主張する(例えば、仮特許出願以外に対する最先の有効出願日を主張するか、または仮特許出願に対する米国特許法第119条(e)項の下で、関連出願(複数可)のあらゆる親出願、親出願の親出願、さらにその親出願などに対する利益を主張する)。
関連出願
USPTO法定外要件の目的で、本出願は、2013年6月26日出願の、発明者がROMAIN SAPPEYである、PHOTOLUMINESCENCE AND DEFECT INSPECTION SYSTEMS AND METHODSと題する、出願第61/839,494号の米国仮特許出願の通常の(非仮)特許出願を構成する。
本発明は、概して、欠陥の検出及び分類に関し、より具体的には、本発明は、光ルミネセンス及び散乱欠陥の検出及び分類に関する。
かつてないほどに縮小している半導体デバイスに対する需要が増加し続けるにつれて、欠陥同定及び分類のための改善された検査具に対する要求も増加し続ける。加工装置の品質に影響を及ぼす欠陥としては、例えば、積層不良欠陥及び基底面転位欠陥が挙げられ得る。積層不良欠陥及び基底面転位は、紫外線光で刺激されるとき、弱い光ルミネセンス特性を示す。現在の検査具は、散乱型の欠陥と併せて、光ルミネセンス欠陥を効率的に測定しない。
特開2010−109156号公報
したがって、従来技術の欠陥を矯正する働きをする改善された方法及び系を提供することが望ましい。
試料の欠陥検出及び光ルミネセンス測定のための系が開示される。一態様では、は、試料の表面に対して斜めの方向に沿って、試料の一部分上に斜照明波長の光ビームを方向付けるように構成される斜入射放射線源と、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に、斜照明波長とは異なる垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、少なくとも斜入射放射線源及び垂直入射放射線源を用いて走査プロセスを実施するために、試料を固定し、試料を選択的に作動させるように構成される試料台アセンブリと、試料からの放射線を収集するように構成される一組の収集光学素子であって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、一組の収集光学素子によって収集される放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、フィルタ下位系は、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長を含む第2の放射線部分、及び斜照明波長を含む少なくとも第3の放射線部分に、試料からの放射線を分離するように構成される、フィルタ下位系と、フィルタ下位系によって透過される第1の放射線部分の1つ以上の特徴を測定するための第1のセンサ、フィルタ下位系によって透過される第2の放射線部分の1つ以上の特徴を測定するための第2のセンサ、及びフィルタ下位系によって透過される第3の放射線部分の1つ以上の特徴を測定するための少なくとも第3のセンサを含む、検出下位系と、第1のセンサ、第2のセンサ、及び第3のセンサに通信可能に連結される制御装置であって、制御装置は、第2のセンサ及び第3のセンサによって測定される1つ以上の特徴によって測定される1つ以上の特徴のうちの少なくとも1つに基づき、1つ以上の散乱欠陥を検出することと、第1のセンサによって測定される1つ以上の特徴、第2のセンサによって測定される1つ以上の特徴、及び第3のセンサによって測定される1つ以上の特徴のうちの少なくとも1つに基づき、1つ以上の光ルミネセンス欠陥を検出することとを行うように構成される、制御装置と、を含んでもよいが、これらに限定されない。
別の態様では、本系は、試料の表面に対して斜めの方向に沿って、試料の一部分上に斜照明波長の光ビームを方向付けるように構成される斜入射放射線源と、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に、斜照明波長とは異なる垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、少なくとも斜入射放射線源及び垂直入射放射線源を用いて走査プロセスを実施するために、試料を固定し、試料を選択的に作動させるように構成される試料台アセンブリと、試料からの放射線を収集するように構成される一組の収集光学素子であって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、一組の収集光学素子によって収集される放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、フィルタ下位系は、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長を含む第2の放射線部分、斜照明波長を含む第3の放射線部分、及び試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第4の放射線部分に、試料からの放射線を分離するように構成される、フィルタ下位系と、フィルタ下位系によって透過される第1の放射線部分の1つ以上の特徴を測定するための第1のセンサ、フィルタ下位系によって透過される第2の放射線部分の1つ以上の特徴を測定するための第2のセンサ、フィルタ下位系によって透過される第3の放射線部分の1つ以上の特徴を測定するための第3のセンサ、及びフィルタ下位系によって透過される第4の放射線部分の1つ以上の特徴を測定するための少なくとも第4のセンサを含む、検出下位系と、第1のセンサ、第2のセンサ、及び第3のセンサに通信可能に連結される制御装置であって、制御装置は、第2のセンサ及び第3のセンサのうちの少なくとも1つによって測定される光に基づき、1つ以上の散乱欠陥を検出することと、光ルミネセンス欠陥のない試料の範囲中の第1のセンサ、第2のセンサ、第3のセンサ、及び第4のセンサのうちの少なくとも1つからの信号を、試料の測定された領域から取得される第1のセンサ、第2のセンサ、第3のセンサ、及び第4のセンサのうちの少なくとも1つからの信号と比較することによって、第1のセンサ、第2のセンサ、第3のセンサ、及び第4のセンサのうちの少なくとも1つによって検出される光に基づき、1つ以上の光ルミネセンス欠陥を検出することを行うように構成される、制御装置と、を含むが、これらに限定されない。
別の態様では、本系は、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、少なくとも斜入射放射線源及び垂直入射放射線源を用いて走査プロセスを実施するために、試料を固定し、試料を選択的に作動させるように構成される試料台アセンブリと、試料からの放射線を収集するように構成される一組の収集光学素子であって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、一組の収集光学素子によって収集される放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、フィルタ下位系は、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長を含む第2の放射線部分、及び試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第3の放射線部分に、試料からの放射線を分離するように構成される、フィルタ下位系と、フィルタ下位系によって透過される第1の放射線部分の1つ以上の特徴を測定するための第1のセンサ、フィルタ下位系によって透過される第2の放射線部分の1つ以上の特徴を測定するための第2のセンサ、及びフィルタ下位系によって透過される第3の放射線部分の1つ以上の特徴を測定するための少なくとも第3のセンサを含む、検出下位系と、第1のセンサ、第2のセンサ、及び第3のセンサに通信可能に連結される制御装置であって、制御装置は、第2のセンサによって測定される光に基づき、1つ以上の散乱欠陥を検出することと、光ルミネセンス欠陥のない試料の範囲中の第1のセンサ及び第3のセンサのうちの少なくとも1つから信号を、試料の測定された領域から取得される第1のセンサ及び第3のセンサのうちの少なくとも1つから信号と比較することによって、第1のセンサ及び第3のセンサのうちの少なくとも1つによって検出される前記光に基づき、1つ以上の光ルミネセンス欠陥を検出することとを行うように構成される、制御装置と、を含むが、これらに限定されない。
別の態様では、本系は、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、少なくとも斜入射放射線源及び垂直入射放射線源を用いて走査プロセスを実施するために、試料を固定し、試料を選択的に作動させるように構成される試料台アセンブリと、試料からの放射線を収集するように構成される一組の収集光学素子であって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、一組の収集光学素子によって収集される放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、フィルタ下位系は、光ルミネセンス放射線の複数の部分に試料からの放射線を分離するように構成され、各部分は、試料の1つ以上の光ルミネセンス欠陥によって出射される放射線の異なるスペクトル範囲中の1つ以上の波長を含む、フィルタ下位系と、複数のセンサを含む、検出下位系であって、各センサは、フィルタ下位系によって透過される光ルミネセンス放射線の複数の部分のうちの1つの1つ以上の特徴を測定するのに好適である、検出下位系と、及び複数のセンサのそれぞれに通信可能に連結される制御装置であって、制御装置は、光ルミネセンス欠陥のない試料の範囲中の複数のセンサのうちの少なくとも1つからの信号を、試料の測定された領域から取得される複数のセンサの少なくとも1つからの信号と比較することによって、複数のセンサのそれぞれによって検出される光に基づき、1つ以上の光ルミネセンス欠陥を検出することと、複数のセンサのそれぞれによって測定される1つ以上の信号に基づき、1つ以上の検出された光ルミネセンス欠陥を分類することとを行うように構成される制御装置を含むが、これらに限定されない。
試料の欠陥検出及び光ルミネセンス測定のための方法が開示される。一実施形態では、本方法は、試料の表面に対して斜めの方向に沿って、試料の一部分上に斜照明波長の光ビームを方向付けることと、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に垂直照明波長の光ビームを方向付けることであって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、試料からの放射線を収集することであって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線を収集することと、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長光を含む第2の放射線部分、及び斜照明波長光を含む少なくとも第3の放射線部分に、試料からの放射線を分離することと、第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴を測定することと、第2の放射線部分及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき、1つ以上の散乱欠陥を検出することと、光ルミネセンス欠陥のない試料の範囲から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴を、試料の測定された領域から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を含んでもよいが、これらに限定されない。
別の態様では、本方法は、試料の表面に対して斜めの方向に沿って、試料の一部分上に斜照明波長の光ビームを方向付けることと、試料の表面に対して実質的に垂直な方向に沿って垂直照明波長の光ビームを方向付けることであって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、試料からの放射線を収集することであって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線を収集することと、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長を含む第2の放射線部分、斜照明波長を含む第3の放射線部分、及び試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第4の放射線部分に、試料からの放射線を分離することと、第1の放射線部分、第2の放射線部分の1つ以上の特徴、第3の放射線部分の1つ以上の特徴、及び第4の放射線部分の1つ以上の特徴のうちの少なくとも1つの1つ以上の特徴を測定することと、第2の放射線部分及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき、1つ以上の散乱欠陥を検出することと、光ルミネセンス欠陥のない試料の範囲から取得される第1の放射線部分、第2の放射線部分、第3の放射線部分、及び第4の放射線部分のうちの少なくとも1つの1つ以上の特徴を、試料の測定された領域から取得される第1の放射線部分、第2の放射線部分、第3の放射線部分、及び第4の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、第1の放射線部分、第2の放射線部分、第3の放射線部分、及び第4の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を含んでもよいが、これらに限定されない。
別の態様では、本方法は、試料の表面に対して実質的に垂直な方向に沿って垂直照明波長の光ビームを方向付けることであって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、試料からの放射線を収集することであって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線を収集することと、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長を含む第2の放射線部分、及び試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第3の放射線部分に、試料からの放射線を分離することと、第1の放射線部分、第2の放射線部分の1つ以上の特徴、及び第3の放射線部分の1つ以上の特徴のうちの少なくとも1つの1つ以上の特徴を測定することと、第2の放射線部分及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき、1つ以上の散乱欠陥を検出することと、光ルミネセンス欠陥のない試料の範囲から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴を、試料の測定された領域から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、第1の放射線部分、第2の放射線部分、第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を含んでもよいが、これらに限定されない。
別の態様では、本方法は、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に垂直照明波長の光ビームを方向付けることであって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、試料からの放射線を収集することであって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線を収集することと、光ルミネセンス放射線の複数の部分に試料からの放射線を分離することであって、各部分は、試料の1つ以上の光ルミネセンス欠陥によって出射される光の異なるスペクトル範囲中の1つ以上の波長を含む、試料からの放射線を分離することと、光ルミネセンス放射線の複数の部分のそれぞれの1つ以上の特徴を測定することと、光ルミネセンス放射線の複数の部分のそれぞれの測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、光ルミネセンス放射線の複数の部分のそれぞれと関連する1つ以上の信号に基づき、1つ以上の検出された光ルミネセンス欠陥を分類することと、を含んでもよいが、これらに限定されない。
別の態様では、本方法は、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に垂直照明波長の光ビームを方向付けることであって、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、試料の表面に対して斜めの方向に沿って、試料の一部分上に斜照明波長の光ビームを方向付けることと、試料からの放射線を収集することであって、試料からの放射線は、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線を収集することと、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線の近紫外(NUV)部分に、試料からの放射線を分離することと、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線のNUV部分の1つ以上の特徴を測定することと、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線のNUV部分の測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線のNUV部分と関連する1つ以上の信号に基づき、1つ以上の検出された光ルミネセンス欠陥を分類することと、を含んでもよいが、これらに限定されない。
上記の発明の概要及び以下の発明を実施するための形態の両方が例示的かつ説明的なものにすぎず、必ずしも特許請求の範囲に記載される本発明を制限するものではないことを理解されたい。本明細書に組み込まれ、かつその一部をなす添付の図面は、本発明の実施形態を例示し、発明の概要と合わせて、本発明の原理を説明するのに役立つ。
本開示の多くの利点は、添付の図面を参照することによって当業者によりよく理解され得る。
本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための系の簡略化した概略図を示す。 本発明の一実施形態に従う、光ルミネセンススペクトル上に重ねられた一組のスペクトル統合ビンを示す。 本発明の一実施形態に従う、スパイラル走査検査系の検査経路の概念図を示す。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための系の簡略化した概略図を示す。 本発明の一実施形態に従う、光ルミネセンススペクトル上に重ねられた一組のスペクトル統合ビンを示す。 本発明の一実施形態に従う、暗コントラストモード及び明コントラストモードで取得される積層不良欠陥及び基底面転位の画像データを示す。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための系の簡略化した概略図を示す。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための系の簡略化した概略図を示す。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための系の簡略化した概略図を示す。 本発明の一実施形態に従う、光ルミネセンススペクトル上に重ねられた一組のスペクトル統合ビンを示す。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための方法で実施されるステップを示すプロセスフロー図である。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための方法で実施されるステップを示すプロセスフロー図である。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための方法で実施されるステップを示すプロセスフロー図である。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための方法で実施されるステップを示すプロセスフロー図である。 本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための方法で実施されるステップを示すプロセスフロー図である。
上記の発明の概要及び以下の発明を実施するための形態の両方が例示的かつ説明的なものにすぎず、必ずしも特許請求の範囲に記載される本発明を制限するものではないことを理解されたい。本明細書に組み込まれ、かつその一部をなす添付の図面は、本発明の実施形態を例示し、発明の概要と合わせて、本発明の原理を説明するのに役立つ。ここで、開示される主題が詳細に言及され、それは添付の図面に示される。
図1A〜1Jを大まかに参照すると、本発明に従う、試料に対する欠陥検出及び光ルミネセンス測定及び欠陥分類のための系が記載される。本明細書において、半導体デバイス層中に存在する積層不良(SF)及び基底面転位(BPD)などのある特定の結晶欠陥が、紫外線(UV)放射線(例えば、λ<385nm)で励起されるとき、弱くはあるが特徴的なルミネセンス特性をもたらし得ることに留意されたい。例えば、広バンドギャップ半導体パワーデバイス(例えば、炭化ケイ素ベースのパワーデバイスまたは窒化ガリウムベースのパワーデバイス)のエピ層と関連する積層不良及び基底面欠陥は、紫外線光で証明されるとき、光ルミネセンス光を出射し得る。炭化ケイ素(SiC)ベースのパワーデバイスの場合、関連した積層不良において光ルミネセンスを刺激するために使用される紫外線光は、パワーデバイス産業において、エピ層成長のために一般的に称される4H−SiCバンドギャップ、SiCポリタイプにおおよそ対応し得る。
系100(例えば、図1A)の種々の実施形態が、単一プラットフォーム(例えば、同じ光学ヘッド中に位置する)中で、光ルミネセンス(PL)マッピング及び欠陥検出を同時に実施するための光アーキテクチャ及び解析手順に部分的に向けられる。具体的には、いくつかの実施形態では、本発明は、広バンドギャップ半導体ベースのパワーデバイスなど、所与の試料の基質及びエピ層部分中の散乱及び光ルミネセンス欠陥検出を可能にし得る。加えて、本発明の種々の実施形態は、スパイラル走査検査構成(例えば、KLA−TENCORによるSURFSCAN系)を利用した散乱及び光ルミネセンス欠陥検出を実施し得、減速、停止、及び方向変化が回避されるため、より迅速な検査プロセスを提供する。
本発明は、調節可能な光アーキテクチャを提供し、所与のセンサが、所与の光ルミネセンススペクトルの選択された部分(すなわち、スペクトルビン)を検出することを可能にする。図1Bに示されるように、積層不良または基底面欠陥などの複数の種類の光ルミネセンス欠陥を含む試料は、紫外線光で励起されるとき、強力な光ルミネセンススペクトル134を生成し得る(例えば、図1Bのピーク143b〜143dを参照されたい)。さらに、各種類の積層不良が、光ルミネセンスピークの位置などの特徴的な光ルミネセンススペクトル特性を生成し得ることに留意されたい。例えば、図1Bに示されるように、4S型の積層不良は、325nmのレーザで励起されるとき、約460nmのピークを示し得、2S型の積層不良は、325nmのレーザで励起されるとき、約500nmのピークを示し得、バー型の積層は、325nmのレーザで励起されるとき、約420nmのピークを示し得る。本発明は、所与の試料と関連する光ルミネセンススペクトルの選択されたスペクトル帯域を独立して測定し、それらの測定に基づき、構成する光ルミネセンス欠陥を検出及び/または分類してもよい(例えば、試料中の積層不良の種類を分類する)。本明細書において、図1Bに示されるスペクトルが325nmのUVレーザで取得されたが、図1Bに示される原理はまた、355nmのレーザなどであるが、これに限定されない、325nmとは異なる波長のレーザで生成されるスペクトルにおいても観察されることに留意されたい。
図1Aは、本発明の一実施形態に従う、試料の欠陥検出及び光ルミネセンス測定のための系100のブロック図を示す。一実施形態では、系100は、試料104の表面に対して斜めの方向に沿って、試料104の一部分上に、斜照明波長λを有する光ビーム101(例えば、レーザビーム)を方向付けるように構成される斜入射放射線源103を含む。別の実施形態では、系100は、試料104の表面に対して垂直な方向に沿って、試料104の一部分上に、垂直照明波長λを有する光ビーム110(例えば、レーザビーム)を、(1つ以上の光学素子を介して)方向付けるように構成される垂直入射放射線源102を含む。斜入射放射線源103は、任意の波長または波長の範囲の光を出射してもよい。さらに、斜入射放射線源103は、当該技術分野で既知の任意の放射線源を含んでもよい。例えば、斜入射放射線源103は、レーザを含んでもよいが、これに限定されない。一実施形態では、斜入射放射線源103は、可視スペクトルレーザを含んでもよい。例えば、斜入射放射線源103は、405nmの光を出射することが可能なレーザを含んでもよいが、これに限定されない。代替の実施形態では、斜入射放射線源130は、紫外線スペクトルレーザを含んでもよい。
一実施形態では、系100は、1つ以上の欠陥によって弾性的に散乱される斜入射光を収集及び解析することによって、試料104の表面上(または中)の1つ以上の欠陥を検出してもよい。本明細書において、斜入射放射線源103及び対応する検出下位系を含むことは、系100が本発明の少なくともいくつかの構成で、暗視野モードで動作することを可能にすることに留意されたい。さらに、本明細書において、粒子欠陥がピット欠陥よりも、斜めの角度において基質に影響を与える光に対して強力な応答を示すため、斜入射源103からの光が、試料104の表面におけるピット欠陥と粒子欠陥との間の区別を補助することに留意されたい。したがって、斜入射光(例えば、405nm)に対応する波長(または波長範囲)で測定された応答に基づき、試料表面における1つ以上の欠陥が、ピット欠陥または粒子欠陥のいずれかに分類されてもよい(例えば、制御装置141を介して分類される)。ピット及び粒子欠陥を区別するのに好適な検査系及び方法は、2011年3月13日出願のVaez−Iravaniらの米国特許第6,201,601号に記載され、その全体が参照により本明細書に組み込まれる。
垂直入射放射線源102は、試料104のエピ層中に位置する積層不良欠陥など、試料104の表面の1つ以上の光ルミネセンス欠陥を刺激して、光ルミネセンス光を出射させるのに好適な任意の波長または波長の範囲の光を出射してもよい。例えば、垂直入射放射線110は、紫外線光を含んでもよい。一実施形態では、垂直入射放射線110の波長λは、斜入射放射線101の波長λよりも小さい。例えば、垂直入射放射線110が、355nmの波長を有する紫外線光を含んでもよい一方で、斜入射放射線101は、405nmの波長を有してもよい。さらに、垂直入射放射線源102は、当該技術分野で既知の任意の放射線源を含んでもよい。例えば、垂直入射放射線源102は、レーザを含んでもよいが、これに限定されない。例えば、垂直入射放射線源102は、紫外線連続波(CW)レーザなどの紫外線レーザを含んでもよいが、これに限定されない。例えば、垂直入射放射線源102は、355nmの光を出射することが可能な紫外線レーザを含んでもよいが、これに限定されない。本明細書において、355nmのUV光が試料の積層不良欠陥において光ルミネセンス出射を刺激するのに好適であることに留意されたい。さらに、355nmの波長が制限ではなく、単に例示のために提供されることに留意されたい。本明細書において、光の異なる波長が、異なる種類の光ルミネセンス欠陥において光ルミネセンス出射を刺激するために、本発明の垂直入射光源102によって利用され得ることが認識される。
本明細書にすでに記載された光ルミネセンスを刺激する態様に加えて、系100は、1つ以上の欠陥によって弾性的に散乱される垂直入射光を収集及び解析することによって、試料104の表面上の1つ以上の欠陥を検出してもよい。この関連で、垂直入射放射線源102及び対応する検出下位系は、系100が、本発明の少なくともいくつかの適用において、暗視野モードで動作することを可能にする。
本明細書において、用語「斜照明波長」及び「垂直照明波長」が制限的ではなく、例示及び明確さのために、提供されることに留意されたい。
一実施形態では、系100は、試料104からの放射線を収集するように構成される一組の収集光学素子106を含む。収集光学素子106は、試料104の上に位置付けられ、試料104からの光を収集し、収集した光をフィルタ下位系115の入力及び系100の種々のセンサに方向付けるように構成される、集光器108を含んでもよい。
別の実施形態では、試料104から発する放射線112は、試料104の1つ以上の欠陥によって弾性的に散乱される放射線または試料104の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線を含んでもよい。例えば、集光器108は、試料104から散乱及び/または放射された光を収集するように構成される。例えば、垂直入射源102からの光110及び/または斜入射源103からの光101が試料104の表面(例えば、試料のエピ層または試料の基質)に影響を与えた後、光は、試料104の表面の1つ以上の部分または試料104の表面に位置する欠陥によって、光ルミネセンスを介して散乱または放射されてもよい。集光器108は、散乱または放射された光を収集し、フィルタ下位系115の入力に光を透過してもよい。上記の記載が、図1Aに図示される形状との関連で本発明を説明している一方で、本発明は、そのような形状または光収集装置及び方法に限定されない。例えば、本明細書において、系100は、別の方法として、試料104から反射される光を収集及び測定するように構成されてもよいことが認識される。
収集光学素子106の集光器108は、当該技術分野で既知の集光器または対物レンズなどの任意の光収集装置を含んでもよい。例えば、集光器108は、図1Aに示されるような逆カセグレン式反射対物レンズを含んでもよいが、これに限定されない。本明細書において、収集光学素子106が、単に例示目的で提供される図1Aに示される構成に限定されないことに留意されたい。本明細書において、系100の収集光学素子106は、試料104から散乱または放射されている照明を収集し、その照明を本発明のフィルタ下位系115及び検出下位系137に方向付けるための多くの追加の光学素子(例えば、レンズ、鏡、フィルタなど)を含んでもよいことが認識される。散乱または光ルミネセンス放射された光を収集するのに好適な光収集下位系は、2010年8月24日出願の米国特許出願第12/861,894号に記載され、その全体が上記に組み込まれる。散乱または光ルミネセンス放射された光を収集するのに好適な追加の光収集下位系は、2011年3月15日出願のMeeksの米国特許第7,907,269号に記載され、その全体が参照により本明細書に組み込まれる。
別の実施形態では、系100は、フィルタ下位系115を含む。一実施形態では、フィルタ下位系115は、一組の収集光学素子106によって収集される放射線114を受容するように配列される。例えば、散乱光または放射PL光などの試料104からの放射線114は、収集光学素子106の集光器108によって収集され、次いで、フィルタ下位系115の1つ以上の部分に透過されてもよい。別の実施形態では、フィルタ下位系115は、試料104の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長λを含む第2の放射線部分、及び斜照明波長λを含む少なくとも第3の放射線部分に、試料104からの放射線114を分離するように構成される。
本開示の目的で、用語「放射線の部分」及び「スペクトルビン内の放射線」は、同じ意味で使用されてもよい。この関連で、「可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分」は、「可視または近赤外光ルミネセンススペクトルビン内の光」と見なされ得る。さらに、「垂直照明波長λを含む第2の放射線部分」は、「第2の散乱垂直ビン内の光」と見なされ得、「斜照明波長λを含む第3の放射線部分」は、「第3の散乱傾斜ビン内の光」と見なされ得る。
一実施形態では、フィルタ下位系115は、試料104の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分131、垂直照明波長λを含む第2の放射線部分133、及び斜照明波長λを含む少なくとも第3の放射線部分135に、試料104から受容される放射線114を分離するように構成される1つ以上の光学素子を含む。
一実施形態では、系100は、フィルタ下位系115によって透過される第1の放射線部分131の1つ以上の特徴、フィルタ下位系115によって透過される第2の放射線部分133及びフィルタ下位系115によって透過される第3の放射線部分135の1つ以上の特徴を測定するための検出下位系137を含む。一実施形態では、検出下位系137は、フィルタ下位系によって透過される第1の放射線部分131の1つ以上の特徴を測定するための第1のセンサ122、フィルタ下位系115によって透過される第2の放射線部分133の1つ以上の特徴を測定するための第2のセンサ124、及びフィルタ下位系115によって透過される第3の放射線部分135の1つ以上の特徴を測定するための少なくとも第3のセンサ126を含む。
一実施形態では、第1の光学素子116は、試料から受容される放射線114からの第1の放射線部分を含む第1の放射線スペクトル範囲107を分離し、検出下位系137の第1のセンサ122に向かって第1の放射線スペクトル範囲107を方向付けてもよい。
別の実施形態では、第2の光学素子118は、第1の放射線スペクトル範囲107中に含まれない第1の光学素子116からの放射線109を受容してもよい。別の実施形態では、第2の光学素子118は、第1の光学素子から受容される放射線109からの第2の放射線部分を含む第2の放射線スペクトル範囲111を分離し、検出下位系137の第2のセンサ124に向かって第2の放射線スペクトル範囲111を方向付けてもよい。
別の実施形態では、第3の光学素子120は、第1の放射線スペクトル範囲107または第2の放射線スペクトル範囲111中に含まれない第2の光学素子118からの放射線113を受容してもよい。別の実施形態では、第3の光学素子120は、検出下位系137の第3のセンサ126に向かって、第3の放射線部分を含む第3の放射線スペクトル範囲113の少なくとも一部分を方向付けてもよい。
フィルタ下位系115の光学素子は、図1Aに示されるように、第1、第2、及び第3の放射線スペクトル範囲に、試料から受容される光114を分離するのに好適な、当該技術分野で既知の任意の光学素子を含んでもよいことに留意されたい。
一実施形態では、第1の光学素子116は、試料から受容される放射線114からの第1の放射線部分を含む第1の放射線スペクトル範囲107を分離し、第1のセンサ122に向かって第1の放射線スペクトル範囲107を方向付けるのに好適な、長波通過(LWP)などの第1の二色性ビームスプリッタを含んでもよい。別の実施形態では、第2の光学素子118は、第1の二色性ビームスプリッタ116から放射線109を受容し、第1の二色性ビームスプリッタから受容される放射線109からの第2の放射線部分を含む第2の放射線スペクトル範囲111を分離し、第2のセンサ124に向かって第2の放射線スペクトル範囲111を方向付けるのに好適な第2の二色性ビームスプリッタ(例えば、LWPフィルタ)を含んでもよい。
別の実施形態では、第3の光学素子120は、第2の二色性ビームスプリッタから放射線113を受容し、第3のセンサ126に向かって第3の放射線部分を含む第3の放射線スペクトル範囲113の少なくとも一部分を方向付けるための鏡120を含んでもよい。
代替の実施形態では、第3の光学素子120が、少なくとも、第2の光学素子118から受容される放射線からの第3の放射線部分を含む第3の放射線スペクトル範囲113の一部分を分離し、第3のセンサ126に向かって第3の放射線スペクトル範囲113を方向付ける一方で、第1の放射線スペクトル範囲107、第2のスペクトル範囲、または第3の放射線スペクトル範囲113の放射線109中に含まれない放射線を、光学素子120から下流に位置する1つ以上の追加の光学装置(図1Aには図示せず)に透過するように構成されてもよい。本実施例では、図1Aに示される鏡120は、光への追加のアクセスポートを提供する働きをする、二色性ビームスプリッタ(例えば、LWPフィルタ)と置き換えられてもよい。例えば、本実施形態において二色性ビームスプリッタを通過する光は、光ファイバを介して外部検出器に連結されてもよい。この関連で、系100は、放射線のこの部分をさらに解析してもよい。例えば、図示されないが、系100は、光学素子120を通過する光を解析するように配列される分光計を含んでもよい。センサ122、124、または126に方向転換されない光を解析するのに好適な分光計系は、概して、米国出願第12/861,894号に記載され、その全体は、参照により上記に組み込まれる。
一実施形態では、フィルタ下位系115は、検出下位系137のセンサ122、124、または126のそれぞれが、予め選択された光の帯域を受容するように、試料104から受容される光114を選択的にフィルタリングするように構成されてもよい。
別の実施形態では、図1Aに示されるように、フィルタ下位系は、系100が、対象の種々の放射線帯域を選択的に測定することを可能にするために、一組の狭帯域フィルタを含む。一実施形態では、系100のフィルタ下位系115は、第1の狭帯域フィルタ128を含む。例えば、第1の狭帯域通過フィルタ128は、第1のセンサ122と第1の光学素子116との間に位置付けられてもよい。この関連で、第1の狭帯域通過フィルタ128は、光学素子116から第1の放射線スペクトル範囲107を受容し、第1の放射線部分131を第1のセンサ122に透過する一方で、第1の放射線部分中に含まれない放射線を遮断してもよい。
別の実施形態では、系100のフィルタ下位系115は、第2の狭帯域通過フィルタ130を含む。例えば、狭帯域通過フィルタ130は、第2のセンサ124と第2の光学素子118との間に位置付けられてもよい。この関連で、第2の狭帯域通過フィルタ130は、第2の放射線スペクトル範囲111を受容し、第2の放射線部分133を第2のセンサ124に透過する一方で、第2の放射線部分133中に含まれない放射線を遮断してもよい。
別の実施形態では、系100のフィルタ下位系115は、第3の狭帯域通過フィルタ132を含む。例えば、狭帯域通過フィルタ132は、第3のセンサ126と第3の光学素子120との間に位置付けられてもよい。この関連で、第3の狭帯域通過フィルタ132は、第3の放射線スペクトル範囲113を受容し、第3の放射線部分135を第3のセンサ126に透過する一方で、第3の放射線部分135中に含まれない放射線を遮断してもよい。
系100が、対応するセンサに種々の帯域の光を方向付けるために、狭帯域フィルタ及びLWPフィルタを使用することとの関連で記載されてきたが、本発明は、この光アーキテクチャに限定されない。むしろ、系100に関して図示される光学的構成は、単に例示のために提供され、制限的ではない。本発明の所望のスペクトル帯域に、試料104の放射線114を分離するために、種々の類似した光学的構成が実装されてもよいことが予想される。例えば、系100は、1つ以上の分光計が備わった光学的構成を含んでもよい。別の例として、系100は、光検出器に光学的に連結された1つ以上の回折素子(例えば、回折格子)が備わった光学的構成を含んでもよい。別の例として、系100は、光検出器に光学的に連結された1つ以上の分散素子(例えば、プリズム)が備わった光学的構成を含んでもよい。
一実施形態では、フィルタ下位系115及びセンサ122は、第1のセンサ122が試料104からの1つ以上のPL欠陥から放射される可視PL光または近IR光に対応する光を受容するように配列されてもよい。一実施形態では、垂直入射源102は、約355nmの波長を有するレーザ光などの紫外線光で、試料104の1つ以上の部分を照明してもよい。それに応答して、試料のエピ層中に存在するPL欠陥は、UV光を吸収し、次いで、可視及び/または近IRスペクトル中の光を放射してもよい。次いで、第1の狭帯域通過フィルタ128は、417〜900nmの光などの選択された帯域の光を第1のセンサ122に透過し、系100が可視及び/または近IRスペクトル中の積層不良を検出することを可能にしてもよい。本明細書にさらに記載されるように、選択された帯域のスペクトル位置及び幅は、所与の試料104中に存在する予想されるPL特性の関数であってもよく、系100が特定のPL検出シナリオに調整されることを可能にする。
別の実施形態では、フィルタ下位系115及びセンサ124は、第2のセンサ124が、欠陥及び/または試料表面によって散乱される垂直入射波長光λを含む光を受容するように配列されてもよい。一実施形態では、垂直入射源102は、波長λの垂直入射光110(例えば、355nmの光などの紫外線光)で、試料104の1つ以上の部分を照明してもよい。それに応答して、試料104の表面の1つ以上の欠陥または部分は、λ光を散乱または反射してもよい。次いで、第2の狭帯域通過フィルタ130は、λ源によって出射される光を含む波長帯域などの選択された帯域の光を、第2のセンサ124に透過してもよい。例えば、垂直入射源102が355nmの光を出射するUV源である場合、第2の狭帯域通過フィルタ130は、350〜360nmの範囲の光を透過するように構成されてもよい。
別の実施形態では、フィルタ下位系115及び第3のセンサ126は、第3のセンサ126が、欠陥及び/または試料104の表面によって散乱される斜入射波長光λを含む光を受容するように配列されてもよい。一実施形態では、斜入射源103は、波長λの斜入射光101(例えば、405nmの光)で、試料104の1つ以上の部分を照明してもよい。それに応答して、試料104表面の1つ以上の欠陥または部分は、λ光を散乱または反射してもよい。次いで、第3の狭帯域通過フィルタ132は、λ源によって出射される光を含む波長帯域などの選択された帯域の光を、第3のセンサ126に透過してもよい。例えば、斜入射源103が405nmの光を出射する場合、第3の狭帯域通過フィルタ132は、400〜410nmの範囲の光を透過し、系100がUVスペクトル中の積層不良を検出することを可能にするように構成されてもよい。別の例として、斜入射源103が405nmの光を出射する場合、第3の狭帯域通過フィルタ132は、370〜410nmの範囲の光を透過し、系100が近UV(NUV)スペクトル中の積層不良及び基底面転位欠陥を検出することを可能にするように構成されてもよい。
本明細書において、上記のフィルタ下位系115及び検出下位系137の実装が、系100が、照明された試料104からの種々の信号寄与を分離することを可能にすることに留意されたい。この関連で、それぞれの分離された測定を可能にする方法で、UV源によって刺激される斜入射照明の散乱、垂直入射照明の散乱、及び放射PL光を同時に測定することが可能である。加えて、上記の構成は、散乱された斜入射光及び散乱された垂直入射光に対するクロストークを回避するのを補助する(すなわち、低レベルの散乱光への望ましくない帯域の結合)。
本明細書において、センサ122、124、または126(及び本明細書にさらに記載される実施形態のセンサ)が、当該技術分野で既知の任意の種類の光センサアーキテクチュアを含んでもよいことに留意されたい。例えば、系100のセンサは、光電子増倍管(PMT)を含んでもよいが、これに限定されない。代替の実施形態では、系100のセンサは、フォトダイオード(例えば、アバランシェフォトダイオード)を含んでもよいことに留意されたい。
一実施形態では、系100は、図1A及び1Dに示されるように、検出下位系137の1つ以上の部分に通信可能に連結される制御装置141を含む。一実施形態では、制御装置141は、検出下位系137の第1のセンサ122、第2のセンサ124、及び第3のセンサ126に通信可能に連結される。この関連で、制御装置141(例えば、制御装置141の1つ以上のプロセッサ)は、第1のセンサ122、第2のセンサ124、及び第3のセンサ126からの測定結果を受信してもよい。
一実施形態では、制御装置141は、試料104の1つ以上の光ルミネセンス欠陥によって出射される可視及び/または近赤外光を少なくとも部分的に含む、定義された可視または近赤外スペクトルビン(例えば、417〜900nm)の範囲内に入る光に対応する、第1の放射線部分の1つ以上の特徴(例えば、信号強度)を示す信号を受信してもよい。別の実施形態では、制御装置141は、垂直入射波長λ(例えば、355nm)を含む波長範囲を含む、定義された散乱垂直スペクトルビン(例えば、350〜360nm)の範囲内に入る光に対応する、第2の放射線部分の1つ以上の特徴(例えば、信号強度)を示す信号を受信してもよい。別の実施形態では、制御装置141は、斜入射波長λ(例えば、405nm)を含む波長範囲を含む、定義された散乱傾斜スペクトルビン(例えば、400〜410nm)の範囲内に入る光に対応する、第3の放射線部分の1つ以上の特徴(例えば、信号強度)を示す信号を受信してもよい。
一実施形態では、制御装置141は、第2のセンサ124及び第3のセンサ126のうちの少なくとも1つによって測定される光に基づき、1つ以上の散乱欠陥を検出してもよい。一実施形態では、制御装置141は、λ光(例えば、355nm)を散乱する粒子などの欠陥を同定するために、第2のセンサ124の1つ以上の信号を解析してもよい。別の実施形態では、図示されないが、系100は、鏡面反射性を測定するための反射モード(すなわち、明視野チャネル)の垂直入射チャネル(すなわち、UVスペクトル中の源102及びセンサ124)、ならびに1つ以上のスロープチャネルを利用し、UV光に対する種々の広帯域ギャップ半導体材料(例えば、SiC及びGaN)の不透明な性質により、高い画質をもたらすように構成されてもよい。別の実施形態では、図示されないが、系100は、鏡面反射性、スロープチャネルデータ、及び位相チャネルデータなどであるが、これらに限定されないマルチチャネル信号を得るために、斜入射チャネルからの反射された光(例えば、405nmの光)を利用するように構成されてもよい。
一実施形態では、制御装置141は、λの波長を有する光(例えば、405nm)を散乱する粒子などの欠陥を同定するために、第3のセンサ126の1つ以上の信号を解析してもよい。別の実施形態では、系100は、波長λの斜めに反射された光を利用し、鏡面反射性、スロープ、及び位相チャネルなどであるが、これらに限定されない、マルチチャネル信号を得てもよい。
別の実施形態では、系100は、照明波長(例えば、405nm)が試料104の所与の広帯域ギャップ材料(例えば、SiC)に対して透明である場合、前面散乱から後面散乱を分離するのを補助するために、1つ以上の共焦点開口(図示せず)を含んでもよい。1つ以上の共焦点開口の適用は、概して、2010年6月24日出願のMeeksの米国特許第7,907,269号に記載され、その全体が参照により本明細書に組み込まれる。
別の実施形態では、制御装置141は、第1のセンサによって測定される1つ以上の信号特徴(例えば、信号強度)などの1つ以上の特徴、第2のセンサによって測定される1つ以上の特徴、及び第3のセンサによって測定される1つ以上の特徴のうちの少なくとも1つに基づき、1つ以上の光ルミネセンス欠陥を検出してもよい。別の実施形態では、制御装置141は、光ルミネセンス欠陥のない試料104の範囲中の第1のセンサ122、第2のセンサ124、及び第3のセンサ126のうちの少なくとも1つからの1つ以上の特徴を、試料104の測定された領域から取得される第1のセンサ122、第2のセンサ124、及び第3のセンサ126のうちの少なくとも1つからの信号と比較することによって、1つ以上の光ルミネセンス欠陥を検出してもよい。一実施形態では、光ルミネセンス欠陥のない範囲の信号強度の測定値を得るとき、センサ122〜126のうちの1つ以上は、光ルミネセンス欠陥がないことが確認された範囲から検出データを取得することができる。曲線143aは、光ルミネセンス欠陥のない試料の領域の波長曲線に対する一組の光ルミネセンス強度である。本明細書において、この光ルミネセンス欠陥のない曲線143aが、次いで、1つ以上の光ルミネセンス欠陥を同定するために、試料104の追加の領域から取得されるデータと比較されてもよいことに留意されたい。
別の実施形態では、制御装置141は、検出された1つ以上の光ルミネセンス欠陥の既知の位置と合わせて、第1のセンサによって測定される1つ以上の特徴、第2のセンサによって測定される1つ以上の特徴、及び第3のセンサによって測定される1つ以上の特徴のうちの少なくとも1つに基づき、検出された1つ以上の光ルミネセンス欠陥をマッピングしてもよい。この関連で、2次元マップが検出器によって生成されてもよく、それにより、各検出器によって測定されるスペクトル特性は、所与の測定位置にプロットされる。このようにして、複数のスペクトル帯域のマッピングを表示する局所的な図が示されてもよい。代替の実施形態では、制御装置141は、複数のスペクトル帯域の一部分のみを選択的に表示してもよい。この関連で、制御装置141は、単一のスペクトル帯域中で測定される特性のマップを示してもよく、または2つ以上のスペクトル帯域中で測定される特性のマップを示してもよい。
別の実施形態では、制御装置141は、第1のセンサによって測定されるスペクトル特徴(例えば、1つ以上のピークのスペクトル、強度、スペクトル位置)などの1つ以上の特徴、第2のセンサによって測定される1つ以上の特徴、及び第3のセンサによって測定される1つ以上の特徴のうちの少なくとも1つに基づき、検出された1つ以上の光ルミネセンス欠陥を分類してもよい。本明細書において、特定の種類の光ルミネセンス欠陥(または複数の欠陥)が、すでに記載され、かつ図1Bの曲線143b〜143dによって示されるように、特徴的なスペクトルを示すことに留意されたい。図1Bに示されるスペクトルビン145及び/またはスペクトルビン147などの特定のスペクトルビンの強度を測定することによって、制御装置141は、測定されている光ルミネセンス欠陥の種類を決定してもよい。例えば、制御装置141は、1つ以上の検出された光ルミネセンス欠陥の種類を同定するために、本明細書にすでに記載された測定及び検出された結果を、ルックアップテーブルと比較してもよい。例えば、積層不良欠陥(例えば、バー形積層不良、2SSF積層不良、4SSF積層不良など)などの種々の種類の光ルミネセンス欠陥を、対応する光ルミネセンススペクトルと関連付ける情報を含むルックアップテーブルは、系100(または追加の系)によって構築され、メモリ中に記憶されてもよい。特定の積層不良と関連する光ルミネセンススペクトルは、概して、Feng et al.,“Characterization of Stacking Faults in 4H−SiC Epilayers by Room−Temperature Microphotoluminescence Mapping,”Applied Physics Letters,Vol.92,Issue 22(2008)に記載され、その全体が、参照により本明細書に組み込まれる。本明細書において、効果的な分類が追加のセンサを有する設定で達成され、それにより、センサのそれぞれが、所与の積層不良時間に対する既知のスペクトル特性に対応する所与のスペクトルビンに一致されることに留意されたい。このアプローチは、本明細書においてさらにより詳細に考察される。
一実施形態では、スペクトルビン145は、本明細書にすでに記載されたように、フィルタ下位系115及び検出下位系137で達成される、355nmのレーザで光ルミネセンスを刺激し、420〜700nmスペクトル帯域を使用して光ルミネセンス光を検出することによって生成されるUV−可視光ルミネセンス統合帯域を表してもよい。別の実施形態では、図1Bに示されるように、スペクトルビン147は、本明細書にすでに記載されたように、フィルタ下位系115及び検出下位系137で達成される、355nmのレーザで光ルミネセンスを刺激し、400〜410nmスペクトル帯域を使用して光ルミネセンス光を検出することによって生成されるUV−UV光ルミネセンス統合帯域を表してもよい。別の実施形態では、図1Eに示されるように、スペクトルビン147は、本明細書にすでに記載されたように、フィルタ下位系115及び検出下位系137で達成される、355nmのレーザで光ルミネセンスを刺激し、370〜410nmスペクトル帯域などであるが、これに限定されないより広い帯域を使用して光ルミネセンス光を検出することによって生成されるUV−NUV光ルミネセンス統合帯域を表してもよい。追加の実施形態では、スペクトルビン147が、NUV出射欠陥を検出する目的で、370〜400nmなどであるが、これに限定されないスペクトル範囲に対応してもよいことに留意されたい。本明細書において、図1Eのスペクトルビン構成が、積層不良及び基底面転位の両方を検出するのに好適であることに留意されたい。
本明細書において、スペクトルビン145を使用した可視/NIR検出は、「ポジティブ」コントラストまたは「明」コントラスト検出プロセスに対応してもよく、それにより、光ルミネセンススペクトル中の特徴的なピークの強度が、光ルミネセンス欠陥のない曲線143aに対応する背景強度よりも大きいことに留意されたい。対照的に、スペクトルビン147(例えば、370〜410nmなどの帯域に対応する)を使用したNUV検出は、「ネガティブ」コントラストまたは「暗」コントラスト検出プロセスに対応してもよく、それにより、光ルミネセンススペクトル中の特徴的なピークの強度は、光ルミネセンス欠陥のない曲線143aに対応する背景強度よりも小さい。
図1Fは、本発明の1つ以上の実施形態に従って、NUVベースの暗コントラスト検出スキーム及び可視ベースの明コントラスト検出スキームを利用して取得される画像データを示す、一対の光ルミネセンス検査画像を示す。画像170は、上記のNUV帯域(例えば、370〜410nm)に対応するスペクトルビンを利用して取得される画像データを示す。画像170に示されるように、積層不良172及び基底面転位174の両方は、高レベルのネガティブコントラストを示す。しかしながら、分離した基底面転位の積層不良部分176は、よりかすかなネガティブコントラストを示す。画像178は、上記の可視帯域(例えば、420〜700nm)に対応するスペクトルビンを利用して取得される画像データを示す。画像178に示されるように、積層不良172及び分離した基底面転位の積層不良部分176の両方は、比較的強いポジティブコントラストを示す。しかしながら、基底面転位174は、画像178中で測定可能な明コントラストを示していない。本明細書において、基底面転位174はまた、750〜900nmなどNIR帯域でかすかに明るいことも既知であることに留意されたい。
代替の実施形態では、図1Dに示されるように、制御装置141は、斜入射放射線源103を選択可能に停止するように構成される。一実施形態では、少なくともλの光を含む範囲の放射線を検出してもよい第2のセンサ124が、1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線を検出するために利用されてもよい。さらなる実施形態では、制御装置141は、第2のセンサ124による光ルミネセンス測定前に、斜入射放射線源103を停止してもよい。例えば、λ=405nmであり、センサ124が400〜410nmの帯域の放射線を検出するように構成される場合、制御装置141は、355nmの紫外線放射線源102による刺激によって生成された、400〜410nmの帯域内の光ルミネセンス光をサンプリングするために、斜入射放射線源103を停止してもよい。本明細書において、この検出シナリオ(すなわち、欠陥によって散乱されたλ放射線を検出すること、及び同じ範囲の光ルミネセンス放射線を検出すること)は、ウエハの2回の検査段階を利用して実施されてもよい。
一実施形態では、制御装置141は、1つ以上のプロセッサ(図示せず)及び非一時的記憶媒体(すなわち、メモリ媒体)を含む。この関連で、制御装置141の記憶媒体(または任意の他の記憶媒体)は、制御装置141の1つ以上のプロセッサに、本開示を通して記載される種々のステップのいずれかを実施させるように構成されるプログラム命令を含む。本開示の目的で、用語「プロセッサ」は、メモリ媒体からの命令を実行する処理能力を有する任意のプロセッサまたは論理素子(複数可)を包含すると広く定義され得る。この意味で、制御装置141の1つ以上のプロセッサは、ソフトウェアアルゴリズム及び/または命令を実行するように構成される任意のマイクロプロセッサ型の装置を含んでもよい。一実施形態では、1つ以上のプロセッサは、本開示全体を通して記載される計算/データ処理ステップを実行するように構成されるプログラムを実行するように構成される、デスクトップコンピュータまたは他のコンピュータ系(例えば、ネットワークコンピュータ)からなってもよい。本開示全体を通して記載されるステップが、単一のコンピュータ系、複数のコンピュータ系、またはマルチコアプロセッサによって実施されてもよいことが認識されるべきである。さらに、表示装置またはユーザインターフェース装置(図示せず)などの系100の異なる下位系は、上記のステップの少なくとも一部分を実施するのに好適なプロセッサまたは論理素子を含んでもよい。したがって、上記の記載は、本発明に対する制限と解釈されるべきではなく、むしろ単に例示として解釈されるべきである。
一実施形態では、系100は、少なくとも斜入射放射線源103及び垂直入射放射線源102を用いて走査プロセスを実施するために、試料104を固定し、試料104を選択的に作動させるように構成される試料台アセンブリ105を含む。この関連で、試料台105ならびに/または斜入射放射線源103及び垂直入射放射線源102を含む光学ヘッドは、選択的に作動され、したがって、入射光ビーム101及び110に対して試料104を走査してもよい。
一実施形態では、系100の試料台アセンブリ105は、試料104を固定し、試料104を選択的に回転させるように構成される回転試料台アセンブリを含む。一実施形態では、回転試料台アセンブリは、試料104を固定するための試料チャック(図示せず)を含む。例えば、試料チャックは、真空チャックを含んでもよいが、これに限定されない。別の実施形態では、回転試料台アセンブリは、試料104を選択的に回転させるように構成される試料スピンドル(図示せず)を含む。例えば、試料スピンドルは、試料104の表面に対して垂直な軸の周囲で、選択された回転速度で試料104を回転させてもよい。別の実施形態では、スピンドルは、関連する制御装置または制御系(例えば、制御装置141)に応答して、試料を選択的に回転(または回転を停止)させてもよい。
一実施形態では、系100の回転試料台は、スパイラル走査プロセスを実施するように構成される。一実施形態では、系100の回転試料台が、選択された回転速度で試料104を回転させてもよい一方で、斜入射源103及び垂直入射源102を含む光学ヘッドは、選択された直線方向に沿って(例えば、試料104の放射状の直線に沿って)平行移動される。例えば、光学ヘッドは、選択された直線方向に沿って光学ヘッドを平行移動させるのに好適な直線台に連結されてもよい。試料104の回転ならびに斜入射源103及び垂直入射源102の直線運動の組み合わされた運動は、図1Cに示されるように、スパイラル走査パターン149を生成する。この関連で、SiCウエハなどの試料104は、光学ヘッド(源102及び源103を含む)の下で急速に回転され(例えば、5000RPM)、選択されたトラックピッチ(例えば、4μm)で、試料104の1つの半径に沿ってゆっくり移動されてもよい。例えば、光学ヘッドは、試料の縁部から試料の中心への半径方向に沿って移動されてもよい。
本明細書において、スパイラル走査技術が、ほとんどのX−Y走査アーキテクチャ(例えば、走査、スウェイジング、または移動−取得−測定構成)において必要とされる、減速、加速、停止、または方向変化のための時間が必要とされないため、比較的迅速な走査プロセスを提供することに留意されたい。本明細書に記載されるスパイラル走査手順を実装するのに好適なスパイラル走査アーキテクチャは、概して、1997年9月19日出願のVaez−Iravaniらの米国特許第6,201,601号に記載され、その全体が本明細書に組み込まれる。
代替の実施形態では、系100の試料台アセンブリ105は、少なくとも斜入射放射線源103及び垂直入射放射線源102を用いてX−Y走査プロセスを実施するために、試料104を固定し、少なくとも第1の方向(例えば、X−方向)、及び第1の方向に垂直な第2の方向(例えば、Y−方向)に沿って、試料104を選択的に平行移動させるように構成される直線台アセンブリ(図示せず)を含む。
図1Gは、本発明の代替の実施形態に従う、系100のブロック図を示す。本明細書において、系100に関して本明細書にすでに記載された実施形態及び実施例が、特に断りのない限り、図1Gに示される系100の実施形態にまで及ぶと解釈されるべきであることに留意されたい。
さらに、本明細書において、図1Eに示される実施形態が、追加の紫外線検出帯域を提供する働きをし、系100が、のλの欠陥によって散乱された光(例えば、斜入射光源103によって生成される光)、ならびに垂直入射光源102による1つ以上の光ルミネセンス欠陥の刺激によって生成される紫外線光ルミネセンス光を同時に検出することを可能にすることに留意されたい。
一実施形態では、検出下位系137は、フィルタ下位系115によって透過される第4の放射線部分139の1つ以上の特徴を測定するための第4のセンサ142を含む。一実施形態では、第4の放射線部分は、第3の放射線部分135の最小波長よりも小さい波長を有する紫外線放射線に対応する。例えば、第3のセンサ126が400〜410nmの帯域にわたる傾斜散乱光(例えば、λ=405nm)を測定する場合、第4のセンサ142は、400nm未満の放射線を測定するように構成されてもよい。例えば、第4のセンサ142は、図1Bの光ルミネセンススペクトルデータで観察され得る、1つ以上の光ルミネセンス欠陥の紫外線励起によって生成される紫外線光に対応する、紫外線帯域の少なくとも一部分に対応し得る、370〜400nmの帯域の放射線をサンプリングしてもよい。
別の実施形態では、フィルタ下位系115の第3の光学素子120は、第1の放射線スペクトル範囲107または第2の放射線スペクトル範囲111中に含まれない第2の光学素子118からの放射線を受容するように構成される。さらに、第3の光学素子120は、少なくとも、第2の光学素子118から受容される放射線からの第3の放射線部分135を含む第3の放射線スペクトル範囲117の一部分を分離し、第3のセンサ126に向かって第3の放射線スペクトル範囲117を方向付けるように構成される。加えて、第3の光学素子120は、さらに、第1の放射線スペクトル範囲107、第2の放射線スペクトル範囲111、または第3の放射線スペクトル範囲117中に含まれない放射線を、第4の放射線部分139を含む第4の放射線スペクトル範囲119中の第4のセンサ142に向かって透過するように構成される。別の実施形態では、フィルタ下位系115の第3の光学素子120は、二色性光学素子(例えば、LWPフィルタ)を含んでもよいが、これに限定されない。
別の実施形態では、フィルタ下位系115は、第4の狭域フィルタ144を含んでもよい。一実施形態では、第4の狭域フィルタ144は、第4のセンサ142と第3の光学素子120との間に位置付けられ、第4の放射線スペクトル範囲119を受容し、紫外線光ルミネセンス光(例えば、370〜400nm)などの第4の放射線部分139を、第4のセンサ142に透過し、第4の放射線部分中に含まれない放射線を遮断するように構成される。
図1Hは、本発明の代替の実施形態に従う、系100のブロック図を示す。本明細書において、系100に関して本明細書にすでに記載された実施形態及び実施例が、特に断りのない限り、図1Hに示される系100の実施形態にまで及ぶと解釈されるべきであることに留意されたい。
さらに、本明細書において、図1Hに示される実施形態が、本明細書にすでに記載された斜入射源なしで検出シナリオを提供する働きをすることに留意されたい。本実施形態では、系100は、フィルタ下位系115によって透過される第2の放射線部分133(例えば、350〜360nm)の1つ以上の特徴を測定するように構成される第2のセンサ124のみを介した散乱光を検出する。さらに、本実施形態との関連で、本実施形態の第3のセンサ142が、図1G中で本明細書にすでに記載された実施形態の第4のセンサ142と実質的に同様であることに留意されたい。この関連で、図1Hの第3のセンサ142は、フィルタ下位系115によって透過される第3の放射線部分139の1つ以上の特徴を測定してもよい。一実施形態では、第3の放射線部分139は、第2の放射線部分133の最大波長よりも大きい波長を有する紫外線放射線に対応する。例えば、第2のセンサ124が350〜360nmに帯域にわたる垂直散乱光(例えば、λ=355nm)を測定する場合、第3のセンサ142は、360nmを上回る放射線を測定するように構成されてもよい。例えば、第3のセンサ142は、図1Bの光ルミネセンススペクトルデータで観察され得る、1つ以上の光ルミネセンス欠陥の紫外線励起によって生成される紫外線光に対応する、紫外線帯域の少なくとも一部分に対応し得る、370〜410nmの帯域の放射線をサンプリングしてもよい。
別の実施形態では、系100の光学素子120は、第3の放射線スペクトル範囲113を、UV光ルミネセンス放射線を検出するための第3のセンサ142に向かって方向付けるための鏡を含んでもよい。
図1Iは、本発明の代替の実施形態に従う、系100のブロック図を示す。本明細書において、系100に関して本明細書にすでに記載された実施形態及び実施例が、特に断りのない限り、図1Iに示される系100の実施形態にまで及ぶと解釈されるべきであることに留意されたい。
さらに、本明細書において、図1Iに示される実施形態が、多くの光ルミネセンススペクトルビンを提供する働きをし、それぞれが、ある種類の積層不良(例えば、バー形積層不良、2S積層不良、及び4S積層不良)の特定のスペクトル特性に一致したことに留意されたい。この構成は、さらに、リアルタイムまたは準リアルタイムでの積層不良の分類を提供する。
さらに、図1Iに示される実施形態は、特徴的な光ルミネセンス帯域をいくつかの異なる光ルミネセンススペクトルビンに分離する働きをする、以下の図1Jに示される種類のスペクトル分割を達成し得る。本明細書において、スペクトル160中の各欠陥の種類に対する広い光ルミネセンス線を所与として、あるレベルのクロストークが存在し得ることに留意されたい。しかしながら、さらに、全信号とクロストーク低減との間の良好なバランスが、各積層不良の種類に対する各放射再結合線の半値全幅におおよそ対応するための光ルミネセンスビンを選択することによって達成され得る。
一実施形態では、系100は、斜入射放射線源103、ならびに対応するセンサ126及びフィルタ135なしで構成されてもよい。別の実施形態では、系100の制御装置141は、本明細書にすでに記載されたように、斜入射放射線源103を選択的に作動及び停止してもよい。さらに別の実施形態では、系100は、本明細書にすでに記載されたように、斜入射放射線103を含んでもよい。本明細書において、以下の記載が、系100中に含まれる斜入射光源103の観点から提供されることに留意されたい。しかしながら、さらに、これが制限するものではなく、系100が斜入射放射線源103なしで具体化され得ることに留意されたい。
本明細書にすでに記載されたように、系100のフィルタ下位系115は、一組の収集光学素子106によって収集される放射線の少なくとも一部分を受容するように構成される。
斜入射源103が存在する場合、フィルタ下位系115はさらに、本明細書にすでに記載されたように、垂直照明波長λを含む放射線の一部分111及び斜照明波長λを含む放射線の一部分117に、放射線を分離するように構成される。
別の実施形態では、フィルタ下位系115は、光ルミネセンス放射線の複数の部分に試料104からの放射線114を分離するように構成される。別の実施形態では、各部分は、試料104の1つ以上の光ルミネセンス欠陥によって出射される放射線の異なるスペクトル範囲中の1つ以上の波長を含む。
一例として、検出下位系137は、フィルタ下位系115によって透過されるPL放射線の第1の部分の1つ以上の特徴(例えば、強度)を測定するための第1のPLセンサ146、フィルタ下位系115によって透過されるPL放射線の第2の部分の1つ以上の特徴を測定するための第2のPLセンサ150、フィルタ下位系115によって透過されるPL強度の第3の部分を受容するための第3のPLセンサ148、及びフィルタ下位系115を通して透過されるPL放射線の第4の部分を受容するための第4のPLセンサ142を含んでもよいが、これらに限定されない。
別の実施形態では、本明細書にすでに記載されたように、検出下位系137はさらに、試料104の1つ以上の欠陥から散乱されるλ放射線を受容するための垂直散乱センサ124、及び試料104の1つ以上の欠陥から散乱されるλ放射線を受容するための傾斜散乱センサ126を含んでもよい。
一実施形態では、上記のセンサのそれぞれは、特定のスペクトルビンに対応してもよい。一実施形態では、フィルタ下位系115は、複数のスペクトルビンに試料から受容される放射線を分離するために、複数の光学素子及び複数の狭帯域フィルタを含む。
一実施形態では、複数の光学素子は、光学素子116、118、140、152、及び154を含んでもよいが、これらに限定されない。例えば、光学素子116、118、140、152、及び154のそれぞれは、本明細書にすでに記載されたように、二色性ビームスプリッタ(例えば、LWPフィルタ)を含んでもよいが、これに限定されない。本明細書において、光学素子116、118、140、152、及び154のそれぞれが、選択されたスペクトル帯域を含む放射線の所与のスペクトル範囲を、対応するセンサに向かって方向付ける働きをしてもよいことが認識される。別の実施形態では、複数の狭帯域フィルタは、狭帯域フィルタ130、132、156、158、159、及び144を含んでもよいが、これらに限定されない。本明細書において、狭帯域フィルタのそれぞれが、所与のスペクトルビン中に含まれる光を透過し、所与のスペクトルビンの外側の光を遮断することによって、複数のスペクトルビンの所与のスペクトルビンを定義する働きをしてもよいことが認識される。
一実施形態では、第1のPLセンサ146は、第1の狭帯域フィルタ156からの480〜520nmのスペクトル帯域の放射線を受容するように構成される。別の実施形態では、第2のPLセンサ150は、狭帯域フィルタ159からの440〜470nmのスペクトル帯域の放射線を受容するように構成される。別の実施形態では、第3のPLセンサ148は、狭帯域フィルタ158からの410〜435nmのスペクトル帯域158の放射線を受容するように構成される。一実施形態では、第4のPLセンサ142は、狭帯域フィルタ144からの370〜400nmのスペクトル帯域の放射線を受容するように構成される。別の実施形態では、垂直散乱センサ124が、狭帯域フィルタ130からの350〜360nmのスペクトル帯域の放射線を受容してもよい一方で、傾斜散乱センサ126は、狭帯域フィルタ132からの400〜410nmのスペクトル帯域の放射線を受容してもよい。
一実施形態では、光学素子及び複数の狭帯域フィルタは、試料の1つ以上の光ルミネセンス欠陥の一組の予想されるスペクトル特徴に従って、複数のスペクトルビンを定義するように配列される。別の実施形態では、複数の光学素子及び複数の狭帯域フィルタは、半値全幅(FWHM)の値を光ルミネセンススペクトル161の一組の対応する強度ピークに実質的に一致させるように配列される。一実施形態では、図1Jに示されるように、第1のスペクトルビン162(フィルタ156及びセンサ146によって定義される)は、第1の種類の積層不良(例えば、2S積層不良)の存在を示す第1の光ルミネセンスピーク163(例えば、FWHM)に一致されてもよい。別の実施形態では、図1Hに示されるように、第2のスペクトルビン164(フィルタ159及びセンサ150によって定義される)は、第2の種類の積層不良(例えば、4S積層不良)の存在を示す第2の光ルミネセンスピーク165(例えば、FWHM)に一致されてもよい。別の実施形態では、図1Jに示されるように、第3のスペクトルビン166(フィルタ158及びセンサ148によって定義される)は、第3の種類の積層不良(例えば、バー型の積層不良)の存在を示す第3の光ルミネセンスピーク167(例えば、FWHM)に一致されてもよい。
別の実施形態では、図1Jに示されるように、第のスペクトルビン168(フィルタ144及びセンサ142によって定義される)は、1つ以上の第4の光ルミネセンスピーク169(例えば、FWHM)に一致されてもよい。図1Jの光ルミネセンススペクトル161の場合、スペクトルビン168は、上記の各種類の積層不良欠陥の存在を示す一組の広い光ルミネセンスピークを測定する働きをする。
別の実施形態では、系100の制御系141は、複数のセンサのそれぞれによって検出される光に基づき、1つ以上の光ルミネセンス欠陥を検出してもよい。一実施形態では、制御系141は、光ルミネセンス欠陥のない試料の範囲中の複数のセンサのうちの少なくとも1つからの信号を、試料の測定された領域から取得される複数のセンサの少なくとも1つからの信号と比較することによって、光ルミネセンス欠陥を検出してもよい。この関連で、各積層不良の種類は、専用スペクトルビン中で検出されてもよく、それぞれは、専用センサ(例えば、PMT)に連結される。
別の実施形態では、制御装置141は、複数のセンサのそれぞれによって測定される1つ以上の信号に基づき、1つ以上の検出された光ルミネセンス欠陥を分類してもよい。この関連で、制御装置141は、光ルミネセンス特性波長の存在に基づき、各積層不良欠陥を分類してもよい。本明細書において、本発明のスペクトルビンの実装が、所与の欠陥(複数可)が形状アルゴリズムを介した適切な同定にはあまりに小さすぎる状況において、迅速かつ効率的な光ルミネセンス欠陥分類を可能にすることに留意されたい。光ルミネセンスのみの欠陥のサイズが適切にサンプリングされ、画像データ中に表示されるのに十分大きいとき、本系がさらに、所与の欠陥(例えば、三角形欠陥、バー欠陥など)を分類するために、1つ以上の形状同定アルゴリズムを適用してもよいことが理解される。さらに、図1Iに示される実施形態が、上記に明示されるスペクトルビンに限定されないことが認識される。むしろ、本開示に考察されるスペクトルビンは、単に例示目的で提供されてきた。追加のスペクトルビンシナリオが本発明の範囲内で適用可能であり得ることが予想される。例えば、3つの個々のスペクトルビン(図1I及び1Jに示されるような)よりもむしろ、系100は、追加のスペクトルビンを利用して分類プロセスを実施してもよい。例えば、追加のスペクトルビンを利用して、制御装置141は、三角形積層不良が強いバックレベル振動(back level swing)を有するはずである一方で、バー形の積層不良が、強い黒色レベル特性、及び同時に、低減された白色レベル特性を有し得るという事実に基づき、欠陥を分類してもよい。この相対的な信号変化の差は、光ルミネセンスを使用した積層不良分類のために使用されてもよい。
上記の記載が傾斜チャネル及び垂直チャネル光ルミネセンス欠陥(例えば、SF欠陥及び基底面転位)ならびに散乱欠陥検出に焦点を合わせてきたが、本明細書において、本発明の系100が、実装中に追加のアーキテクチャ及び構成を利用してもよいことが認識される。いくつかの実施形態では、系100は、散乱欠陥及び光ルミネセンス欠陥の検査及び検出中の自動焦点ルーチンを実施するための自動焦点装置が備わっていてもよい。他の実施形態では、本発明の系100は、光源(例えば、斜入射源103及び垂直入射源102)の電力を制御するための電力制御装置及び系が備わっていてもよい。例えば、1つ以上の電力制御装置が較正または他の目的で試料104への入射光の電力を制御するために使用されてもよい。
他の実施形態では、系100は、試料からの反射された光を測定するように構成される1つ以上の傾斜チャネルを含んでもよい。例えば、系100は、追加の光源、光学的集束及び制御素子、ならびに試料、1つ以上のスロープチャネル、及び/または1つ以上の位相チャネルの鏡面反射を測定するように構成される検出装置を含んでもよい。
他の実施形態では、系100の制御装置141は、1つ以上の欠陥を分類するために、系100の種々のチャネルのいずれかからの信号を読み出してもよい。例えば、制御装置141は、以下のチャネルのうちの1つ以上からの信号を読み出してもよい:斜入射チャネル、垂直入射チャネル、鏡面反射チャネル、スロープチャネル、位相チャネルなど。次いで、これらのチャネルのうちの1つ以上からのデータ中の欠陥特性の解析に基づき、制御装置141は、測定された欠陥を分類してもよい。例えば、制御装置141は、試料104の1つ以上の光ルミネセンス欠陥(例えば、SF欠陥または基底面転位)を分類するために、第1のコントラストモードで第1のチャネルを介して撮影される画像を比較し、次いで、その画像を、N番目のコントラストモードで第2のチャネル(またはN番目のチャネル)を介して撮影される画像と比較してもよい。
図2は、試料の欠陥検出及び光ルミネセンス測定のための方法を示すプロセスフロー図200を示す。ステップ202において、斜照明波長の光ビームは、試料の表面に対して斜めの方向に沿って、試料の一部分上に方向付けられる。ステップ204において、垂直照明波長の光ビームは、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に方向付けられる。一実施形態では、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である。ステップ206において、試料からの放射線が収集される。一実施形態では、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線である。ステップ208において、試料からの放射線は、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長光を含む第2の放射線部分、及び斜照明波長光を含む少なくとも第3の放射線部分に分離される。ステップ210において、第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴が測定される。ステップ212において、1つ以上の散乱欠陥が、第2の放射線部分及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき検出される。ステップ214において、1つ以上の光ルミネセンス欠陥が、光ルミネセンス欠陥のない試料の範囲から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴を、試料の測定された領域から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき検出される。
図3は、試料の欠陥検出及び光ルミネセンス測定のための方法を示すプロセスフロー図300を示す。ステップ302において、斜照明波長の光ビームは、試料の表面に対して斜めの方向に沿って、試料の一部分上に方向付けられる。ステップ304において、垂直照明波長の光ビームは、試料の表面に対して実質的に垂直な方向に沿って方向付けられる。一実施形態では、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である。ステップ306において、試料からの放射線が収集される。一実施形態では、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線である。ステップ308において、試料からの放射線は、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長を含む第2の放射線部分、斜照明波長を含む第3の放射線部分、及び試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第4の放射線部分に分離される。ステップ310において、第1の放射線部分、第2の放射線部分の1つ以上の特徴、第3の放射線部分の1つ以上の特徴、及び第4の放射線部分の1つ以上の特徴のうちの少なくとも1つの1つ以上の特徴が測定される。ステップ312において、1つ以上の散乱欠陥が、第2の放射線部分及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき検出される。ステップ314において、1つ以上の光ルミネセンス欠陥が、光ルミネセンス欠陥のない試料の範囲から取得される第1の放射線部分、第2の放射線部分、第3の放射線部分、及び第4の放射線部分のうちの少なくとも1つの1つ以上の特徴を、試料の測定された領域から取得される第1の放射線部分、第2の放射線部分、第3の放射線部分、及び第4の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、第1の放射線部分、第2の放射線部分、第3の放射線部分、及び第4の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき検出される。
図4は、試料の欠陥検出及び光ルミネセンス測定のための方法を示すプロセスフロー図400を示す。ステップ402において、垂直照明波長の光ビームは、試料の表面に対して実質的に垂直な方向に沿って方向付けられる。一実施形態では、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である。ステップ404において、試料からの放射線が収集される。一実施形態では、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線である。ステップ406において、試料からの放射線は、試料の1つ以上の光ルミネセンス欠陥によって出射される光と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、垂直照明波長を含む第2の放射線部分、及び試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第3の放射線部分に分離される。ステップ408において、第1の放射線部分、第2の放射線部分の1つ以上の特徴、及び第3の放射線部分の1つ以上の特徴のうちの少なくとも1つの1つ以上の特徴が測定される。ステップ410において、1つ以上の散乱欠陥が、第2の放射線部分及び第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき検出される。ステップ412において、1つ以上の光ルミネセンス欠陥が、光ルミネセンス欠陥のない試料の範囲から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴を、試料の測定された領域から取得される第1の放射線部分、第2の放射線部分、及び第3の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、第1の放射線部分、第2の放射線部分、第3の放射線部分のうちの少なくとも1つの測定された1つ以上の特徴に基づき検出される。
図5は、試料の欠陥検出及び光ルミネセンス測定のための方法を示すプロセスフロー図500を示す。ステップ502において、垂直照明波長の光ビームは、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に方向付けられる。一実施形態では、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である。ステップ504において、試料からの放射線が収集される。一実施形態では、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線である。ステップ506において、試料からの放射線は、光ルミネセンス放射線の複数の部分に分離され、各部分は、試料の1つ以上の光ルミネセンス欠陥によって出射される光の異なるスペクトル範囲中の1つ以上の波長を含む。ステップ508において、光ルミネセンス放射線の複数の部分のそれぞれの1つ以上の特徴が測定される。ステップ510において、1つ以上の光ルミネセンス欠陥が、光ルミネセンス放射線の複数の部分のそれぞれの測定された1つ以上の特徴に基づき検出される。ステップ512において、1つ以上の検出された光ルミネセンス欠陥が、光ルミネセンス放射線の複数の部分のそれぞれと関連する1つ以上の信号に基づき分類される。
図6は、試料の欠陥検出及び光ルミネセンス測定のための方法を示すプロセスフロー図600を示す。ステップ602において、垂直照明波長の光ビームは、試料の表面に対して実質的に垂直な方向に沿って、試料の一部分上に方向付けられる。一実施形態では、垂直照明波長の光ビームは、試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である。ステップ604において、斜照明波長の光ビームは、試料の表面に対して斜めの方向に沿って、試料の一部分上に方向付けられる。ステップ606において、試料からの放射線が収集される。一実施形態では、試料の1つ以上の欠陥によって弾性的に散乱される放射線または試料の1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、試料からの放射線である。ステップ608において、試料からの放射線は、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線の近紫外(NUV)部分に分離される。ステップ610において、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線のNUV部分の1つ以上の特徴が測定される。ステップ612において、1つ以上の光ルミネセンス欠陥が、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線のNUV部分の測定された1つ以上の特徴に基づき検出される。ステップ614において、1つ以上の検出された光ルミネセンス欠陥が、光ルミネセンス放射線の可視部分及び光ルミネセンス放射線のNUV部分と関連する1つ以上の信号に基づき分類される。
当業者は、本明細書に記載される方法で装置及び/またはプロセスを記載すること、ならびにその後、そのような記載された装置及び/またはプロセスをデータ処理系に組み込むためのエンジニアリング方式を使用することが、当該技術分野内で一般的であることを認識するであろう。すなわち、本明細書に記載される装置及び/またはプロセスの少なくとも一部分は、十分な量の実験を介してデータ処理系に組み込まれ得る。当業者は、典型的なデータ処理系が、概して、システムユニット筐体、ビデオ表示装置、揮発性及び不揮発性メモリなどのメモリ、マイクロプロセッサ及びデジタル信号プロセッサなどのプロセッサ、オペレーティングシステム、ドライバ、グラフィカルユーザインターフェース、及びアプリケーションプログラムなどの計算エンティティ、タッチパッドもしくはスクリーンなどの1つ以上の対話装置、ならびに/またはフィードバックループ及び制御モータを含む制御系(例えば、位置及び/もしくは速度を検知するためのフィードバック、構成要素及び/もしくは数量を移動及び/もしくは調節するための制御モータ)のうちの1つ以上を含むことを認識するであろう。典型的なデータ処理系は、典型的にデータ計算/通信及び/またはネットワーク計算/通信系に見られるものなど、任意の好適な市販の構成要素を利用して実装されてもよい。
本明細書に記載される本主題の特定の態様が示され、記載されてきたが、本明細書の教示に基づき、本明細書に記載される本主題及びそのより幅広い態様から逸脱することなく、変更及び修正が行われ得、したがって、添付の特許請求の範囲が、本明細書に記載される本主題の真の精神及び範囲内にあるように、全てのそのような変更及び修正をそれらの範囲内に包含するものとすることが、当業者には明らかとなるであろう。
本発明の特定の実施形態が例示されてきたが、上記の開示の範囲及び精神から逸脱することなく、本発明の種々の修正及び実施形態が当業者によって行われ得ることは明らかである。したがって、本発明の範囲は、それに添付される特許請求の範囲によってのみ制限されるべきである。本開示及びその付随する利点の多くが、上記の記載によって理解されると考えられ、種々の変更が、開示された本題から逸脱することなく、またはその材料の利点の全てを犠牲にすることなく、構成要素の形態、構造、及び配列において行われ得ることが明らかとなるであろう。記載される形態は、単に説明的であり、そのような変更を包含し含むことが、以下の特許請求の範囲の意図である。

Claims (62)

  1. 試料の欠陥検出及び光ルミネセンス測定のための系であって、
    前記試料の表面に対して斜めの方向に沿って、前記試料の一部分上に斜照明波長の光ビームを方向付けるように構成される斜入射放射線源と、
    前記試料の前記表面に対して実質的に垂直な方向に沿って、前記試料の一部分上に、前記斜照明波長とは異なる垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、
    少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される試料台アセンブリと、
    前記試料からの放射線を収集するように構成される一組の収集光学素子であって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、
    前記一組の収集光学素子によって収集される前記放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、前記フィルタ下位系は、前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス放射線と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、前記垂直照明波長を含む第2の放射線部分、及び前記斜照明波長を含む少なくとも第3の放射線部分に、前記試料からの前記放射線を分離するように構成される、フィルタ下位系と、
    前記フィルタ下位系によって透過される前記第1の放射線部分の1つ以上の特徴を測定するための第1のセンサ、前記フィルタ下位系によって透過される前記第2の放射線部分の1つ以上の特徴を測定するための第2のセンサ、及び前記フィルタ下位系によって透過される前記第3の放射線部分の1つ以上の特徴を測定するための少なくとも第3のセンサを含む、検出下位系と、
    前記第1のセンサ、前記第2のセンサ、及び前記第3のセンサに通信可能に連結される制御装置であって、前記制御装置は、
    前記第2のセンサ及び前記第3のセンサによって測定される前記1つ以上の特徴によって測定される前記1つ以上の特徴のうちの少なくとも1つに基づき、1つ以上の散乱欠陥を検出することと、
    前記第1のセンサによって測定される前記1つ以上の特徴、前記第2のセンサによって測定される前記1つ以上の特徴、及び前記第3のセンサによって測定される前記1つ以上の特徴のうちの少なくとも1つに基づき、1つ以上の光ルミネセンス欠陥を検出することと、を行うように構成される、制御装置と、を備える系。
  2. 前記制御装置は、光ルミネセンス欠陥のない前記試料の範囲中の前記第1のセンサ、前記第2のセンサ、及び前記第3のセンサのうちの少なくとも1つからの信号を、前記試料の測定された領域から取得される前記第1のセンサ、前記第2のセンサ、及び前記第3のセンサのうちの少なくとも1つからの信号と比較することによって、前記第1のセンサによって測定される前記1つ以上の特徴、前記第2のセンサによって測定される前記1つ以上の特徴、及び前記第3のセンサによって測定される前記1つ以上の特徴のうちの少なくとも1つに基づき、1つ以上の光ルミネセンス欠陥を検出するようにさらに構成される、請求項1に記載の系。
  3. 前記制御装置は、前記第1のセンサによって測定される前記1つ以上の特徴、前記第2のセンサによって測定される前記1つ以上の特徴、及び前記第3のセンサによって測定される前記1つ以上の特徴のうちの少なくとも1つ、ならびに前記検出された1つ以上の光ルミネセンス欠陥の位置に基づき、前記検出された1つ以上の光ルミネセンス欠陥をマッピングするようにさらに構成される、請求項1に記載の系。
  4. 前記制御装置は、前記第1のセンサによって測定される前記1つ以上の特徴、前記第2のセンサによって測定される前記1つ以上の特徴、及び前記第3のセンサによって測定される前記1つ以上の特徴のうちの少なくとも1つに基づき、前記検出された1つ以上の光ルミネセンス欠陥を分類するようにさらに構成される、請求項1に記載の系。
  5. 前記試料の前記1つ以上の光ルミネセンス欠陥は、
    1つ以上の積層不良欠陥及び1つ以上の基底面転位のうちの少なくとも1つを含む、請求項1に記載の系。
  6. 前記制御装置は、前記第2及び第3のセンサのうちの少なくとも1つによって検出される前記1つ以上の特徴に基づき、ピット欠陥または粒子欠陥として、検出された1つ以上の散乱欠陥を区別するようにさらに構成される、請求項1に記載の系。
  7. 前記制御装置は、前記第2のセンサ及び前記第3のセンサのうちの少なくとも1つによって検出される前記1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出するために、前記第2のセンサによる前記第2の放射線部分の測定及び前記第3のセンサによる前記第3の放射線部分の測定のうちの少なくとも1つの前に、前記斜入射放射線源を選択可能に停止するように構成される、請求項1に記載の系。
  8. 前記試料は、半導体デバイスである、請求項1に記載の系。
  9. 前記半導体デバイスは、広バンドギャップ半導体デバイスである、請求項8に記載の系。
  10. 前記斜入射源及び前記垂直入射源のうちの少なくとも1つは、レーザである、請求項1に記載の系。
  11. 前記斜入射源及び前記垂直入射源のうちの少なくとも1つは、紫外線レーザである、請求項1に記載の系。
  12. 前記斜入射源及び前記垂直入射源のうちの少なくとも1つは、連続波(CW)レーザである、請求項1に記載の系。
  13. 少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される前記試料台アセンブリは、
    少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いてスパイラル走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に回転させるように構成される回転台アセンブリを含む、請求項1に記載の系。
  14. 少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される前記試料台アセンブリは、
    少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いてX−Y走査プロセスを実施するために、前記試料を固定し、少なくとも第1の方向及び前記第1の方向に垂直な第2の方向に沿って前記試料を選択的に平行移動させるように構成される直線台アセンブリを含む、請求項1に記載の系。
  15. 前記フィルタ下位系は、
    前記試料から受容される前記放射線からの前記第1の放射線部分を含む第1の放射線スペクトル範囲を分離し、前記第1の放射線スペクトル範囲を前記第1のセンサに向かって方向付けるように構成される第1の光学素子と、
    前記第1の放射線スペクトル範囲中に含まれない前記第1の光学素子からの放射線を受容するように構成される第2の光学素子であって、前記第2の光学素子は、前記第1の光学素子から受容される前記放射線からの前記第2の放射線部分を含む第2の放射線スペクトル範囲を分離し、前記第2の放射線スペクトル範囲を前記第2のセンサに向かって方向付けるように構成される、第2の光学素子と、
    前記第1の放射線スペクトル範囲または前記第2の放射線スペクトル範囲中に含まれない前記第2の光学素子からの放射線を受容するように構成される第3の光学素子であって、前記第3の光学素子は少なくとも、前記第3の放射線部分を含む第3の放射線スペクトル範囲の一部分を前記第3のセンサに向かって方向付けるように構成される、第3の光学素子と、を含む、請求項1に記載の系。
  16. 前記第1の光学素子及び前記第2の光学素子のうちの少なくとも1つは、二色性ビームスプリッタであり、前記第3の光学素子は、鏡である、請求項15に記載の系。
  17. 前記フィルタ下位系は、
    前記試料から受容される前記放射線からの前記第1の放射線部分を含む第1の放射線スペクトル範囲を分離し、前記第1の放射線スペクトル範囲を前記第1のセンサに向かって方向付けるように構成される第1の光学素子と、
    前記第1の放射線スペクトル範囲中に含まれない前記第1の光学素子からの放射線を受容するように構成される第2の光学素子であって、前記第2の光学素子は、前記第1の光学素子から受容される前記放射線からの前記第2の放射線部分を含む第2の放射線スペクトル範囲を分離し、前記第2の放射線スペクトル範囲を前記第2のセンサに向かって方向付けるように構成される、第2の光学素子と、
    前記第1の放射線スペクトル範囲または前記第2の放射線スペクトル範囲中に含まれない前記第2の光学素子からの放射線を受容するように構成される第3の光学素子であって、前記第3の光学素子は少なくとも、前記第2の光学素子から受容される前記放射線からの前記第3の放射線部分を含む第3の放射線スペクトル範囲の一部分を分離し、前記第3の放射線スペクトル範囲を前記第3のセンサに向かって方向付けるように構成され、前記第3の光学素子は、前記第1の放射線スペクトル範囲、前記第2のスペクトル範囲、または前記第3の放射線スペクトル範囲の放射線中に含まれない放射線を、1つ以上の追加の光学デバイスに透過するようにさらに構成される、第3の光学素子と、を含む、請求項16に記載の系。
  18. 前記第1の光学素子及び前記第2の光学素子及び前記第3の光学素子のうちの少なくとも1つは、二色性ビームスプリッタである、請求項17に記載の系。
  19. 前記第1のセンサと前記第1の光学素子との間に位置付けられ、前記第1の放射線スペクトル範囲の少なくとも一部分を受容し、前記第1の放射線部分を前記第1のセンサに透過し、前記第1の放射線部分中に含まれない放射線を遮断するように構成される第1の狭域フィルタと、
    前記第2のセンサと前記第2の光学素子との間に位置付けられ、前記第2の放射線スペクトル範囲の少なくとも一部分を受容し、前記第2の放射線部分を前記第2のセンサに透過し、前記第2の放射線部分中に含まれない放射線を遮断するように構成される第2の狭域フィルタと、
    前記第3のセンサと前記第3の光学素子との間に位置付けられ、前記第3の放射線スペクトル範囲の少なくとも一部分を受容し、前記第3の放射線部分を前記第3のセンサに透過し、前記第3の放射線部分中に含まれない放射線を遮断するように構成される第3の狭域フィルタと、をさらに含む、請求項16に記載の系。
  20. 前記第1の狭域フィルタ、前記第2の狭域フィルタ、及び前記第3の狭域フィルタのうちの少なくとも1つによって透過される前記スペクトル範囲は、前記試料の特性の光ルミネセンススペクトルの1つ以上の特徴によって画定される、請求項19に記載の系。
  21. 前記第1のセンサ、前記第2のセンサ、及び前記第3のセンサのうちの少なくとも1つは、光電子増倍管(PMT)を含む、請求項1に記載の系。
  22. 前記第1のセンサは、前記試料の1つ以上の光ルミネセンス欠陥から出射される可視光ルミネセンス光及び近赤外光のうちの少なくとも1つを測定するように構成される、請求項1に記載の系。
  23. 前記第2のセンサは、前記垂直入射放射線源によって出射される前記光ビームと一致する波長における前記試料の1つ以上の欠陥からの散乱放射線を測定するように構成される、請求項1に記載の系。
  24. 前記第3のセンサは、前記斜入射放射線源によって出射される前記光ビームと一致する波長における前記試料の1つ以上の欠陥からの散乱放射線を測定するように構成される、請求項1に記載の系。
  25. 前記第2のセンサ及び第3のセンサのうちの少なくとも1つは、前記試料の1つ以上の光ルミネセンス欠陥から紫外線光ルミネセンス光を測定するように構成される、請求項1に記載の系。
  26. 前記系は、同時または連続的に光ルミネセンス欠陥及び散乱欠陥を検出するように構成される、請求項1に記載の系。
  27. 試料の欠陥検出及び光ルミネセンス測定のための系であって、
    前記試料の表面に対して斜めの方向に沿って、前記試料の一部分上に斜照明波長の光ビームを方向付けるように構成される斜入射放射線源と、
    前記試料の前記表面に対して実質的に垂直な方向に沿って、前記試料の一部分上に、前記斜照明波長とは異なる垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、
    少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される試料台アセンブリと、
    前記試料からの放射線を収集するように構成される一組の収集光学素子であって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、
    前記一組の収集光学素子によって収集される前記放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、前記フィルタ下位系は、前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス放射線と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、前記垂直照明波長を含む第2の放射線部分、前記斜照明波長を含む第3の放射線部分、及び前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第4の放射線部分に、前記試料からの前記放射線を分離するように構成される、フィルタ下位系と、
    前記フィルタ下位系によって透過される前記第1の放射線部分の1つ以上の特徴を測定するための第1のセンサ、前記フィルタ下位系によって透過される前記第2の放射線部分の1つ以上の特徴を測定するための第2のセンサ、前記フィルタ下位系によって透過される前記第3の放射線部分の1つ以上の特徴を測定するための第3のセンサ、及び前記フィルタ下位系によって透過される前記第4の放射線部分の1つ以上の特徴を測定するための少なくとも第4のセンサを含む、検出下位系と、
    前記第1のセンサ、前記第2のセンサ、及び前記第3のセンサに通信可能に連結される制御装置であって、前記制御装置は、
    前記第2のセンサ及び前記第3のセンサのうちの少なくとも1つによって測定される前記1つ以上の特徴に基づき、1つ以上の散乱欠陥を検出することと、
    光ルミネセンス欠陥のない前記試料の範囲中の前記第1のセンサ、前記第2のセンサ、前記第3のセンサ、及び前記第4のセンサのうちの少なくとも1つからの信号を、前記試料の測定された領域から取得される前記第1のセンサ、前記第2のセンサ、前記第3のセンサ、及び前記第4のセンサのうちの少なくとも1つからの信号と比較することによって、前記第1のセンサ、前記第2のセンサ、前記第3のセンサ、及び前記第4のセンサのうちの少なくとも1つによって検出される前記1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を行うように構成される制御装置と、を備える系。
  28. 前記試料の1つ以上の光ルミネセンス欠陥は、1つ以上の積層不良欠陥及び1つ以上の基底面転位のうちの少なくとも1つを含む、請求項27に記載の系。
  29. 前記制御装置は、前記第2及び第3のセンサのうちの少なくとも1つによって検出される前記1つ以上の特徴に基づき、ピット欠陥または粒子欠陥として、前記検出された1つ以上の散乱欠陥を区別するようにさらに構成される、請求項27に記載の系。
  30. 前記フィルタ下位系は、
    前記試料から受容される前記放射線からの前記第1の放射線部分を含む第1の放射線スペクトル範囲を分離し、前記第1の放射線スペクトル範囲を前記第1のセンサに向かって方向付けるように構成される第1の光学素子と、
    前記第1の放射線スペクトル範囲中に含まれない前記第1の光学素子からの放射線を受容するように構成される第2の光学素子であって、前記第2の光学素子は、前記第1の光学素子から受容される前記放射線からの前記第2の放射線部分を含む第2の放射線スペクトル範囲を分離し、前記第2の放射線スペクトル範囲を前記第2のセンサに向かって方向付けるように構成される、第2の光学素子と、
    前記第1の放射線スペクトル範囲または前記第2の放射線スペクトル範囲中に含まれない前記第2の光学素子からの放射線を受容するように構成される第3の光学素子であって、前記第3の光学素子は少なくとも、前記第2の光学素子から受容される前記放射線からの前記第3の放射線部分を含む第3の放射線スペクトル範囲の一部分を分離し、前記第3の放射線スペクトル範囲を前記第3のセンサに向かって方向付けるように構成され、前記第3の光学素子は、前記第1の放射線スペクトル範囲、前記第2の放射線スペクトル範囲または前記第3の放射線スペクトル範囲中に含まれない放射線を、前記第4の放射線部分を含む第4の放射線スペクトル範囲中の前記第4のセンサに向かって透過するようにさらに構成される、第3の光学素子と、を含む、請求項27に記載の系。
  31. 前記第1の光学素子、前記第2の光学素子、及び前記第3の光学素子のうちの少なくとも1つは、二色性ビームスプリッタである、請求項30に記載の系。
  32. 前記第1のセンサと前記第1の光学素子との間に位置付けられ、前記第1の放射線スペクトル範囲の少なくとも一部分を受容し、前記第1の放射線部分を前記第1のセンサに透過し、前記第1の放射線部分中に含まれない放射線を遮断するように構成される第1の狭域フィルタと、
    前記第2のセンサと前記第2の光学素子との間に位置付けられ、前記第2の放射線スペクトル範囲の少なくとも一部分を受容し、前記第2の放射線部分を前記第2のセンサに透過し、前記第2の放射線部分中に含まれない放射線を遮断するように構成される第2の狭域フィルタと、
    前記第3のセンサと前記第3の光学素子との間に位置付けられ、前記第3の放射線スペクトル範囲の少なくとも一部分を受容し、前記第3の放射線部分を前記第3のセンサに透過し、前記第3の放射線部分中に含まれない放射線を遮断するように構成される第3の狭域フィルタと、
    前記第4のセンサと前記第3の光学素子との間に位置付けられ、前記第3の放射線スペクトル範囲の少なくとも一部分を受容し、前記第4の放射線部分を前記第4のセンサに透過し、前記第4の放射線部分中に含まれない放射線を遮断するように構成される第4の狭域フィルタと、をさらに備える、請求項30に記載の系。
  33. 前記第1のセンサ、前記第2のセンサ、前記第3のセンサ、及び前記第4のセンサのうちの少なくとも1つは、光電子増倍管(PMT)を含む、請求項27に記載の系。
  34. 前記制御装置は、前記第1のセンサ、前記第2のセンサ、前記第3のセンサ、及び前記第4のセンサのうちの少なくとも1つによって検出される光の1つ以上のスペクトル特徴に基づき、前記検出された1つ以上の光ルミネセンス欠陥を分類するようにさらに構成される、請求項27に記載の系。
  35. 前記試料は、半導体デバイスである、請求項27に記載の系。
  36. 前記半導体デバイスは、広バンドギャップ半導体デバイスである、請求項35に記載の系。
  37. 前記斜入射源及び前記垂直入射源のうちの少なくとも1つは、レーザである、請求項27に記載の系。
  38. 前記斜入射源及び前記垂直入射源のうちの少なくとも1つは、紫外線レーザである、請求項37に記載の系。
  39. 前記斜入射源及び前記垂直入射源のうちの少なくとも1つは、連続波(CW)レーザである、請求項38に記載の系。
  40. 少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される前記試料台アセンブリは、
    少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いてスパイラル走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に回転させるように構成される回転台アセンブリを含む、請求項27に記載の系。
  41. 少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される前記試料台アセンブリは、
    少なくとも前記斜入射放射線源及び前記垂直入射放射線源を用いてX−Y走査プロセスを実施するために、前記試料を固定し、少なくとも第1の方向及び前記第1の方向に垂直な第2の方向に沿って前記試料を選択的に平行移動させるように構成される直線台アセンブリを含む、請求項27に記載の系。
  42. 前記第1のセンサは、前記試料の1つ以上の光ルミネセンス欠陥から出射される可視光ルミネセンス光及び近赤外光のうちの少なくとも1つを測定するように構成され、前記第4のセンサは、紫外線光ルミネセンス光を測定するように構成される、請求項27に記載の系。
  43. 前記第2のセンサは、前記垂直入射放射線源によって出射される前記光ビームに対応する波長における前記試料の1つ以上の欠陥からの散乱放射線を測定するように構成される、請求項27に記載の系。
  44. 前記第3のセンサは、前記斜入射放射線源によって出射される前記光ビームに対応する波長における前記試料の1つ以上の欠陥からの散乱放射線を測定するように構成される、請求項27に記載の系。
  45. 前記第2のセンサ及び第3のセンサのうちの少なくとも1つは、前記試料の1つ以上の光ルミネセンス欠陥からの紫外線光ルミネセンス光を測定するように構成される、請求項27に記載の系。
  46. 前記系は、同時または連続的に光ルミネセンス欠陥及び散乱欠陥を検出するように構成される、請求項27に記載の系。
  47. 試料の欠陥検出及び光ルミネセンス測定のための系であって、
    前記試料の表面に対して実質的に垂直な方向に沿って、前記試料の一部分上に、垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、
    少なくとも斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される試料台アセンブリと、
    前記試料からの放射線を収集するように構成される一組の収集光学素子であって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、
    前記一組の収集光学素子によって収集される前記放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、前記フィルタ下位系は、前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス放射線と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、前記垂直照明波長を含む第2の放射線部分、及び前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光と関連する紫外線スペクトル中の1つ以上の波長を含む放射線を含む少なくとも第3の放射線部分に、前記試料からの前記放射線を分離するように構成される、フィルタ下位系と、
    前記フィルタ下位系によって透過される前記第1の放射線部分の1つ以上の特徴を測定するための第1のセンサ、前記フィルタ下位系によって透過される前記第2の放射線部分の1つ以上の特徴を測定するための第2のセンサ、及び前記フィルタ下位系によって透過される前記第3の放射線部分の1つ以上の特徴を測定するための少なくとも第3のセンサを含む、検出下位系と、
    前記第1のセンサ、前記第2のセンサ、及び前記第3のセンサに通信可能に連結される制御装置であって、前記制御装置は、
    前記第2のセンサによって測定される前記光に基づき、1つ以上の散乱欠陥を検出することと、
    光ルミネセンス欠陥のない前記試料の範囲中の前記第1のセンサ及び前記第3のセンサのうちの少なくとも1つからの信号を、前記試料の測定された領域から取得される前記第1のセンサ及び前記第3のセンサのうちの少なくとも1つからの信号と比較することによって、前記第1のセンサ及び前記第3のセンサのうちの少なくとも1つによって検出される前記光に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を行うように構成される、制御装置と、を備える系。
  48. 前記第2のセンサ及び第3のセンサのうちの少なくとも1つは、前記試料の1つ以上の光ルミネセンス欠陥からの紫外線光ルミネセンス光または近紫外光ルミネセンス光を測定するように構成される、請求項47に記載の系。
  49. 試料の欠陥検出及び光ルミネセンス測定のための系であって、
    前記試料の表面に対して実質的に垂直な方向に沿って、前記試料の一部分上に、垂直照明波長の光ビームを方向付けるように構成される垂直入射放射線源であって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直入射放射線源と、
    少なくとも斜入射放射線源及び前記垂直入射放射線源を用いて走査プロセスを実施するために、前記試料を固定し、前記試料を選択的に作動させるように構成される試料台アセンブリと、
    前記試料からの放射線を収集するように構成される一組の収集光学素子であって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、一組の収集光学素子と、
    前記一組の収集光学素子によって収集される前記放射線の少なくとも一部分を受容するように構成されるフィルタ下位系であって、前記フィルタ下位系は、光ルミネセンス放射線の複数の部分に、前記試料からの前記放射線を分離するように構成され、各部分は、前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記放射線の異なるスペクトル範囲中の1つ以上の波長を含む、フィルタ下位系と、
    複数のセンサを含む、検出下位系であって、各センサは、前記フィルタ下位系によって透過される光ルミネセンス放射線の前記複数の部分のうちの1つの1つ以上の特徴を測定するのに好適である、検出下位系と、
    前記複数のセンサのそれぞれに通信可能に連結される制御装置であって、前記制御装置は、
    光ルミネセンス欠陥のない前記試料の範囲中の前記複数のセンサのうちの少なくとも1つからの信号を、前記試料の測定された領域から取得される少なくとも1つの前記複数のセンサからの信号と比較することによって、前記複数のセンサのそれぞれによって検出される前記1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、
    前記複数のセンサのそれぞれによって測定される1つ以上の信号に基づき、前記1つ以上の検出された光ルミネセンス欠陥を分類することと、を行うように構成される、制御装置と、を備える系。
  50. 前記フィルタ下位系は、複数のNUVスペクトルビン、複数のUVビン、及び複数の可視スペクトルビンのうちの少なくとも1つに、前記試料から受容される前記放射線を分離するために、複数の光学素子及び複数の狭帯域フィルタを含む、請求項49に記載の系。
  51. 前記試料の前記表面に対して斜めの方向に沿って、前記試料の一部分上に、斜照明波長の光ビームを方向付けるように構成される斜入射放射線源をさらに備える、請求項49に記載の系。
  52. 前記フィルタ下位系は、前記垂直照明波長を含む放射線の一部分及び前記斜照明波長を含む放射線の少なくとも追加の部分のうちの少なくとも1つに、前記放射線を分離するようにさらに構成される、請求項51に記載の系。
  53. 前記検出下位系は、前記フィルタ下位系によって透過される前記垂直照明波長を含む放射線の前記部分の1つ以上の特徴を測定するのに好適なセンサ、及び前記フィルタ下位系によって透過される前記斜照明波長を含む放射線の前記少なくとも追加の部分を測定するのに好適な追加のセンサのうちの少なくとも1つを含む、請求項52に記載の系。
  54. 前記制御装置は、前記垂直照明波長を含む放射線の前記部分の1つ以上の特徴を測定するのに好適な少なくとも1つの前記センサ、及び前記斜照明波長を含む放射線の前記少なくとも追加の部分を測定するのに好適な追加のセンサによって測定される前記追加の部分に基づき、1つ以上の散乱欠陥を検出するようにさらに構成される、請求項53に記載の系。
  55. 前記フィルタ下位系は、複数のスペクトルビンに前記試料から受容される前記放射線を分離するために、複数の光学素子及び複数の狭帯域フィルタを含む、請求項49に記載の系。
  56. 前記複数の光学素子及び前記複数の狭帯域フィルタは、前記試料の1つ以上の光ルミネセンス欠陥の1つ以上の予想されるスペクトル特徴に従って、前記複数のスペクトルビンのそれぞれを定義する、請求項55に記載の系。
  57. 前記複数の光学素子及び前記複数の狭帯域フィルタは、複数の半値全幅を光ルミネセンススペクトルの一組の対応する強度ピークに実質的に一致させ、各強度ピークは、ある種類の積層不良の存在を示す、請求項56に記載の系。
  58. 試料の欠陥検出及び光ルミネセンス測定のための方法であって、
    前記試料の表面に対して斜めの方向に沿って、前記試料の一部分上に斜照明波長の光ビームを方向付けることと、
    前記試料の前記表面に対して実質的に垂直な方向に沿って、前記試料の一部分上に垂直照明波長の光ビームを方向付けることであって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、
    前記試料からの放射線を収集することであって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、前記試料からの放射線を収集することと、
    前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス放射線と関連する可視スペクトル中の1つ以上の波長を含む第1の放射線部分、前記垂直照明波長光を含む第2の放射線部分、及び前記斜照明波長光を含む少なくとも第3の放射線部分に、前記試料からの前記放射線を分離することと、
    前記第1の放射線部分、前記第2の放射線部分、及び前記第3の放射線部分のうちの少なくとも1つの1つ以上の特徴を測定することと、
    前記第2の放射線部分及び前記第3の放射線部分のうちの少なくとも1つの前記測定された1つ以上の特徴に基づき、1つ以上の散乱欠陥を検出することと、
    光ルミネセンス欠陥のない前記試料の範囲から取得される前記第1の放射線部分、前記第2の放射線部分、及び前記第3の放射線部分のうちの少なくとも1つの前記1つ以上の特徴を、前記試料の測定された領域から取得される前記第1の放射線部分、前記第2の放射線部分、及び前記第3の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、前記第1の放射線部分、前記第2の放射線部分、及び前記第3の放射線部分のうちの少なくとも1つの前記測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を含む方法。
  59. 試料の欠陥検出及び光ルミネセンス測定のための方法であって、
    前記試料の表面に対して斜めの方向に沿って、前記試料の一部分上に斜照明波長の光ビームを方向付けることと、
    前記試料の前記表面に対して実質的に垂直な方向に沿って、垂直照明波長の光ビームを方向付けることであって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、
    前記試料からの放射線を収集することであって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、前記試料からの放射線を収集することと、
    前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス放射線と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、前記垂直照明波長を含む第2の放射線部分、前記斜照明波長を含む第3の放射線部分、及び前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第4の放射線部分に、前記試料からの前記放射線を分離することと、
    前記第1の放射線部分、前記第2の放射線部分の1つ以上の特徴、前記第3の放射線部分の1つ以上の特徴、及び前記第4の放射線部分の1つ以上の特徴のうちの少なくとも1つの1つ以上の特徴を測定することと、
    前記第2の放射線部分及び前記第3の放射線部分のうちの少なくとも1つの前記測定された1つ以上の特徴に基づき、1つ以上の散乱欠陥を検出することと、
    光ルミネセンス欠陥のない前記試料の範囲から取得される前記第1の放射線部分、前記第2の放射線部分、前記第3の放射線部分、及び前記第4の放射線部分のうちの少なくとも1つの前記1つ以上の特徴を、前記試料の測定された領域から取得される前記第1の放射線部分、前記第2の放射線部分、前記第3の放射線部分、及び前記第4の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、前記第1の放射線部分、前記第2の放射線部分、前記第3の放射線部分のうちの少なくとも1つの前記測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を含む方法。
  60. 試料の欠陥検出及び光ルミネセンス測定のための方法であって、
    前記試料の表面に対して実質的に垂直な方向に沿って、垂直照明波長の光ビームを方向付けることであって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、
    前記試料からの放射線を収集することであって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、前記試料からの放射線を収集することと、
    前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス放射線と関連する可視または近赤外スペクトル中の1つ以上の波長を含む第1の放射線部分、前記垂直照明波長を含む第2の放射線部分、及び前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光ルミネセンス光と関連する紫外線スペクトル中の1つ以上の波長を含む少なくとも第3の放射線部分に、前記試料からの前記放射線を分離することと、
    前記第1の放射線部分、前記第2の放射線部分の1つ以上の特徴、及び前記第3の放射線部分の1つ以上の特徴のうちの少なくとも1つの1つ以上の特徴を測定することと、
    前記第2の放射線部分及び前記第3の放射線部分のうちの少なくとも1つの前記測定された1つ以上の特徴に基づき、1つ以上の散乱欠陥を検出することと、
    光ルミネセンス欠陥のない前記試料の範囲から取得される前記第1の放射線部分、前記第2の放射線部分、及び前記第3の放射線部分のうちの少なくとも1つの前記1つ以上の特徴を、前記試料の測定された領域から取得される前記第1の放射線部分、前記第2の放射線部分、及び前記第3の放射線部分のうちの少なくとも1つの1つ以上の特徴と比較することによって、前記第1の放射線部分、前記第2の放射線部分、前記第3の放射線部分のうちの少なくとも1つの前記測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、を含む方法。
  61. 試料の欠陥検出及び光ルミネセンス測定のための方法であって、
    前記試料の表面に対して実質的に垂直な方向に沿って、前記試料の一部分上に垂直照明波長の光ビームを方向付けることであって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、
    前記試料からの放射線を収集することであって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、前記試料からの放射線を収集することと、
    光ルミネセンス放射線の複数の部分に、前記試料からの前記放射線を分離することであって、各部分は、前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される前記光の異なるスペクトル範囲中の1つ以上の波長を含む、前記試料からの前記放射線を分離することと、
    光ルミネセンス放射線の前記複数の部分のそれぞれの1つ以上の特徴を測定することと、
    光ルミネセンス放射線の前記複数の部分のそれぞれの前記測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、
    光ルミネセンス放射線の前記複数の部分のそれぞれと関連する1つ以上の信号に基づき、前記1つ以上の検出された光ルミネセンス欠陥を分類することと、を含む方法。
  62. 試料の欠陥検出及び光ルミネセンス測定のための方法であって、
    前記試料の表面に対して実質的に垂直な方向に沿って、前記試料の一部分上に垂直照明波長の光ビームを方向付けることであって、前記垂直照明波長の前記光ビームは、前記試料の1つ以上の光ルミネセンス欠陥に光ルミネセンス光を出射させるのに好適である、垂直照明波長の光ビームを方向付けることと、
    前記試料の前記表面に対して斜めの方向に沿って、前記試料の一部分上に斜照明波長の光ビームを方向付けることと、
    前記試料からの放射線を収集することであって、前記試料からの前記放射線は、前記試料の1つ以上の欠陥によって弾性的に散乱される放射線または前記試料の前記1つ以上の光ルミネセンス欠陥によって出射される光ルミネセンス放射線のうちの少なくとも1つを含む、前記試料からの放射線を収集することと、
    光ルミネセンス放射線の可視部分及び光ルミネセンス放射線の近紫外(NUV)部分に、前記試料からの前記放射線を分離することと、
    光ルミネセンス放射線の前記可視部分及び光ルミネセンス放射線の前記NUV部分の1つ以上の特徴を測定することと、
    光ルミネセンス放射線の前記可視部分及び光ルミネセンス放射線の前記NUV部分の前記測定された1つ以上の特徴に基づき、1つ以上の光ルミネセンス欠陥を検出することと、
    光ルミネセンス放射線の前記可視部分及び光ルミネセンス放射線の前記NUV部分と関連する1つ以上の信号に基づき、前記1つ以上の検出された光ルミネセンス欠陥を分類することと、を含む方法。
JP2016523896A 2013-06-26 2014-06-25 試料の欠陥検出及び光ルミネセンス測定のための系及び方法 Active JP6282733B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361839494P 2013-06-26 2013-06-26
US61/839,494 2013-06-26
US14/212,496 US9354177B2 (en) 2013-06-26 2014-03-14 System and method for defect detection and photoluminescence measurement of a sample
US14/212,496 2014-03-14
PCT/US2014/044149 WO2014210195A1 (en) 2013-06-26 2014-06-25 System and method for defect detection and photoluminescence measurement of a sample

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018009623A Division JP2018105871A (ja) 2013-06-26 2018-01-24 試料の欠陥検出及び光ルミネセンス測定のための系及び方法

Publications (3)

Publication Number Publication Date
JP2016525214A JP2016525214A (ja) 2016-08-22
JP2016525214A5 JP2016525214A5 (ja) 2017-08-03
JP6282733B2 true JP6282733B2 (ja) 2018-02-21

Family

ID=52114670

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2016523896A Active JP6282733B2 (ja) 2013-06-26 2014-06-25 試料の欠陥検出及び光ルミネセンス測定のための系及び方法
JP2018009623A Pending JP2018105871A (ja) 2013-06-26 2018-01-24 試料の欠陥検出及び光ルミネセンス測定のための系及び方法
JP2020019461A Active JP6870129B2 (ja) 2013-06-26 2020-02-07 試料の欠陥検出及び光ルミネセンス測定のためのシステム及び方法
JP2021068274A Active JP7160496B2 (ja) 2013-06-26 2021-04-14 試料の欠陥検出及び光ルミネセンス測定のためのシステム及び方法
JP2022163211A Pending JP2022186764A (ja) 2013-06-26 2022-10-11 試料の欠陥検出及び光ルミネセンス測定のためのシステム及び方法

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2018009623A Pending JP2018105871A (ja) 2013-06-26 2018-01-24 試料の欠陥検出及び光ルミネセンス測定のための系及び方法
JP2020019461A Active JP6870129B2 (ja) 2013-06-26 2020-02-07 試料の欠陥検出及び光ルミネセンス測定のためのシステム及び方法
JP2021068274A Active JP7160496B2 (ja) 2013-06-26 2021-04-14 試料の欠陥検出及び光ルミネセンス測定のためのシステム及び方法
JP2022163211A Pending JP2022186764A (ja) 2013-06-26 2022-10-11 試料の欠陥検出及び光ルミネセンス測定のためのシステム及び方法

Country Status (8)

Country Link
US (2) US9354177B2 (ja)
EP (1) EP3014654A4 (ja)
JP (5) JP6282733B2 (ja)
KR (4) KR102356942B1 (ja)
CN (2) CN105493258B (ja)
SG (1) SG11201510599VA (ja)
TW (2) TWI603073B (ja)
WO (1) WO2014210195A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9442076B2 (en) 2014-12-12 2016-09-13 Bell Helicopter Textron Inc. Infrared radiometric imaging inspection of steel parts
CN107110782B (zh) * 2015-01-28 2020-12-29 东丽工程株式会社 宽带隙半导体基板的缺陷检查方法和缺陷检查装置
JP6296001B2 (ja) * 2015-05-20 2018-03-20 信越半導体株式会社 シリコンエピタキシャルウェーハの製造方法及び評価方法
US9911574B2 (en) * 2015-08-14 2018-03-06 The Trustees of Princeton University, Office of Technology and Trademark Licensing Scanning probe lithography methods utilizing an enclosed sinusoidal pattern
JP6531579B2 (ja) * 2015-09-10 2019-06-19 株式会社Sumco ウェーハ検査方法およびウェーハ検査装置
US10625111B2 (en) * 2016-01-26 2020-04-21 Beaverfit Limited Training apparatus
CN105842233A (zh) * 2016-05-10 2016-08-10 山东大学 一种采集双波长电致化学发光光强信息的检测系统
TWI586957B (zh) * 2016-06-24 2017-06-11 諾貝爾生物有限公司 多通道螢光檢測系統及其方法
US10371626B2 (en) * 2016-08-17 2019-08-06 Kla-Tencor Corporation System and method for generating multi-channel tunable illumination from a broadband source
CN108072613B (zh) * 2016-11-11 2020-09-08 台湾积体电路制造股份有限公司 光学检测装置及其检测方法
KR101838818B1 (ko) * 2016-11-30 2018-03-14 세메스 주식회사 형광 현미경 및 이를 포함하는 기판 검사 장치
TWI646323B (zh) * 2016-12-01 2019-01-01 友達晶材股份有限公司 矽晶材檢測方法及其檢測裝置
KR101810078B1 (ko) 2016-12-22 2017-12-18 주식회사 에타맥스 광루미네선스와 산란광을 동시에 검출하는 결함조사 장치
US10234402B2 (en) * 2017-01-05 2019-03-19 Kla-Tencor Corporation Systems and methods for defect material classification
US10551320B2 (en) * 2017-01-30 2020-02-04 Kla-Tencor Corporation Activation of wafer particle defects for spectroscopic composition analysis
WO2018194210A1 (ko) * 2017-04-20 2018-10-25 한국세라믹기술원 자외선 포토루미네선스를 이용한 결정의 폴리타입 분석방법
KR102037984B1 (ko) * 2017-11-23 2019-10-29 주식회사 나노정밀코리아 다기능 광학 검사장치
US20190162885A1 (en) * 2017-11-30 2019-05-30 Qualcomm Incorporated Optical bandpass filter design
KR20230110665A (ko) * 2018-04-02 2023-07-24 에이에스엠엘 네델란즈 비.브이. 넓은 활성 영역 고속 검출기를 위한 아키텍처
KR102067972B1 (ko) 2018-09-21 2020-01-20 주식회사 에타맥스 광루미네선스와 산란광의 동시 검출이 가능한 발광다이오드 검사장비
US11733173B1 (en) 2019-02-28 2023-08-22 Lumina Instruments Inc. Time domain multiplexed defect scanner
CN110208272B (zh) * 2019-06-18 2020-06-23 上海精测半导体技术有限公司 一种表面检测装置及方法
HUE059800T2 (hu) * 2019-10-02 2022-12-28 Adige Spa Eljárás anyagmegmunkáló gép lézernyalábjának terjedési útja mentén elhelyezett optikai elem mûködési állapotának detektálására, valamint az eljárást végrehajtó rendszerrel ellátott lézeres megmunkáló gép
JP2023513217A (ja) * 2020-02-07 2023-03-30 ベクトン・ディキンソン・アンド・カンパニー クラスタ化波長分割光検出システム及びその使用方法
CN111426446A (zh) * 2020-04-23 2020-07-17 空气动力学国家重点实验室 一种多通道聚焦激光差分干涉仪
TWI758923B (zh) * 2020-10-27 2022-03-21 財團法人工業技術研究院 雷射檢測系統
JP2023010461A (ja) 2021-07-09 2023-01-20 株式会社デンソー ユーザ装置、基地局及び通信制御方法
US20230075747A1 (en) * 2021-09-09 2023-03-09 Onto Innovation Inc. High resolution multispectral multi-field-of-view imaging system for wafer inspection
KR102564487B1 (ko) * 2021-10-08 2023-08-07 주식회사 에타맥스 단일 입사광 기반 광루미네선스를 이용한 실리콘카바이드 기판의 결함분류 장비 및 그를 이용한 결함분류 방법
KR102602029B1 (ko) * 2021-11-11 2023-11-14 주식회사 에타맥스 광루미네선스 검사와 자동광학검사를 동시에 수행하는 마이크로 led 검사장비
KR102640751B1 (ko) * 2021-11-24 2024-02-27 주식회사 에스에스솔루션 다이크로익 필터를 이용한 유해물질 혼합가스의 검출 장치

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201601B1 (en) 1997-09-19 2001-03-13 Kla-Tencor Corporation Sample inspection system
US6534774B2 (en) * 2000-09-08 2003-03-18 Mitsubishi Materials Silicon Corporation Method and apparatus for evaluating the quality of a semiconductor substrate
US6791099B2 (en) 2001-02-14 2004-09-14 Applied Materials, Inc. Laser scanning wafer inspection using nonlinear optical phenomena
GB0107618D0 (en) 2001-03-27 2001-05-16 Aoti Operating Co Inc Detection and classification of micro-defects in semi-conductors
JP2003028797A (ja) * 2001-07-11 2003-01-29 Hitachi Software Eng Co Ltd 蛍光読み取り装置
GB0216815D0 (en) * 2002-07-19 2002-08-28 Aoti Operating Co Inc Detection method and apparatus
US7352456B2 (en) * 2003-04-08 2008-04-01 Kla-Tencor Technologies Corp. Method and apparatus for inspecting a substrate using a plurality of inspection wavelength regimes
US7304310B1 (en) * 2003-11-21 2007-12-04 Kla-Tencor Technologies Corp. Methods and systems for inspecting a specimen using light scattered in different wavelength ranges
TWI236773B (en) * 2004-06-21 2005-07-21 Nat Univ Chung Hsing High-efficiency light-emitting device
JP3917154B2 (ja) 2004-11-19 2007-05-23 独立行政法人 宇宙航空研究開発機構 半導体試料の欠陥評価方法及び装置
JP4633549B2 (ja) * 2005-06-15 2011-02-16 財団法人電力中央研究所 フォトルミネッセンスマッピング測定装置
TWI439684B (zh) * 2005-07-06 2014-06-01 Nanometrics Inc 具自晶圓或其他工件特定材料層所發射光致發光信號優先偵測之光致發光成像
US7664608B2 (en) * 2006-07-14 2010-02-16 Hitachi High-Technologies Corporation Defect inspection method and apparatus
US7362426B1 (en) * 2006-10-06 2008-04-22 Wafermasters, Inc. Raman and photoluminescence spectroscopy
JP4827099B2 (ja) * 2007-01-19 2011-11-30 トヨタ自動車株式会社 粉末蛍光体及びその製造方法、並びに粉末蛍光体を有する発光装置、表示装置及び蛍光ランプ
JP2010109156A (ja) 2008-10-30 2010-05-13 Oki Electric Ind Co Ltd 半導体装置の検査方法及び検査装置
US7907269B2 (en) 2009-07-23 2011-03-15 Kla-Tencor Corporation Scattered light separation
US9163987B2 (en) 2010-08-24 2015-10-20 Kla-Tencor Corporation Defect inspection and photoluminescence measurement system
SG190678A1 (en) * 2010-12-16 2013-07-31 Kla Tencor Corp Wafer inspection
JP5682858B2 (ja) 2011-05-20 2015-03-11 株式会社Sumco シリコンウェーハの評価方法および製造方法
US20120326054A1 (en) * 2011-06-22 2012-12-27 Mark Anthony Meloni In Situ Photoluminescence Characterization System and Method
US9279774B2 (en) 2011-07-12 2016-03-08 Kla-Tencor Corp. Wafer inspection

Also Published As

Publication number Publication date
US9354177B2 (en) 2016-05-31
CN105493258B (zh) 2018-11-09
EP3014654A4 (en) 2017-03-01
JP6870129B2 (ja) 2021-05-12
JP2022186764A (ja) 2022-12-15
KR102356942B1 (ko) 2022-02-08
KR20210109061A (ko) 2021-09-03
TW201743049A (zh) 2017-12-16
US9772289B2 (en) 2017-09-26
CN105493258A (zh) 2016-04-13
KR20160024968A (ko) 2016-03-07
JP2016525214A (ja) 2016-08-22
TW201510510A (zh) 2015-03-16
TWI664418B (zh) 2019-07-01
EP3014654A1 (en) 2016-05-04
US20160377548A1 (en) 2016-12-29
KR20210109062A (ko) 2021-09-03
CN109540853A (zh) 2019-03-29
WO2014210195A1 (en) 2014-12-31
SG11201510599VA (en) 2016-01-28
TWI603073B (zh) 2017-10-21
JP2020073935A (ja) 2020-05-14
US20150001421A1 (en) 2015-01-01
JP2021114619A (ja) 2021-08-05
JP2018105871A (ja) 2018-07-05
JP7160496B2 (ja) 2022-10-25
KR102297502B1 (ko) 2021-09-03
KR20200093690A (ko) 2020-08-05
CN109540853B (zh) 2021-04-09
KR102356943B1 (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
JP7160496B2 (ja) 試料の欠陥検出及び光ルミネセンス測定のためのシステム及び方法
JP2016525214A5 (ja)
US9255894B2 (en) System and method for detecting cracks in a wafer
JP6022458B2 (ja) 欠陥検査およびフォトルミネセンス測定システム
EP3074755B1 (en) Optical metrology system for spectral imaging of a semiconductor workpiece sample
TWI685652B (zh) 用於判定晶圓上缺陷之資訊之系統及方法
US10429319B2 (en) Inspection system including parallel imaging paths with multiple and selectable spectral bands
TW202018279A (zh) 基於多個散射信號之嵌入式粒子深度分級
TWI647431B (zh) 光學計量裝置及方法
US11733173B1 (en) Time domain multiplexed defect scanner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170623

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180124

R150 Certificate of patent or registration of utility model

Ref document number: 6282733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250