JP6281357B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP6281357B2
JP6281357B2 JP2014059229A JP2014059229A JP6281357B2 JP 6281357 B2 JP6281357 B2 JP 6281357B2 JP 2014059229 A JP2014059229 A JP 2014059229A JP 2014059229 A JP2014059229 A JP 2014059229A JP 6281357 B2 JP6281357 B2 JP 6281357B2
Authority
JP
Japan
Prior art keywords
combustion
hot water
water supply
stages
combustion capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014059229A
Other languages
Japanese (ja)
Other versions
JP2015183894A (en
Inventor
晴喜 井上
晴喜 井上
跡部 嘉史
嘉史 跡部
恵梨 米多
恵梨 米多
智也 中野
智也 中野
憲司 田邉
憲司 田邉
和哉 花谷
和哉 花谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2014059229A priority Critical patent/JP6281357B2/en
Publication of JP2015183894A publication Critical patent/JP2015183894A/en
Application granted granted Critical
Publication of JP6281357B2 publication Critical patent/JP6281357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、給湯装置に関し、特に複数の燃焼領域を有し燃焼能力を小から大まで複数段階に切り換え得る給湯装置を対象とした、結露防止のための技術に係る。   The present invention relates to a hot water supply apparatus, and more particularly to a technique for preventing dew condensation intended for a hot water supply apparatus having a plurality of combustion regions and capable of switching the combustion capacity in a plurality of stages from small to large.

特許文献1では、潜熱回収型熱源機の排気筒における結露防止対策として、バーナの燃焼領域を普段は広範囲に固定して燃焼量の出力を可変制御する一方、バーナがオン・オフ制御される間欠運転が一定時間継続すると、燃焼領域を狭い範囲にして燃焼量を最大出力とする結露乾燥モード運転に切り換えることが提案されている。
又、特許文献2では、潜熱回収型燃焼装置のフィンアンドチューブ型のもので構成された特に潜熱回収用熱交換器の隣接するフィン間における凝縮水(ドレン)の付着防止対策として、所定の排気閉塞発生条件が検出されれば、バーナへの燃焼用空気を供給するための送風手段の送風量又は送風圧を増大させることが提案されている。
さらに、特許文献3では、燃焼装置で熱交換加熱した温水を熱交換器から放熱器に循環させる温水循環式ボイラーの前記熱交換器における結露防止対策として、放熱器で放熱後の温水の戻り温度が所定温度以下の状態を一定時間継続して検出すれば、燃焼装置の燃焼量を増加させることが提案されている。
In Patent Document 1, as an anti-condensation measure in the exhaust pipe of a latent heat recovery type heat source unit, the combustion area of the burner is usually fixed in a wide range and the output of the combustion amount is variably controlled, while the burner is intermittently controlled to be turned on / off. It has been proposed that when the operation is continued for a certain time, the operation is switched to the condensation drying mode operation in which the combustion region is narrowed and the combustion amount is the maximum output.
Further, in Patent Document 2, as a countermeasure for preventing adhesion of condensed water (drain) between adjacent fins of a heat exchanger for latent heat recovery, which is composed of a fin-and-tube type of a latent heat recovery type combustion apparatus, a predetermined exhaust gas is used. It has been proposed to increase the blowing amount or blowing pressure of the blowing means for supplying combustion air to the burner if the blocking occurrence condition is detected.
Furthermore, in patent document 3, as a dew condensation prevention measure in the said heat exchanger of the hot water circulation boiler which circulates the hot water heat-exchange-heated with the combustion apparatus from a heat exchanger to the radiator, the return temperature of the warm water after heat radiation with a radiator Has been proposed to increase the amount of combustion of the combustion device if a state of a predetermined temperature or lower is continuously detected for a certain period of time.

特開2010−117100号公報JP 2010-117100 A 特開2004−44912号公報JP 2004-44912 A 特開2001−201063号公報JP 2001-201063 A

ところで、熱交換器内に通される流体を熱交換加熱するための燃焼装置が選択的に切換可能な複数の燃焼領域を有し、いずれの燃焼領域を燃焼させるかで燃焼能力を小から大まで複数段に切換可能とされた給湯装置においては、特に燃焼領域と非燃焼領域との境界付近に対応する部分の熱交換器に結露が生じ易くなる。結露が発生すると、それに起因して硫酸銅の析出や堆積の原因になり易く、最終的に熱交換器が特に多数のフィンにより構成されている場合には相隣接するフィン間の閉塞を招くおそれがある。閉塞回避のために一部のフィンを削除するなどの回避策を採ると、逆に燃焼効率の悪化を招くおそれが生じることになる。又、結露防止のために燃焼量を増大させると、給湯温度の変動を招き易くなってユーザーの使い勝手を損なうことになる。   By the way, the combustion apparatus for heat exchange heating the fluid passed through the heat exchanger has a plurality of combustion regions that can be selectively switched, and the combustion capacity is reduced from small to large depending on which combustion region is burned. In the hot water supply apparatus that can be switched to a plurality of stages, dew condensation is likely to occur particularly in a portion of the heat exchanger corresponding to the vicinity of the boundary between the combustion region and the non-combustion region. If condensation occurs, it is likely to cause precipitation and accumulation of copper sulfate, and eventually the heat exchanger may be clogged between adjacent fins especially when the heat exchanger is composed of a large number of fins. There is. If an avoidance measure such as removing some fins is used to avoid the blockage, the combustion efficiency may be deteriorated. Further, if the amount of combustion is increased in order to prevent condensation, the hot water temperature is likely to fluctuate, which impairs user convenience.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、燃焼効率の悪化を招くことなく、加えて、給湯温度を維持しながらも、結露防止を図り得る給湯装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide hot water supply capable of preventing dew condensation while maintaining the hot water supply temperature without causing deterioration in combustion efficiency. To provide an apparatus.

上記目的を達成するために、本発明では、熱交換器内に通水される水を燃焼加熱部の燃焼により熱交換加熱した上で給湯するように構成され、前記燃焼加熱部が複数の独立燃焼可能な燃焼領域を備え、各燃焼領域が独立して又は組み合わされて選択的に燃焼されることにより燃焼能力が複数段にわたり変更切換可能とされ、燃焼能力段数の切換制御及び各燃焼能力段数での燃焼能力の変更調整制御を実行する燃焼能力切換制御により所定の給湯温度での給湯運転が行われるように構成されている給湯装置を対象にして次の特定事項を備えることとした。すなわち、結露発生防止のために前記燃焼加熱部に対する前記燃焼能力切換制御による燃焼状態を変更する結露防止制御手段を備えることとする。そして、前記結露防止制御手段として、特定の燃焼能力段数での燃焼状態が一定時間継続されることを含む結露発生防止のための判定条件の成立により、前記特定の燃焼能力段数を低燃焼能力段数側に段数切換制御する構成とした(請求項1)。   In order to achieve the above object, the present invention is configured to supply hot water after water exchanged into the heat exchanger is heat-exchanged and heated by combustion of the combustion heating unit, and the combustion heating unit includes a plurality of independent heating units. Combustion-combustible combustion areas are provided, and each combustion area is selectively burned independently or in combination so that the combustion capacity can be changed and switched over a plurality of stages. Switching control of the combustion capacity stage number and each combustion capacity stage number The following specific items are provided for a hot water supply apparatus that is configured to perform a hot water supply operation at a predetermined hot water supply temperature by the combustion capacity switching control that executes the combustion capacity change adjustment control. In other words, in order to prevent the occurrence of condensation, a condensation prevention control means for changing the combustion state by the combustion capacity switching control for the combustion heating section is provided. Then, as the dew condensation prevention control means, when the determination condition for preventing the occurrence of dew condensation including that the combustion state at the specific combustion capacity stage number continues for a certain time is satisfied, the specific combustion capacity stage number is set to the low combustion capacity stage number. The number of stages is controlled to be switched to the side (claim 1).

本発明の場合、結露発生防止のための判定条件が成立すると、現在燃焼されている特定の燃焼能力段数から低燃焼能力段数側の燃焼能力段数に切換制御されることになり、これにより、結露発生防止が図られる。   In the case of the present invention, when the determination condition for preventing the occurrence of condensation is satisfied, the specific combustion capacity stage number that is currently burned is switched to the combustion capacity stage number on the low combustion capacity stage side. Occurrence prevention is achieved.

本発明における特定の燃焼能力段数として、熱交換器の上流側範囲に対応する燃焼領域が燃焼停止となり、熱交換器の上流側範囲に隣接する下流側範囲に対応する燃焼領域が燃焼されることになる燃焼能力段数とし、低燃焼能力段数側の燃焼能力段数として、熱交換器の上流側範囲に対応する燃焼領域が燃焼されることになる燃焼能力段数とすることができる(請求項2)。このようにすることにより、結露発生防止の技術的意義がより明確になる。すなわち、特定の燃焼能力段数での燃焼状態では、熱交換器の上流側範囲に対応する燃焼領域が非燃焼状態であるため、この上流側範囲には冷たい水が流れる一方、これに隣接する熱交換器の下流側範囲の燃焼領域は燃焼状態にあるため、その下流側範囲に流れる水は加熱されることになる。このため、両者の境界部分の熱交換器に大きい温度差が生じることになり、この結果、この境界部分に結露が生じ易くなる。これが一定時間継続されて前記判定条件が成立すれば、低燃焼能力段数側への段数切換が実行され、前記熱交換器の上流側範囲に対応する燃焼領域が燃焼状態に切り換えられるため、上流側範囲の熱交換器内の水も加熱され熱交換器内で大きい温度差の生じる部分の存在がなくなることになる。これにより、結露発生のおそれを確実に防止し得ることになる。   As the specific combustion capacity stage number in the present invention, the combustion region corresponding to the upstream range of the heat exchanger is stopped, and the combustion region corresponding to the downstream range adjacent to the upstream range of the heat exchanger is burned. And the combustion capacity stage number corresponding to the upstream range of the heat exchanger can be set as the combustion capacity stage number on the low combustion capacity stage number side (claim 2). . By doing so, the technical significance of preventing the occurrence of dew condensation becomes clearer. That is, in the combustion state at a specific number of combustion capacity stages, the combustion region corresponding to the upstream range of the heat exchanger is in a non-combustion state, so that cold water flows in this upstream range, while the heat adjacent to this region flows. Since the combustion region in the downstream range of the exchanger is in a combustion state, the water flowing in the downstream range is heated. For this reason, a large temperature difference will arise in the heat exchanger of both boundary part, As a result, it will become easy to produce dew condensation in this boundary part. If this is continued for a certain time and the determination condition is satisfied, the stage number switching to the low combustion capacity stage number side is executed, and the combustion region corresponding to the upstream range of the heat exchanger is switched to the combustion state. The water in the heat exchangers in the range is also heated, so that there is no portion where a large temperature difference occurs in the heat exchanger. Thereby, the possibility of the occurrence of condensation can be surely prevented.

又、本発明の結露防止制御手段として、低燃焼能力段数側に段数切換制御する際に、その段数切換の前後で、それまでの特定燃焼能力段数での燃焼能力を維持するよう段数切換制御する構成とすることができる(請求項3)。このようにすることにより、給湯温度を確実に維持しながらも、結露防止のための段数切換制御を行い得ることになる。燃焼能力として例えば燃焼号数を用いた場合には、燃焼号数を段数切換前後で同じに維持させるように制御すればよい。   Further, as the dew condensation prevention control means of the present invention, when switching the stage number to the low combustion capacity stage number side, the stage number switching control is performed so as to maintain the combustion capacity at the specific combustion capacity stage before and after the stage number switching. It can be set as a structure (Claim 3). By doing so, it is possible to perform stage number switching control for preventing condensation while maintaining the hot water supply temperature reliably. For example, when the combustion number is used as the combustion capacity, the combustion number may be controlled to be kept the same before and after switching the number of stages.

さらに、その場合には、熱交換器から給湯される給湯流量を変更するための給湯流量変更手段を備えることとし、結露防止制御手段として、低燃焼能力段数側に段数切換制御する際に、段数切換前の特定燃焼能力段数の燃焼能力が段数切換後の低燃焼能力段数側の燃焼能力段数に設定された燃焼能力範囲よりも大きいとき、給湯流量変更手段により給湯流量を絞り側に変更した上で段数切換制御を実行する構成とすることができる(請求項4)。このようにすることにより、特定燃焼能力段数から低燃焼能力段数への切換が、それまでの燃焼能力が低燃焼能力段数の燃焼能力範囲よりも大側であっても、給湯流量変更手段により給湯流量を絞ることで、必要な燃焼能力を低減させ得るため、特定燃焼能力段数から低燃焼能力段数への段数切換を適正に行い得るようになる。これにより、特定燃焼能力段数における結露発生のおそれのある燃焼能力範囲を、大側により広く拡大させたとしても、それまでの給湯温度を維持しながら、低燃焼能力段数への段数切換を適正に実行し得ることになり、これにより、結露発生防止をより広くかつ確実に図り得ることになる。   Furthermore, in that case, a hot water supply flow rate changing means for changing the hot water supply flow rate supplied from the heat exchanger is provided, and as the dew condensation prevention control means, the number of stages is controlled when switching the number of stages to the low combustion capacity stage number side. When the combustion capacity of the specific combustion capacity stage before switching is larger than the combustion capacity range set for the combustion capacity stage on the low combustion capacity stage after switching the stage, the hot water flow rate change means is used to change the hot water flow rate to the throttle side. Thus, the stage number switching control can be executed. In this way, even if the switching from the specific combustion capacity stage number to the low combustion capacity stage number is larger than the combustion capacity range of the low combustion capacity stage so far, Since the required combustion capacity can be reduced by reducing the flow rate, the stage number can be appropriately switched from the specific combustion capacity stage number to the low combustion capacity stage number. As a result, even if the combustion capacity range that may cause condensation at the specific combustion capacity stage number is expanded more widely on the large side, the stage number switching to the low combustion capacity stage number is properly performed while maintaining the hot water supply temperature until then. Therefore, it is possible to more widely and reliably prevent the occurrence of condensation.

以上、説明したように、本発明の給湯装置によれば、結露発生防止のための判定条件が成立すれば、現在燃焼されている特定の燃焼能力段数から低燃焼能力段数側の燃焼能力段数に切換制御することにより、結露発生防止を図ることができる。   As described above, according to the hot water supply apparatus of the present invention, if the determination condition for preventing the occurrence of condensation is satisfied, the specific combustion capacity stage number currently burned is changed to the combustion capacity stage number on the low combustion capacity stage side. By performing the switching control, it is possible to prevent the occurrence of condensation.

特に請求項2の給湯装置によれば、特定の燃焼能力段数として、熱交換器の上流側範囲に対応する燃焼領域が燃焼停止となり、熱交換器の上流側範囲に隣接する下流側範囲に対応する燃焼領域が燃焼されることになる燃焼能力段数とし、低燃焼能力段数側の燃焼能力段数として、熱交換器の上流側範囲に対応する燃焼領域が燃焼されることになる燃焼能力段数とすることにより、結露発生防止の技術的意義をより明確にすることができる。すなわち、特定の燃焼能力段数での燃焼状態では、非燃焼状態になる熱交換器の上流側範囲に流れる水と、燃焼状態になる下流側範囲の熱交換器に流れる湯との両者の境界部分の熱交換器に大きい温度差が生じる結果、その境界部分に結露が生じ易くなるところ、低燃焼能力段数側への段数切換により、上流側範囲の熱交換器内の水も加熱され熱交換器内で大きい温度差の生じる部分の存在をなくすことができるようになる。これにより、結露発生のおそれを確実に防止することができるようになる。   In particular, according to the hot water supply apparatus of claim 2, as a specific combustion capacity stage number, the combustion region corresponding to the upstream range of the heat exchanger is stopped and corresponds to the downstream range adjacent to the upstream range of the heat exchanger. The combustion capacity stage number in which the combustion area is to be burned, and the combustion capacity stage number on the low combustion capacity stage number side are the combustion capacity stage number in which the combustion area corresponding to the upstream range of the heat exchanger is burned. This makes it possible to clarify the technical significance of preventing condensation. That is, in the combustion state with a specific number of combustion capacity stages, the boundary portion between the water flowing in the upstream range of the heat exchanger that is in the non-combustion state and the hot water flowing in the heat exchanger in the downstream range that is in the combustion state As a result of the large temperature difference in the heat exchanger, condensation tends to occur at the boundary part. By switching the number of stages to the low combustion capacity stage number, the water in the heat exchanger in the upstream range is also heated. It is possible to eliminate the presence of a portion in which a large temperature difference occurs. As a result, the possibility of the occurrence of condensation can be reliably prevented.

又、請求項3の給湯装置によれば、結露防止制御手段として、低燃焼能力段数側に段数切換制御する際に、その段数切換の前後で、それまでの特定燃焼能力段数での燃焼能力を維持するよう段数切換制御する構成とすることにより、給湯温度を確実に維持しながらも、結露防止のための段数切換制御を行うことができるようになる。   According to the third aspect of the present invention, when the number of stages is switched to the low combustion capacity stage side as the dew condensation prevention control means, the combustion capacity at the specific combustion capacity stage until then is changed before and after the stage number switching. By adopting a configuration in which the stage number switching control is performed so as to be maintained, the stage number switching control for preventing dew condensation can be performed while the hot water supply temperature is reliably maintained.

加えて、請求項4の給湯装置によれば、熱交換器から給湯される給湯流量を変更するための給湯流量変更手段をさらに備えることとし、結露防止制御手段として、低燃焼能力段数側に段数切換制御する際に、段数切換前の特定燃焼能力段数の燃焼能力が段数切換後の低燃焼能力段数側の燃焼能力段数に設定された燃焼能力範囲よりも大きいとき、給湯流量変更手段により給湯流量を絞り側に変更した上で段数切換制御を実行する構成とすることにより、特定燃焼能力段数から低燃焼能力段数への切換が、それまでの燃焼能力が低燃焼能力段数の燃焼能力範囲よりも大側であっても、給湯流量変更手段により給湯流量を絞ることで、必要な燃焼能力を低減させることが可能となるため、特定燃焼能力段数から低燃焼能力段数への段数切換を適正に行うことができるようになる。これにより、特定燃焼能力段数における結露発生のおそれのある燃焼能力範囲を、大側により広く拡大させたとしても、それまでの給湯温度を維持しながら、低燃焼能力段数への段数切換を適正に実行することができるようになり、これにより、結露発生防止をより広くかつ確実に図ることができるようになる。   In addition, according to the hot water supply apparatus of claim 4, the hot water supply flow rate changing means for changing the hot water supply flow rate of hot water supplied from the heat exchanger is further provided. When performing the switching control, if the combustion capacity of the specific combustion capacity stage before switching the stage number is larger than the combustion capacity range set for the combustion capacity stage number on the low combustion capacity stage side after the stage number switching, the hot water flow rate change means is used. By switching to the throttle side and performing the stage number switching control, switching from the specific combustion capacity stage number to the low combustion capacity stage number, the previous combustion capacity is less than the combustion capacity range of the low combustion capacity stage number. Even on the large side, it is possible to reduce the required combustion capacity by reducing the hot water flow rate with the hot water flow rate changing means, so it is appropriate to switch the stage number from the specific combustion capacity stage number to the low combustion capacity stage number. It will be able to be performed. As a result, even if the combustion capacity range that may cause condensation at the specific combustion capacity stage number is expanded more widely on the large side, the stage number switching to the low combustion capacity stage number is properly performed while maintaining the hot water supply temperature until then. Therefore, it is possible to prevent the occurrence of dew condensation more widely and reliably.

本発明の実施形態に係る給湯装置の模式図である。It is a schematic diagram of the hot water supply apparatus which concerns on embodiment of this invention. 燃焼能力の切換段数毎の燃焼状況の例を示すものであり、図2(a)は燃焼能力1段の例、図2(b)は燃焼能力2段の例、図2(c)は燃焼能力3段の例である。FIG. 2 (a) shows an example of the combustion capacity of one stage, FIG. 2 (b) shows an example of the combustion capacity of two stages, and FIG. 2 (c) shows the combustion. This is an example of a three-stage ability. 燃焼能力の変更切換の組み合わせ例における燃焼能力段数毎の燃焼管の本数、能力切換弁の切換状況、必要能力等の設定例を示す表である。It is a table | surface which shows the example of setting of the number of the combustion pipe | tube for every combustion capacity stage number, the switching condition of a capacity switching valve, a required capacity, etc. in the combination example of change switching of a combustion capacity. 図2と同様に、図4(a)は燃焼能力4段の例であり、図4(b)は燃焼能力5段の例である。Similar to FIG. 2, FIG. 4 (a) is an example of a four-stage combustion capacity, and FIG. 4 (b) is an example of a five-stage combustion capacity. 1段〜5段のそれぞれの燃焼段における燃焼号数と供給ガス圧との関係図である。It is a related figure of the combustion number in each combustion stage of 1st stage-5th stage, and supply gas pressure. 第1実施形態における結露防止制御のフローチャートである。It is a flowchart of the dew condensation prevention control in 1st Embodiment. 結露発生のおそれのある4段燃焼状態と熱交換器との関係を示す説明図である。It is explanatory drawing which shows the relationship between the 4-stage combustion state and the heat exchanger which may generate | occur | produce dew condensation. 結露発生防止のために3段燃焼状態に切り換えたときの熱交換器との関係を示す説明図である。It is explanatory drawing which shows the relationship with the heat exchanger when it switches to a three-stage combustion state in order to prevent dew condensation generation | occurrence | production. 第2実施形態における結露防止制御のフローチャートである。It is a flowchart of the condensation prevention control in 2nd Embodiment.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る給湯装置の模式図である。この給湯装置は、給湯機能を実現する給湯回路2、追い焚き機能を実現する追焚回路3、給湯回路2から追焚回路3へ湯張り等のために湯又は水を供給する注水・注湯回路4、及び、これらの作動制御を行うコントローラ5を備えたものである。なお、図例のものは1缶2水タイプのものを図示しているが、これに限らず、2缶2水タイプのものでも本発明を実施することができる。又、給湯や追い焚き等の複数の機能を実現するものでなくて、給湯機能のみの単機能の給湯装置であっても本発明を実施することができる。さらに、図例のものは、熱交換器として、燃焼ガスの顕熱を吸熱する一次熱交換器に加え燃焼排ガスからの潜熱を回収する二次熱交換器を組み合わせた潜熱回収型に構成されたものを図示しているが、これに限らず、二次熱交換器を有しないものでも本発明を実施することができ、潜熱回収型であることは必須ではない。以下の説明では、一次熱交換器と二次熱交換器とを合わせて、単に給湯用熱交換器又は追い焚き用熱交換器ということもある。   FIG. 1 is a schematic diagram of a hot water supply apparatus according to an embodiment of the present invention. This hot water supply apparatus includes a hot water supply circuit 2 that realizes a hot water supply function, a remedy circuit 3 that realizes a reheating function, and water or water injection that supplies hot water or water from the hot water supply circuit 2 to the remedy circuit 3 for hot water filling or the like. A circuit 4 and a controller 5 for controlling these operations are provided. In addition, although the thing of the figure has shown the thing of 1 can 2 water type, not only this but 2 can 2 water type thing can implement this invention. Further, the present invention can be carried out even with a single-function hot water supply apparatus having only a hot water supply function, without realizing a plurality of functions such as hot water supply and chasing. Furthermore, the example shown in the figure is configured as a latent heat recovery type that combines a primary heat exchanger that absorbs sensible heat of combustion gas and a secondary heat exchanger that recovers latent heat from combustion exhaust gas as a heat exchanger. Although the present invention is illustrated, the present invention is not limited to this, and the present invention can be carried out even without a secondary heat exchanger, and it is not essential to be a latent heat recovery type. In the following description, the primary heat exchanger and the secondary heat exchanger may be combined and simply referred to as a hot water supply heat exchanger or a reheating heat exchanger.

給湯装置2は、水道水等の給水を給水路21に受けて給湯用熱交換器22において燃焼加熱部23の燃焼熱との熱交換加熱により所定温度まで加熱した湯を給湯路24に出湯させ、この湯を台所や洗面所等の各所の給湯栓25まで給湯するようになっている。給水路21と給湯路24との間には、給湯用熱交換器22をバイパスして給水路21からの給水を給湯路24に流入させるバイパス路26が設けられ、バイパス弁26aを開にすれば連通するようになっている。給水路21には流量センサ27や給水温度を検出する給水温度センサ28が介装され、給湯路24には給湯用熱交換器22で加熱された直後の出湯の温度を検出する缶体出口温度センサ29が介装され、バイパス路26との合流部の下流側にサーボ弁により構成された水量調整弁24aが介装されている。前記の給湯用熱交換器22での熱交換加熱として、給水路21を通して給水された水は先ず二次熱交換器22bに通されて予熱され、次に、接続路20を通して一次熱交換器22aに通されて加熱されて給湯路24に出湯されることになる。ここで、水量調整弁24aと燃焼加熱部23との関係について説明すると、例えば水量調整弁24aが絞られて給湯栓25への給湯流量が絞られると、給湯用熱交換器22でそれまでと同じ燃焼量で熱交換加熱された場合、出湯される湯の温度は高くなるため、同じ給湯温度に維持するためには燃焼量を低減すればよいことになる。この水量調整弁24aが給湯流量変更手段を構成する。一次熱交換器22aはフィンアンドチューブ式のもので構成され、二次熱交換22bは多管式のもので構成されている。又、前記の燃焼加熱部23は、複数(図例では3つ)の独立かつ選択的に燃焼可能な燃焼領域を備え、各燃焼領域を選択的に個別に燃焼させたり、あるいは、選択的に組み合わせて燃焼させたりすることで、燃焼能力が複数段(本実施形態では5段)にわたり段数切換可能となっている。この燃焼加熱部23の詳細については後述する。   The hot water supply device 2 receives tap water such as tap water in the water supply passage 21 and causes the hot water supply heat exchanger 22 to discharge hot water heated to a predetermined temperature by heat exchange heating with the combustion heat of the combustion heating unit 23 to the hot water supply passage 24. The hot water is supplied to the hot water taps 25 in various places such as the kitchen and the washroom. Between the water supply passage 21 and the hot water supply passage 24, a bypass passage 26 is provided to bypass the hot water supply heat exchanger 22 and allow the water supply from the water supply passage 21 to flow into the hot water supply passage 24, and the bypass valve 26a is opened. Communicate with each other. A flow rate sensor 27 and a feed water temperature sensor 28 for detecting the feed water temperature are interposed in the feed water passage 21, and a can outlet temperature for detecting the temperature of the hot water immediately after being heated by the hot water supply heat exchanger 22 in the hot water supply passage 24. A sensor 29 is interposed, and a water amount adjusting valve 24 a configured by a servo valve is interposed downstream of the junction with the bypass path 26. As heat exchange heating in the hot water supply heat exchanger 22, the water supplied through the water supply passage 21 is first passed through the secondary heat exchanger 22 b and preheated, and then through the connection passage 20 to the primary heat exchanger 22 a. And heated to be discharged into the hot water supply passage 24. Here, the relationship between the water amount adjusting valve 24a and the combustion heating unit 23 will be described. For example, when the water amount adjusting valve 24a is throttled to reduce the hot water supply flow rate to the hot water tap 25, the hot water supply heat exchanger 22 When heat exchange heating is performed with the same amount of combustion, the temperature of the hot water discharged becomes high. Therefore, in order to maintain the same hot water supply temperature, the amount of combustion may be reduced. This water amount adjusting valve 24a constitutes a hot water supply flow rate changing means. The primary heat exchanger 22a is constituted by a fin-and-tube type, and the secondary heat exchange 22b is constituted by a multi-tube type. The combustion heating section 23 includes a plurality (three in the illustrated example) of independently and selectively combustible combustion regions, and each combustion region is selectively burned individually or alternatively Combustion capacity can be switched over a plurality of stages (in this embodiment, five stages) by burning in combination. Details of the combustion heating unit 23 will be described later.

追焚回路3は、追い焚き機能を実現するために、浴槽6の循環アダプタ61との間に配管された戻り路30a及び往き路30bからなる追焚循環路30を備え、浴槽6内に湯張りされた浴槽湯水を所定温度まで追い焚き加熱し得るようになっている。すなわち、循環ポンプ31の作動により浴槽6から戻り路30aを通して追焚用熱交換器32において燃焼加熱部33の燃焼熱により熱交換加熱されて追い焚きされ、追い焚き後の浴槽湯水が往き路30bを通して浴槽6に供給されるというように循環され、所定の沸き上がり温度まで追い焚きされるようになっている。循環ポンプ31は戻り路30a及び往き路30bのいずれか一方(図例では戻り路30a)に介装されている。戻り路30aには流れを検知して後述のコントローラ5に出力する水流スイッチ34や戻り路30aにより戻される浴槽6内の浴槽湯水の温度を検出する戻り温度センサ35が介装され、又、往き路30bには追い焚き後の浴槽湯水の温度を検出する往き温度センサ36が介装されている。なお、図1中の符号37は、前記の給湯用燃焼バーナ23や追焚用燃焼バーナ33に燃料ガスを供給するためのガス供給系である。又、追焚用熱交換器32も、給湯用熱交換器22の例と同様に、燃焼ガスの顕熱を吸熱する一次熱交換器32aと、燃焼排ガスから潜熱を回収するための二次熱交換器32bとで構成されている。燃焼加熱部33も給湯回路2の側の燃焼加熱部23と同様に複数(図例では2つ)の燃焼領域を備えて燃焼能力が2段にわたり段数切換可能となっている。   The memorial circuit 3 includes a memorial circuit 30 including a return path 30a and an outgoing path 30b piped between the bathtub 6 and the circulation adapter 61 in order to realize a chasing function. The stretched bath water can be reheated to a predetermined temperature and heated. That is, by the operation of the circulation pump 31, heat is exchanged by the heat of combustion of the combustion heating section 33 in the reheating heat exchanger 32 from the bathtub 6 through the return path 30a, and the hot water from the reheating is reheated. It is circulated so as to be supplied to the bathtub 6 through, and is driven up to a predetermined boiling temperature. The circulation pump 31 is interposed in one of the return path 30a and the forward path 30b (return path 30a in the illustrated example). The return path 30a is provided with a water flow switch 34 that detects the flow and outputs it to the controller 5 described later, and a return temperature sensor 35 that detects the temperature of the bathtub hot water in the bathtub 6 returned by the return path 30a. A forward temperature sensor 36 for detecting the temperature of the bath water after reheating is interposed in the path 30b. Reference numeral 37 in FIG. 1 denotes a gas supply system for supplying fuel gas to the hot water supply combustion burner 23 and the combustion combustion burner 33. Similarly to the example of the hot water supply heat exchanger 22, the remedy heat exchanger 32 also has a primary heat exchanger 32a that absorbs sensible heat of the combustion gas, and secondary heat for recovering latent heat from the combustion exhaust gas. It is comprised with the exchanger 32b. Similarly to the combustion heating unit 23 on the hot water supply circuit 2 side, the combustion heating unit 33 includes a plurality of (two in the illustrated example) combustion regions, and the combustion capacity can be switched over two stages.

注水・注湯回路4は、給湯路24の途中から分岐して追い焚き循環路30の戻り路30aに連通接続される注湯路41を備えており、この注湯路41を通して給湯路24の湯(又は水)が戻り路30aに流入され、これが両側に分流して戻り路30a及び往き路30bのそれぞれを通す両搬送形式で浴槽6に注湯(又は注水)されて浴槽6内に湯張りし得るようになっている。前記の注湯路41には、給湯路24の側である上流側から順に流量センサ42,注湯電磁弁43,逆流防止用の一対の逆止弁44,上流側での負圧発生時に逆流発生を防止する縁切り弁45がそれぞれ介装され、加えて、追焚循環路30との合流点近傍には浴槽6内の水位を検出する圧力式の水位センサ46が介装されている。   The water pouring / pouring circuit 4 includes a pouring passage 41 branched from the middle of the hot water supply passage 24 and connected to the return passage 30 a of the recirculation circuit 30. Hot water (or water) flows into the return path 30a, and is divided into both sides to be poured into the bathtub 6 in a double-conveyance system that passes through the return path 30a and the outgoing path 30b. It can be stretched. The pouring channel 41 has a flow rate sensor 42, a pouring electromagnetic valve 43, a pair of check valves 44 for preventing backflow, and a backflow when negative pressure is generated on the upstream side in order from the upstream side that is the hot water supply channel 24 side. An edge cut-off valve 45 for preventing the generation is provided, and in addition, a pressure-type water level sensor 46 for detecting the water level in the bathtub 6 is provided in the vicinity of the junction with the tracking circuit 30.

なお、図1中の符号7は外気温センサであり、この外気温センサ7はケース内の雰囲気温度を検出することにより外気温を検出するようになっている。又、符号8はドレン処理回路であり、このドレン処理回路8は、給湯用熱交換器22や追焚用熱交換器32に含まれる二次熱交換器において燃焼排ガスが潜熱回収のための熱交換により冷やされて凝縮することにより生じたドレンを集水し、例えば中和処理した上で排水させるために設置されたものである。すなわち、図例のドレン処理回路8は、中和槽81と、前記給湯用熱交換器22及び追焚用熱交換器32に含まれる二次熱交換器22b,32bからドレンを集水して中和槽81に導く集水路82と、中和槽81から中和処理済みのドレンを系外に排水させるための排水路83とを備えて構成されている。   1 is an outside air temperature sensor, and this outside air temperature sensor 7 detects the outside air temperature by detecting the ambient temperature in the case. Reference numeral 8 denotes a drain processing circuit. This drain processing circuit 8 is a secondary heat exchanger included in the hot water supply heat exchanger 22 or the reheating heat exchanger 32, and the combustion exhaust gas generates heat for recovering latent heat. It is installed to collect drainage generated by cooling and condensing in exchange and draining it after, for example, neutralizing. That is, the drain treatment circuit 8 shown in the figure collects drain from the neutralization tank 81 and the secondary heat exchangers 22b and 32b included in the hot water supply heat exchanger 22 and the additional heat exchanger 32. A water collecting channel 82 that leads to the neutralization tank 81 and a drainage channel 83 for draining the neutralized drain from the neutralization tank 81 to the outside of the system are configured.

次に、前記の燃焼加熱部23について詳細に説明する。燃焼加熱部23は、複数かつ規模の異なる燃焼領域を備え、かかる燃焼領域の選択的な燃焼作動により幅広い燃焼能力の変更調整が可能となっている。すなわち、燃焼加熱部23は、缶体1の下側位置において左右方向の一側から他側にかけて並べられた複数本(例えば図2(a)の図例では合計10本)の燃焼管231,231,…を備え、これら燃焼管231,231,…が所定本数毎にグループ分けされ、グループ分けされた所定本数の燃焼管231,231,…毎に個別に燃料ガスが供給されて燃焼可能とされることで、複数かつ規模の異なる燃焼領域が形成されている。例えば、左右方向中央部の2本の燃焼管231,231により第1の燃焼領域F1が形成され、右側の3本の燃焼管231,231,…により第2の燃焼領域F2が形成され、左側の5本の燃焼管231,231,…により第3の燃焼領域F3が形成されている。そして、各燃焼管231は各燃焼領域F1,F2,F3毎に区画されたガスマニホールド371に接続され、元ガス電磁弁SV0(図1参照)及びガス比例弁SVLを開けば、ガス供給系37からの燃料ガスが第1〜第3の能力切換弁SV1,SV2,SV3を介してガスマニホールド371の対応する各区画に選択的に供給されるようになっている。例えば、能力切換弁SV1を開けば(図2(a)参照)2本の燃焼管231,231により形成される第1の燃焼領域F1が燃焼され、能力切換弁SV2を開けば(図2(b)参照)3本の燃焼管231,231,231により形成される第2の燃焼領域F2が燃焼され、というように燃焼領域を切換し得るようになっている。なお、前記の「燃焼管」とは燃焼バーナと同義である。   Next, the combustion heating unit 23 will be described in detail. The combustion heating unit 23 includes a plurality of combustion regions having different scales, and a wide range of combustion capacity can be adjusted by selective combustion operation in the combustion regions. That is, the combustion heating unit 23 includes a plurality of (for example, a total of 10 in the example of FIG. 2A) combustion tubes 231 arranged from one side to the other side in the left-right direction at the lower position of the can body 1. Are divided into groups according to a predetermined number, and a fuel gas is supplied to each of the predetermined number of combustion tubes 231, 231,. As a result, a plurality of combustion regions having different scales are formed. For example, the first combustion region F1 is formed by the two combustion pipes 231 and 231 in the central portion in the left-right direction, and the second combustion region F2 is formed by the three combustion tubes 231 231,. A third combustion region F3 is formed by the five combustion tubes 231, 231,. Each combustion pipe 231 is connected to a gas manifold 371 partitioned for each combustion region F1, F2, F3, and the gas supply system 37 is opened by opening the original gas solenoid valve SV0 (see FIG. 1) and the gas proportional valve SVL. Is selectively supplied to the corresponding sections of the gas manifold 371 via the first to third capacity switching valves SV1, SV2, SV3. For example, if the capacity switching valve SV1 is opened (see FIG. 2A), the first combustion region F1 formed by the two combustion pipes 231 and 231 is burned, and if the capacity switching valve SV2 is opened (FIG. 2 ( See b)) The second combustion region F2 formed by the three combustion pipes 231, 231, 231 is combusted, so that the combustion region can be switched. The “combustion tube” is synonymous with a combustion burner.

元ガス電磁弁SV0や、各能力切換弁SV1,SV2,SV3は、要求される熱量(要求熱量)に相当する燃焼号数(燃焼量)に応じてコントローラ5の燃焼能力切換制御部によって選択的開閉切換制御が実行され、これにより、対応する燃焼領域F1,F2,F3が選択的に燃焼されて燃焼能力が段階的・連続的に変更切換されるようになっている。なお、本実施形態ではガス比例弁SVLを別途設けているが、これを排して前記能力切換弁SV1〜SV3自体を流量制御弁又は圧力制御弁とすることもできる。   The original gas solenoid valve SV0 and each capacity switching valve SV1, SV2, SV3 are selectively selected by the combustion capacity switching control unit of the controller 5 according to the combustion number (combustion quantity) corresponding to the required heat quantity (requested heat quantity). Open / close switching control is executed, whereby the corresponding combustion regions F1, F2, F3 are selectively burned, and the combustion capacity is changed and switched stepwise and continuously. In this embodiment, the gas proportional valve SVL is separately provided. However, the capacity switching valves SV1 to SV3 themselves may be used as a flow control valve or a pressure control valve.

前記の選択的開閉切換制御の例として、例えば図3に示すように各燃焼領域F1〜F3を個別に又は選択的に組み合わせて燃焼作動させることで、5段(5段階)の燃焼能力段数の切換を可能としている。すなわち、能力切換弁SV1のみを開いて第1燃焼領域F1(図2(a)も併せて参照)を燃焼させることで2本の燃焼管231,231に相当する燃焼能力段数が1段の燃焼作動が可能となり、能力切換弁SV2のみを開いて第2燃焼領域F2(図2(b)も併せて参照)を燃焼させることで3本の燃焼管231,231,231に相当する燃焼能力段数が2段の燃焼作動が可能となり、能力切換弁SV1,SV2を開いて第1及び第2の燃焼領域F1,F2(図2(c)も併せて参照)を燃焼させることで5本の燃焼管231,231,…に相当する燃焼能力段数が3段の燃焼作動が可能となり、能力切換弁SV1,SV3を開いて第1及び第3の燃焼領域F1,F3(図4(a)も併せて参照)を燃焼させることで7本の燃焼管231,231,…に相当する燃焼能力段数が4段の燃焼作動が可能となり、全ての能力切換弁SV1,SV2,SV3を開いて第1〜第3の燃焼領域F1,F2,F3(図4(b)も併せて参照)を燃焼させることで10本の燃焼管231,231,…に相当する燃焼能力段数が5段の燃焼作動が可能となる。   As an example of the selective opening / closing switching control, for example, as shown in FIG. 3, the combustion regions F1 to F3 are individually or selectively combined to perform combustion operation, thereby increasing the number of combustion capacity stages of five stages (five stages). Switching is possible. That is, only the capacity switching valve SV1 is opened and the first combustion region F1 (see also FIG. 2 (a)) is combusted so that the number of combustion capacity stages corresponding to the two combustion pipes 231 and 231 is one stage. It becomes possible to operate, and only the capacity switching valve SV2 is opened and the second combustion region F2 (see also FIG. 2B) is combusted so that the number of combustion capacity stages corresponding to the three combustion tubes 231, 231, 231 is reached. Is capable of two-stage combustion operation and opens the capacity switching valves SV1 and SV2 to burn the first and second combustion regions F1 and F2 (see also FIG. 2 (c)), thereby five combustions. The combustion operation with the number of combustion capacity stages corresponding to the pipes 231, 231,... Is enabled, the capacity switching valves SV 1 and SV 3 are opened, and the first and third combustion regions F 1 and F 3 (FIG. 4A are also combined). 7) and the seven combustion tubes 231 ,... Can be operated with four combustion capacity stages, and all the capacity switching valves SV1, SV2, SV3 are opened and the first to third combustion regions F1, F2, F3 (FIG. 4 (b) ) Is also burned, and a combustion operation with five combustion capacity stages corresponding to the ten combustion pipes 231, 231,.

又、前記の燃焼加熱部23は、ガス比例弁SVLが前記の燃焼能力切換制御部による開度制御を受けて、各燃焼段数(燃焼能力の段数)での燃焼号数を変更調整可能となっている。例えば、図3及び図5に示すように、燃焼能力段数が1段では2.5号〜5.0号の燃焼範囲で変更調整可能であり、以下同様に、燃焼能力段数が2段では3.5号〜7.5号の燃焼範囲、燃焼能力段数が3段では6.1号〜11.0号の燃焼範囲、燃焼能力段数が4段では8.5号〜15.3号の燃焼範囲、燃焼能力段数が5段では13.2号〜24.0号の燃焼範囲、においてそれぞれ変更調整可能である。   The combustion heating unit 23 can change and adjust the number of combustion at each combustion stage number (the number of combustion capacity stages) when the gas proportional valve SVL is controlled by the opening control by the combustion capacity switching control section. ing. For example, as shown in FIGS. 3 and 5, the number of combustion capacity stages can be changed and adjusted within the combustion range of No. 2.5 to 5.0 when the number of combustion capacity stages is 1, and similarly, the number of combustion capacity stages is 2 when the number of combustion capacity stages is 2. Combustion range of No. 5 to 7.5, combustion range of 6.1 to 11.0 when the number of combustion capacity stages is 3, combustion of No. 8.5 to 15.3 when the number of combustion capacity stages is 4 When the range and the number of combustion capacity stages are 5, the change can be adjusted in the combustion ranges of 13.2 to 24.0.

以上の給湯回路2,追焚回路3及び注水・注湯回路4等は、MPU、メモリ等を備え各種の制御用プログラムが格納されたコントローラ5によって、給湯運転、追焚運転、注水・注湯による湯張り運転、湯張り・追焚・保温までを自動制御するふろ自動運転、又は、配管洗浄制御等の各種の運転制御が、リモコン51からの出力及び前記の各種センサからの出力等に基づいて行われるようになっている。すなわち、前記コントローラ5は、給湯運転制御部や、ふろ自動運転制御部等を備えている。そして、給湯運転制御部による給湯運転制御の際に、設定給湯温度の給湯を実現するために前記の燃焼能力切換制御部により燃焼加熱部23の燃焼段数の切換制御や、各燃焼段数での燃焼量調整制御が実行される。   The hot water supply circuit 2, the reheating circuit 3, and the water / water pouring circuit 4, etc. are provided with an MPU, a memory, etc., and a controller 5 in which various control programs are stored. Based on the output from the remote controller 51 and the outputs from the various sensors described above, various operation controls such as hot water filling operation, automatic bathing operation that automatically controls hot water filling, memorialization, and heat retention, or pipe cleaning control, etc. It is supposed to be done. That is, the controller 5 includes a hot water supply operation control unit, a bath automatic operation control unit, and the like. When the hot water supply operation control is performed by the hot water supply operation control unit, the combustion capacity switching control unit controls the switching of the number of combustion stages of the combustion heating unit 23 and the combustion at each combustion stage number in order to realize hot water supply at the set hot water supply temperature. Quantity adjustment control is executed.

給湯運転制御部による給湯運転制御、及び、ふろ自動運転制御部によるふろ自動制御について簡単に説明する。給湯運転制御は、ユーザーが給湯栓25を開いて最低作動流量以上の流れを流量センサ27が検出すると開始され、まず給湯用燃焼加熱部23及びガス供給系37からなる給湯燃焼系を制御して所定の燃焼段で、所定の燃焼量にすることで、その燃焼熱を受けて給湯用熱交換器22を通る給水が熱交換加熱され、設定給湯温度まで加熱・温調された湯が給湯路24を通して給湯栓25に給湯されることになる。又、ふろ自動制御は、リモコン51のふろ自動スイッチをユーザーがON操作することで開始され、まず、注水・注湯回路4及び追焚循環路30を通して給湯装置2からの湯が浴槽6に湯張りされる。この際の湯張り量は水位センサ46又は注湯流量センサ42の積分等により把握・特定されて、浴槽6内には所定水位まで湯張りされることになる。次に、追焚回路3の追焚用燃焼加熱部33及びガス供給系37からなる追焚燃焼系や循環ポンプ31が作動制御され、追焚用燃焼加熱部33の燃焼熱を受けて追焚用熱交換器32を通る浴槽6内の湯水が熱交換加熱され、所定の沸き上げ温度まで追焚加熱されることになる。追焚加熱が終了すれば、引き続いて、浴槽6内の湯水温度を一定に維持させるために間欠的に追焚制御を実行する保温運転を、設定時間が経過するまで、又は、ユーザーにより風呂自動スイッチがOFFされるまで行う。   Hot water supply operation control by the hot water supply operation control unit and automatic bathing control by the bath automatic operation control unit will be briefly described. The hot water supply operation control is started when the user opens the hot water tap 25 and the flow sensor 27 detects a flow exceeding the minimum operating flow rate. First, the hot water supply combustion system including the hot water combustion heating unit 23 and the gas supply system 37 is controlled. By supplying a predetermined amount of combustion in a predetermined combustion stage, the water supplied through the heat exchanger 22 for hot water supply is subjected to heat exchange heating by receiving the combustion heat, and the hot water heated to the set hot water temperature is adjusted to a hot water supply path. The hot water is supplied to the hot water tap 25 through 24. The automatic bath control is started when the user turns on the automatic bath switch of the remote controller 51. First, hot water from the hot water supply device 2 flows into the bathtub 6 through the pouring / hot pouring circuit 4 and the additional circulation circuit 30. It is stretched. The amount of hot water filling at this time is grasped and specified by integration of the water level sensor 46 or the pouring flow rate sensor 42, and the hot water is filled in the bathtub 6 to a predetermined water level. Next, the remedy combustion system including the remedy combustion heating unit 33 and the gas supply system 37 and the circulation pump 31 of the remedy circuit 3 are operated and controlled. The hot and cold water in the bathtub 6 passing through the heat exchanger 32 is heat-exchanged and heated to a predetermined boiling temperature. When the remedy heating is completed, the warming operation in which the remedy control is intermittently performed to maintain the hot water temperature in the bathtub 6 constant is continued until the set time elapses or the bath is automatically operated by the user. Continue until the switch is turned off.

前記の給湯運転制御においては、設定給湯温度の如何に応じて必要な燃焼号数(要求号数)のFF号数(フィードフォワード制御用の号数)が定められ、そのFF号数に基づいて燃焼段数が定められ(図3,図5参照)、以後、要求号数の変動に応じて燃焼段数の段数切換や燃焼量の変更調整が行われることにより、設定給湯温度の給湯が行われることになる。又、その際には、給水路21から給湯用熱交換器22に入水する水の温度や流量の検出値に応じて、バイパス路26からの水との混水による温度調整や、水量調整弁24aの開度調整を行うことにより、給湯栓25に対する給湯が設定給湯温度になるように制御される。   In the hot water supply operation control, the FF number (number for feed forward control) of the required combustion number (required number) is determined according to the set hot water supply temperature, and based on the FF number The number of combustion stages is determined (see FIGS. 3 and 5), and then hot water supply at the set hot water supply temperature is performed by changing the number of combustion stages and adjusting the amount of combustion according to the change in the required number. become. In this case, the temperature adjustment by the mixed water with the water from the bypass passage 26 or the water amount adjustment valve according to the detected temperature or flow rate of the water entering the heat exchanger 22 for hot water supply from the water supply passage 21. By adjusting the opening degree of 24a, the hot water supply to the hot water tap 25 is controlled so as to become the set hot water supply temperature.

<第1実施形態>
次に特徴部分である結露防止制御について、燃焼加熱部23を対象にして、給湯用熱交換器22のフィンアンドチューブ式に構成された一次熱交換器22aのフィン間閉塞発生を回避することを目的にした第1実施形態について、図6〜図8を参照しつつ説明する。前記のコントローラ5には第1実施形態の結露防止制御部(結露防止制御手段)が備えられ、この結露防止制御部による結露防止制御が、前記の燃焼能力切換制御部による燃焼段数の切換制御と燃焼量の変更調整とに併行して以下に説明する如く実行される。もちろん、同様な制御を追焚回路3側の燃焼加熱部33を対象にして実施することも可能である。
<First Embodiment>
Next, with respect to the dew condensation prevention control, which is a characteristic part, for the combustion heating unit 23, the occurrence of blockage between the fins of the primary heat exchanger 22 a configured as a fin-and-tube type of the heat exchanger 22 for hot water supply is avoided. The target first embodiment will be described with reference to FIGS. The controller 5 is provided with the condensation prevention control unit (condensation prevention control means) of the first embodiment, and the condensation prevention control by the condensation prevention control unit is the switching control of the number of combustion stages by the combustion capacity switching control unit. This is executed in parallel with the change adjustment of the combustion amount as described below. Of course, the same control can be performed on the combustion heating section 33 on the side of the remedy circuit 3.

まず、前記燃焼能力切換制御部による燃焼段数の切換制御により設定されている現在の燃焼能力の段数は4段であるか否かを判定する(ステップS11)。4段で燃焼していれば(ステップS11でYES)、その燃焼号数が予め定めた結露発生防止のための燃焼号数範囲G1内か否かを判定し(ステップS12)、その燃焼号数範囲G1内での燃焼であれば、燃焼が継続される時間を積算する(ステップS13)。ステップS11で燃焼段が4ではなければ、又は、燃焼号数が所定の燃焼号数範囲G1ではなければ、それぞれリターンしてステップS11以降を繰り返す。第1実施形態における燃焼号数範囲G1(図5参照)は次のように定められる。すなわち、4段での燃焼で可能な燃焼号数範囲(8.5〜15.3号)の内の小側燃焼号数範囲であって、かつ、3段での燃焼で可能な燃焼号数範囲(6.1〜11.0号)と重複する燃焼号数範囲(8.5〜11.0号)、つまり、4段での最小燃焼号数(8.5号)〜3段での最大燃焼号数(11.0号)の範囲を基本として、この範囲の最大側を所定値α(例えば0.8号)分だけ減じた範囲(8.5〜10.2号)を燃焼号数範囲G1として定めている。   First, it is determined whether or not the number of stages of the current combustion capacity set by the combustion stage switching control by the combustion capacity switching control unit is four (step S11). If combustion is performed in four stages (YES in step S11), it is determined whether or not the combustion number is within a predetermined combustion number range G1 for preventing the occurrence of condensation (step S12), and the combustion number is determined. If the combustion is within the range G1, the time during which the combustion is continued is integrated (step S13). If the combustion stage is not 4 in step S11 or the combustion number is not in the predetermined combustion number range G1, the process returns and repeats step S11 and subsequent steps. The combustion number range G1 (see FIG. 5) in the first embodiment is determined as follows. That is, the number of combustion numbers within the range of the number of combustion numbers that can be achieved by combustion in four stages (8.5 to 15.3), and the number of combustion numbers that can be achieved by combustion in three stages Combustion number range (8.5 to 11.0) overlapping with the range (6.1 to 11.0), that is, the minimum combustion number in four stages (8.5) to three stages Based on the range of the maximum combustion number (11.0), the range (8.5 to 10.2) obtained by subtracting the maximum side of this range by a predetermined value α (for example, 0.8) is the combustion number. It is defined as a number range G1.

これは、4段の燃焼領域での燃焼状態で、かつ、その4段の燃焼号数の小側範囲での燃焼状態が最も結露を生じ易いと考えられる点が基本にあり、これを解消するために低段数側の3段の燃焼領域に切換制御する上で、出湯温度を維持したままで段数切換が可能な燃焼号数範囲(3段での燃焼号数範囲との重複範囲)を切換制御上の判定範囲G1として定めたのである。又、その燃焼号数範囲G1の最大側を前記の所定値α分だけ減じたのは、あまり最大側の境界ぎりぎりであると、結露防止制御により4段から3段に切換制御したにも拘わらず、些細な変動(例えばガス供給圧のハンチングによるずれ変動等)の発生に起因して本来の燃焼能力切換制御の実行により3段から4段へ再度切換制御されてしまい、又さらに結露防止制御により4段から3段へと段数切換が繰り返されるなどの不都合を回避するためにα分の余裕代を設定したものである。これにより、結露防止を安定した制御の下で実現させることができる。   This is based on the fact that the combustion state in the four-stage combustion region and the combustion state in the small range of the four-stage combustion number are considered to be most likely to cause dew condensation. Therefore, when switching to the three-stage combustion region on the low-stage number side, the combustion number range that can be switched while maintaining the tapping temperature (the overlapping range with the three-stage combustion number range) is switched. This is determined as a control determination range G1. In addition, if the maximum side of the combustion number range G1 is reduced by the predetermined value α, the change is controlled from the 4th stage to the 3rd stage by the dew condensation prevention control when the boundary on the maximum side is too small. First, due to the occurrence of minor fluctuations (for example, deviation fluctuation due to hunting of the gas supply pressure), the switching control is again performed from the third stage to the fourth stage by the execution of the original combustion capacity switching control, and further condensation prevention control is performed. In order to avoid inconveniences such as switching the number of stages from 4 stages to 3 stages, a margin for α is set. Thereby, condensation prevention can be realized under stable control.

そして、ステップS13で積算していった積算時間が所定の設定時間を超えれば(ステップS14でYES)、結露発生防止のために3段への段数切換が必要と判断し、同等の燃焼号数を維持したまま、それまでの4段の燃焼段を3段に切換制御する(ステップS15)。4段での燃焼段で例えばa(図5参照)で示す燃焼号数で燃焼していたとすると、このaと同じ燃焼号数のb(図5参照)で示す燃焼号数での3段の燃焼に切り換えるようにするのである。これにより、段数切換したとしても、同じ給湯温度を維持しながら、結露発生防止を図ることができるようになる。以上において、結露発生防止のための判定条件としては、燃焼能力段数が4段であること、燃焼号数がその4段の所定の小側範囲であること、その燃焼状態が継続する積算時間が一定時間以上になること、が設定されている。   If the accumulated time accumulated in step S13 exceeds a predetermined set time (YES in step S14), it is determined that the number of stages needs to be switched to 3 to prevent the occurrence of condensation. While maintaining the above, the four combustion stages so far are switched to three stages (step S15). For example, if the combustion stage has four combustion stages and the combustion number is indicated by a (see FIG. 5), the number of combustion stages indicated by b (see FIG. 5) is the same as the combustion number a. Switch to combustion. Thereby, even if the number of stages is switched, it becomes possible to prevent the occurrence of condensation while maintaining the same hot water supply temperature. In the above, the determination conditions for preventing the occurrence of condensation are that the number of combustion capacity stages is four, the combustion number is within a predetermined small range of the four stages, and the accumulated time during which the combustion state continues. It is set to be longer than a certain time.

図7は、燃焼加熱部23(正面断面図状態)が4段の燃焼段で燃焼しているときの熱交換器22a(平面断面図状態)内を移動する湯水の状態を示すものである。なお、図7では、燃焼加熱部23を正面断面図状態にて表し、熱交換器22aを平面断面図状態にて表している。図7の如く、4段の燃焼段では熱交換器22aの下流側範囲の燃焼領域F1,F3が燃焼作動され、熱交換器22aの上流側範囲の燃焼領域F2が燃焼停止状態となっている。このため、接続路20(給水路21)を通して熱交換器22aに入水されて燃焼停止状態の燃焼領域F2の上方範囲の熱交換器22a内に流される冷たい水と、燃焼状態の燃焼領域F1,F3の上方範囲の熱交換器22a内で加熱された湯との境界部分Kで結露が生じ易くなる。これを前記結露防止制御により3段に段数切換することにより、図8に示すように結露発生のおそれを解消し得ることになる。すなわち、3段の燃焼段では熱交換器22aの上流側範囲の燃焼領域F1,F2が燃焼作動され、熱交換器22aの下流側範囲の燃焼領域F3が燃焼停止状態となっている。このため、接続路20(給水路21)を通して入水した冷たい水は熱交換器22aに入水したとたんに加熱され、下流側に移動しながらさらに加熱され、所定温度まで高温になった湯が給湯路24に出湯されることになる。つまり、熱交換器22a内は上流側から下流側まで加熱された湯が流れることになるため、結露発生のおそれはない。そして、入水側の冷たい水と加熱された湯との境界は外側から缶体1内に入る入口部分となり、たとえ結露が生じたとしても熱交換器22aのフィン間閉塞を発生させるおそれはない状態とすることができる。しかも、3段に切換制御されても、段数切換前の4段での燃焼号数と同等の燃焼号数で燃焼継続されるため、それまでと同じ温度を維持したまま出湯させることができ、給湯使用中のユーザーに対し不都合を与えることもない。   FIG. 7 shows the state of hot water moving in the heat exchanger 22a (planar sectional view state) when the combustion heating section 23 (front sectional view state) is combusting in four stages of combustion. In addition, in FIG. 7, the combustion heating part 23 is represented in the front sectional view state, and the heat exchanger 22a is represented in the planar sectional view state. As shown in FIG. 7, in the four combustion stages, the combustion regions F1 and F3 in the downstream range of the heat exchanger 22a are operated for combustion, and the combustion region F2 in the upstream region of the heat exchanger 22a is in a combustion stopped state. . For this reason, the cold water that enters the heat exchanger 22a through the connection path 20 (water supply path 21) and flows into the heat exchanger 22a above the combustion area F2 in the combustion stopped state, and the combustion area F1, in the combustion state Condensation is likely to occur at the boundary portion K with hot water heated in the heat exchanger 22a in the upper range of F3. By switching the number of stages to three by the condensation prevention control, the possibility of the occurrence of condensation can be eliminated as shown in FIG. That is, in the three combustion stages, the combustion regions F1 and F2 in the upstream range of the heat exchanger 22a are operated for combustion, and the combustion region F3 in the downstream region of the heat exchanger 22a is in a combustion stopped state. For this reason, the cold water that has entered through the connection channel 20 (the water supply channel 21) is heated as soon as it enters the heat exchanger 22a, and is further heated while moving to the downstream side. The hot water is discharged to the road 24. That is, since hot water heated from the upstream side to the downstream side flows in the heat exchanger 22a, there is no risk of condensation. And the boundary between the cold water and the heated hot water on the water entering side becomes an inlet part that enters the can body 1 from the outside, and there is no possibility of causing clogging between the fins of the heat exchanger 22a even if condensation occurs. It can be. Moreover, even if the control is switched to three stages, the combustion continues with the combustion number equivalent to the number of combustion in the four stages before switching the number of stages, so that the hot water can be discharged while maintaining the same temperature as before, There is no inconvenience for users who are using hot water.

<第2実施形態>
図9は第2実施形態に係る結露防止制御のフローチャートである。第2実施形態は段数切換判定のための燃焼号数範囲G2が第1実施形態の燃焼号数範囲G1よりも最大側に拡大されている点、結露防止のために3段に段数切換するために水量調整弁24aを絞り側に変更制御する点で異なる。
Second Embodiment
FIG. 9 is a flowchart of condensation prevention control according to the second embodiment. In the second embodiment, the combustion number range G2 for determining the number of stages is expanded to the maximum side from the combustion number range G1 of the first embodiment. In order to prevent condensation, the number of stages is switched to three stages. The difference is that the water amount adjusting valve 24a is controlled to be changed to the throttle side.

第2実施形態の結露防止制御部(結露防止制御手段)による結露防止制御では、まず、現在の燃焼能力の段数が4段であるか否かを判定し(ステップS21)、4段で燃焼していれば(ステップS21でYES)、その燃焼号数が予め定めた結露発生防止のための燃焼号数範囲G2内か否かを判定し(ステップS22)、その燃焼号数範囲G2内での燃焼であれば、燃焼が継続される時間を積算する(ステップS23)。ステップS21で燃焼段が4ではなければ、又は、燃焼号数が所定の燃焼号数範囲G2ではなければ、それぞれリターンしてステップS21以降を繰り返す。この第2実施形態における燃焼号数範囲G2(図5参照)は次のように定められる。すなわち、4段での燃焼で可能な燃焼号数範囲(8.5〜15.3号)の内の結露発生のおそれがあると考えられる小側燃焼号数範囲(例えば8.0〜12.0号)が、燃焼号数範囲G2として定められている。つまり、第1実施形態の燃焼号数範囲G1が3段での燃焼に段数切換が可能な範囲との重複範囲に制限されているのに対し、第2実施形態の燃焼号数範囲G2は4段燃焼状態のなかでも結露が生じ易いと考えられている小燃焼号数範囲、それ自体が設定されている。これにより、第2実施形態では、結露防止制御による低段数側への段数切換を、第1実施形態よりも広い燃焼号数範囲で行うことができ、より確実な結露防止制御を実現することができるようになる。   In the condensation prevention control by the condensation prevention control unit (condensation prevention control means) of the second embodiment, first, it is determined whether or not the current number of stages of combustion capacity is 4 (step S21), and combustion is performed in 4 stages. If so (YES in step S21), it is determined whether or not the combustion number is within a predetermined combustion number range G2 for preventing the occurrence of condensation (step S22). If it is combustion, the time during which combustion is continued is integrated (step S23). If the combustion stage is not 4 in step S21 or the combustion number is not in the predetermined combustion number range G2, the process returns and repeats step S21 and subsequent steps. The combustion number range G2 (see FIG. 5) in the second embodiment is determined as follows. That is, a small side combustion number range (for example, 8.0 to 12.3) considered to be likely to cause dew condensation within a combustion number range (8.5 to 15.3) that can be achieved by combustion in four stages. No. 0) is defined as the combustion number range G2. That is, the combustion number range G1 of the first embodiment is limited to an overlapping range with a range in which the number of stages can be switched to combustion in three stages, whereas the combustion number range G2 of the second embodiment is 4 A small combustion number range, which is considered to easily cause dew condensation in the stage combustion state, is set. Thereby, in 2nd Embodiment, the stage number switching to the low stage number side by condensation prevention control can be performed in the combustion number range wider than 1st Embodiment, and more reliable condensation prevention control is implement | achieved. become able to.

そして、ステップS23で積算していった積算時間が所定の設定時間を超えれば(ステップS24でYES)、結露発生防止のために3段への段数切換が必要と判断し、同じ出湯温度を維持したまま3段への段数切換が可能か否かをチェックするために、現在の燃焼号数が3段への段数切換可能な号数範囲G1(8.5〜10.2号)にあるか否かを判定する(ステップS25)。もしも、前記号数範囲G1よりも大側であれば(ステップS25でNO)、水量調整弁24aを絞り側に開度変更制御する(ステップS26)。この水量調整弁24aの絞り側への開度変更により、給湯路24に流れる給湯流量が少なくなって同じ燃焼号数(燃焼量)だと出湯温度がそれまでよりも高くなる。このため、同じ出湯温度に維持するように、流量低減分だけ燃焼加熱部23の燃焼号数も小側になるように、給湯制御によって自動的に比例制御されることになる。そして、再度、現在の燃焼量(燃焼号数)は3段への段数切換可能な号数範囲G1(8.5〜10.2号)にあるか否かを判定し、この号数範囲G1内であれば(ステップS25でYES)、同等の燃焼号数を維持したまま、それまでの4段の燃焼段を3段に切換制御する(ステップS27)。例えば、それまでの燃焼号数がc(図5参照)で示す燃焼号数で燃焼していた場合、この燃焼号数cを維持したままでは3段への段数切換は不能であるところ、水量調整弁24aを絞ることで必要な燃焼号数をd(例えばd≦10.2号;図5参照)まで下げれば、燃焼号数dと同じ燃焼号数e(図5参照)での3段への段数切換が可能になる。なお、前記のステップS25による当初のチェックにおいて、そのときの燃焼量(燃焼号数)が3段への段数切換可能な号数範囲G1(8.5〜10.2号)にあれば(ステップS25でYES)、水量調整弁24aの絞り側への変更調整(ステップS26)を経ることなく、同等の燃焼号数を維持したまま、燃焼段を3段に切換制御する(ステップS27)。   If the accumulated time accumulated in step S23 exceeds a predetermined set time (YES in step S24), it is determined that the number of stages needs to be switched to three stages to prevent the occurrence of condensation, and the same tapping temperature is maintained. In order to check whether or not the number of stages can be switched to three stages, whether the current combustion number is in the number range G1 (8.5 to 10.2) in which the number of stages can be switched to three stages. It is determined whether or not (step S25). If it is larger than the number range G1 (NO in step S25), the water amount adjusting valve 24a is controlled to change the opening to the throttle side (step S26). By changing the opening of the water amount adjusting valve 24a to the throttle side, the hot water flow rate flowing through the hot water supply passage 24 decreases, and the hot water temperature becomes higher than before when the combustion number (combustion amount) is the same. For this reason, in order to maintain the same hot water temperature, proportional control is automatically performed by hot water supply control so that the combustion number of the combustion heating unit 23 becomes smaller by the amount of flow reduction. Then, again, it is determined whether or not the current combustion amount (combustion number) is in a number range G1 (8.5 to 10.2) in which the number of steps can be switched to three, and this number range G1. If it is within (YES in step S25), the previous four combustion stages are switched and controlled to three stages while maintaining the same combustion number (step S27). For example, when the number of combustion until that time is the combustion number indicated by c (see FIG. 5), the number of stages cannot be switched to three stages while maintaining this number of combustion c. If the necessary combustion number is lowered to d (for example, d ≦ 10.2; see FIG. 5) by restricting the regulating valve 24a, three stages with the same combustion number e as the combustion number d (see FIG. 5) The number of stages can be switched to In the initial check in step S25, if the combustion amount (combustion number) at that time is within the number range G1 (8.5 to 10.2) in which the number of stages can be switched to three stages (step 10.2) In S25, the combustion stage is switched to three stages while maintaining the same combustion number without passing through the adjustment to change the water amount adjusting valve 24a to the throttle side (Step S26) (Step S27).

この第2実施形態の場合、結露が発生すると考えられる燃焼段数(燃焼領域)・燃焼号数範囲での燃焼が長時間継続することが確実に防止され、結露発生防止を確実に実現させることができるようになる。具体的には、現在の燃焼が、第1実施形態の場合の所定の結露発生防止のための成立条件の内の即座に低段数への段数切換が可能な燃焼号数範囲での燃焼ではなくて、それよりも広い燃焼号数範囲での燃焼であったとしても、低段数への段数切換を可能とするための処理制御(水量調整弁24aの絞り側への変更調整)を付加することにより、第1実施形態と同様の低段数への段数切換を行うことができるようになる。   In the case of this second embodiment, it is possible to reliably prevent the combustion in the number of combustion stages (combustion region) / combustion number range where condensation is expected to occur for a long time, and to reliably prevent the occurrence of condensation. become able to. Specifically, the current combustion is not combustion in a combustion number range in which the number of stages can be immediately switched to a low number of conditions within the predetermined conditions for preventing the occurrence of condensation in the case of the first embodiment. Therefore, even if the combustion is in a wider combustion number range, processing control (change adjustment to the throttle side of the water amount adjustment valve 24a) to enable switching of the number of stages to a lower number of stages is added. As a result, the number of stages can be switched to the same number of stages as in the first embodiment.

<他の実施形態>
なお、本発明は上記第1及び第2実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、前記実施形態における燃焼領域の数(3つ)や、それぞれ燃焼領域での燃焼管231の本数、燃焼能力段数(5段)等については例示であり、これら以外に設定することもできる。
<Other embodiments>
The present invention is not limited to the first and second embodiments described above, but includes other various embodiments. That is, the number of combustion regions in the embodiment (three), the number of combustion tubes 231 in each combustion region, the number of combustion capacity stages (five stages), etc. are examples, and other than these can be set.

前記実施形態では、潜熱回収型の給湯装置を示したが、これに限らず、複数の燃焼領域の選択的燃焼により複数段の燃焼能力の変更切換が可能に構成された給湯装置であれば、本発明を適用することができる。   In the above embodiment, the latent heat recovery type hot water supply device is shown, but not limited to this, as long as the hot water supply device is configured to be able to change and change the combustion capacity of a plurality of stages by selective combustion in a plurality of combustion regions, The present invention can be applied.

5 コントローラ(結露防止制御手段)
22a 一次熱交換器(熱交換器)
23 燃焼加熱部
24a 水量調整弁(給湯流量変更手段)
F1,F2,F3 燃焼領域
5 Controller (Condensation prevention control means)
22a Primary heat exchanger (heat exchanger)
23 Combustion heating unit 24a Water amount adjustment valve (hot water flow rate changing means)
F1, F2, F3 combustion area

Claims (4)

熱交換器内に通水される水を燃焼加熱部の燃焼により熱交換加熱した上で給湯するように構成され、前記燃焼加熱部が複数の独立燃焼可能な燃焼領域を備え、各燃焼領域が独立して又は組み合わされて選択的に燃焼されることにより燃焼能力が複数段にわたり変更切換可能とされ、燃焼能力段数の切換制御及び各燃焼能力段数での燃焼能力の変更調整制御を実行する燃焼能力切換制御により所定の給湯温度での給湯運転が行われるように構成されている給湯装置において、
結露発生防止のために前記燃焼加熱部に対する前記燃焼能力切換制御による燃焼状態を変更する結露防止制御手段を備え、
前記結露防止制御手段は、特定の燃焼能力段数での燃焼状態が一定時間継続されることを含む結露発生防止のための判定条件の成立により、前記特定の燃焼能力段数を低燃焼能力段数側に段数切換制御するように構成されている、
ことを特徴とする給湯装置。
The water passed through the heat exchanger is configured to supply hot water after heat exchange heating is performed by combustion of the combustion heating unit, and the combustion heating unit includes a plurality of independently combustible combustion regions, each combustion region Combustion in which the combustion capacity can be changed over a plurality of stages by being selectively burned independently or in combination, and the combustion capacity stage switching control and the combustion capacity change adjustment control in each combustion capacity stage number are executed. In a hot water supply apparatus configured to perform a hot water supply operation at a predetermined hot water supply temperature by capability switching control,
Condensation prevention control means for changing the combustion state by the combustion capacity switching control for the combustion heating unit to prevent the occurrence of condensation,
The dew condensation prevention control means sets the specific combustion capacity stage number to the low combustion capacity stage number side by establishing a determination condition for preventing the occurrence of dew condensation including that the combustion state at the specific combustion capacity stage number continues for a certain period of time. It is configured to control the number of stages.
A water heater characterized by that.
請求項1に記載の給湯装置であって、
前記特定の燃焼能力段数は、前記熱交換器の上流側範囲に対応する燃焼領域が燃焼停止となり、前記熱交換器の上流側範囲に隣接する下流側範囲に対応する燃焼領域が燃焼されることになる燃焼能力段数であり、
前記低燃焼能力段数側の燃焼能力段数は、前記熱交換器の上流側範囲に対応する燃焼領域が燃焼されることになる燃焼能力段数である、給湯装置。
The hot water supply device according to claim 1,
In the specific combustion capacity stage number, the combustion region corresponding to the upstream range of the heat exchanger is stopped in combustion, and the combustion region corresponding to the downstream range adjacent to the upstream range of the heat exchanger is burned. Is the number of combustion capacity stages
The hot water supply apparatus, wherein the combustion capacity stage number on the low combustion capacity stage number side is a combustion capacity stage number in which a combustion region corresponding to an upstream range of the heat exchanger is burned.
請求項1又は請求項2に記載の給湯装置であって、
前記結露防止制御手段は、前記低燃焼能力段数側に段数切換制御する際に、その段数切換の前後で、それまでの前記特定燃焼能力段数での燃焼能力を維持するよう段数切換制御するように構成されている、給湯装置。
The hot water supply device according to claim 1 or 2,
The dew condensation prevention control means, when performing the switching control of the number of stages to the low combustion capacity stage number side, controls the switching of the number of stages so as to maintain the combustion capacity at the specific combustion capacity stage number before and after the switching of the number of stages. Constructed hot water supply device.
請求項3に記載の給湯装置であって、
前記熱交換器から給湯される給湯流量を変更するための給湯流量変更手段を備え、
前記結露防止制御手段は、前記低燃焼能力段数側に段数切換制御する際に、段数切換前の前記特定燃焼能力段数の燃焼能力が段数切換後の前記低燃焼能力段数側の燃焼能力段数に設定された燃焼能力範囲よりも大きいとき、前記給湯流量変更手段により前記給湯流量を絞り側に変更した上で前記段数切換制御を実行するように構成されている、給湯装置。
The hot water supply device according to claim 3,
Hot water supply flow rate changing means for changing the hot water supply flow rate of hot water supplied from the heat exchanger,
The dew condensation prevention control means sets the combustion capacity of the specific combustion capacity stage number before the stage number switching to the combustion capacity stage number on the low combustion capacity stage side after the stage number switching when performing the stage switching control to the low combustion capacity stage number side. A hot water supply apparatus configured to execute the stage number switching control after changing the hot water supply flow rate to the throttle side by the hot water supply flow rate changing means when the combustion capacity range is larger.
JP2014059229A 2014-03-20 2014-03-20 Water heater Active JP6281357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059229A JP6281357B2 (en) 2014-03-20 2014-03-20 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059229A JP6281357B2 (en) 2014-03-20 2014-03-20 Water heater

Publications (2)

Publication Number Publication Date
JP2015183894A JP2015183894A (en) 2015-10-22
JP6281357B2 true JP6281357B2 (en) 2018-02-21

Family

ID=54350641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059229A Active JP6281357B2 (en) 2014-03-20 2014-03-20 Water heater

Country Status (1)

Country Link
JP (1) JP6281357B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6664253B2 (en) * 2016-03-29 2020-03-13 大阪瓦斯株式会社 Heating system
JP6758063B2 (en) * 2016-03-29 2020-09-23 大阪瓦斯株式会社 Heating device
JP6709676B2 (en) * 2016-04-28 2020-06-17 リンナイ株式会社 Water heater
JP2018071809A (en) * 2016-10-25 2018-05-10 株式会社ノーリツ Bath water heater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054854B2 (en) * 1995-07-14 2000-06-19 東京瓦斯株式会社 Heat exchange equipment
JP4086455B2 (en) * 2000-07-28 2008-05-14 パロマ工業株式会社 Water heater
JP4508487B2 (en) * 2001-08-23 2010-07-21 大阪瓦斯株式会社 Combustion device
JP2005180778A (en) * 2003-12-19 2005-07-07 Paloma Ind Ltd Water heating appliance
JP6037158B2 (en) * 2012-05-21 2016-11-30 株式会社ノーリツ Heat source machine

Also Published As

Publication number Publication date
JP2015183894A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6281357B2 (en) Water heater
JP5121378B2 (en) Water heater
JP4527893B2 (en) Water heater
JP4912792B2 (en) Hot water storage unit
JP4820213B2 (en) Cogeneration system
JP5018200B2 (en) Combustion device
JP5370807B2 (en) Latent heat recovery water heater
JP5708975B2 (en) Water heater
JP6601059B2 (en) Combined heat source machine
JP2008045841A (en) Hot water storage type hot water supply system and cogeneration system
JP5818585B2 (en) Memorial device
JP5814643B2 (en) Hot water storage system
JP5505129B2 (en) Hot water system
JP4182432B2 (en) Combustion device
KR20140060773A (en) Boiler for heating and hot-water supply
JP2017122533A (en) Bath water heater
JP4875923B2 (en) Hot water storage hot water supply system
JP2008008589A (en) Latent heat recovery type heating device
JP5130258B2 (en) Cogeneration system
JP6424463B2 (en) Heating heat source device
JP2010210178A (en) Hot water supply system
JP6684580B2 (en) Hot water supply system
JP2017122535A (en) Bath water heater
JP2006078173A (en) Hot-water supply system
JP2018048782A (en) Hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R150 Certificate of patent or registration of utility model

Ref document number: 6281357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250