JP5018200B2 - Combustion device - Google Patents

Combustion device Download PDF

Info

Publication number
JP5018200B2
JP5018200B2 JP2007105446A JP2007105446A JP5018200B2 JP 5018200 B2 JP5018200 B2 JP 5018200B2 JP 2007105446 A JP2007105446 A JP 2007105446A JP 2007105446 A JP2007105446 A JP 2007105446A JP 5018200 B2 JP5018200 B2 JP 5018200B2
Authority
JP
Japan
Prior art keywords
combustion
fan
correction
current value
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007105446A
Other languages
Japanese (ja)
Other versions
JP2008261579A (en
Inventor
弘樹 森岡
義憲 近藤
幸治 坂本
利彦 大林
諭 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2007105446A priority Critical patent/JP5018200B2/en
Publication of JP2008261579A publication Critical patent/JP2008261579A/en
Application granted granted Critical
Publication of JP5018200B2 publication Critical patent/JP5018200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

本発明は、互いに独立して燃焼可能な2つの燃焼部に対し燃焼用空気を1つの空気供給源から供給することにより所定の空燃比で燃焼させるために用いられる燃焼装置に関し、特に、給排気流路が閉塞傾向に陥って流路抵抗が増大したとしても適正な燃焼状態を維持させるように制御する技術に係る。   The present invention relates to a combustion apparatus used for combustion at a predetermined air-fuel ratio by supplying combustion air from one air supply source to two combustible parts that can burn independently of each other, and more particularly The present invention relates to a technique for performing control so as to maintain an appropriate combustion state even if the flow path falls into a blocking tendency and the flow path resistance increases.

従来、燃焼装置において燃焼用空気を供給する送風ファンのファンモータに対するファン電流値と、ファンモータの回転数との関係に基づいて、燃焼排気の排気通路の流路抵抗を検出し、これに基づいて燃焼用空気の供給量が最適量になるようにファンモータの回転数制御を行うものが知られている(例えば特許文献1又は特許文献2参照)。これは、燃焼作動の繰り返しにより排気通路の流路抵抗が増大したとしても、所定の空燃比を確保して適正な燃焼状態を維持し得るように燃焼用空気量の供給量を調整制御しようとするものである。   Conventionally, the flow path resistance of the exhaust passage of combustion exhaust gas is detected based on the relationship between the fan current value for the fan motor of the blower fan that supplies combustion air in the combustion device and the rotational speed of the fan motor, There is known a method for controlling the rotational speed of a fan motor so that the supply amount of combustion air becomes an optimum amount (see, for example, Patent Document 1 or Patent Document 2). This is because even if the flow resistance of the exhaust passage increases due to repeated combustion operations, the supply amount of combustion air is adjusted and controlled so that a predetermined air-fuel ratio can be secured and an appropriate combustion state can be maintained. To do.

特開平9−329331号公報JP 9-329331 A

特開平10−220741号公報Japanese Patent Laid-Open No. 10-220741

ところで、燃焼装置として、例えば給湯用の燃焼部と、温水等の熱媒を暖房用の熱源として循環させるための暖房用の燃焼部とを備え、これら互いに独立して燃焼作動可能な2つの燃焼部に対し1つの送風ファンにより燃焼用空気を供給するように構成されたものがある。このような構成の場合には、排気通路における流路抵抗の増大特性が異なるため、一方の流路抵抗増大の影響を受けて他方の燃焼部に対する空気供給量の調整制御、すなわち他方の燃焼部が燃焼した時の送風ファンの回転数制御に誤制御を生じさせるおそれがある。   By the way, as a combustion device, for example, a combustion section for hot water supply and a heating combustion section for circulating a heating medium such as hot water as a heat source for heating are provided. There is one configured to supply combustion air to one part by one blower fan. In such a configuration, the flow resistance increase characteristic in the exhaust passage is different, so that adjustment control of the air supply amount to the other combustion section under the influence of one flow path resistance increase, that is, the other combustion section There is a possibility of causing an erroneous control in the rotational speed control of the blower fan when the air is burned.

すなわち、例えば給湯用燃焼部のみを燃焼作動させた場合でも、暖房用燃焼部のみを燃焼作動させた場合でも、いずれの場合であっても、送風ファンを作動させると、この送風ファンからの空気は給湯用及び暖房用の双方の燃焼部に供給されることになり、両燃焼部の排気通路における流路抵抗の影響を受けることになる。一方、給湯用・暖房用というように互いに独立燃焼可能な2つの燃焼部があると、その燃焼作動の頻度、燃焼の程度、空気供給や排気通路等の流路断面積の大小等によって付着物等の堆積具合が異なり、その結果、流路抵抗の増大変化の傾向も2つの燃焼部で互いに異なることになる。特に、暖房用燃焼部に比して給湯用燃焼部の方がかなり大きく上記の流路断面積がかなり大きくなる場合には、給湯用燃焼部側の流路抵抗の増大変化による影響が支配的となるため、送風ファンのファン電流値に基づき流路抵抗の増大度合について自己診断させる手法では、暖房用燃焼部の側の流路抵抗増大を十分に検知把握することが困難となる。このような場合には、給湯用燃焼部の側では送風ファンのファン電流値に基づく自己診断を実行させる一方、暖房用燃焼部の側では燃焼火炎の温度検出値に基づき暖房用燃焼部の側の流路抵抗を自己診断させる手法の採用が考えられる。   That is, for example, when only the hot water supply combustion section is operated to burn, only the heating combustion section is operated to be burned, and in any case, when the blower fan is operated, the air from the blower fan is operated. Is supplied to both hot water supply and heating combustion sections, and is affected by the flow path resistance in the exhaust passages of both combustion sections. On the other hand, if there are two combustion parts that can burn independently such as for hot water supply and heating, the deposits depend on the frequency of the combustion operation, the degree of combustion, the size of the cross-sectional area of the air supply, exhaust passage, etc. As a result, the tendency of the increase in flow path resistance is also different between the two combustion sections. In particular, when the hot water combustion section is considerably larger than the heating combustion section, and the flow passage cross-sectional area is considerably large, the influence of the increase in flow path resistance on the hot water combustion section side is dominant. Therefore, it is difficult to sufficiently detect and grasp the increase in flow path resistance on the side of the combustion section for heating by the method of performing self-diagnosis on the degree of increase in flow path resistance based on the fan current value of the blower fan. In such a case, the hot water supply combustion unit side performs self-diagnosis based on the fan fan current value of the blower fan, while the heating combustion unit side performs heating diagnosis side based on the detected temperature value of the combustion flame. It is conceivable to adopt a method for self-diagnosis of the channel resistance.

しかしながら、暖房側燃焼部の側の流路抵抗増大による影響が給湯用燃焼部の側のそれよりも小さいとはいえ、暖房用燃焼部の側で流路抵抗増大が生じると、給湯用燃焼部を燃焼作動させたときに、暖房用燃焼部の側の流路抵抗増大が送風ファンのファン電流値に基づく自己診断結果にも影響を与えるおそれがある。この結果、送風ファンの回転数制御に基づく空気供給量の誤制御を招くおそれがある。   However, although the influence of the increase in flow path resistance on the heating side combustion section side is smaller than that on the hot water supply combustion section side, if the increase in flow path resistance occurs on the heating combustion section side, the hot water supply combustion section When the combustion operation is performed, the increase in flow path resistance on the heating combustion unit side may affect the self-diagnosis result based on the fan current value of the blower fan. As a result, there is a risk of erroneous control of the air supply amount based on the rotational speed control of the blower fan.

このような問題は、暖房用燃焼部だけではなくて、例えばふろ追い焚き用燃焼部など、給湯用燃焼部以外の燃焼部であれば、同様に起こり得る。   Such a problem can occur not only in the heating combustion section, but also in any combustion section other than the hot water supply combustion section, such as a warm-up combustion section.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、互いに独立燃焼可能な2つの燃焼部に対し1つの空気供給源から燃焼用空気を供給するように構成された燃焼装置であっても、適正な空気供給量に調整制御を行い得るようにすることにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to supply combustion air from one air supply source to two combustion sections capable of independent combustion. It is to be able to perform adjustment control to an appropriate air supply amount even in the combustion apparatus that has been made.

上記目的を達成するために、本発明では、互いに独立燃焼可能な第1燃焼部及び第2燃焼部と、これら第1燃焼部及び第2燃焼部に対し燃焼用空気を共に供給する1つの送風ファンと、この送風ファンの回転数が目標回転数になるようにファンモータ駆動用のファン電流値を制御するファン作動制御手段と、上記第2燃焼部の燃焼火炎温度を検出する火炎温度検出手段とを備えた燃焼装置を対象として、次の特定事項を備えるようにした。すなわち、上記各燃焼部において給排気流路の閉塞傾向に起因する所定の流路抵抗の増大変化が生じたときにその増大変化に対抗するよう送風ファンの回転数を補正するファン補正制御手段を備えることとする。そして、上記ファン補正制御手段として、上記火炎温度検出手段により第2燃焼部の給排気流路における流路抵抗の増大変化が検知されたとき、第1燃焼部の単独燃焼作動時のファン電流値の検出値に対し上記第2燃焼部側の流路抵抗の増大変化に対応する補正値を上乗せし、上乗せ補正した後のファン電流値に基づいて第1燃焼部における給排気の流路抵抗の増大変化が生じたか否かの判定を行う構成とする(請求項1)。   In order to achieve the above object, according to the present invention, a first combustion section and a second combustion section that can be combusted independently from each other, and one blower that supplies combustion air to both the first combustion section and the second combustion section. Fan, fan operation control means for controlling the fan current value for driving the fan motor so that the rotation speed of the blower fan becomes the target rotation speed, and flame temperature detection means for detecting the combustion flame temperature of the second combustion section The following specific items are provided for a combustion apparatus equipped with: That is, fan correction control means for correcting the rotational speed of the blower fan so as to counter the increase change when a predetermined change in flow path resistance due to the blockage tendency of the supply / exhaust flow path occurs in each combustion section. I will prepare. As the fan correction control means, when an increase in flow resistance in the supply / exhaust flow path of the second combustion section is detected by the flame temperature detection means, the fan current value during the single combustion operation of the first combustion section Is added with a correction value corresponding to an increase in the flow resistance of the second combustion section, and the flow resistance of the supply / exhaust flow resistance in the first combustion section is calculated based on the fan current value after the correction. It is configured to determine whether or not an increase change has occurred (claim 1).

本発明の場合、第1燃焼部の流路抵抗についての誤判定の発生を確実に防止して、誤判定に基づき送風ファンの作動量に過大かつ無用な補正が実行されてしまうことを確実に回避させ得ることになる。すなわち、第1燃焼部の単独燃焼時に上記送風ファンからの燃焼用空気が第1燃焼部のみならず第2燃焼部にも供給されるため、第1燃焼部の側の流路抵抗に増大変化が生じていなくても、第2燃焼部の側において流路抵抗の増大変化が生じていれば、その影響を受けてファン電流値の検出値に変化を与えることになる。この結果、第1燃焼部の側に流路抵抗の増大変化が生じていると誤判定してしまい、送風ファンの作動量に過大な補正を加えてしまうおそれが生じてしまうところ、本発明の如く、第2燃焼部の流路抵抗の増大変化を火炎温度検出手段の火炎温度の変化により検出し、その増大変化に相当する補正値を第1燃焼部の単独燃焼作動時のファン電流値の検出値に上乗せ補正することにより、第2燃焼部の流路抵抗増大に基づく影響分を除去することが可能になる。これにより、第2燃焼部の流路抵抗増大に基づく影響により誤判定が生じてしまうおそれを確実に回避し得ることになる。   In the case of the present invention, it is possible to reliably prevent the occurrence of an erroneous determination regarding the flow path resistance of the first combustion section, and to ensure that an excessive and unnecessary correction is performed on the operating amount of the blower fan based on the erroneous determination. It can be avoided. That is, since the combustion air from the blower fan is supplied not only to the first combustion part but also to the second combustion part during the single combustion of the first combustion part, the flow resistance on the side of the first combustion part is increased and changed. Even if there is no occurrence, if the flow path resistance increases and changes on the second combustion section side, the detected value of the fan current value is changed under the influence. As a result, it is erroneously determined that an increase in flow path resistance has occurred on the first combustion section side, and there is a risk that an excessive correction will be added to the operating amount of the blower fan. As described above, an increase change in the flow path resistance of the second combustion section is detected by a change in the flame temperature of the flame temperature detecting means, and a correction value corresponding to the increase change is obtained as a fan current value during the single combustion operation of the first combustion section. By adding and correcting the detection value, it is possible to remove the influence due to the increase in the flow path resistance of the second combustion section. As a result, it is possible to reliably avoid the possibility of erroneous determination due to the influence due to the increase in flow path resistance of the second combustion section.

上記発明においては、上記第1燃焼部の単独燃焼作動時のファン電流値の検出値に対し補正値を上乗せする上乗せ補正を、上記第2燃焼部における流路抵抗の増大変化として第1燃焼部の単独燃焼時のファン電流値を低下させる程度の増大変化として予め設定された増大変化量まで到達したことをトリガーとして実行される構成とすることができる(請求項2)。これにより、第1燃焼部の側に影響を与える場合に限り、第2燃焼部での流路抵抗増大に基づく補正を行わせるようにすることができる。   In the first aspect of the present invention, the addition correction for adding a correction value to the detected value of the fan current value at the time of the single combustion operation of the first combustion section is used as an increase change in the channel resistance in the second combustion section. It can be configured to be triggered by the fact that an increase change amount set in advance is reached as an increase change that reduces the fan current value during single combustion. As a result, only when the first combustion section side is affected, correction based on the increase in flow path resistance in the second combustion section can be performed.

又、上記の上乗せ補正する補正値は、上乗せ補正した後のファン電流値が上記ファン作動制御手段により基本作動制御されるファン電流値に相当することになるように設定することができる(請求項3)。このようにすることにより、確実に第2燃焼部の側の流路抵抗の増大に起因する誤判定を防止しつつ、第1燃焼部の単独燃焼時における送風ファンの作動制御を確実なものとし得る。   Further, the correction value for the addition correction can be set so that the fan current value after the addition correction corresponds to the fan current value that is fundamentally controlled by the fan operation control means. 3). By doing so, it is possible to reliably control the operation of the blower fan during the single combustion of the first combustion section while reliably preventing erroneous determination due to an increase in flow path resistance on the second combustion section side. obtain.

この場合、上記ファン作動制御手段として、流路抵抗の増大前の状態での目標回転数と制御用ファン電流値との関係テーブルに基づいて送風ファンの作動制御を行う構成とし、上記の上乗せ補正する補正値として、上記目標回転数との関係において上記関係テーブル上に予め設定されているようにすることができる(請求項4)。このようにすることにより、補正制御の簡略化・効率化を図り得る。   In this case, the fan operation control means is configured to control the operation of the blower fan based on the relationship table between the target rotational speed and the control fan current value in a state before the flow path resistance is increased, and the above-described addition correction The correction value to be set can be set in advance on the relationship table in relation to the target rotational speed (claim 4). By doing so, it is possible to simplify and improve the correction control.

以上、説明したように、請求項1〜請求項4のいずれかの燃焼装置によれば、第1燃焼部の側に流路抵抗の増大変化が生じていないにも拘わらず、第2燃焼部での流路抵抗増大に起因して第1燃焼部に流路抵抗の増大変化が生じているとの誤判定が生じてしまうおそれを確実に防止することができ、かかる誤判定に基づき送風ファンの作動量に過大かつ無用な補正が実行されてしまうことを確実に回避することができる。   As described above, according to the combustion apparatus of any one of claims 1 to 4, the second combustion section is in spite of no increase in flow path resistance occurring on the first combustion section side. Therefore, it is possible to reliably prevent an erroneous determination that an increase in the flow resistance has occurred in the first combustion section due to an increase in the flow resistance in the air blow fan. It is possible to reliably avoid the excessive and unnecessary correction of the operation amount.

特に、請求項2によれば、第1燃焼部の側に影響を与える場合に限り、第2燃焼部での流路抵抗増大に基づく補正を行わせるようにすることができる。   In particular, according to the second aspect, correction based on the increase in flow path resistance in the second combustion section can be performed only when the first combustion section side is affected.

又、請求項3によれば、上乗せ補正した後のファン電流値が上記ファン作動制御手段により基本制御されるファン電流値に相当することになるように設定することにより、確実に第2燃焼部の側の流路抵抗の増大に起因する誤判定を防止しつつ、第1燃焼部の単独燃焼時における送風ファンの作動制御を確実なものとすることができる。   According to the third aspect of the present invention, by setting the fan current value after the addition correction to be equivalent to the fan current value that is basically controlled by the fan operation control means, the second combustion section is surely established. The operation control of the blower fan at the time of the single combustion of the first combustion unit can be ensured while preventing erroneous determination due to the increase in the flow path resistance on the side of the first combustion part.

この場合、請求項4によれば、目標回転数と制御用ファン電流値との関係テーブル上に上乗せ補正する補正値を目標回転数との関係において予め設定することにより、補正制御の簡略化・効率化を図ることができるようになる。   In this case, according to the fourth aspect, the correction value to be added and corrected on the relationship table between the target rotational speed and the control fan current value is set in advance in relation to the target rotational speed, thereby simplifying the correction control. Efficiency can be improved.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る燃焼装置を示す。この燃焼装置は、互いに独立燃焼可能な2つの燃焼部として給湯機能を実現するための給湯用燃焼部及び温水循環式暖房機能を実現するための暖房用燃焼部を備え、かつ、燃焼排気ガスから潜熱回収を行うことにより高効率化を図る潜熱回収型のものを例示している。なお、本発明を実施する上では、少なくとも、互いに独立燃焼可能な2つの燃焼部を備えたものであれば適用することができ、給湯用及びふろ追い焚き用の2つの燃焼部を備えたものでもよいし、又、潜熱回収型である必要もない。   FIG. 1 shows a combustion apparatus according to an embodiment of the present invention. This combustion apparatus includes a hot water supply combustion unit for realizing a hot water supply function and two heating combustion units for realizing a hot water circulation heating function as two combustion units capable of independent combustion, and from combustion exhaust gas. An example of a latent heat recovery type that achieves high efficiency by performing latent heat recovery is shown. In carrying out the present invention, at least two combustion parts capable of independent combustion can be applied, and those having two combustion parts for hot water supply and bathing. However, it is not necessary to be a latent heat recovery type.

同図において、符号2は給湯機能を実現するための給湯回路、3は温水循環式暖房機能を実現するための暖房回路、4は燃焼熱により熱交換加熱するための缶体、5は燃料ガスを供給する燃料供給系、6は燃焼用空気を供給する空気供給源としての送風ファン、7は上記の給湯回路2,暖房回路3,燃料供給系5や送風ファン6等の作動制御を行うコントローラである。上記缶体4は、給湯用缶体部41及び暖房用缶体部42の互いに区画された2つの部分を備え、これら両缶体部41,42は上流側(図1の下端側)が共に送風ファン6からの燃焼用空気の供給を受けるように開口し、下流側(上端側)が潜熱回収後の燃焼排気ガスを外部に排出するための集合排気筒43により合流し、これらの上下流間が仕切られて区画されている。   In the figure, reference numeral 2 is a hot water supply circuit for realizing a hot water supply function, 3 is a heating circuit for realizing a hot water circulation heating function, 4 is a can body for heat exchange heating by combustion heat, and 5 is a fuel gas. , A blower fan as an air supply source for supplying combustion air, and a controller for controlling the operation of the hot water supply circuit 2, the heating circuit 3, the fuel supply system 5, the blower fan 6, and the like. It is. The can body 4 includes two portions of a hot water supply can body portion 41 and a heating can body portion 42 which are separated from each other, and both the can body portions 41 and 42 are both upstream (lower end side in FIG. 1). Opened to receive the supply of combustion air from the blower fan 6, the downstream side (upper end side) is joined by the collective exhaust cylinder 43 for discharging the combustion exhaust gas after the recovery of latent heat to the outside, and these upstream and downstream The space is partitioned.

上記給湯回路2は、給湯用燃焼部としての給湯用燃焼バーナ21と、この燃焼バーナ21の燃焼熱により入水を熱交換加熱する給湯用一次熱交換器22と、燃焼排気ガスから潜熱を回収する給湯用二次熱交換器23と、上記給湯用一次熱交換器22及び二次熱交換器23に水道水等を入水させる入水路24と、これら熱交換器22,23で加熱された後の湯を出湯させる出湯路25とを備えている。上記の給湯用燃焼バーナ21、給湯用一次熱交換器22及び給湯用二次熱交換器23が給湯用缶体部41内に配設されている。   The hot water supply circuit 2 collects latent heat from combustion exhaust gas, a hot water supply combustion burner 21 as a hot water supply combustion section, a hot water supply primary heat exchanger 22 that heats and heats incoming water by the combustion heat of the combustion burner 21, and combustion exhaust gas. A secondary heat exchanger for hot water supply 23, a water inlet primary heat exchanger 22 and a water inlet passage 24 for allowing tap water to enter the secondary heat exchanger 23, and after being heated by these heat exchangers 22, 23 A hot water outlet 25 for hot water is provided. The hot water supply combustion burner 21, the hot water supply primary heat exchanger 22 and the hot water supply secondary heat exchanger 23 are disposed in the hot water supply can body 41.

そして、燃焼装置のケース1の給水接続口11に給水された水道水などの水が上記入水路24を通して入水され、この入水がまず二次熱交換器23で予熱され、さらに給湯用一次熱交換器22を通過する間に上記の放射熱等の燃焼熱により熱交換加熱され、所定温度まで昇温されて出湯路25に出湯された湯が出湯接続口12から給湯配管13を通して台所や浴室の給湯栓131等などの所定の給湯箇所に給湯されるようになっている。なお、図例では給湯栓131として1つのみ図示しているが、通常は台所、洗面台、浴室等にそれぞれ配設されて複数ある。   Then, water such as tap water supplied to the water supply connection port 11 of the case 1 of the combustion apparatus is introduced through the inlet channel 24, and this incoming water is first preheated by the secondary heat exchanger 23, and further primary heat exchange for hot water supply. While passing through the vessel 22, the heat exchanged and heated by the combustion heat such as the radiant heat described above, the hot water heated up to a predetermined temperature and discharged into the hot water outlet 25 through the hot water connection port 12 through the hot water supply pipe 13 in the kitchen or bathroom. Hot water is supplied to a predetermined hot water supply location such as a hot water tap 131. In the illustrated example, only one hot-water tap 131 is shown, but there are usually a plurality of hot water taps 131 disposed in a kitchen, a washbasin, a bathroom, and the like.

給湯回路2での給湯制御は、上記コントローラ7において、リモコン71等による設定給湯温度の入力設定や、入水流量、入水温度及び出湯温度等の各検出値に基づいて、上記給湯栓131への給湯温度が上記設定給湯温度になるように実行される。   The hot water supply control in the hot water supply circuit 2 is performed by the controller 7 based on the input setting of the hot water supply temperature set by the remote controller 71 and the detected values such as the incoming water flow rate, the incoming water temperature and the outgoing hot water temperature. It is executed so that the temperature becomes the set hot water supply temperature.

上記暖房回路3は、暖房用燃焼部としての暖房用燃焼バーナ31と、この燃焼バーナ31の燃焼熱により循環温水を熱交換加熱する暖房用一次熱交換器32と、燃焼排気ガスから潜熱を回収する暖房用二次熱交換器33と、これら熱交換器32,33を通る暖房用温水循環路34とを備えて構成されている。上記の暖房用燃焼バーナ31、暖房用一次熱交換器32及び暖房用二次熱交換器33が暖房用缶体部42内に配設されている。   The heating circuit 3 includes a heating combustion burner 31 as a heating combustion section, a heating primary heat exchanger 32 that heats and heats circulating hot water using the combustion heat of the combustion burner 31, and recovers latent heat from the combustion exhaust gas. The heating secondary heat exchanger 33 and the heating hot water circulation path 34 passing through the heat exchangers 32 and 33 are configured. The heating combustion burner 31, the heating primary heat exchanger 32, and the heating secondary heat exchanger 33 are disposed in the heating can body portion 42.

なお、上記の一次熱交換器22,32は例えばフィンアンドチューブ式の熱交換器により構成され、二次熱交換器23,33は例えば多板式もしくは多管式等の熱交換器により構成されている。これら一次熱交換器22,32や二次熱交換器23,33の隙間が、給湯用缶体部41や暖房用缶体部42の上下流間に延びて空気や燃焼排気ガスの通路となる給排気流路を構成している。   The primary heat exchangers 22 and 32 are composed of, for example, fin-and-tube heat exchangers, and the secondary heat exchangers 23 and 33 are composed of, for example, a multi-plate or multi-tube heat exchanger. Yes. The gaps between the primary heat exchangers 22 and 32 and the secondary heat exchangers 23 and 33 extend between the upstream and downstream sides of the hot water can body 41 and the heating can body 42 to serve as a passage for air and combustion exhaust gas. A supply / exhaust flow path is configured.

上記温水循環路34は、膨張タンク35に戻されて貯留される低温水を暖房用循環ポンプ36の作動により上記暖房用の二次熱交換器33の入口に送る加熱戻り路341と、二次熱交換器33において燃焼排気ガスの潜熱回収により予熱した後に一次熱交換器32において暖房用燃焼バーナ31の燃焼熱により熱交換加熱した高温水(例えば80℃)を高温往き接続口14に供給する高温往き路342と、上記循環ポンプ36の下流側位置の加熱戻り路341から分岐して低温水(例えば60℃)を低温往き接続口15に供給する低温往き路343と、上記高温往き路342から分岐して膨張タンク35に高温水を戻すバイパス路344と、暖房端末16,17から戻りヘッダー18を経て戻された低温の戻り温水を膨張タンク35に戻す戻り路345とを備えている。   The hot water circulation path 34 includes a heating return path 341 that sends low temperature water returned to the expansion tank 35 and stored to the inlet of the heating secondary heat exchanger 33 by the operation of the heating circulation pump 36, and a secondary High temperature water (for example, 80 ° C.) that has been preheated by the latent heat recovery of the combustion exhaust gas in the heat exchanger 33 and then heat exchange heated by the combustion heat of the combustion burner 31 for heating in the primary heat exchanger 32 is supplied to the high temperature forward connection port 14. A high-temperature forward path 342, a low-temperature forward path 343 that branches from the heating return path 341 downstream of the circulation pump 36 and supplies low-temperature water (for example, 60 ° C.) to the low-temperature forward connection port 15, and the high-temperature forward path 342 And a bypass passage 344 for returning the high temperature water to the expansion tank 35 and returning the low temperature return hot water returned from the heating terminals 16 and 17 via the return header 18 to the expansion tank 35. And a road 345.

なお、本発明の適用において重要な点は給湯用缶体部41とは別に独立燃焼可能な暖房用缶体部42の存在であり、温水循環路34の配置や接続構造がどうなっているかは問わない。例えば、上記の戻りヘッダー18に戻された低温の戻り温水を先に二次熱交換器33に供給して燃焼排気ガスの潜熱回収により予熱した後に膨張タンク35に戻すようにしてもよく、この場合には、膨張タンク35からの低温水を加熱のために一次熱交換器32に供給して高温水まで熱交換加熱するようにすればよい。   An important point in the application of the present invention is the presence of the heating can body portion 42 that can be independently burned apart from the hot water supply can body portion 41, and what is the arrangement and connection structure of the hot water circulation path 34? It doesn't matter. For example, the low-temperature return warm water returned to the return header 18 may be supplied to the secondary heat exchanger 33 first and preheated by recovering the latent heat of the combustion exhaust gas, and then returned to the expansion tank 35. In that case, low temperature water from the expansion tank 35 may be supplied to the primary heat exchanger 32 for heating to heat and heat the high temperature water.

そして、上記暖房用燃焼バーナ31には燃焼火炎の温度を検出する火炎温度検出手段としてのバーナセンサ37が設置され、このバーナセンサ37により検出される火炎温度がコントローラ7に出力されるようになっている。   The heating combustion burner 31 is provided with a burner sensor 37 as a flame temperature detecting means for detecting the temperature of the combustion flame, and the flame temperature detected by the burner sensor 37 is output to the controller 7. ing.

なお、ケース1内には図示省略の排気ガスドレン処理回路が設置され、この排気ガスドレン処理回路は、上記の給湯用二次熱交換器23や暖房用二次熱交換器33において燃焼排気ガスが潜熱回収のための熱交換により冷やされて凝縮することにより生じた排気ガスドレンを中和処理した上で排水するようになっている。   An exhaust gas drain processing circuit (not shown) is installed in the case 1, and this exhaust gas drain processing circuit is configured so that the combustion exhaust gas in the secondary heat exchanger for hot water supply 23 and the secondary heat exchanger for heating 33 has latent heat. The exhaust gas drain generated by cooling and condensing by heat exchange for recovery is neutralized and then drained.

上記燃料供給系5は、燃料ガス供給管51と、この燃料ガス供給管51に介装された電磁比例弁52と、この電磁比例弁52の下流側位置の燃料ガス供給管51で分岐して上記給湯用燃焼バーナ21及び後述の暖房用燃焼バーナ31にそれぞれ開閉弁53,54を介して個別に燃料ガスを供給する分岐供給管55,56とを備えている。   The fuel supply system 5 is branched by a fuel gas supply pipe 51, an electromagnetic proportional valve 52 interposed in the fuel gas supply pipe 51, and a fuel gas supply pipe 51 at a downstream position of the electromagnetic proportional valve 52. Branch supply pipes 55 and 56 are provided for supplying fuel gas individually to the hot water combustion burner 21 and a heating combustion burner 31 described later via on-off valves 53 and 54, respectively.

又、缶体4には上記の両缶体部41,42の最上流側位置に1つの送風ファン6が設けられ、この送風ファン6により取り込まれた燃焼用空気が缶体4の下端部から両缶体部41,42の双方に供給され、供給された燃焼用空気を受けて給湯用及び暖房用の各燃焼バーナ21,31が燃焼作動されるようになっている。この際、所定の空燃比と、要求される燃焼量(要求号数)とに基づいて、対応する燃料ガス供給量及び空気供給量の制御値がコントローラ7により割り出され、割り出された燃料ガス供給量になるように電磁比例弁52が作動制御される一方、割り出された空気供給量になるように送風ファン6が作動制御されるようになっている。この送風ファン6の基本作動制御は具体的にはファンモータ61の回転数を制御することにより所定の空気供給量になるようにするものであり、ファンモータ61の回転数制御は回転数とファン電流値とについて予め定められた制御テーブルに基づいて所定の目標回転数になるようにファン電流値を制御することにより行われる。以上の送風ファン6の基本作動制御が後述のファン作動制御手段72(図3参照)によって行われる。   Further, the can body 4 is provided with one blower fan 6 at the uppermost stream side position of both the can body portions 41, 42, and combustion air taken in by the blower fan 6 flows from the lower end portion of the can body 4. The combustion burners 21 and 31 for hot water supply and heating are operated by combustion by receiving the supplied combustion air supplied to both the can bodies 41 and 42. At this time, based on the predetermined air-fuel ratio and the required combustion amount (required number), the corresponding control values of the fuel gas supply amount and the air supply amount are determined by the controller 7, and the determined fuel is determined. The operation of the electromagnetic proportional valve 52 is controlled so as to be the gas supply amount, while the operation of the blower fan 6 is controlled so as to be the determined air supply amount. Specifically, the basic operation control of the blower fan 6 is to control the rotational speed of the fan motor 61 so that a predetermined air supply amount is obtained. The rotational speed control of the fan motor 61 is controlled by the rotational speed and the fan. This is done by controlling the fan current value so as to achieve a predetermined target rotational speed based on a control table predetermined for the current value. The basic operation control of the blower fan 6 is performed by the fan operation control means 72 (see FIG. 3) described later.

送風ファン6からの燃焼用空気の供給を受けて例えば給湯用燃焼バーナ21が燃焼作動されると、その燃焼熱との熱交換により一次熱交換器22内の水が加熱され、一次熱交換器22を通過した燃焼排気ガスが二次熱交換器23に流されてその潜熱が回収され、二次熱交換器23を通過後の燃焼排気ガスが後述の暖房用二次熱交換器33を通過した後の燃焼排気ガスと共に集合排気筒43から外部に放出されるようになっている。又、同様に、送風ファン6からの燃焼用空気の供給を受けて暖房用燃焼バーナ31が燃焼作動されると、その燃焼熱との熱交換により一次熱交換器32内の低温水が加熱され、一次熱交換器32を通過した燃焼排気ガスが二次熱交換器33に流されてその潜熱が回収され、二次熱交換器33を通過した後の燃焼排気ガスが集合排気筒43から外部に放出されるようになっている。   When the combustion air burner 21 is supplied with combustion air from the blower fan 6 and the combustion operation is performed, for example, the water in the primary heat exchanger 22 is heated by heat exchange with the combustion heat, and the primary heat exchanger is heated. The combustion exhaust gas that has passed through 22 is flowed to the secondary heat exchanger 23 to recover its latent heat, and the combustion exhaust gas that has passed through the secondary heat exchanger 23 passes through a heating secondary heat exchanger 33 described later. The exhaust gas is discharged from the collective exhaust tube 43 together with the combustion exhaust gas after the operation. Similarly, when the heating combustion burner 31 is combusted by receiving supply of combustion air from the blower fan 6, the low-temperature water in the primary heat exchanger 32 is heated by heat exchange with the combustion heat. The combustion exhaust gas that has passed through the primary heat exchanger 32 is caused to flow to the secondary heat exchanger 33 to recover the latent heat, and the combustion exhaust gas that has passed through the secondary heat exchanger 33 is discharged from the collective exhaust tube 43 to the outside. To be released.

このような給湯用缶体部41や暖房用缶体部42を通して集合排気筒43から放出される燃焼排気ガスの流れは最上流の送風ファン6からの空気の供給圧に基づいてもたらされるものであり、各缶体部41,42内の一次熱交換器22,32や、二次熱交換器23,33の燃焼ガスや燃焼排気ガスの流路となる隙間が付着物の堆積等により狭くなると、流路抵抗が増大し、この流路抵抗の増大を受けて送風ファン6を同じ回転数に維持しようとしてもファン電流値が低下傾向となる。従って、送風ファン6の回転数検出値と、ファン電流値との関係を見ることで、流路抵抗の増減変化度合について自己診断処理を行わせることが可能となる。   The flow of the combustion exhaust gas discharged from the collective exhaust cylinder 43 through the hot water supply can body 41 and the heating can body 42 is brought about based on the supply pressure of air from the most upstream blower fan 6. Yes, when the gaps between the primary heat exchangers 22 and 32 and the secondary heat exchangers 23 and 33 in the can bodies 41 and 42 and the flow paths of the combustion gas and the combustion exhaust gas become narrow due to the accumulation of deposits, etc. The flow resistance increases, and the fan current value tends to decrease even if an attempt is made to maintain the blower fan 6 at the same rotational speed in response to the increase of the flow resistance. Therefore, by observing the relationship between the rotational speed detection value of the blower fan 6 and the fan current value, it is possible to perform a self-diagnosis process on the degree of increase / decrease change in the channel resistance.

又、燃焼用空気や燃焼排気ガスが流れる給排気容積は給湯用缶体部41の方が暖房用缶体部42よりもかなり大きく設定されている。このため、暖房用燃焼バーナ31のみを燃焼作動させるために送風ファン6が作動された場合であっても、その送風ファン6からの空気供給量の内のかなりの部分は給湯用缶体部41の側に流れることになり、給湯用缶体部41の側の流路抵抗の増大が送風ファン6の回転に対し支配的に影響を与えることになる。このため、後述のファン補正制御手段73において、給湯用缶体部41の側(以下、単に「給湯側」という)の流路抵抗に関する自己診断を上記の送風ファン6の回転数検出値と、そのときのファン電流値の検出値との関係を見ることで行うようにしている。   The supply / exhaust volume through which combustion air and combustion exhaust gas flow is set to be considerably larger in the hot water supply can body portion 41 than in the heating can body portion 42. For this reason, even if the blower fan 6 is operated to burn only the heating combustion burner 31, a considerable portion of the air supply amount from the blower fan 6 is a hot water supply can body 41. The increase in flow path resistance on the hot water supply can body portion 41 side has a dominant influence on the rotation of the blower fan 6. For this reason, in the fan correction control means 73 to be described later, the self-diagnosis regarding the flow path resistance on the hot water supply can body 41 side (hereinafter simply referred to as “hot water supply side”) This is done by looking at the relationship with the detected value of the fan current value at that time.

一方、暖房用缶体部42の側(以下、単に「暖房側」という)の流路抵抗の増大が上記の如く送風ファン6の回転の如何に対しさほど大きく表れることもないため、暖房側ではバーナセンサ37により検出される火炎温度に基づいて暖房側での流路抵抗の増大度合を自己診断するようにしている。すなわち、暖房側での流路抵抗の増大により空気供給量が低減すると空燃比が燃料リッチの側に変化して燃焼火炎の先端が萎んでくることになり、バーナセンサ37での検出火炎温度も高温側に変化することになる。例えば図2に示すようにバーナセンサ37で燃焼火炎8の先端側位置の温度を検出している場合に、上記の流路抵抗が増大すると燃焼火炎8が8a,8b,8cで示すように順次変化してバーナセンサ37の検出温度がより高温側に変化することになる。このため、バーナセンサ37による燃焼火炎の温度検出値の高温側変化を見ることで、流路抵抗の増大変化度合について自己診断処理を行わせることが可能になる。   On the other hand, an increase in flow path resistance on the heating can body portion 42 side (hereinafter simply referred to as “heating side”) does not appear so greatly as the rotation of the blower fan 6 as described above. Based on the flame temperature detected by the burner sensor 37, the degree of increase in flow path resistance on the heating side is self-diagnosed. That is, if the air supply amount decreases due to an increase in flow path resistance on the heating side, the air-fuel ratio changes to the fuel rich side and the tip of the combustion flame is deflated, and the flame temperature detected by the burner sensor 37 is also It will change to the high temperature side. For example, as shown in FIG. 2, when the temperature at the front end side of the combustion flame 8 is detected by the burner sensor 37, if the flow path resistance increases, the combustion flame 8 is sequentially changed as indicated by 8a, 8b, 8c. It changes and the detection temperature of the burner sensor 37 changes to a higher temperature side. For this reason, it is possible to perform a self-diagnosis process on the degree of increase in flow path resistance by looking at the high temperature side change of the temperature value detected by the burner sensor 37.

上記コントローラ7は、図3に示すように送風ファン6を設定空燃比と要求号数とに基づき上述の基本作動制御を行うファン作動制御手段72と、このファン作動制御手段72による基本作動制御による制御量に対し上記の流路抵抗に関する自己診断に基づき補正を加えるファン補正制御手段73と、予め設定されて登録された関係テーブル74とを備えている。このファン補正制御手段73は、給湯側では回転数検出手段62により検出される送風ファン6の回転数と、ファン電流値検出手段63により検出されるファン電流値とに基づく自己診断により給湯用燃焼バーナ21が燃焼作動された場合の送風ファン6の基本作動制御量に対し補正を加える一方、暖房側ではバーナセンサ37により検出される火炎温度に基づく自己診断により暖房用燃焼バーナ31が燃焼作動された場合の送風ファン6の基本作動制御量に対し補正を加えるようになっている。これらによって、流路抵抗が増大変化しても燃焼バーナ21,31の燃焼状態を所定の空燃比に維持するようになっている。   As shown in FIG. 3, the controller 7 performs fan operation control means 72 that performs the above-described basic operation control of the blower fan 6 based on the set air-fuel ratio and the required number, and basic operation control by the fan operation control means 72. Fan correction control means 73 for correcting the control amount based on the self-diagnosis relating to the flow path resistance described above, and a relationship table 74 registered in advance are provided. The fan correction control means 73 performs hot water combustion by self-diagnosis based on the rotation speed of the blower fan 6 detected by the rotation speed detection means 62 and the fan current value detected by the fan current value detection means 63 on the hot water supply side. While correcting the basic operation control amount of the blower fan 6 when the burner 21 is burned, the heating combustion burner 31 is burned by self-diagnosis based on the flame temperature detected by the burner sensor 37 on the heating side. In this case, the basic operation control amount of the blower fan 6 is corrected. As a result, the combustion state of the combustion burners 21 and 31 is maintained at a predetermined air-fuel ratio even if the flow path resistance increases and changes.

以下、具体的に説明すると、上記ファン補正制御手段73による補正制御は図4に示すように学習期間中の制御(ステップS1)と、学習期間経過後の制御(ステップS2)とに分けられる。この学習期間とは、燃焼装置を新たに設置してから経年使用に基づく閉塞傾向に起因した流路抵抗増大という事態がまだ生じないと考えられる初期設定期間であって、その設置された状態での燃焼装置の各構成要素の取付位置のばらつきや機器由来のばらつき等を補正して正規の制御状態に設定し直すための期間のことである。つまり、この学習期間において、集合排気筒43からの逆風の流入等の突発的・一時的な原因に基づくものを除いて、自己診断により流路抵抗増大と判定されたときには、それは付着物の堆積等による閉塞傾向に基づくものではなくて例えばバーナセンサ37の取付位置のばらつき、又は、回転数検出手段62やファン電流値検出手段63等のセンサばらつきや読み取りばらつき等のばらつきに起因するものと判断し、これらのばらつきを是正するための補正を加えるようにしている。具体的には、送風ファン6の回転数とファン電流値とについて現実に検出される両値の関係が、予め関係テーブル74として設定された制御上の関係(図5の関係テーブル74におけるFFラインの関係)になるようにファン電流値の読み値(検出値)を変換設定する補正処理を行う。   Specifically, the correction control by the fan correction control means 73 is divided into control during the learning period (step S1) and control after the learning period has elapsed (step S2) as shown in FIG. This learning period is an initial setting period in which it is considered that a situation in which the flow resistance increases due to the blockage tendency based on the use over time after the combustion apparatus is newly installed does not occur. This is a period for correcting the variation in the mounting position of each component of the combustion apparatus, the variation derived from the equipment, etc. and resetting it to the normal control state. That is, during this learning period, when it is determined by the self-diagnosis that the flow resistance is increased, except for those based on sudden or temporary causes such as inflow of back wind from the collective exhaust pipe 43, For example, it is determined not to be based on the blockage tendency due to the above, but due to variations in the mounting position of the burner sensor 37, sensor variations such as the rotational speed detection means 62 or the fan current value detection means 63, and variations in reading, etc. However, corrections are made to correct these variations. Specifically, the relationship between the actually detected values of the rotational speed of the blower fan 6 and the fan current value is a control relationship (FF line in the relationship table 74 of FIG. 5) set in advance as the relationship table 74. The correction processing for converting and setting the reading value (detection value) of the fan current value is performed so that

そして、学習期間経過後の制御(ステップS2)においては、自己診断の結果、流路抵抗が増大していると判定された場合には、それは燃焼用空気や燃焼排気ガスの通路が閉塞傾向となって真に流路抵抗が増大していると判断して、それに対抗して所定の空気供給量が供給されるようにファン電流値を補正する。この際、暖房側の流路抵抗増大量が所定以上であれば、給湯用燃焼バーナ21が燃焼作動される場合にその暖房側の流路抵抗増大による給湯側の自己診断への影響を除去して給湯側の自己診断を適正に行わせるために、ファン電流値計測時の読み値に対し所定量上乗せ補正し、この上乗せ補正した値のファン電流値を用いて給湯側の自己診断を行わせるようにしている。   In the control after the learning period (step S2), if it is determined as a result of self-diagnosis that the flow path resistance has increased, the passage of combustion air or combustion exhaust gas tends to be blocked. Thus, it is determined that the flow path resistance is truly increased, and the fan current value is corrected so that a predetermined air supply amount is supplied against the increase. At this time, if the amount of increase in flow path resistance on the heating side is equal to or greater than a predetermined value, the influence on the self-diagnosis on the hot water supply side due to the increase in flow path resistance on the heating side is eliminated when the hot water combustion burner 21 is in a combustion operation. In order to properly perform the self-diagnosis on the hot water supply side, the reading value at the time of measuring the fan current value is corrected by adding a predetermined amount, and the self-diagnosis on the hot water supply side is performed using the fan current value of this additional correction value. I am doing so.

より詳細に説明すると、学習期間中の制御(ステップS1)では、給湯側では給湯用燃焼バーナ21の燃焼作動時に送風ファン6の基本制御部による制御下におけるファン電流値と回転数を取り込み、両者の関係が関係テーブル74における図5のFFライン上に乗ることになるようにファン電流値の読み値を補正する。上記のFFラインは、機器の読み取りバラツキ等のバラツキが無ければ、あるファン電流値を流せば所定のフィードフォワード制御(FF制御)に基づく回転数になるように予め設定されたファン電流値と回転数との関係である。この学習期間中の制御(ステップS1)が終了すれば、給湯側では流路を閉塞させる付着物等の発生に起因する継続的な流路抵抗増大や、逆風の流入等の一時的・突発的な流路抵抗増大を含む流路抵抗の増大が生じない限りは、ファン電流値と回転数との関係は図5のFFラインにより規定される関係となる。例えば図5において回転数がNであれば、その時のファン電流値はAとなる。 More specifically, in the control during the learning period (step S1), the hot water supply side takes in the fan current value and the rotational speed under the control of the basic control unit of the blower fan 6 during the combustion operation of the hot water supply combustion burner 21, and both Is corrected to be on the FF line of FIG. 5 in the relationship table 74. If there is no variation such as device reading variation, the above FF line rotates with a fan current value set in advance so that if a certain fan current value is passed, the rotation speed is based on a predetermined feedforward control (FF control). It is a relationship with numbers. When the control during the learning period (step S1) is completed, on the hot water supply side, the flow resistance is continuously increased due to the occurrence of deposits and the like that block the flow path, and the air flow is temporarily or suddenly increased. As long as there is no increase in flow path resistance including an increase in flow path resistance, the relationship between the fan current value and the rotational speed is a relationship defined by the FF line in FIG. If speed is a N 1 in FIG. 5, for example, fan current value at that time becomes A 1.

一方、暖房側では、暖房用燃焼バーナ31の燃焼作動時にバーナセンサ37から火炎温度を検出し、火炎温度が所定温度範囲(例えば650℃未満の範囲)になるように送風ファン6の回転数を増大補正する。具体的には、バーナセンサ37による名検出火炎温度が例えば300℃〜650℃未満であれば正常であるため補正しないものの、650℃を超えていれば、650℃未満の範囲になるように送風ファン6の回転数を増大させる。このような回転数増大補正を実行したときには増大補正カウンタを1回分積算する。かかる回転数増大補正は、燃焼作動が停止されれば、キャンセルしてリセットする。逆風の流入等の一時的・突発的な流路抵抗増大の発生を考慮して補正するものであり、これを通常補正と呼ぶ。そして、再度、暖房用燃焼バーナ31が燃焼作動された際にも回転数増大補正が実行されると、増大補正カウンタにさらに1回分積算され、これらが繰り返されて増大補正カウンタのカウンタ値が所定の上限値(例えば10回)に到達すれば、所定の単位補正量(例えば1%)の回転数増大補正を加える。この回転数増大補正はその回の燃焼作動が停止されてもキャンセルされずに、次回からの燃焼作動の際には送風ファン6がその回転数増大補正が初期から加味された状態で作動開始されるようになっており、この意味でかかる回転数増大補正を初期補正と呼ぶ。さらに、1回分(1%)の初期補正が燃焼作動初期から加味された状態で送風ファン6が作動されたとしても、再度、増大補正カウンタが上限値までカウントされると、さらに1回分の初期補正が加えられ、この繰り返しが最大初期補正量α%(例えば4%)に到達するまで実行される。以上で、主としてバーナセンサ37の取付位置についてのばらつき及びその他のばらつきが除去された状態となる。   On the other hand, on the heating side, the flame temperature is detected from the burner sensor 37 during the combustion operation of the heating combustion burner 31, and the rotational speed of the blower fan 6 is adjusted so that the flame temperature falls within a predetermined temperature range (for example, a range less than 650 ° C.). Increase correction. Specifically, if the name detection flame temperature by the burner sensor 37 is, for example, 300 ° C. to less than 650 ° C., it is normal and is not corrected, but if it exceeds 650 ° C., the air is blown so that it falls within the range of 650 ° C. The rotational speed of the fan 6 is increased. When such rotation speed increase correction is executed, an increase correction counter is integrated for one time. The rotation speed increase correction is canceled and reset when the combustion operation is stopped. The correction is made in consideration of the temporary and sudden flow resistance increase such as inflow of the reverse wind, and this is called normal correction. When the rotation speed increase correction is executed again even when the heating combustion burner 31 is combusted, the increase correction counter is accumulated once more, and these are repeated to set the count value of the increase correction counter to a predetermined value. When the upper limit value (for example, 10 times) is reached, a rotational speed increase correction of a predetermined unit correction amount (for example, 1%) is added. This rotational speed increase correction is not canceled even if the combustion operation of that time is stopped, and in the next combustion operation, the blower fan 6 starts to operate with the rotational speed increase correction taken into account from the beginning. In this sense, this rotational speed increase correction is called initial correction. Further, even if the blower fan 6 is operated in a state where the initial correction for one time (1%) is taken into consideration from the initial stage of the combustion operation, if the increase correction counter is counted again to the upper limit value, the initial value for one more time is added. Correction is applied, and this repetition is executed until the maximum initial correction amount α% (for example, 4%) is reached. As described above, mainly the variation in the mounting position of the burner sensor 37 and other variations are removed.

なお、最大初期補正量α%を超える初期補正が要求される場合、つまりα%の初期補正を加味した状態で燃焼作動させるとなおも増大補正カウンタが上限値までカウントされるまで増大補正が要求される場合には、これまでと同様の1回分の増大補正を加えるものの、それは通常補正として扱い、燃焼停止されればそのα%を超える分の増大補正はキャンセルされるようにする。   When initial correction exceeding the maximum initial correction amount α% is required, that is, when the combustion operation is performed with the initial correction of α% taken into account, increase correction is required until the increase correction counter is counted to the upper limit value. In this case, the same increase correction as before is added, but it is treated as a normal correction, and if the combustion is stopped, the increase correction exceeding the α% is canceled.

次に、学習期間経過後の制御(ステップS2)においては、給湯燃焼バーナ21が燃焼作動される場合には給湯側の自己診断を送風ファン6のファン電流値の読み値に基づき行う一方、暖房用燃焼バーナ31が燃焼作動される場合には暖房側の自己診断をバーナセンサ37による検出火炎温度に基づき行う。そして、その自己診断結果に基づいて流路抵抗増大と判定されると、それは実際に付着物の堆積等に起因した閉塞傾向が発生したものと判断して増大補正を実施する。   Next, in the control after the learning period has elapsed (step S2), when the hot water supply combustion burner 21 is combusted, self-diagnosis on the hot water supply side is performed based on the reading of the fan current value of the blower fan 6, while heating When the combustion burner 31 is burned, the heating side self-diagnosis is performed based on the flame temperature detected by the burner sensor 37. Then, if it is determined that the flow path resistance is increased based on the self-diagnosis result, it is determined that a tendency of clogging due to deposits or the like has actually occurred, and the increase correction is performed.

すなわち、給湯側では、給湯燃焼バーナ21の燃焼作動時に送風ファン6のファン電流値の読み値が、そのときの基本制御部による目標回転数に対応するファン電流値(図5のFFライン上のファン電流値)よりも低下することになれば、流路抵抗が増大変化していると判定し、その低下が図5の不感帯ラインを超えてより低い側に入るときには目標回転数を所定量増大補正する。図5において、流路抵抗の増大(閉塞傾向の発生)がない状態では目標回転数が例えばNであればファン電流値はAとなるところ、流路抵抗が増大した結果、ファン電流値がBよりも低くなれば、回転数の増大補正を行う。つまり、図5の不感帯ラインは増大補正を実行するか否かの判定基準用に予め設定されたものである。そして、暖房側での実際の流路抵抗増大(閉塞傾向度合)が後述の如く設定量に到達すれば、かかる暖房側の流路抵抗増大が給湯側での自己診断に影響を及ぼすことになると判断して、上記の自己診断に用いるファン電流値の読み値として実際の読み値に所定値だけ上乗せ補正した上乗せ後の読み値に置き換えて給湯側の自己診断を行うようにする。 That is, on the hot water supply side, the reading value of the fan current value of the blower fan 6 during the combustion operation of the hot water supply combustion burner 21 is the fan current value (on the FF line in FIG. 5) corresponding to the target rotational speed by the basic control unit at that time. If the current falls below the fan current value), it is determined that the flow path resistance has increased and the target rotational speed is increased by a predetermined amount when the reduction exceeds the dead zone line of FIG. 5 and enters the lower side. to correct. 5, fan current value if the target rotational speed, for example, N 1 in the absence increased flow resistance (occurrence of clogging tendency) is the place to be A 1, the results of flow path resistance is increased, the fan current value There becomes lower than B 1, it performs an increase correction of the rotational speed. That is, the dead zone line in FIG. 5 is set in advance as a criterion for determining whether or not to perform increase correction. If the actual flow path resistance increase (degree of blockage tendency) on the heating side reaches a set amount as will be described later, the increase in flow path resistance on the heating side affects the self-diagnosis on the hot water supply side. Judgment is made and the hot water supply side self-diagnosis is performed by substituting the reading value of the fan current value used for the self-diagnosis with the reading value after adding the actual reading value by a predetermined value and correcting it.

一方、暖房側では、暖房用燃焼バーナ31の燃焼作動の度に、バーナセンサ37の検出火炎温度に基づく自己診断を実施し、学習期間中の制御(ステップS1)と同様に、その検出火炎温度が流路抵抗増大を示す範囲(650℃以上の範囲)になれば通常補正を実行する。加えて、通常補正を実行する度に増大補正カウンタのカウント値を新たにカウントし、そのカウント値が上限値になる度に単位補正分(1回分;例えば1%)の初期補正を加える。そして、この学習期間経過後の初期補正に対しステップS1の学習期間中の初期補正量を加えた積算初期補正量が(α+β)%に到達すれば、給排気容積が給湯用缶体部41に比して小さいとはいえ暖房側の流路抵抗増大に起因して給湯側での誤診断を招くおそれがあるため、上記の暖房側での積算初期補正量が(α+β)%に到達したことをトリガーとして、給湯側での自己診断に用いるファン電流値の読み値に対し所定値の上乗せ補正を実行して誤診断の発生を回避するようにする。上乗せ補正量は図5のFFラインと補正ラインとの差分の電流値である。例えば目標回転数がNのときであれば、そのときのファン電流値の実際の読み値に対し、FFラインのファン電流値Aと補正ラインのファン電流値Cとの差分電流値(A−C)を加えた上乗せ電流値を用いて給湯側での自己診断を行う。つまり、上乗せ電流値が不感帯ラインの電流値Bよりも低ければ、給湯側において流路抵抗増大が発生していると判定して給湯側の燃焼作動時の送風ファン6の回転数を増大補正する。上記の補正ラインは、予め実験により所定の閉塞傾向状況の缶体4を作り出して送風ファン6を作動させた場合に、かかる閉塞傾向状況下であっても、送風ファン6の回転数とファン電流値との関係がFFラインと同等の関係で出力されるような上乗せ補正量を求め、これに基づいて設定したものである。上記の積算初期補正量(α+β)%が特許請求の範囲における「予め設定された増大変化量」のことである。 On the other hand, on the heating side, a self-diagnosis based on the detected flame temperature of the burner sensor 37 is performed every time the combustion burner 31 for heating is burned, and the detected flame temperature is controlled in the same manner as in the control during the learning period (step S1). Is within a range showing an increase in flow path resistance (range of 650 ° C. or higher), normal correction is executed. In addition, every time the normal correction is executed, the count value of the increase correction counter is newly counted, and each time the count value reaches the upper limit value, an initial correction of unit correction (one time; for example, 1%) is added. If the integrated initial correction amount obtained by adding the initial correction amount during the learning period of step S1 to (α + β)% with respect to the initial correction after the learning period has elapsed, the supply / exhaust volume reaches the hot water supply can body 41. Although it is smaller than that, there is a risk of causing a misdiagnosis on the hot water supply side due to an increase in flow path resistance on the heating side, so that the integrated initial correction amount on the heating side has reached (α + β)% Is used as a trigger to add a predetermined value to the reading of the fan current value used for self-diagnosis on the hot water supply side to avoid the occurrence of erroneous diagnosis. The additional correction amount is the current value of the difference between the FF line and the correction line in FIG. For example, if the target rotational speed is N 1 , the difference current value between the fan current value A 1 of the FF line and the fan current value C 1 of the correction line with respect to the actual reading value of the fan current value at that time ( A self-diagnosis is performed on the hot water supply side using the added current value to which A 1 -C 1 ) is added. In other words, plus the current value is lower than the current value B 1 of the dead band line, it is determined that the flow resistance increases occurs rotational speed increase correction of the blower fan 6 during combustion operation of the hot water supply side in the hot water supply side To do. The above correction line indicates that the rotation speed and fan current of the blower fan 6 are generated even when the blower fan 6 is operated by previously producing a can body 4 having a predetermined blockage tendency by experiment. An additional correction amount is obtained such that the relationship with the value is output in a relationship equivalent to that of the FF line, and is set based on this. The integrated initial correction amount (α + β)% is the “preset increase change amount” in the claims.

以上により、給湯用燃焼バーナ21の燃焼作動時における流路抵抗増大に関する自己診断において、暖房側の閉塞傾向の発生に起因して送風ファン6のファン電流値の低下が生じることがあり、このファン電流値の低下が不感帯ラインより低いものであれば、給湯側が実際には補正が必要なほどには流路抵抗の増大変化が生じていなくても、流路抵抗増大に基づく回転数の増大補正が必要と誤診断されるおそれがあるところ、かかる誤診断発生のおそれを防止することができるようになる。   As described above, in the self-diagnosis relating to the increase in flow path resistance during the combustion operation of the hot water supply combustion burner 21, the fan current value of the blower fan 6 may be reduced due to the occurrence of the blockage tendency on the heating side. If the decrease in current value is lower than the dead zone line, even if the increase in flow resistance does not occur to the extent that the hot water supply actually requires correction, the increase in rotation speed is corrected based on the increase in flow resistance. Therefore, it is possible to prevent the possibility of such a misdiagnosis from occurring.

<他の実施形態>
なお、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記実施形態では、学習期間及び学習期間経過後に分けた制御を実施しているが、これに限らず、バーナセンサ37の取付位置バラツキ等のバラツキが無視し得る程度であれば、学習期間中の制御を省略してもよい。この場合には、暖房側の初期補正量が所定量に到達すれば、給湯用燃焼バーナ21の燃焼作動時には実際のファン電流値の読み値に対し所定の上乗せ分だけ補正した後の電流値を用いて給湯側の自己診断を行うようにすればよい。
<Other embodiments>
In addition, this invention is not limited to the said embodiment, Various other embodiments are included. That is, in the above-described embodiment, the learning period and the control divided after the learning period have been performed. However, the present invention is not limited to this, and if the variation such as the mounting position variation of the burner sensor 37 is negligible, the learning period The inside control may be omitted. In this case, if the initial correction amount on the heating side reaches a predetermined amount, the current value after correcting the actual fan current value by a predetermined additional amount during the combustion operation of the hot water combustion burner 21 is corrected. It may be used to perform a self-diagnosis on the hot water supply side.

なお、上記実施形態において説明した初期補正の初期補正量の如何により流路抵抗の増大度合を把握することも可能である。すなわち、初期補正として基本制御量を100%として101〜110%まで1%ずつ増大補正されるとすると、その101〜110%の間での現在の初期補正量と、流路抵抗の増大度合(換言すると流路の閉塞度合もしくは閉塞率)との相対関係が予め実験等することにより定めることが可能となる。例えば、初期補正量101〜110%は、閉塞率60〜80%に対応するというような、初期補正量と給排気通路の閉塞率との関係を予め規定したテーブルを設定し、このテーブルを用いれば初期補正量をパラメータとして現状の閉塞率が如何なるものかの把握を行うことが可能となる。   It should be noted that the degree of increase in the channel resistance can be grasped according to the initial correction amount of the initial correction described in the above embodiment. That is, assuming that the basic control amount is 100% as the initial correction and is increased by 1% from 101 to 110%, the current initial correction amount between 101 to 110% and the increase degree of the channel resistance ( In other words, the relative relationship with the blockage degree or the blockage rate of the flow path can be determined by conducting an experiment or the like in advance. For example, a table preliminarily defining the relationship between the initial correction amount and the blockage rate of the supply / exhaust passage such that the initial correction amount of 101 to 110% corresponds to the blockage rate of 60 to 80% is set, and this table is used. For example, it is possible to grasp what the current blocking rate is using the initial correction amount as a parameter.

本発明の実施形態を示す模式図である。It is a schematic diagram which shows embodiment of this invention. 燃焼火炎とバーナセンサ位置との関係を示す説明図である。It is explanatory drawing which shows the relationship between a combustion flame and a burner sensor position. 送風ファンの制御に係るコントローラのブロック図である。It is a block diagram of the controller which concerns on control of a ventilation fan. ファン補正制御手段での補正制御内容を示すフローチャートである。It is a flowchart which shows the correction control content in a fan correction control means. 送風ファンの回転数とファン電流値との関係を示す関係図である。It is a related figure which shows the relationship between the rotation speed of a ventilation fan, and a fan electric current value.

符号の説明Explanation of symbols

6 送風ファン
21 給湯用燃焼バーナ(第1燃焼部)
31 暖房用燃焼バーナ(第2燃焼部)
37 バーナセンサ(火炎温度検出手段)
61 送風ファンのファンモータ
62 回転数検出手段
63 ファン電流値検出手段
72 ファン作動制御手段
73 ファン補正制御手段
74 関係テーブル
6 Blower fan 21 Hot water combustion burner (first combustion part)
31 Combustion burner for heating (second combustion part)
37 Burner sensor (flame temperature detection means)
61 Fan motor 62 of blower fan Rotational speed detection means 63 Fan current value detection means 72 Fan operation control means 73 Fan correction control means 74 Relationship table

Claims (4)

互いに独立燃焼可能な第1燃焼部及び第2燃焼部と、これら第1燃焼部及び第2燃焼部に対し燃焼用空気を共に供給する1つの送風ファンと、この送風ファンの回転数が目標回転数になるようにファンモータ駆動用のファン電流値を制御するファン作動制御手段と、上記第2燃焼部の燃焼火炎温度を検出する火炎温度検出手段とを備えた燃焼装置であって、
上記各燃焼部において給排気流路の閉塞傾向に起因する所定の流路抵抗の増大変化が生じたときにその増大変化に対抗するよう送風ファンの回転数を補正するファン補正制御手段を備えており、
上記ファン補正制御手段は、上記火炎温度検出手段により第2燃焼部の給排気流路における流路抵抗の増大変化が検知されたとき、第1燃焼部の単独燃焼作動時のファン電流値の検出値に対し上記第2燃焼部側の流路抵抗の増大変化に対応する補正値を上乗せし、上乗せ補正した後のファン電流値に基づいて第1燃焼部における給排気の流路抵抗の増大変化が生じたか否かの判定を行うように構成されている
ことを特徴とする燃焼装置。
A first combustion section and a second combustion section that can be combusted independently of each other, a single blower fan that supplies combustion air to the first and second combustion sections, and the rotational speed of the blower fan is a target rotation. A combustion apparatus comprising fan operation control means for controlling a fan current value for driving a fan motor so as to be a number, and flame temperature detection means for detecting a combustion flame temperature of the second combustion section,
Fan correction control means is provided for correcting the rotational speed of the blower fan so as to counter the increased change of the predetermined flow path resistance caused by the blockage tendency of the supply / exhaust flow path in each combustion section. And
The fan correction control means detects the fan current value during the single combustion operation of the first combustion section when the flame temperature detection means detects an increase in flow resistance in the supply / exhaust flow path of the second combustion section. The correction value corresponding to the increase change of the flow path resistance on the second combustion section side is added to the value, and the increase change of the flow resistance of the supply / exhaust gas in the first combustion section based on the fan current value after the addition correction A combustion apparatus configured to determine whether or not a fuel has occurred.
請求項1に記載の燃焼装置であって、
上記第1燃焼部の単独燃焼作動時のファン電流値の検出値に対し補正値を上乗せする上乗せ補正は、上記第2燃焼部における流路抵抗の増大変化として第1燃焼部の単独燃焼時のファン電流値を低下させる程度の増大変化として予め設定された増大変化量まで到達したことをトリガーとして実行されるように構成されている、燃焼装置。
The combustion device according to claim 1,
The addition correction for adding a correction value to the detected value of the fan current value during the single combustion operation of the first combustion section is an increase change in the flow path resistance in the second combustion section during the single combustion of the first combustion section. A combustion apparatus configured to be triggered by the fact that a preset increase change amount has been reached as an increase change that reduces the fan current value.
請求項1又は請求項2に記載の燃焼装置であって、
上記上乗せ補正する補正値は、上乗せ補正した後のファン電流値が上記ファン作動制御手段により基本作動制御されるファン電流値に相当することになるように設定されている、燃焼装置。
The combustion apparatus according to claim 1 or 2, wherein
The combustion apparatus, wherein the correction value to be corrected for addition is set so that the fan current value after the correction for addition corresponds to a fan current value for which basic operation control is performed by the fan operation control means.
請求項3に記載の燃焼装置であって、
上記ファン作動制御手段は、流路抵抗の増大前の状態での目標回転数と制御用ファン電流値との関係テーブルに基づいて送風ファンの作動制御を行うように構成され、
上記上乗せ補正する補正値は、上記目標回転数との関係において上記関係テーブル上に予め設定されている、燃焼装置。
The combustion apparatus according to claim 3, wherein
The fan operation control means is configured to perform operation control of the blower fan based on a relationship table between the target rotational speed and the control fan current value in a state before the flow path resistance is increased,
The combustion apparatus, wherein the correction value for correcting the addition is preset on the relation table in relation to the target rotational speed.
JP2007105446A 2007-04-13 2007-04-13 Combustion device Expired - Fee Related JP5018200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105446A JP5018200B2 (en) 2007-04-13 2007-04-13 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105446A JP5018200B2 (en) 2007-04-13 2007-04-13 Combustion device

Publications (2)

Publication Number Publication Date
JP2008261579A JP2008261579A (en) 2008-10-30
JP5018200B2 true JP5018200B2 (en) 2012-09-05

Family

ID=39984186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105446A Expired - Fee Related JP5018200B2 (en) 2007-04-13 2007-04-13 Combustion device

Country Status (1)

Country Link
JP (1) JP5018200B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203704A (en) * 2009-03-04 2010-09-16 Rinnai Corp Combustion device
JP5360400B2 (en) * 2009-08-27 2013-12-04 株式会社ノーリツ Combustion control method, combustion apparatus, and hot water apparatus provided with the combustion apparatus
JP2011047605A (en) * 2009-08-28 2011-03-10 Toyotomi Co Ltd Control device of hot air-type heater
JP5366899B2 (en) * 2010-08-03 2013-12-11 リンナイ株式会社 Combustion device
JP5534333B2 (en) * 2010-08-26 2014-06-25 株式会社ノーリツ Combustion device
JP2017150776A (en) * 2016-02-26 2017-08-31 株式会社ノーリツ Control unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3362828B2 (en) * 1996-06-10 2003-01-07 株式会社ノーリツ Fan motor control device
JP3465518B2 (en) * 1997-01-31 2003-11-10 株式会社ノーリツ Fan motor control device
JP4230615B2 (en) * 1999-06-17 2009-02-25 高木産業株式会社 Water heater
JP3701602B2 (en) * 2001-12-03 2005-10-05 リンナイ株式会社 Combustion equipment
JP4077370B2 (en) * 2003-06-12 2008-04-16 高木産業株式会社 Combustion device supply / exhaust detection method, combustion control method, and combustion control device

Also Published As

Publication number Publication date
JP2008261579A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4253006B2 (en) Circulating water heater
US9291364B2 (en) Combustion apparatus
JP5018200B2 (en) Combustion device
JP4924918B2 (en) Water heater
JP5370807B2 (en) Latent heat recovery water heater
EP2299183B1 (en) Water heating apparatus
JP6281357B2 (en) Water heater
JP5708975B2 (en) Water heater
JP6667365B2 (en) Water heater
JP2019095160A (en) Water heater
KR20140060773A (en) Boiler for heating and hot-water supply
JP7455352B2 (en) Water heater
JP2007024495A (en) Combustion equipment
JP5796772B2 (en) Hot water system
JP4679873B2 (en) Exhaust heat boiler that detects abnormal exhaust gas outlet temperature
JP4710411B2 (en) Water heater
JP2008256271A (en) Forced air supply type combustion device
JP2018013300A (en) Water heater
JP4110665B2 (en) Combustion improvement method for combined combustion equipment
JP2018048782A (en) Hot water supply system
JP4867274B2 (en) Water heater
JP7335586B2 (en) Water heater
JP7040750B2 (en) Water heater
JP4750756B2 (en) Water heater
JP6660722B2 (en) Bath water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees