JP2017150776A - Control unit - Google Patents

Control unit Download PDF

Info

Publication number
JP2017150776A
JP2017150776A JP2016035212A JP2016035212A JP2017150776A JP 2017150776 A JP2017150776 A JP 2017150776A JP 2016035212 A JP2016035212 A JP 2016035212A JP 2016035212 A JP2016035212 A JP 2016035212A JP 2017150776 A JP2017150776 A JP 2017150776A
Authority
JP
Japan
Prior art keywords
drive current
temperature
fan motor
current detection
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016035212A
Other languages
Japanese (ja)
Inventor
長谷川 敏明
Toshiaki Hasegawa
敏明 長谷川
智也 ▲崎▼石
智也 ▲崎▼石
Tomoya Sakiishi
崇 八島
Takashi Yashima
崇 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2016035212A priority Critical patent/JP2017150776A/en
Publication of JP2017150776A publication Critical patent/JP2017150776A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To detect fan motor driving current precisely even if temperature changes by correcting detection error of fan motor driving current detection level caused by temperature, and to control the drive of the fan motor precisely.SOLUTION: Pulse signal of duty ratio following driving current is generated by comparing voltage following driving current of a fan motor M with triangular wave voltage, and the pulse signal is input to a microcomputer 11. The microcomputer 11 calculates a driving current detection level based on the duty ratio of the pulse signal, and calculates ambient temperature of a triangular wave generation circuit 15 based on pulse period of signal, and corrects driving current detection level based on the ambient temperature.SELECTED DRAWING: Figure 1

Description

本発明は、燃焼機器などに搭載されたファンモータの駆動電流を検出して、駆動電流検出値に基づいてファンモータの回転数制御や燃焼機器の給排気通路の閉塞による燃焼動作停止制御等の適宜の動作制御を行う制御装置に関する。   The present invention detects the drive current of a fan motor mounted on a combustion device and the like, and controls the rotation speed of the fan motor based on the detected drive current and the combustion operation stop control by closing the supply / exhaust passage of the combustion device. The present invention relates to a control device that performs appropriate operation control.

強制給排気型の給湯器においては、給排気を強制的に行わせるためのファンが設けられている。該ファンはファンモータにより回転駆動され、ファンモータは制御部によって回転数制御される。   A forced water supply / exhaust water heater is provided with a fan for forcibly supplying and exhausting air. The fan is rotationally driven by a fan motor, and the rotational speed of the fan motor is controlled by a control unit.

給湯器は、要求給湯号数に応じて複数本のバーナにより構成される燃焼部の燃焼面積を増減するとともに、該燃焼部に供給する燃料ガスの量が比例弁によって調整される。ファンモータの回転数は、供給される燃料ガス量に応じた送風量となるよう制御されるが、給排気路の閉塞度により最適な回転数が異なってくるため、従来より、ファンモータの回転数並びに駆動電流を検出して、検出された回転数並びに駆動電流値に基づいて給排気路の閉塞度合を推定して、最適な目標回転数を演算している(例えば、特許文献1参照)。また、給排気通路の閉塞度に応じて、燃焼動作を停止させる制御を行っている(例えば、特許文献2参照)。   The water heater increases / decreases the combustion area of the combustion section composed of a plurality of burners according to the required hot water supply number, and the amount of fuel gas supplied to the combustion section is adjusted by a proportional valve. The rotation speed of the fan motor is controlled so as to be the amount of air blown according to the amount of fuel gas supplied. However, since the optimum rotation speed varies depending on the degree of blockage of the supply / exhaust passage, The number and drive current are detected, the degree of blockage of the supply / exhaust passage is estimated based on the detected rotation speed and drive current value, and the optimum target rotation speed is calculated (for example, refer to Patent Document 1). . Moreover, control which stops combustion operation | movement is performed according to the obstruction | occlusion degree of an air supply / exhaust passage (for example, refer patent document 2).

ファンモータの駆動電流検出値に誤差があると、上記した各種燃焼動作制御を正常に行うことができなくなり、送風量の不足若しくは過剰により燃焼効率が悪化したり、閉塞判定の検出遅れ若しくは実際は正常範囲であるのに排気閉塞であると誤判定する原因となる。   If there is an error in the fan motor drive current detection value, the various combustion operation controls described above cannot be performed normally, combustion efficiency deteriorates due to insufficient or excessive air flow, detection delay in blockage determination, or actually normal. Although it is within the range, it may cause a misjudgment that the exhaust is blocked.

ファンモータ駆動電流の取り込み精度の安定化のため、本願出願人は、特許文献3に示すファンモータの駆動電流検出装置を提案している。この電流検出装置は、ファンモータと直列に接続された抵抗器の両端電圧に基づいてファンモータの駆動電流を検出するものであって、抵抗器の両端電圧を増幅する増幅回路と、三角波電圧を生成する三角波生成回路と、増幅回路の出力電圧と三角波生成回路の出力電圧とを比較してパルス信号を出力するコンパレータ回路と、該コンパレータ回路から出力されるパルス信号に基づいてファンモータの駆動電流を演算するマイコンとを備えている。   In order to stabilize the accuracy of capturing fan motor drive current, the applicant of the present application has proposed a fan motor drive current detection device shown in Patent Document 3. This current detection device detects a drive current of a fan motor based on a voltage across a resistor connected in series with the fan motor. The current detection device includes an amplifier circuit that amplifies the voltage across the resistor, and a triangular wave voltage. A triangular wave generating circuit to be generated, a comparator circuit for comparing the output voltage of the amplifier circuit and the output voltage of the triangular wave generating circuit and outputting a pulse signal, and a drive current of the fan motor based on the pulse signal output from the comparator circuit And a microcomputer for calculating

特開2008−261579号公報JP 2008-261579 A 特開2013−29255号公報JP2013-29255A 特開2001−281273号公報JP 2001-281273 A

上記従来の駆動電流検出装置は、抵抗器、増幅回路及び三角波生成回路がアナログ回路により主構成されており、また、ファンモータの駆動回路もアナログ回路により主構成されているため、安定した燃焼制御を行わせるためには駆動電流値の校正を行う必要があり、従来は、出荷時に、一定回転数でファンモータを駆動させた場合のファンモータ駆動電流のマイコン読み値が一定となるように、駆動電流検出装置により検出される駆動電流検出値に対する校正値(係数)をEEPROMに記憶させている。   In the conventional drive current detection device, the resistor, the amplifier circuit, and the triangular wave generation circuit are mainly configured by an analog circuit, and the drive circuit of the fan motor is also mainly configured by an analog circuit, so that stable combustion control is achieved. It is necessary to calibrate the drive current value in order to perform the operation, and conventionally, at the time of shipment, the microcomputer reading value of the fan motor drive current when driving the fan motor at a constant rotation speed is constant. A calibration value (coefficient) for the drive current detection value detected by the drive current detection device is stored in the EEPROM.

しかし、実使用時の気温変動による駆動電流検出値の検出誤差は考慮されておらず、同一排気閉塞状態であっても気温によって駆動電流検出値にバラツキが生じて、上記校正を行っても排気閉塞側に早切れしたり、逆に排気閉塞の検出遅れが生じていた。   However, the detection error of the drive current detection value due to the temperature fluctuation during actual use is not taken into account, and even if the exhaust is in the same exhaust blockage state, the drive current detection value varies depending on the air temperature. There were premature cuts to the closed side, and conversely, a delay in detection of exhaust blockage occurred.

そこで、本発明は、気温が変動しても正確にファンモータの駆動電流を検出して、ファンモータ駆動電流に基づく各種制御を的確に行えるようにすることを目的とする。   Accordingly, an object of the present invention is to accurately detect a driving current of a fan motor even when the temperature fluctuates, and to perform various controls based on the fan motor driving current accurately.

上記目的を達成するために、本発明は、次の技術的手段を講じた。   In order to achieve the above object, the present invention takes the following technical means.

すなわち、本発明は、ファンモータの駆動電流を検出する駆動電流検出手段を備える制御装置において、前記駆動電流検出手段を構成する所定の回路部位の温度若しくは前記回路部位の周囲温度を検出する温度検出手段と、該温度検出手段により検出される温度に基づいて前記駆動電流検出手段の駆動電流検出値の検出誤差を補正する検出誤差補正手段とをさらに備えていることを特徴とするものである(請求項1)。   That is, according to the present invention, in a control device including a drive current detection unit that detects a drive current of a fan motor, a temperature detection that detects a temperature of a predetermined circuit part constituting the drive current detection unit or an ambient temperature of the circuit part. And a detection error correction unit for correcting a detection error of the drive current detection value of the drive current detection unit based on the temperature detected by the temperature detection unit ( Claim 1).

かかる本発明の制御装置によれば、気温が変動することによって駆動電流検出値に検出誤差が生じても、温度検出手段により検出される温度に基づいて検出誤差を補正することによって駆動電流を精度よく検出でき、駆動電流検出値に基づく各種制御を的確に行うことができる。   According to the control device of the present invention, even if a detection error occurs in the drive current detection value due to the fluctuation of the air temperature, the drive current is accurately corrected by correcting the detection error based on the temperature detected by the temperature detection means. It can be detected well, and various controls based on the detected drive current value can be performed accurately.

なお、本発明の制御装置は、ファンモータの回転数制御を行うファンモータ制御装置として好適に実施できるが、これに限定されるものではなく、ファンモータの駆動電流に基づいて給排気路の閉塞判定を行って、かかる判定結果に基づいて給湯運転の停止等の所定の制御を行う給湯制御装置としても実施可能であり、その他ファンモータの駆動電流に基づく適宜の制御を行う制御装置として実施できる。また、温度検出手段が温度検出する前記回路部位は、特定の回路部品の温度特性が駆動電流検出値の検出誤差に大きな影響を及ぼす場合には当該特定の回路部品であってよく、また、三角波生成回路などの所定の回路全体の温度特性が駆動電流検出値の検出誤差に影響する場合には当該所定の回路全体が前記回路部位であってよい。   The control device of the present invention can be suitably implemented as a fan motor control device that controls the rotational speed of the fan motor, but is not limited to this, and the supply / exhaust passage is blocked based on the drive current of the fan motor. It can also be implemented as a hot water supply control device that performs determination and performs predetermined control such as stopping of the hot water supply operation based on the determination result, and can also be implemented as a control device that performs appropriate control based on the driving current of the fan motor. . In addition, the circuit portion where the temperature is detected by the temperature detecting means may be a specific circuit component when the temperature characteristic of the specific circuit component greatly affects the detection error of the drive current detection value. When the temperature characteristic of the entire predetermined circuit such as the generation circuit affects the detection error of the drive current detection value, the entire predetermined circuit may be the circuit portion.

上記本発明の制御装置において、前記駆動電流検出手段は、ファンモータの駆動電流を電圧に変換して出力する電流−電圧変換回路と、周期的な三角波電圧(本発明においては「のこぎり波電圧」を含むものとする。)を出力する三角波生成回路と、前記電流−電圧変換回路の出力電圧と前記三角波生成回路の出力電圧とを比較して前記電流−電圧変換回路の出力電圧に応じたデューティ比のパルス信号を出力する比較器と、該比較器が出力するパルス信号のデューティ比に基づく演算により前記駆動電流検出値を算出する演算手段とを備えることができる。また、前記三角波生成回路は、温度に応じて静電容量が変化するコンデンサを回路構成部品として備えるとともに、前記コンデンサの静電容量に応じて前記三角波電圧の周期が変化するよう回路構成されていてよい。また、前記温度検出手段は、前記パルス信号の周期に基づいて前記コンデンサの周囲温度を検出するよう構成できる(請求項2)。以上の構成によれば、上記特許文献3に開示したようにファンモータの駆動電流の大小に関係なくパルス信号の取り込み精度を一定に保つことにより駆動電流検出値を高精度で安定させることができる。また、気温によってコンデンサの静電容量が変動して三角波電圧の周期が変化しても、駆動電流はパルス信号のデューティ比に基づいて検出するため、駆動電流検出値の精度及び安定性を阻害しない。一方、駆動電流を検出するための上記パルス信号の周期に基づいて周囲温度を検出でき、回路構成の簡素化、部品点数の削減を図ることができる。なお、周囲温度の検出精度は駆動電流の検出精度ほどには高くなくともよい。   In the control device of the present invention, the drive current detection means includes a current-voltage conversion circuit that converts the drive current of the fan motor into a voltage and outputs the voltage, and a periodic triangular wave voltage (in the present invention, the “sawtooth wave voltage”). And the output voltage of the current-voltage conversion circuit is compared with the output voltage of the current-voltage conversion circuit, and the duty ratio according to the output voltage of the current-voltage conversion circuit is compared. A comparator that outputs a pulse signal, and a calculation means that calculates the drive current detection value by a calculation based on the duty ratio of the pulse signal output from the comparator can be provided. The triangular wave generation circuit includes a capacitor whose capacitance changes according to temperature as a circuit component, and is configured so that the period of the triangular wave voltage changes according to the capacitance of the capacitor. Good. Further, the temperature detecting means can be configured to detect an ambient temperature of the capacitor based on a period of the pulse signal. According to the above configuration, the detection value of the drive current can be stabilized with high accuracy by keeping the accuracy of capturing the pulse signal irrespective of the magnitude of the drive current of the fan motor as disclosed in Patent Document 3 above. . Even if the capacitance of the capacitor fluctuates due to the temperature and the period of the triangular wave voltage changes, the drive current is detected based on the duty ratio of the pulse signal, so the accuracy and stability of the drive current detection value are not hindered. . On the other hand, the ambient temperature can be detected based on the period of the pulse signal for detecting the drive current, and the circuit configuration can be simplified and the number of parts can be reduced. The detection accuracy of the ambient temperature may not be as high as the detection accuracy of the drive current.

さらに、給湯器などの器具の使用環境温度範囲は例えば−20℃以上60℃以下であると想定されるため、前記コンデンサは、想定使用環境温度範囲内での周囲温度の変化に対して線形的に静電容量が変化するものであることが好ましい(請求項3)。これによれば、パルス信号の周期に基づく駆動電流検出値の演算を、所定の数式(典型的には一次式)によって容易に行える。なお、「線形的に」とは、周囲温度と静電容量とが実質的に比例していればよく、周囲温度−静電容量特性グラフに多少の曲率や歪が存在していてもよい。また、本発明は、上記想定使用環境温度範囲の全範囲について必ずしも周囲温度に対して線形的にコンデンサの静電容量が変化するものに限定されず、想定使用環境温度範囲のうちの一部の範囲、例えば0℃〜40℃ではコンデンサの静電容量が線形的に変化するが、それ以外の温度範囲では静電容量の変化率が急峻となったり、殆ど静電容量が変化しないものであってもよい。なお、想定使用環境温度範囲は、給湯器などの器具のメーカーが保証する当該器具の使用温度範囲として設定されたものであってよい。   Furthermore, since the use environment temperature range of appliances such as a water heater is assumed to be, for example, -20 ° C. or more and 60 ° C. or less, the capacitor is linear with respect to changes in ambient temperature within the assumed use environment temperature range. It is preferable that the capacitance changes. According to this, the calculation of the drive current detection value based on the period of the pulse signal can be easily performed by a predetermined mathematical expression (typically a primary expression). The term “linearly” is sufficient if the ambient temperature and the capacitance are substantially proportional, and some curvature or distortion may exist in the ambient temperature-capacitance characteristic graph. In addition, the present invention is not necessarily limited to one in which the capacitance of the capacitor changes linearly with respect to the ambient temperature for the entire range of the assumed usage environment temperature range. The capacitance of the capacitor changes linearly in a range, for example, 0 ° C. to 40 ° C., but the change rate of the capacitance becomes steep or the capacitance hardly changes in other temperature ranges. May be. The assumed use environment temperature range may be set as the use temperature range of the appliance guaranteed by the manufacturer of the appliance such as a water heater.

前記温度検出手段は、前記駆動電流検出手段の所定部位に設けられたサーミスタの出力電圧に基づいて前記所定部位の周囲温度を検出するものであってよく、例えばサーミスタの出力電圧を入力して、該電圧に基づいて周囲温度を算出するマイクロプロセッサなどにより構成することができる(請求項4)。これによれば、駆動電流検出手段の適宜の位置にサーミスタを配設することで、所定部位の周囲温度を検出できる。この構成は、駆動電流検出手段による駆動電流検出値の検出誤差が、トランジスタやICチップなどの能動素子の温度特性に大きく左右される場合に、能動素子近傍にサーミスタを配設することによって能動素子の周辺温度を検出して、かかる温度検出値に基づいて駆動電流検出値を補正できる。勿論、コンデンサや抵抗器などの受動素子の近傍にサーミスタを設けて、受動素子の周囲温度をサーミスタの出力電圧に基づいて検出することも可能である。また、複数のサーミスタを設けて、それらの出力電圧の平均値に基づいて複数のサーミスタを設けた部位の周囲温度を検出することもできる。   The temperature detecting means may detect the ambient temperature of the predetermined portion based on the output voltage of the thermistor provided at the predetermined portion of the drive current detecting means, for example, by inputting the output voltage of the thermistor, It can be constituted by a microprocessor or the like that calculates the ambient temperature based on the voltage. According to this, the ambient temperature of the predetermined part can be detected by disposing the thermistor at an appropriate position of the drive current detecting means. In this configuration, when the detection error of the drive current detection value by the drive current detection means is greatly influenced by the temperature characteristics of the active element such as a transistor or an IC chip, the thermistor is disposed in the vicinity of the active element. The drive current detection value can be corrected based on the detected temperature value. Of course, it is also possible to provide a thermistor in the vicinity of a passive element such as a capacitor or a resistor, and to detect the ambient temperature of the passive element based on the output voltage of the thermistor. It is also possible to provide a plurality of thermistors and detect the ambient temperature of the portion where the plurality of thermistors are provided based on the average value of their output voltages.

また、本発明は、上記制御装置と、該制御装置によって動作制御されるファンモータと、該ファンモータの回転軸に取り付けられるファンと、該ファンにより供給される空気と燃料ガスとの混合ガスを燃焼させて燃焼ガスを生成するバーナと、前記燃焼ガスとの熱交換により水を加熱する熱交換器とを備える強制給排気型給湯器であって、前記制御装置の前記検出誤差補正手段は、前記バーナが燃焼しているときの前記駆動電流検出手段の駆動電流検出値の検出誤差を補正するものとすることができる(請求項5)。これによれば、強制給排気型給湯器において燃焼動作を行っているときの駆動電流検出値の検出精度を向上させて、給排気路の閉塞度に応じてファンモータの回転数を最適に制御でき、気温が変動しても強制給排気型給湯器の燃焼効率が低下してしまうことを防止できる。さらに、気温変動によるファンモータの負荷特性に応じて、補正後の駆動電流検出値をさらに上記周囲温度に基づいて校正することによって、気温が変動しても一定の送風量となるようファンモータを制御できる。   The present invention also provides a mixed gas of the control device, a fan motor controlled by the control device, a fan attached to a rotating shaft of the fan motor, and air and fuel gas supplied by the fan. A forced supply / exhaust water heater comprising a burner that generates combustion gas by combustion and a heat exchanger that heats water by heat exchange with the combustion gas, wherein the detection error correction means of the control device includes: The detection error of the drive current detection value of the drive current detection means when the burner is burning can be corrected (Claim 5). According to this, the detection accuracy of the drive current detection value when the combustion operation is performed in the forced supply / exhaust water heater is improved, and the rotation speed of the fan motor is optimally controlled according to the degree of blockage of the supply / exhaust passage It is possible to prevent the combustion efficiency of the forced supply / exhaust water heater from being lowered even if the temperature fluctuates. Furthermore, the corrected drive current detection value is further calibrated based on the ambient temperature according to the load characteristics of the fan motor due to temperature fluctuations, so that the fan motor can be kept at a constant air flow rate even if the air temperature varies. Can be controlled.

以上説明したように、本発明によれば、気温が変動しても正確にファンモータの駆動電流を検出して、ファンモータ駆動電流に基づく各種制御を的確に行うことができる。   As described above, according to the present invention, it is possible to accurately detect the drive current of the fan motor even if the temperature fluctuates, and perform various controls based on the fan motor drive current accurately.

本発明の一実施形態に係る強制給排気型給湯器の作動原理図である。It is an operation | movement principle figure of the forced air supply / exhaustion type water heater which concerns on one Embodiment of this invention. 同給湯器のファンモータ制御装置の概略回路図である。It is a schematic circuit diagram of the fan motor control device of the water heater.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る強制給排気型の潜熱回収型高効率給湯器を示しており、該給湯器は、各種制御を行う制御装置1(制御部)と、燃焼缶体2と、給湯回路3とを備えている。缶体2内部には、燃焼ガスを生成する燃焼部4と、該燃焼部4の上方に配置された一次熱交換器5と、該一次熱交換器5のさらに上方に配置された二次熱交換器6(凝縮熱交換器)とが設けられている。さらに、燃焼部4に対して燃焼用空気を供給するファン7が燃焼部4の下方に配設されている。ファン7はファンモータMによって回転駆動され、ファンモータMの回転数は制御装置1によって最適値に制御される。   FIG. 1 shows a forced supply / exhaust type latent heat recovery type high-efficiency water heater according to an embodiment of the present invention. The water heater includes a control device 1 (control unit) for performing various controls, and a combustion can body. 2 and a hot water supply circuit 3. Inside the can body 2, a combustion section 4 that generates combustion gas, a primary heat exchanger 5 disposed above the combustion section 4, and a secondary heat disposed further above the primary heat exchanger 5. An exchanger 6 (condensation heat exchanger) is provided. Further, a fan 7 that supplies combustion air to the combustion unit 4 is disposed below the combustion unit 4. The fan 7 is rotationally driven by a fan motor M, and the rotational speed of the fan motor M is controlled to an optimum value by the control device 1.

燃焼部4は、図示例では4つの燃焼領域に区分されており、各燃焼領域はそれぞれ複数本のバーナによって形成されている。各燃焼領域には、燃料ガス供給源側から燃焼用燃料として燃料ガスを供給するガス供給管41が接続されている。このガス供給管41には、燃料ガス供給源側から順に、元栓としての元ガス電磁弁42と、ガス供給量を調整するガス比例弁43とが設けられている。このガス比例弁43の下流側でガス供給管41が各燃焼領域毎に分岐されている。各燃焼領域に対応して第1〜第4の能力切替弁SV1〜SV4が個別に設けられており、各能力切替弁SV1〜SV4を開閉することによって各燃焼領域への燃料ガスの供給を個別に制御可能となっている。各燃焼領域に供給された燃料ガスは、各バーナ毎に設けられたガス通路を介して各バーナに供給され、バーナ内で燃料ガスと燃焼用空気とが混合され、該混合ガスが燃焼することによって燃焼ガスが生成される。   The combustion part 4 is divided into four combustion regions in the illustrated example, and each combustion region is formed by a plurality of burners. A gas supply pipe 41 that supplies fuel gas as a combustion fuel from the fuel gas supply source side is connected to each combustion region. The gas supply pipe 41 is provided with an original gas electromagnetic valve 42 as a main plug and a gas proportional valve 43 for adjusting the gas supply amount in order from the fuel gas supply source side. A gas supply pipe 41 is branched for each combustion region on the downstream side of the gas proportional valve 43. The first to fourth capacity switching valves SV1 to SV4 are individually provided corresponding to each combustion area, and the supply of fuel gas to each combustion area is individually performed by opening and closing each capacity switching valve SV1 to SV4. Can be controlled. The fuel gas supplied to each combustion region is supplied to each burner through a gas passage provided for each burner, and the fuel gas and combustion air are mixed in the burner, and the mixed gas burns. As a result, combustion gas is generated.

一次熱交換器5は、燃焼部4で生じる燃焼ガスの顕熱を回収するものであり、二次熱交換器6は、一次熱交換器5において回収しきれなかった燃焼ガスの熱エネルギー、すなわち潜熱を回収して一次熱交換器5での加熱前に給水を予熱するためのものである。これら熱交換器によって熱エネルギーが回収された後の燃焼排ガスは、缶体2の上部に設けられた排気口2aより強制排気される。   The primary heat exchanger 5 recovers the sensible heat of the combustion gas generated in the combustion unit 4, and the secondary heat exchanger 6 is the thermal energy of the combustion gas that cannot be recovered in the primary heat exchanger 5, that is, This is for recovering the latent heat and preheating the feed water before heating in the primary heat exchanger 5. The combustion exhaust gas after the heat energy is recovered by these heat exchangers is forcibly exhausted from the exhaust port 2 a provided in the upper part of the can body 2.

給湯回路3は、給水接続口から給水を受けた水道水等を二次熱交換器6に入水させる入水路31と、二次熱交換器6及び一次熱交換器5で熱交換加熱された湯を出湯させる出湯路32と、入水路31から分岐して出湯路32に冷水を供給するバイパス路33とを備えている。バイパス路33にはバイパス流量制御弁34が設けられ、バイパス路33を介したバイパス流量を調節することによって出湯湯温を制御可能となっている。入水路31には缶体流量センサ35が設けられている。バイパス路33との合流部よりも上流側で出湯路32には、缶体流量制御弁38とが設けられている。   The hot water supply circuit 3 includes a water inlet 31 for allowing tap water received from the water supply connection port to enter the secondary heat exchanger 6, and hot water heat-exchanged and heated by the secondary heat exchanger 6 and the primary heat exchanger 5. And a bypass passage 33 that branches from the water inlet 31 and supplies cold water to the hot water outlet 32. A bypass flow rate control valve 34 is provided in the bypass passage 33, and the temperature of discharged hot water can be controlled by adjusting the bypass flow rate via the bypass passage 33. A can body flow sensor 35 is provided in the water inlet 31. A can body flow rate control valve 38 is provided in the hot water outlet 32 on the upstream side of the junction with the bypass 33.

なお、燃焼部4の上方には点火プラグ8及びフレームロッド(立消え安全装置)9が燃焼缶体2に設けられている。また、二次熱交換器6の下方には凝縮水をドレンとして回収するドレン回収トレイ61が設けられ、回収されたドレンは中和装置62によって中和された後に排水される。また、入水温度、出湯温度、缶体排気温度及びファンモータMの回転数など、給湯運転制御に必要な各種パラメータを測定するセンサ乃至測定回路が適所に設けられている。   An ignition plug 8 and a frame rod (extinguishing safety device) 9 are provided on the combustion can body 2 above the combustion unit 4. A drain collection tray 61 that collects condensed water as drain is provided below the secondary heat exchanger 6, and the collected drain is neutralized by the neutralization device 62 and then drained. In addition, sensors or measurement circuits for measuring various parameters necessary for hot water supply operation control, such as incoming water temperature, outgoing hot water temperature, can body exhaust temperature, and rotation speed of the fan motor M, are provided at appropriate positions.

上記ファンモータM、能力切替弁SV1〜SV4、元ガス電磁弁42、ガス比例弁43、バイパス流量制御弁34及び缶体流量制御弁38などの各制御対象は、制御装置1によって制御される。制御装置1は、給湯運転中、上記各センサからそれぞれの検出値を取得し、これら検出値と要求される給湯能力とに基づいて要求燃焼熱量を決定し、要求燃焼熱量が得られるように燃焼部4の能力段数及び比例弁10の開度を制御するとともに、要求される給湯湯温が得られるように缶体流量制御弁38及びバイパス流量制御弁34の開度を制御する。さらに、制御装置1は、要求燃焼熱量に応じた最適な送風量となるようファンモータMの目標回転数を演算により求め、かかる目標回転数でファンモータMを回転駆動させる。   Control devices such as the fan motor M, the capacity switching valves SV1 to SV4, the original gas solenoid valve 42, the gas proportional valve 43, the bypass flow rate control valve 34, and the can body flow rate control valve 38 are controlled by the control device 1. During the hot water supply operation, the control device 1 acquires the respective detection values from the respective sensors, determines the required combustion heat amount based on these detection values and the required hot water supply capacity, and performs combustion so that the required combustion heat amount is obtained. While controlling the number of capacity stages of the unit 4 and the opening degree of the proportional valve 10, the opening degree of the can body flow rate control valve 38 and the bypass flow rate control valve 34 is controlled so that the required hot water temperature is obtained. Further, the control device 1 obtains a target rotational speed of the fan motor M by calculation so as to obtain an optimum air flow amount corresponding to the required combustion heat quantity, and rotationally drives the fan motor M at the target rotational speed.

図2にも示すように、制御装置1は、制御中枢としてのマイクロプロセッサ11と、EEPROMなどの書き換え可能不揮発性メモリ12(記憶手段)とを備えている。さらに、図示例ではファンモータMはDCモータとされ、マイクロプロセッサ11からの駆動電圧指令信号に応じた駆動電圧をファンモータMに印加させる駆動回路13と、ファンモータMの駆動電流を電圧に変換して出力する電流−電圧変換回路14と、該回路14の出力電圧と比較するための周期的な三角波電圧を生成出力する三角波生成回路15と、電流−電圧変換回路14の出力電圧と三角波生成回路15が出力する三角波電圧とを比較して電流−電圧変換回路の出力電圧に応じたデューティ比(すなわち、ファンモータMの駆動電流に応じたデューティ比)のパルス信号を出力する比較器16とを備えている。   As shown in FIG. 2, the control device 1 includes a microprocessor 11 as a control center and a rewritable nonvolatile memory 12 (storage means) such as an EEPROM. Further, in the illustrated example, the fan motor M is a DC motor, a drive circuit 13 for applying a drive voltage corresponding to a drive voltage command signal from the microprocessor 11 to the fan motor M, and converting the drive current of the fan motor M into a voltage. Current-voltage conversion circuit 14 for output, triangular wave generation circuit 15 for generating and outputting a periodic triangular wave voltage for comparison with the output voltage of circuit 14, and output voltage and triangular wave generation for current-voltage conversion circuit 14 A comparator 16 that compares the triangular wave voltage output from the circuit 15 and outputs a pulse signal having a duty ratio corresponding to the output voltage of the current-voltage conversion circuit (that is, a duty ratio corresponding to the drive current of the fan motor M); It has.

電流−電圧変換回路14は適宜の回路構成であってよいが、図示例では、ファンモータMに直列に接続された抵抗器14aと、該抵抗器14aの両端電圧を増幅する増幅器14bとにより構成されている。   Although the current-voltage conversion circuit 14 may have an appropriate circuit configuration, in the illustrated example, the current-voltage conversion circuit 14 includes a resistor 14a connected in series to the fan motor M and an amplifier 14b that amplifies the voltage across the resistor 14a. Has been.

三角波生成回路15は、シュミット回路(ヒステリシス回路)を構成する第1のオペアンプ15aと、積分回路を構成する第2のオペアンプ15bとにより主構成されており、第1のオペアンプ15aの非反転入力端子には第1のオペアンプ15aの出力電圧と第2のオペアンプ15bの出力電圧との差電圧を分圧抵抗R2,R3で分圧してなる電圧が入力され、上記積分回路は、第2のオペアンプ15bの反転入力端子と出力端子との間に設けられたコンデンサCと、反転入力端子に設けられた抵抗器R1とを備えている。なお、第1のオペアンプ15aの反転入力端子、並びに、第2のオペアンプ15bの非反転入力端子には、それぞれ所定の電圧が入力されている。   The triangular wave generation circuit 15 is mainly composed of a first operational amplifier 15a constituting a Schmitt circuit (hysteresis circuit) and a second operational amplifier 15b constituting an integrating circuit, and a non-inverting input terminal of the first operational amplifier 15a. Is supplied with a voltage obtained by dividing the voltage difference between the output voltage of the first operational amplifier 15a and the output voltage of the second operational amplifier 15b by the voltage dividing resistors R2 and R3, and the integrating circuit includes the second operational amplifier 15b. A capacitor C provided between the inverting input terminal and the output terminal, and a resistor R1 provided at the inverting input terminal. A predetermined voltage is input to the inverting input terminal of the first operational amplifier 15a and the non-inverting input terminal of the second operational amplifier 15b.

この三角波生成回路15の発振周波数fは、次式(1)により表され、その周期は(1/f)秒となる。   The oscillation frequency f of the triangular wave generation circuit 15 is expressed by the following equation (1), and the period is (1 / f) seconds.

f=(R2/R3)/(4・C・R1) ・・・(1)   f = (R2 / R3) / (4 · C · R1) (1)

また、本実施形態では、コンデンサCとして、想定使用環境温度範囲内(例えば、−20℃以上60℃未満の範囲)の周囲温度の変化に対して線形的に静電容量が変化する積層セラミックコンデンサを用いており、例えば、温度20℃のときの静電容量を100%とすると、温度−20℃で静電容量が110%、温度60℃で静電容量が90%となるものを用いることができる。この場合、温度−20℃のときに対して温度60℃のときの三角波の周期は約2割減となり、例えば、温度−20℃のときに周期が約240ミリ秒となり、温度60℃のときに周期が約200ミリ秒となるよう回路構成できる。   In the present embodiment, as the capacitor C, a multilayer ceramic capacitor whose capacitance changes linearly with respect to a change in ambient temperature within an assumed use environment temperature range (for example, a range of −20 ° C. or more and less than 60 ° C.). For example, if the capacitance at a temperature of 20 ° C. is 100%, the capacitance is 110% at a temperature of −20 ° C., and the capacitance is 90% at a temperature of 60 ° C. Can do. In this case, the period of the triangular wave when the temperature is 60 ° C. is reduced by about 20% with respect to the temperature −20 ° C., for example, when the temperature is −20 ° C., the period is about 240 milliseconds, and when the temperature is 60 ° C. The circuit can be configured to have a period of about 200 milliseconds.

なお、温度の変化に対する静電容量の変化率がより大きいものを採用することもできる。また、温度の変化に対して二次曲線的に静電容量が変化するものを用いることもできるが、給湯器1が設置される環境の想定使用環境温度範囲内、例えば−20℃〜60℃内では、温度が上昇するにしたがって静電容量が徐々に減少、若しくは、徐々に増加するものを用い、異なる2つの温度で静電容量が同一となるものは用いないようにする。   It is also possible to employ a capacitor having a larger capacitance change rate with respect to temperature change. In addition, it is possible to use a capacitor whose capacitance changes in a quadratic curve with respect to a change in temperature, but within an assumed use environment temperature range of the environment where the water heater 1 is installed, for example, -20 ° C to 60 ° C. Among them, a capacitor whose capacitance gradually decreases or gradually increases as the temperature rises is used, and a capacitor whose capacitance is the same at two different temperatures is not used.

マイクロプロセッサ11は、所定のプログラムの実行により種々の制御手段として機能し、本実施形態では特に、比較器16が出力するパルス信号のデューティ比に基づく演算によりファンモータMの駆動電流検出値を算出する演算手段11aとして機能し、該演算手段11a、電流−電圧変換回路14、三角波生成回路15及び比較器16により、ファンモータMの駆動電流を検出する駆動電流検出手段が構成されている。この駆動電流検出手段は、上記特許文献3に開示した駆動電流検出方法と同様の方法によってファンモータMの駆動電流検出値を検出できる。   The microprocessor 11 functions as various control means by executing a predetermined program. In this embodiment, in particular, the driving current detection value of the fan motor M is calculated by calculation based on the duty ratio of the pulse signal output from the comparator 16. The calculation means 11a, the current-voltage conversion circuit 14, the triangular wave generation circuit 15 and the comparator 16 constitute a drive current detection means for detecting the drive current of the fan motor M. This drive current detection means can detect the drive current detection value of the fan motor M by a method similar to the drive current detection method disclosed in Patent Document 3.

さらに、マイクロプロセッサ11は、三角波生成回路15の積分回路を構成するコンデンサCの周囲温度を比較器16が出力するパルス信号の周期に基づく演算により検出する温度検出手段11b、温度検出手段11bにより検出される温度に基づいて駆動電流検出手段による駆動電流検出値の検出誤差を補正する検出誤差補正手段11c、並びに、ファンモータMが目標回転数となるよう駆動回路に対して駆動電圧指令信号を出力する回転数制御手段11dとして機能する。   Further, the microprocessor 11 detects the ambient temperature of the capacitor C constituting the integration circuit of the triangular wave generation circuit 15 by the temperature detection means 11b and the temperature detection means 11b that detect by the calculation based on the period of the pulse signal output from the comparator 16. Detection error correction means 11c for correcting the detection error of the drive current detection value by the drive current detection means based on the detected temperature, and a drive voltage command signal to the drive circuit so that the fan motor M reaches the target rotational speed Functions as the rotation speed control means 11d.

回転数制御手段11dは従来公知の適宜の構成とすることができ、例えば、要求給湯号数及び設定給湯温度に応じた最適な量の燃焼用空気を供給するためのファンモータMの目標回転数を演算により求め、駆動回路13やファンモータMに設けた回転数検出手段が出力する回転数検出信号に基づいて目標回転数となるよう駆動電圧をフィードバック制御する。また、適宜、検出誤差補正手段11cによって補正された駆動電流値に基づいて給排気路の閉塞度を推定して、該閉塞度に応じた回転数となるようファンモータMの目標回転数を補正したり、同一負荷時(同一送風量時)でも周囲温度の変動によりファンモータMの駆動電流値が変動するという負荷特性を考慮して、検出誤差補正手段11cにより補正された駆動電流値をさらに校正したりするなど、適宜の演算を回転数制御手段11dに行わせることができる。   The rotation speed control means 11d can have a conventionally known appropriate configuration. For example, the target rotation speed of the fan motor M for supplying the optimum amount of combustion air according to the required hot water supply number and the set hot water supply temperature. Is calculated, and the drive voltage is feedback-controlled so as to reach the target rotational speed based on the rotational speed detection signal output from the rotational speed detection means provided in the drive circuit 13 or the fan motor M. Further, the degree of blockage of the air supply / exhaust passage is estimated based on the drive current value corrected by the detection error correction unit 11c as appropriate, and the target rotation number of the fan motor M is corrected so that the rotation number corresponds to the degree of blockage. In consideration of the load characteristic that the drive current value of the fan motor M fluctuates due to the fluctuation of the ambient temperature even at the same load (at the same air flow rate), the drive current value corrected by the detection error correction means 11c is further increased. It is possible to cause the rotation speed control means 11d to perform appropriate calculations such as calibration.

なお、上記各手段11a,11b,11c,11dを構成するプログラムや演算式は、プログラムコード乃至演算式として分離した状態で実装されていてもよいし、一体のプログラム乃至演算式として実装されていてもよい。   It should be noted that the programs and arithmetic expressions constituting each of the means 11a, 11b, 11c, and 11d may be implemented separately as program codes or arithmetic expressions, or may be implemented as an integral program or arithmetic expression. Also good.

なお、三角波生成回路15が出力する三角波電圧の周期には、同一の温度下であっても製品個体ごとに誤差が生じるため、器具出荷時に、所定の雰囲気温度下(例えば20℃)での三角波電圧の周期を読み込んで書き換え可能不揮発性メモリ12に基準周期として記憶させておき、実使用時における上記パルス信号の周期の上記基準周期に対する比率に基づいて温度を検出するよう温度検出手段11bを構成できる。なお、所定の雰囲気温度環境を準備できない場合には、器具出荷時の出荷作業環境温度下で三角波電圧の周期を読み込み、該周期を基準温度(例えば20℃)での周期に所定の換算式を用いて換算して、基準周期として記憶させることもできる。   Note that the period of the triangular wave voltage output from the triangular wave generating circuit 15 has an error for each product even at the same temperature, so that the triangular wave at a predetermined ambient temperature (for example, 20 ° C.) at the time of shipment of the instrument. The temperature detection means 11b is configured to read the voltage period and store it in the rewritable nonvolatile memory 12 as a reference period and detect the temperature based on the ratio of the period of the pulse signal to the reference period in actual use. it can. When the predetermined ambient temperature environment cannot be prepared, the triangular wave voltage cycle is read under the shipping work environment temperature at the time of shipment of the instrument, and the predetermined conversion formula is converted into the cycle at the reference temperature (for example, 20 ° C.). It is also possible to convert it by using it and store it as a reference period.

検出誤差補正手段11cは、演算手段11aが出力する駆動電流検出値を、温度検出手段により検出された温度検出値に基づいて補正することにより、温度変動による電流−電圧変換回路14や比較器16などの駆動電流検出手段を構成する回路の出力特性の変動による検出誤差を補正して、ファンモータMの実駆動電流値を算出する。この検出誤差補正手段11cによる演算方法は適宜のものであってよく、例えば、実機において気温(周囲温度)とファンモータ駆動電流値との関係を実測して、該実測値をデータテーブルとして書き換え可能不揮発性メモリ12若しくはROM内に記憶させておき、このデータテーブルを参照することによって温度検出値に基づいて駆動電流検出値を補正することができる。また、上記複数の実測値近傍を通る近似曲線式に基づいて温度検出値に基づいて駆動電流検出値を補正することもできる。   The detection error correction unit 11c corrects the drive current detection value output from the calculation unit 11a based on the temperature detection value detected by the temperature detection unit, so that the current-voltage conversion circuit 14 and the comparator 16 due to temperature fluctuations. The actual driving current value of the fan motor M is calculated by correcting the detection error due to the fluctuation of the output characteristics of the circuit constituting the driving current detecting means. The calculation method by the detection error correction unit 11c may be any appropriate one. For example, in a real machine, the relationship between the temperature (ambient temperature) and the fan motor drive current value is measured, and the measured value can be rewritten as a data table. The drive current detection value can be corrected based on the temperature detection value by storing the data in the nonvolatile memory 12 or the ROM and referring to the data table. In addition, the drive current detection value can be corrected based on the temperature detection value based on the approximate curve equation passing through the vicinity of the plurality of actual measurement values.

上記データテーブルは、例えば、−20℃〜60℃の温度範囲の所定温度毎(例えば1℃毎)の各温度Tにおける基準温度に対する補正率α(T)を記憶させたものとすることができる。そして、下記式(2)に示すように、温度検出手段によって検出された温度検出値Tに対応する補正率α(T)を、演算手段11aが出力する駆動電流検出値(読み込み値)に乗算することによって、正しい駆動電流値を算出できる。   The data table may store, for example, a correction rate α (T) with respect to a reference temperature at each temperature T at a predetermined temperature (for example, every 1 ° C.) in a temperature range of −20 ° C. to 60 ° C. . Then, as shown in the following equation (2), the correction rate α (T) corresponding to the temperature detection value T detected by the temperature detection means is multiplied by the drive current detection value (read value) output from the calculation means 11a. By doing so, a correct drive current value can be calculated.

補正後の駆動電流値=α(T)×駆動電流検出値 ・・・(2)   Drive current value after correction = α (T) × drive current detection value (2)

この補正後の駆動電流値に基づいてファンモータ回転数の校正を行うことで、より的確なファンモータ回転数制御を行わせることができ、燃焼効率を一層向上できる。さらに、燃焼部4が燃焼しているときの駆動電流検出手段の駆動電流検出値の検出誤差が補正されるので、補正後の駆動電流値とファンモータ回転数検出値とに基づいて給排気路の閉塞判定を制御装置1に行わせることで、より正確な閉塞判定を行うことができ、閉塞判定結果に基づく燃焼停止制御を一層的確なタイミングで行うことが可能となる。   By calibrating the fan motor rotational speed based on the corrected drive current value, more accurate fan motor rotational speed control can be performed, and the combustion efficiency can be further improved. Further, since the detection error of the drive current detection value of the drive current detection means when the combustion unit 4 is combusting is corrected, the supply / exhaust passage is based on the corrected drive current value and the fan motor rotation speed detection value. By making the control device 1 perform the blockage determination, more accurate blockage determination can be performed, and combustion stop control based on the blockage determination result can be performed at a more accurate timing.

本発明は上記実施形態に限定されるものではなく、適宜設計変更できる。例えば、上記実施形態では給湯器の制御装置の例を示したが、給湯器以外のファンモータを搭載する種々の機器の制御装置として実施可能である。また、ファンモータがACモータ若しくはPWM駆動式モータである場合は、ファンモータに供給される駆動電流波形を平滑化してなる電流値を検出するものであってもよいし、駆動電流波形の最大値を検出するものであってもよい。   The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate. For example, although the example of the control device for the hot water heater has been described in the above embodiment, the present invention can be implemented as a control device for various devices including a fan motor other than the hot water heater. If the fan motor is an AC motor or a PWM drive motor, the current value obtained by smoothing the drive current waveform supplied to the fan motor may be detected, or the maximum value of the drive current waveform may be detected. May be detected.

1 制御装置
4 燃焼部
5 一次熱交換器
6 二次熱交換器
7 ファン
11a 演算手段
11b 温度検出手段
11c 検出誤差補正手段
14 電流−電圧変換回路
15 三角波生成回路
16 比較器
M ファンモータ
DESCRIPTION OF SYMBOLS 1 Control apparatus 4 Combustion part 5 Primary heat exchanger 6 Secondary heat exchanger 7 Fan 11a Arithmetic means 11b Temperature detection means 11c Detection error correction means 14 Current-voltage conversion circuit 15 Triangular wave generation circuit 16 Comparator M Fan motor

Claims (5)

ファンモータの駆動電流を検出する駆動電流検出手段を備える制御装置において、前記駆動電流検出手段を構成する所定の回路部位の温度若しくは前記回路部位の周囲温度を検出する温度検出手段と、該温度検出手段により検出される温度に基づいて前記駆動電流検出手段の駆動電流検出値の検出誤差を補正する検出誤差補正手段とをさらに備えていることを特徴とする制御装置。   In a control device including drive current detection means for detecting a drive current of a fan motor, temperature detection means for detecting a temperature of a predetermined circuit part constituting the drive current detection means or an ambient temperature of the circuit part, and the temperature detection And a detection error correction unit that corrects a detection error of the drive current detection value of the drive current detection unit based on the temperature detected by the unit. 請求項1に記載の制御装置において、
前記駆動電流検出手段は、ファンモータの駆動電流を電圧に変換して出力する電流−電圧変換回路と、周期的な三角波電圧を出力する三角波生成回路と、前記電流−電圧変換回路の出力電圧と前記三角波生成回路の出力電圧とを比較して前記電流−電圧変換回路の出力電圧に応じたデューティ比のパルス信号を出力する比較器と、該比較器が出力するパルス信号のデューティ比に基づく演算により前記駆動電流検出値を算出する演算手段とを備えており、
前記三角波生成回路は、温度に応じて静電容量が変化するコンデンサを回路構成部品として備えるとともに、前記コンデンサの静電容量に応じて前記三角波電圧の周期が変化するよう回路構成されており、
前記温度検出手段は、前記パルス信号の周期に基づいて前記コンデンサの周囲温度を検出することを特徴とする制御装置。
The control device according to claim 1,
The drive current detection means includes a current-voltage conversion circuit that converts a drive current of the fan motor into a voltage and outputs the voltage, a triangular wave generation circuit that outputs a periodic triangular wave voltage, and an output voltage of the current-voltage conversion circuit. A comparator that compares the output voltage of the triangular wave generation circuit and outputs a pulse signal having a duty ratio corresponding to the output voltage of the current-voltage conversion circuit, and an operation based on the duty ratio of the pulse signal output by the comparator And calculating means for calculating the drive current detection value by
The triangular wave generation circuit includes a capacitor whose capacitance changes according to temperature as a circuit component, and is configured so that the period of the triangular wave voltage changes according to the capacitance of the capacitor.
The temperature detecting means detects an ambient temperature of the capacitor based on a cycle of the pulse signal.
請求項2に記載の制御装置において、前記コンデンサは、想定使用環境温度範囲内での周囲温度の変化に対して線形的に静電容量が変化するものであることを特徴とする制御装置。   The control device according to claim 2, wherein the capacitance of the capacitor changes linearly with respect to a change in ambient temperature within an assumed use environment temperature range. 請求項1に記載の制御装置において、前記温度検出手段は、前記駆動電流検出手段の所定部位に設けられたサーミスタの出力電圧に基づいて前記所定部位の周囲温度を検出することを特徴とする制御装置。   2. The control device according to claim 1, wherein the temperature detection unit detects an ambient temperature of the predetermined part based on an output voltage of a thermistor provided at the predetermined part of the drive current detection unit. apparatus. 請求項1〜4のいずれか1項に記載の制御装置と、該制御装置によって動作制御されるファンモータと、該ファンモータの回転軸に取り付けられるファンと、該ファンにより供給される空気と燃料ガスとの混合ガスを燃焼させて燃焼ガスを生成する燃焼部と、前記燃焼ガスとの熱交換により水を加熱する熱交換器とを備える強制給排気型給湯器であって、前記制御装置の前記検出誤差補正手段は、前記燃焼部が燃焼しているときの前記駆動電流検出手段の駆動電流検出値の検出誤差を補正することを特徴とする強制給排気型給湯器。   The control device according to any one of claims 1 to 4, a fan motor controlled by the control device, a fan attached to a rotation shaft of the fan motor, air and fuel supplied by the fan A forced supply / exhaust water heater comprising a combustion section that generates a combustion gas by burning a mixed gas with a gas, and a heat exchanger that heats water by heat exchange with the combustion gas, The forced detection / exhaust water heater is characterized in that the detection error correction means corrects a detection error of a drive current detection value of the drive current detection means when the combustion section is burning.
JP2016035212A 2016-02-26 2016-02-26 Control unit Pending JP2017150776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016035212A JP2017150776A (en) 2016-02-26 2016-02-26 Control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016035212A JP2017150776A (en) 2016-02-26 2016-02-26 Control unit

Publications (1)

Publication Number Publication Date
JP2017150776A true JP2017150776A (en) 2017-08-31

Family

ID=59741639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016035212A Pending JP2017150776A (en) 2016-02-26 2016-02-26 Control unit

Country Status (1)

Country Link
JP (1) JP2017150776A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145841U (en) * 1979-04-06 1980-10-20
JPH03109614A (en) * 1989-09-22 1991-05-09 Matsushita Electric Ind Co Ltd Temperature controller
JPH07103460A (en) * 1993-10-12 1995-04-18 Hitachi Chem Co Ltd Control method for fan, device used therefor and combustion device
JPH09329331A (en) * 1996-06-10 1997-12-22 Noritz Corp Fan motor controller
JPH11252976A (en) * 1998-03-04 1999-09-17 Matsushita Electric Ind Co Ltd Power generator and electric washing machine
JP2001281273A (en) * 2000-03-31 2001-10-10 Noritz Corp Detection method for fan motor current and current detector
JP2008261579A (en) * 2007-04-13 2008-10-30 Noritz Corp Combustion apparatus
JP2009189202A (en) * 2008-02-08 2009-08-20 Panasonic Corp Power converter, brushless dc motor and ventilating blower
JP2013029255A (en) * 2011-07-28 2013-02-07 Noritz Corp Combustion device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145841U (en) * 1979-04-06 1980-10-20
JPH03109614A (en) * 1989-09-22 1991-05-09 Matsushita Electric Ind Co Ltd Temperature controller
JPH07103460A (en) * 1993-10-12 1995-04-18 Hitachi Chem Co Ltd Control method for fan, device used therefor and combustion device
JPH09329331A (en) * 1996-06-10 1997-12-22 Noritz Corp Fan motor controller
JPH11252976A (en) * 1998-03-04 1999-09-17 Matsushita Electric Ind Co Ltd Power generator and electric washing machine
JP2001281273A (en) * 2000-03-31 2001-10-10 Noritz Corp Detection method for fan motor current and current detector
JP2008261579A (en) * 2007-04-13 2008-10-30 Noritz Corp Combustion apparatus
JP2009189202A (en) * 2008-02-08 2009-08-20 Panasonic Corp Power converter, brushless dc motor and ventilating blower
JP2013029255A (en) * 2011-07-28 2013-02-07 Noritz Corp Combustion device

Similar Documents

Publication Publication Date Title
CA3031928C (en) Methods and system for controlling a combination boiler
EP1750058A2 (en) Combustion control method with guided set point search
US20200271312A1 (en) Boiler combustor side blockage detection system and method
JP5171142B2 (en) Gas meter
CN113357825A (en) Water heater system and control method thereof
CZ2001222A3 (en) Method of temperature sensor thermal compensation
JP2017150776A (en) Control unit
JP5903865B2 (en) Boiler thermal output measuring device
JP6256095B2 (en) Scale adhesion determination device
KR101500943B1 (en) Method for controlling combustion of boiler using temperature sensor for supplying and returing hot water
KR20070033678A (en) Detection method of wind pressure sensor abnormality in air proportional control boiler using wind pressure sensor
JP6450605B2 (en) Steam temperature control device and steam temperature control method
JP6209988B2 (en) Scale adhesion determination device
JP3830251B2 (en) Fluid detection device and hot water supply device
JP6085965B2 (en) Water heater
JP2016114311A (en) Hot water boiler
KR101106934B1 (en) The correction method of clogging judgement in way of combustion apparatus
KR100515111B1 (en) Combustion device
ES2957808T3 (en) Performance detection and air factor control using sensors in the combustion chamber
JP4077370B2 (en) Combustion device supply / exhaust detection method, combustion control method, and combustion control device
JP6183562B2 (en) Fluid circulation system
CN114264074B (en) Instant heating assembly, regulating and controlling method and regulating and controlling device thereof, water treatment equipment and medium
JP3756997B2 (en) Hot water heater and combustion control method during re-watering
JP6524487B2 (en) Water heater
JP3922749B2 (en) Hot water combustion control method and hot water heater using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609