JP6280474B2 - Gas separation device and gas separation method - Google Patents

Gas separation device and gas separation method Download PDF

Info

Publication number
JP6280474B2
JP6280474B2 JP2014187213A JP2014187213A JP6280474B2 JP 6280474 B2 JP6280474 B2 JP 6280474B2 JP 2014187213 A JP2014187213 A JP 2014187213A JP 2014187213 A JP2014187213 A JP 2014187213A JP 6280474 B2 JP6280474 B2 JP 6280474B2
Authority
JP
Japan
Prior art keywords
gas
hydrate
pressurizer
hydrate slurry
target gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014187213A
Other languages
Japanese (ja)
Other versions
JP2016059834A (en
Inventor
井田 博之
博之 井田
剛志 水上
剛志 水上
孝郎 海老沼
孝郎 海老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
JFE Engineering Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical JFE Engineering Corp
Priority to JP2014187213A priority Critical patent/JP6280474B2/en
Publication of JP2016059834A publication Critical patent/JP2016059834A/en
Application granted granted Critical
Publication of JP6280474B2 publication Critical patent/JP6280474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、混合気体から目的とする気体(以下「目的気体」という)を選択的に水和物により捕集することを通じて、混合気体から該目的気体を分離する装置及び方法に関する。   The present invention relates to an apparatus and a method for separating a target gas from a mixed gas by selectively collecting the target gas (hereinafter referred to as “target gas”) from the mixed gas with a hydrate.

本発明において、次に掲げる用語の意味又は解釈は以下のとおりとする。この用語の意味又は解釈は、本発明の技術的範囲が均等の範囲にまで及ぶことを妨げるものではない。   In the present invention, the meaning or interpretation of the following terms is as follows. The meaning or interpretation of this term does not preclude the technical scope of the present invention from reaching an equivalent scope.

(1)「水和物」とは、包接水和物の略称である。ホスト、ホスト物質又はホスト分子と呼ばれる水分子が構成するトンネル形、層状、網状、籠状などの構造(包接格子)内に、ゲスト物質、ゲスト分子又はゲスト化合物と呼ばれる他の分子が入り込む又は取り込まれることで形成され、生成される物質を包接水和物という。ゲスト物質の例としては、テトラnブチルアンモニウム塩、テトラisoペンチルアンモニウム塩、トリnブチル・ペンチルアンモニウム塩等のアルキルアンモニウム塩に代表される第四級アンモニウム塩、アルキルホスホニウム塩、アルキルスルホニウム塩などがある。本発明における「水和物」には、準包接水和物が含まれる。包接水和物を生成するゲスト物質を水和物生成物という。   (1) “Hydrate” is an abbreviation for clathrate hydrate. Other molecules called guest substances, guest molecules, or guest compounds enter tunnel-like, layer-like, network-like, cage-like structures (inclusion lattices) formed by water molecules called hosts, host substances, or host molecules, or A substance formed and produced by incorporation is called clathrate hydrate. Examples of guest materials include quaternary ammonium salts typified by alkyl ammonium salts such as tetra-n-butylammonium salt, tetra-isopentylammonium salt, tri-n-butyl-pentylammonium salt, alkylphosphonium salts, and alkylsulfonium salts. is there. The “hydrate” in the present invention includes quasi-clathrate hydrate. A guest substance that produces clathrate hydrate is referred to as a hydrate product.

(2)水和物のゲスト物質、すなわち、水和物生成物の水溶液、より詳しくは一種又は二種以上の水和物生成物を溶質とし、水を溶媒とする水溶液を、冷却すると水和物が生成される。また、本発明において、「水和物を生成する液体」とは、冷却されて水和物を生成する水和物生成物を含む液体をいう。水和物を生成する液体を冷却し水和物が生成されると、水和物と水和物を生成する液体の混合物となる。   (2) A hydrate guest substance, that is, an aqueous solution of a hydrate product, more specifically, an aqueous solution containing one or more hydrate products as a solute and water as a solvent, is hydrated when cooled. Things are generated. In the present invention, the “liquid that forms a hydrate” refers to a liquid containing a hydrate product that is cooled to form a hydrate. When the liquid that forms the hydrate is cooled to form the hydrate, a mixture of the hydrate and the liquid that forms the hydrate is obtained.

(3)「水和物のスラリ」とは、水和物がそのゲスト物質の水溶液、すなわち、水和物生成物の水溶液又は水溶媒の中に分散又は懸濁してスラリ状を呈するに至ったものをいう。水和物が少量であっても(換言すれば水和物の存在比率が低くても)、また、水和物の量が多くても、該水溶液又は水溶媒に水和物が分散又は懸濁しているのであれば、それは「水和物のスラリ」に該当する。   (3) “Slurry of hydrate” means that the hydrate is dispersed or suspended in an aqueous solution of the guest substance, that is, an aqueous solution of a hydrate product or an aqueous solvent, to form a slurry. Say things. Even if the amount of hydrate is small (in other words, even if the proportion of hydrate is low) or the amount of hydrate is large, the hydrate is dispersed or suspended in the aqueous solution or aqueous solvent. If it is cloudy, it is a “hydrate slurry”.

目的気体と目的気体以外の気体から成る混合気体から目的気体を選択的に水和物により捕集し分離する技術は、アルキルアンモニウム塩、アルキルホスホニウム塩、アルキルスルホニウム塩などを水和物生成物とする水和物により目的気体を捕集分離する技術が好例となる(特許文献1参照)。この技術においては、いずれの目的気体の場合も、該水和物生成物の水溶液と、目的気体との混合物を冷却することにより、水和物を生成させるものである。   A technique for selectively collecting and separating a target gas from a mixed gas composed of a target gas and a gas other than the target gas by a hydrate includes alkylammonium salt, alkylphosphonium salt, alkylsulfonium salt and the like as hydrate products. A technique that collects and separates the target gas using a hydrate is a good example (see Patent Document 1). In this technique, in any target gas, a hydrate is generated by cooling a mixture of the aqueous solution of the hydrate product and the target gas.

水和物により目的気体を分離するには、従来、水和物生成装置と水和物分解装置とを備える気体分離装置が用いられていた。   Conventionally, in order to separate the target gas by hydrate, a gas separation apparatus including a hydrate generator and a hydrate decomposition apparatus has been used.

水和物生成装置では、水和物生成物の水溶液と目的気体を含む混合気体とを混合させた状態で冷却することで、目的気体を捕集した水和物を生成し、この水和物と水和物を生成する液体とで水和物スラリを形成する。水和物生成装置にて、水和物生成物の水溶液と目的気体を含む混合気体とが混合された状態で、冷媒体との熱交換可能に配置された生成管内を流送中に、該生成管の周囲の冷媒体により冷却されて水和物スラリが形成される。   In the hydrate generation device, a hydrate that collects the target gas is generated by cooling in a state where the aqueous solution of the hydrate product and the mixed gas containing the target gas are mixed. A hydrate slurry is formed with the hydrate-forming liquid. In the state where the aqueous solution of the hydrate product and the mixed gas containing the target gas are mixed in the hydrate generating device, while the inside of the generation pipe arranged so as to be able to exchange heat with the refrigerant body, A hydrate slurry is formed by being cooled by the refrigerant around the production tube.

目的気体を捕集した水和物を含む水和物スラリと目的気体以外の気体との混合物は、次に、分離器にて、常圧のもとで気液分離されて目的気体以外の気体を排出してから水和物分解装置へもたらされる。目的気体以外の気体が排除された水和物スラリは、しかる後、水和物分解装置で加熱されて、水和物が加熱により分解され水和物生成物の水溶液となり、水和物から捕集していた目的気体を放出する。放出された目的気体と水和物生成物の水溶液との混合物を次の分離器にて常圧のもとで気液分離して目的気体を抽出する。水和物分解装置での水和物の加熱による融解(分解)により、目的気体が抽出された後の水和物生成物の水溶液は、水溶液の状態で水和物生成装置へ帰還され、ここで、水和物の生成に適した温度まで冷却されて再利用される。   Next, the mixture of the hydrate slurry containing the hydrate that has collected the target gas and the gas other than the target gas is separated into gas and liquid under normal pressure in the separator, and then the gas other than the target gas. Is discharged to the hydrate decomposition apparatus. The hydrate slurry from which a gas other than the target gas has been excluded is then heated by a hydrate decomposition apparatus, and the hydrate is decomposed by heating to become an aqueous solution of a hydrate product, which is captured from the hydrate. Release the collected target gas. The mixture of the released target gas and the aqueous solution of the hydrate product is subjected to gas-liquid separation under normal pressure in the following separator to extract the target gas. The aqueous solution of the hydrate product after the target gas is extracted by the melting (decomposition) of the hydrate by heating in the hydrate decomposer is returned to the hydrate generator in the form of an aqueous solution. And cooled to a temperature suitable for hydrate formation and reused.

特開2012−76080号公報JP 2012-76080 A

既述の従来の気体分離装置は、水和物分解装置で昇温して水和物が融解した水和物生成物の水溶液を、水和物生成装置にて水和物生成のための温度まで冷却しなくてはならないので、冷凍機などの規模の大きい冷却装置が必要である。また、水和物分解装置では、水和物を融解させるのに加熱装置が必要となる。したがって、気体分離装置としては、これらの冷却装置、加熱装置を要するので、装置が大がかりとなり設備費が嵩み、冷却と加熱のためのエネルギ消費が大きく運転費も嵩む。   In the conventional gas separation apparatus described above, an aqueous solution of a hydrate product in which the hydrate is melted by raising the temperature in the hydrate decomposition apparatus, the temperature for producing the hydrate in the hydrate generation apparatus. Therefore, a large-scale cooling device such as a refrigerator is necessary. In the hydrate decomposition apparatus, a heating device is required to melt the hydrate. Therefore, since these cooling devices and heating devices are required as the gas separation device, the device becomes large and equipment costs increase, energy consumption for cooling and heating increases, and operating costs also increase.

さらに、水和物生成装置で水和物スラリを生成する際、水和物生成物の水溶液と目的気体を含む混合気体との混合物は、生成管内を流送されて、その流送中に生成管の周囲の冷媒体により冷却されるので、生成管内面に水和物が付着して、管路閉塞の問題が生じると共に、流送時の圧力損失が増大してしまい、混合物を流送するポンプ動力の増大、すなわち動力源のエネルギの消費が増大するという問題を生ずる。また、増大する圧力損失に対応できるようにポンプも大型化しなければならないという問題を生ずる。   Furthermore, when producing a hydrate slurry with a hydrate production device, a mixture of an aqueous solution of the hydrate product and a mixed gas containing the target gas is flown through the production tube and produced during the flow. Since it is cooled by the refrigerant body around the pipe, hydrate adheres to the inner surface of the production pipe, resulting in a problem of blockage of the pipe and an increase in pressure loss at the time of flow. The problem is that the pump power increases, that is, the energy consumption of the power source increases. In addition, there is a problem that the pump must be enlarged to cope with the increasing pressure loss.

本発明は、かかる事情に鑑み、水和物を生成するための大がかりな冷却装置や、水和物を融解するための加熱装置を要せず、エネルギ消費が小さくてすみ、装置が小規模で、さらには、水和物生成時の管路閉塞という問題も生じない気体分離装置及び気体分離方法を提供することを課題とする。   In view of such circumstances, the present invention does not require a large-scale cooling device for producing hydrates or a heating device for melting hydrates, requires less energy, and has a small-scale device. Furthermore, it is an object of the present invention to provide a gas separation device and a gas separation method that do not cause the problem of blockage of the pipe during hydrate production.

本発明によると、上述の課題は、以下のように構成される気体分離装置及び気体分離方法で解決される。   According to the present invention, the above-described problems are solved by a gas separation device and a gas separation method configured as follows.

<気体分離装置>
目的気体を含有する混合気体と水和物スラリとを接触させて目的気体を分離する気体分離装置において、容器及び該容器に内圧を印加する加圧手段を備えていて、目的気体と他の気体とが混在している混合気体の供給そして水和物スラリの供給を容器内に受けて該混合気体と水和物スラリを互いに接触状態で加圧する加圧器と、該加圧器から加圧後の水和物スラリを受けてこれを減圧する減圧器とを有し、上記加圧器と減圧器は、加圧後の水和物スラリが減圧器で減圧された後に帰還路を経て加圧器へ帰還するように接続されており、加圧器が目的気体以外の気体の排気のための排出口、減圧器が目的気体を抽出するための目的気体取出口をそれぞれ設けていることを特徴とする気体分離装置。
<Gas separator>
In a gas separation apparatus for separating a target gas by bringing a mixed gas containing the target gas into contact with a hydrate slurry, the container and a pressurizing means for applying an internal pressure to the container are provided. Receiving a mixed gas and a hydrate slurry in a container and pressurizing the mixed gas and the hydrate slurry in contact with each other; A pressure reducer that receives the hydrate slurry and depressurizes the hydrate slurry, and the pressure device and the pressure reducer return to the pressure device through a return path after the pressurized hydrate slurry is decompressed by the pressure reducer. The gas separation is characterized in that the pressurizer is provided with a discharge port for exhausting a gas other than the target gas, and the decompressor is provided with a target gas outlet for extracting the target gas. apparatus.

かかる本発明において、加圧器は、容器内の水和物スラリ中に位置するように設けられた気体分散器を有し、加圧器に供給された混合気体が該気体分散器から容器内の水和物スラリに分散されるようにすることができる。   In the present invention, the pressurizer has a gas disperser provided so as to be located in the hydrate slurry in the container, and the mixed gas supplied to the pressurizer is supplied from the gas disperser to the water in the container. It can be dispersed in a Japanese slurry.

本発明において、加圧器の圧力は50〜500kPaGであり、減圧器の圧力は0〜50kPaGであることが好ましい。   In the present invention, the pressure of the pressurizer is 50 to 500 kPaG, and the pressure of the decompressor is preferably 0 to 50 kPaG.

本発明において、帰還路は、減圧器からの水和物スラリを加圧器へ向け圧送するポンプと、ポンプでの加圧による昇温分だけ水和物スラリを降温させる冷却器とを有していることが好ましい。   In the present invention, the return path includes a pump that pumps the hydrate slurry from the decompressor to the pressurizer, and a cooler that lowers the hydrate slurry by the temperature rise due to pressurization by the pump. Preferably it is.

<気体分離方法>
目的気体を含有する混合気体と水和物スラリとを接触させて目的気体を分離する気体分離方法において、目的気体と他の気体とが混在している混合気体そして水和物スラリを加圧器の容器内に供給して該混合気体と水和物スラリを互いに接触状態で加圧し、加圧後の水和物スラリを減圧器で減圧し、減圧器で減圧された後の水和物スラリを帰還路を経て加圧器へ帰還させて、加圧器から目的気体以外の気体を排気し、減圧器から目的気体を抽出することを特徴とする気体分離方法。
<Gas separation method>
In a gas separation method for separating a target gas by bringing a mixed gas containing the target gas into contact with a hydrate slurry, the mixed gas containing the target gas and another gas and a hydrate slurry are mixed in the pressurizer. The mixed gas and the hydrate slurry are pressurized while being in contact with each other, and the pressurized hydrate slurry is decompressed with a decompressor, and the hydrate slurry after decompressed with the decompressor is removed. A gas separation method characterized by returning to a pressurizer through a return path, exhausting a gas other than the target gas from the pressurizer, and extracting the target gas from the decompressor.

かかる本発明において、加圧器は、容器内の水和物スラリ中に位置するように設けられた気体分散器を有し、加圧器に供給された混合気体を該気体分散器から容器内の水和物スラリに分散することができる。   In the present invention, the pressurizer has a gas disperser provided so as to be located in the hydrate slurry in the container, and the mixed gas supplied to the pressurizer is supplied from the gas disperser to the water in the container. It can be dispersed in a Japanese slurry.

本発明において、加圧器の圧力は50〜500kPaGであり、減圧器の圧力は0〜50kPaGであることが好ましい。   In the present invention, the pressure of the pressurizer is 50 to 500 kPaG, and the pressure of the decompressor is preferably 0 to 50 kPaG.

本発明において、減圧器からの水和物スラリを加圧器へ向けポンプで圧送し、ポンプでの加圧による昇温分だけ水和物スラリを冷却器で降温させることが好ましい。   In the present invention, it is preferable that the hydrate slurry from the decompressor is pumped toward the pressurizer by a pump, and the hydrate slurry is cooled by the cooler by the amount of temperature rise due to pressurization by the pump.

以上のような、本発明装置及び方法では、加圧器の容器内で目的気体を含有する混合気体と水和物スラリを互いに接触状態で加圧することにより、水和物は目的気体を選択的に吸収捕集し、減圧器で目的気体を捕集している水和物を減圧することにより、水和物から目的気体が放出され、目的気体が混合気体から分離される。このように、減圧器で水和物スラリ中の水和物は融解されることなく減圧されるだけで目的気体が抽出された後、水和物スラリの状態を保って加圧器へ帰還され混合気体と接触し加圧されることで目的気体を捕集する。したがって、水和物の生成のための冷却、水和物から目的気体の取出し時に水和物の融解のための加熱を要しない。   In the apparatus and method of the present invention as described above, the hydrate selectively selects the target gas by pressurizing the mixed gas containing the target gas and the hydrate slurry in contact with each other in the container of the pressurizer. The target gas is released from the hydrate and the target gas is separated from the mixed gas by depressurizing the hydrate that has been absorbed and collected and the target gas is collected by the decompressor. In this way, the hydrate in the hydrate slurry is decompressed without being melted by the decompressor, and after the target gas is extracted, the hydrate slurry is maintained and returned to the pressurizer for mixing. The target gas is collected by contact with the gas and being pressurized. Therefore, cooling for producing the hydrate and heating for melting the hydrate are not required when the target gas is taken out from the hydrate.

本発明装置及び方法によれば、目的気体と他の気体とが混在している混合気体そして水和物スラリを加圧器の容器内に供給して該混合気体と水和物スラリを互いに接触状態で加圧し水和物が目的気体を選択的に捕集し、加圧後の水和物スラリを減圧器で減圧し水和物から目的気体を放出し、減圧器で減圧された後の水和物スラリを帰還路を経て加圧器へ帰還させて、加圧器から目的気体以外の気体を排気し、減圧器から目的気体を抽出することとしているので、水和物を生成するための冷却器、水和物を融解(分解)するための加熱器が不要であり、装置全体がコンパクトになり、冷熱エネルギ、加熱エネルギの必要がなく、加圧、減圧のためのエネルギは必要であるが、少ないエネルギで目的気体を分離することができる、という効果を得る。さらには、水和物生成物質の水溶液を冷却し水和物を生成することを行わないため、水和物生成のための生成管路を用いる必要がないため、管路での圧力損失増大や管路内閉塞等の問題が生じないという効果も得る。   According to the apparatus and method of the present invention, the mixed gas in which the target gas and other gas are mixed and the hydrate slurry are supplied into the container of the pressurizer, and the mixed gas and the hydrate slurry are in contact with each other. Pressurize the hydrate to selectively collect the target gas, depressurize the hydrate slurry after pressurization with a decompressor to release the target gas from the hydrate, and decompress the water with the decompressor. The Japanese slurry is returned to the pressurizer via the return path, the gas other than the target gas is exhausted from the pressurizer, and the target gas is extracted from the decompressor, so a cooler for generating hydrates The heater for melting (decomposing) the hydrate is unnecessary, the whole apparatus becomes compact, there is no need for cold energy and heating energy, and energy for pressurization and decompression is necessary. The effect that the target gas can be separated with less energy is obtained. . Furthermore, since the hydrate-generating substance aqueous solution is not cooled to produce a hydrate, there is no need to use a production line for producing hydrates. There is also an effect that problems such as blockage in the pipeline do not occur.

本発明の一実施形態としての気体分離装置の概要構成図である。It is a schematic block diagram of the gas separation apparatus as one Embodiment of this invention.

以下、添付図面の図1にもとづき、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

図1に示される本発明の一実施形態としての気体分離装置1は、水和物スラリ中の水和物に目的気体を加圧下で吸収捕集させる加圧器11と、水和物スラリの減圧により水和物から捕集された目的気体を分離して取り出す減圧器12とを主として有している。   A gas separation device 1 as an embodiment of the present invention shown in FIG. 1 includes a pressurizer 11 that allows a hydrate in a hydrate slurry to absorb and collect a target gas under pressure, and a pressure reduction of the hydrate slurry. And a decompressor 12 that separates and extracts the target gas collected from the hydrate.

かかる気体分離装置1について、加圧器11、減圧器12等の各構成装置の説明に先立ち、水和物生成物、水和物を生成する液体そして目的気体について説明する。   Prior to the description of the constituent devices such as the pressurizer 11 and the decompressor 12, the hydrate product, the liquid for producing the hydrate, and the target gas will be described for the gas separation device 1.

<水和物生成物>
水和物を生成するゲスト物質(水和物生成物)としては、第四級アンモニウム塩、第四級ホスホニウム塩、第四級スルホニウム塩などを用いることができる。第四級アンモニウム塩としては、臭化テトラnブチルアンモニウム(TBAB)、臭化テトラisoペンチルアンモニウム(TiPAB)、臭化トリnブチルペンチルアンモニウム(TBPAB)、フッ化テトラnブチルアンモニウム(TBAF)、塩化テトラnブチルアンモニウム(TBACl)、ヨウ化テトラnブチルアンモニウム(TBAI)などのテトラアルキルアンモニウム塩などが代表的な例として挙げられるが、これらに限定されるものではない。
<Hydrate product>
As a guest substance (hydrate product) that forms a hydrate, a quaternary ammonium salt, a quaternary phosphonium salt, a quaternary sulfonium salt, or the like can be used. Quaternary ammonium salts include tetra-n-butylammonium bromide (TBAB), tetra-isopentylammonium bromide (TiPAB), tri-n-butylpentylammonium bromide (TBPAB), tetra-n-butylammonium fluoride (TBAF), chloride Typical examples include tetraalkylammonium salts such as tetra-n-butylammonium (TBACl) and tetra-n-butylammonium iodide (TBAI), but are not limited thereto.

<水和物を生成する液体>
水和物を生成する液体としての水和物生成物を含む水溶液としては、上記の水和物生成物を含む水溶液を用いることができる。また、水和物生成物を含む水溶液として、臭化テトラisoペンチルアンモニウム(TiPAB)の水溶液が好ましい。臭化テトラisoペンチルアンモニウムの調和融点は30℃であり、水溶液の濃度を調整して水和物生成温度を0〜30℃の範囲に調整することが容易であるからである。
<Liquid that produces hydrate>
As an aqueous solution containing a hydrate product as a liquid for producing a hydrate, an aqueous solution containing the hydrate product can be used. Further, as the aqueous solution containing the hydrate product, an aqueous solution of tetraisopentylammonium bromide (TiPAB) is preferable. This is because the harmonic melting point of tetraisopentylammonium bromide is 30 ° C., and it is easy to adjust the concentration of the aqueous solution to adjust the hydrate formation temperature in the range of 0 to 30 ° C.

また、水和物生成物を含む水溶液として、臭化テトラisoペンチルアンモニウムを含むニ種以上の第四級アンモニウム塩の水溶液が好ましい。臭化テトラisoペンチルアンモニウム以外の第四級アンモニウム塩としては、臭化テトラnブチルアンモニウムが好ましい。臭化テトラnブチルアンモニウムは比較的安価で入手し易いので、臭化テトラisoペンチルアンモニウムと臭化テトラnブチルアンモニウムとを適切に配合することにより、水和物生成温度を0〜30℃の範囲に調整することが容易であるとともに経済的に優れた気体を捕集し放出して分離する装置、方法を構成することができる。   Moreover, as an aqueous solution containing a hydrate product, an aqueous solution of two or more quaternary ammonium salts containing tetraisopentylammonium bromide is preferable. As a quaternary ammonium salt other than tetraisopentylammonium bromide, tetra-n-butylammonium bromide is preferable. Since tetra-n-butylammonium bromide is relatively inexpensive and readily available, the hydrate formation temperature is in the range of 0 to 30 ° C. by properly blending tetraisopentylammonium bromide and tetra-n-butylammonium bromide. It is possible to construct an apparatus and a method for collecting, releasing, and separating gas which is easy to adjust and is economically excellent.

水和物を生成する液体の濃度、すなわち水和物生成物を含む水溶液の水和物生成物濃度は高いほど水和物スラリ中の水和物濃度が高く、水和物濃度が高いほど目的気体を捕集する量が多くなるので、水溶液の水和物生成物濃度が高いことが好ましい。   The higher the concentration of the liquid that forms the hydrate, that is, the hydrate product concentration of the aqueous solution containing the hydrate product, the higher the hydrate concentration in the hydrate slurry, the higher the hydrate concentration Since the amount of gas to be collected increases, it is preferable that the concentration of the hydrate product in the aqueous solution is high.

ゲスト物質が臭化テトラisoペンチルアンモニウムの場合、水溶液の濃度は0.1〜35重量%が好ましく、1〜15重量%がより好ましい。下限値より小さいと気体分離装置として水溶液量を多く要し過大な容量の容器が必要となり好ましくなく、上限値より大きいと水和物スラリ中の水和物濃度が高すぎ粘度が高くなり、水和物及び水和物を生成する液体と、目的気体との接触効率が低下するため好ましくない。   When the guest substance is tetraisopentylammonium bromide, the concentration of the aqueous solution is preferably 0.1 to 35% by weight, and more preferably 1 to 15% by weight. If it is smaller than the lower limit, a large amount of aqueous solution is required as a gas separation device, and an excessively large container is required. Since the contact efficiency of the liquid which produces | generates a hydrate and a hydrate and target gas falls, it is unpreferable.

<目的気体>
混合気体から分離する目的気体としては、例えば、二酸化炭素、酸素、硫化水素、二酸化硫黄、メタンなどが挙げられる。
<Target gas>
Examples of the target gas separated from the mixed gas include carbon dioxide, oxygen, hydrogen sulfide, sulfur dioxide, and methane.

混合気体から目的気体を捕集して分離することの例として、メタンと二酸化炭素を含む混合気体から目的気体として二酸化炭素を分離しメタン含有率の高い燃料ガスを得ることや、燃焼排ガスなどの混合気体から二酸化炭素を分離し二酸化炭素濃縮ガスを得ること、空気から酸素を分離し酸素富化空気を得ることなどが挙げられる。また、化学原料ガス中に含まれる硫化水素を触媒の劣化防止を目的に除去すること、燃焼排ガス中の二酸化硫黄を環境保全の観点から分離することも好適な例である。   Examples of collecting and separating a target gas from a mixed gas include separation of carbon dioxide as a target gas from a mixed gas containing methane and carbon dioxide to obtain a fuel gas having a high methane content, combustion exhaust gas, etc. For example, carbon dioxide is separated from a mixed gas to obtain a carbon dioxide-enriched gas, and oxygen is separated from air to obtain oxygen-enriched air. In addition, removal of hydrogen sulfide contained in the chemical raw material gas for the purpose of preventing deterioration of the catalyst and separation of sulfur dioxide in the combustion exhaust gas from the viewpoint of environmental conservation are also suitable examples.

本実施形態装置において、加圧器11は、上述の目的気体と目的気体以外の気体とが混在している混合気体Aと、減圧器12から帰還する水和物スラリとを受け、これらを接触状態のもとで加圧するものであり、容器11Aを有し、気体分散器11Bが容器11Aの底部に配置されている。   In the apparatus of the present embodiment, the pressurizer 11 receives the mixed gas A in which the above-described target gas and a gas other than the target gas are mixed, and the hydrate slurry returned from the decompressor 12, and these are in contact with each other. And has a container 11A, and a gas disperser 11B is disposed at the bottom of the container 11A.

容器11Aは、内圧を50〜500kPaGとして水和物スラリを加圧するように、図示しない加圧手段が設けられ、あるいは該加圧手段が接続されている。気体分離器11Bは、例えば微小多孔が形成された管部材で作られていて、容器11A内に収容されている後述の水和物スラリ中に配されており、上記混合気体Aを外部から送気管13を経て受け入れ、上記微小多孔から混合気体Aを容器11A内の水和物スラリ中へ気泡状に吹き出すようになっている。上記送気管13には、圧縮機14が設けられていて、外部からの混合気体Aが上記気体分散器11Bの微小多孔から吹き出すのに十分な圧力に上記圧縮機14で加圧される。また、上記送気管13には、冷却器15が設けられていて、容器11A内の水和物スラリ中に混合気体Aが吹き込まれることにより上記水和物スラリの温度が水和物の融解温度以上に上昇しないように混合気体Aが上記冷却器15で冷却される。   The container 11A is provided with a pressurizing means (not shown) or connected to pressurize the hydrate slurry with an internal pressure of 50 to 500 kPaG. The gas separator 11B is made of, for example, a tube member in which micropores are formed. The gas separator 11B is arranged in a hydrate slurry (described later) housed in the container 11A, and sends the mixed gas A from the outside. The gas mixture A is received through the trachea 13, and the mixed gas A is blown out into the hydrate slurry in the container 11 </ b> A from the micropore. The air supply pipe 13 is provided with a compressor 14, and is pressurized by the compressor 14 to a pressure sufficient to blow the mixed gas A from the outside through the micropores of the gas distributor 11 </ b> B. The air supply pipe 13 is provided with a cooler 15, and the temperature of the hydrate slurry is changed to the melting temperature of the hydrate when the mixed gas A is blown into the hydrate slurry in the container 11 </ b> A. The mixed gas A is cooled by the cooler 15 so as not to rise above.

また、上記容器11Aは、その上部に容器11A内の水和物スラリの液面上の空間の気体(後述するがこれは目的気体以外の気体)を外部へ排気する排出口16Aが設けられ、ここに排気管16Bが接続されている。   In addition, the container 11A is provided with a discharge port 16A for exhausting the gas in the space above the liquid level of the hydrate slurry in the container 11A (which will be described later but this is a gas other than the target gas) to the outside. The exhaust pipe 16B is connected here.

上記加圧器11は、ポンプ17を経て送液管18により上記減圧器12に接続されている。該減圧器12は、加圧器11から加圧下の水和物スラリを受けて、これを0〜50kPaGに減圧するようになっている。上記減圧器12は、該減圧器12の容器内に送入された水和物スラリの液面より上方の空間の気体(後述するがこれは目的気体)を外部へ抽出する目的気体取出口19Aが設けられており、ここに目的気体取出管19Bが接続されている。   The pressurizer 11 is connected to the pressure reducer 12 through a pump 17 through a liquid feeding pipe 18. The decompressor 12 receives a hydrate slurry under pressure from the pressurizer 11 and depressurizes the slurry to 0 to 50 kPaG. The decompressor 12 is a target gas outlet 19A for extracting a gas in the space above the liquid level of the hydrate slurry fed into the container of the decompressor 12 (which will be described later, this is a target gas) to the outside. Is provided, and a target gas extraction pipe 19B is connected thereto.

上記減圧器12には、その容器内の下部に、内部の水和物スラリを既出の加圧器11へ帰還させる帰還路20を形成する配管が接続されている。該帰還路20は、加圧器11の容器11Aへ帰還している。   The decompressor 12 is connected to a pipe forming a return path 20 for returning the internal hydrate slurry to the pressurizer 11 at the lower part of the container. The return path 20 returns to the container 11 </ b> A of the pressurizer 11.

上記帰還路20には、ポンプ21、攪拌器22、冷却器23が設けられている。ポンプ21は減圧器12からの水和物スラリを上記加圧器11へ帰還させるように圧送し、攪拌器22は帰還する水和物スラリの流れに乱れを生じさせる。また、冷却器23は上記ポンプ21での圧送そして攪拌器22での攪拌により若干ながら昇温する分だけ水和物スラリを冷却する。   The return path 20 is provided with a pump 21, a stirrer 22, and a cooler 23. The pump 21 pumps the hydrate slurry from the pressure reducer 12 back to the pressurizer 11, and the stirrer 22 disturbs the flow of the returning hydrate slurry. Further, the cooler 23 cools the hydrate slurry by the amount of the temperature slightly increased by the pumping by the pump 21 and the stirring by the stirrer 22.

以上のような構成の本実施形態の気体分離装置1における混合気体からの目的気体の分離についてそのプロセスを、以下に説明する。   A process for separating the target gas from the mixed gas in the gas separation device 1 of the present embodiment having the above-described configuration will be described below.

加圧器11には、減圧器12からの減圧後の水和物スラリが帰還路20を経て帰還されており、該加圧器11の容器11A内に収容されている。   The pressurizer 11 returns the hydrate slurry after decompression from the decompressor 12 through the return path 20 and is accommodated in the container 11 </ b> A of the pressurizer 11.

外部の供給源(図示せず)から供給される目的気体と他の気体とが混在している混合気体Aは、気体分散器11Bの微小多孔から吹き出されるのに適切な程度に、圧縮機14にて加圧された後、上記容器11A中の水和物スラリ中の水和物を融解してしまわない程度の温度にまで冷却器15により冷却され、送気管13を経て上記容器11Aの気体分散器11Bへ圧送される。   The gas mixture A, in which the target gas supplied from an external supply source (not shown) and other gas are mixed, is compressed to a level appropriate for being blown out from the micropores of the gas distributor 11B. After being pressurized at 14, it is cooled by the cooler 15 to a temperature at which the hydrate in the hydrate slurry in the container 11 </ b> A is not melted. It is pumped to the gas disperser 11B.

加圧されている混合気体Aは気体分散器11Bの微小多孔から容器11A内の水和物スラリ中へ吹き出されて気泡となり分散・上昇するが、その際、水和物スラリと接触する。容器11A内は、図示しない加圧手段により加圧されているので、上記混合気体Aの気泡と水和物スラリとはその加圧下のもとで接触することとなる。この加圧下のもとで混合気体A中の目的気体が他の気体よりも選択的に水和物に吸収・捕集されて、目的気体以外の他の気体から分離される。この目的気体以外の他の気体は、水和物スラリ中を上昇し続けて、該水和物スラリの液面から上方の空間に達し貯留される。該空間内の目的気体以外の他の気体は排出口16Aから排気管16Bを経て容器11A外に取り出される。   The pressurized mixed gas A is blown out from the micropores of the gas disperser 11B into the hydrate slurry in the container 11A to become bubbles and disperse and rise, but at that time, it comes into contact with the hydrate slurry. Since the inside of the container 11A is pressurized by a pressurizing means (not shown), the bubbles of the mixed gas A and the hydrate slurry come into contact with each other under the pressure. Under this pressure, the target gas in the mixed gas A is selectively absorbed and collected by the hydrate over the other gases and separated from other gases other than the target gas. Gases other than the target gas continue to rise in the hydrate slurry, reach the upper space from the liquid level of the hydrate slurry, and are stored. Gases other than the target gas in the space are taken out from the container 11A through the exhaust port 16A through the exhaust pipe 16B.

目的気体を捕集した水和物を含む水和物スラリはポンプ17により送液管18を経て減圧器12に送り込まれる。加圧器11で加圧されていた水和物スラリは、上記減圧器12にて減圧される。減圧された水和物スラリ中の水和物は、捕集していた目的気体を放出する。放出された目的気体は減圧器12の上部空間に貯留され、ここから目的気体取出口19Aそして目的気体取出管Bを経て抽出される。かくして、目的気体は混合気体Aから分離して取り出される。   The hydrate slurry containing the hydrate that has collected the target gas is sent to the decompressor 12 via the liquid feed pipe 18 by the pump 17. The hydrate slurry that has been pressurized by the pressurizer 11 is decompressed by the decompressor 12. The hydrate in the decompressed hydrate slurry releases the collected target gas. The discharged target gas is stored in the upper space of the decompressor 12 and is extracted from the target gas through the target gas outlet 19A and the target gas outlet pipe B. Thus, the target gas is separated from the mixed gas A and taken out.

目的気体が抽出された後の水和物スラリは、帰還路20を経て加圧器11へ帰還され、該加圧器11にて混合気体Aから目的気体を捕集するのに再び利用される。帰還路20では、水和物スラリはポンプ21により圧送され、攪拌器22により攪拌されることで流れに乱れを生じ、加圧器11へ帰還した際には、水和物スラリは乱れを有しているため、目的気体との接触効率が増大することで水和物による目的気体の捕集能力が向上される。帰還路20にて水和物スラリは、ポンプ21そして攪拌器22から入熱を受けるので、冷却器23でその分だけ冷却され、水和物が融解することを防止されている。   The hydrate slurry from which the target gas has been extracted is returned to the pressurizer 11 via the return path 20 and is used again to collect the target gas from the mixed gas A in the pressurizer 11. In the return path 20, the hydrate slurry is pumped by the pump 21 and is stirred by the stirrer 22, thereby disturbing the flow. When returning to the pressurizer 11, the hydrate slurry has a disorder. Therefore, the collection efficiency of the target gas by the hydrate is improved by increasing the contact efficiency with the target gas. Since the hydrate slurry receives heat from the pump 21 and the stirrer 22 in the return path 20, the hydrate slurry is cooled by the cooler 23 to prevent the hydrate from melting.

かくして、帰還した水和物スラリは、水和物の融解が生じない温度にて加圧器11に収容され、加圧下での混合気体との接触により、再び目的気体の吸収・捕集に供される。   Thus, the returned hydrate slurry is accommodated in the pressurizer 11 at a temperature at which the hydrate does not melt, and is again subjected to absorption and collection of the target gas by contact with the mixed gas under pressure. The

1 気体分離装置
11 加圧器
11A 容器
11B 気体分散器
12 減圧器
16A 排出口
19A 目的気体取出口
20 帰還路
21 ポンプ
23 冷却器
A 混合気体
DESCRIPTION OF SYMBOLS 1 Gas separator 11 Pressurizer 11A Container 11B Gas disperser 12 Depressurizer 16A Discharge port 19A Target gas outlet 20 Return path 21 Pump 23 Cooler A Mixed gas

Claims (8)

目的気体を含有する混合気体と水和物スラリとを接触させて目的気体を分離する気体分離装置において、
容器及び該容器に内圧を印加する加圧手段を備えていて、目的気体と他の気体とが混在している混合気体の供給そして水和物スラリの供給を容器内に受けて該混合気体と水和物スラリを互いに接触状態で加圧する加圧器と、該加圧器から加圧後の水和物スラリを受けてこれを減圧する減圧器とを有し、上記加圧器と減圧器は、加圧後の水和物スラリが減圧器で減圧された後に帰還路を経て加圧器へ帰還するように接続されており、加圧器が目的気体以外の気体の排気のための排出口、減圧器が目的気体を抽出するための目的気体取出口をそれぞれ設けていることを特徴とする気体分離装置。
In a gas separation device for separating a target gas by bringing a mixed gas containing the target gas into contact with a hydrate slurry,
A container and a pressurizing means for applying an internal pressure to the container; the supply of a mixed gas in which a target gas and another gas are mixed and the supply of a hydrate slurry are received in the container; A pressurizer that pressurizes the hydrate slurry in contact with each other; and a decompressor that receives the pressurized hydrate slurry from the pressurizer and depressurizes the hydrate slurry. After the pressurized hydrate slurry is depressurized by the decompressor, it is connected so as to return to the pressurizer via the return path. The pressurizer is a discharge port for exhausting gases other than the target gas, and the decompressor A gas separation apparatus comprising a target gas outlet for extracting a target gas.
加圧器は、容器内の水和物スラリ中に位置するように設けられた気体分散器を有し、加圧器に供給された混合気体が該気体分散器から容器内の水和物スラリに分散されるようになっていることとする請求項1に記載の気体分離装置。   The pressurizer has a gas disperser provided so as to be located in the hydrate slurry in the container, and the mixed gas supplied to the pressurizer is dispersed from the gas disperser into the hydrate slurry in the container. The gas separation device according to claim 1, wherein the gas separation device is configured to be configured. 加圧器の圧力は50〜500kPaGであり、減圧器の圧力は0〜50kPaGであることとする請求項1に記載の気体分離装置。   The gas separator according to claim 1, wherein the pressure of the pressurizer is 50 to 500 kPaG, and the pressure of the decompressor is 0 to 50 kPaG. 帰還路は、減圧器からの水和物スラリを加圧器へ向け圧送するポンプと、ポンプでの加圧による昇温分だけ水和物スラリを降温させる冷却器とを有していることとする請求項1に記載の気体分離装置。   The return path has a pump that pumps the hydrate slurry from the decompressor toward the pressurizer, and a cooler that cools the hydrate slurry by the temperature rise due to pressurization by the pump. The gas separator according to claim 1. 目的気体を含有する混合気体と水和物スラリとを接触させて目的気体を分離する気体分離方法において、
目的気体と他の気体とが混在している混合気体そして水和物スラリを容器内に供給して該混合気体と水和物スラリを互いに接触状態で加圧し、加圧後の水和物スラリを減圧器で減圧し、減圧器で減圧された後の水和物スラリを帰還路を経て加圧器へ帰還させて、加圧器から目的気体以外の気体を排気し、減圧器から目的気体を抽出することを特徴とする気体分離方法。
In a gas separation method of separating a target gas by bringing a mixed gas containing the target gas into contact with a hydrate slurry,
A mixed gas containing a target gas and another gas and a hydrate slurry are supplied into the container, and the mixed gas and the hydrate slurry are pressurized in contact with each other. The hydrate slurry that has been decompressed by the decompressor is returned to the pressurizer via the return path, and the gas other than the target gas is exhausted from the pressurizer, and the target gas is extracted from the decompressor. A gas separation method comprising:
加圧器は、容器内の水和物スラリ中に位置するように設けられた気体分散器を有し、加圧器に供給された混合気体を該気体分散器から容器内の水和物スラリに分散することとする請求項5に記載の気体分離方法。   The pressurizer has a gas disperser provided so as to be positioned in the hydrate slurry in the container, and the mixed gas supplied to the pressurizer is dispersed from the gas disperser into the hydrate slurry in the container. The gas separation method according to claim 5 to be performed. 加圧器の圧力は50〜500kPaGであり、減圧器の圧力は0〜50kPaGであることとする請求項5に記載の気体分離方法。   The gas separation method according to claim 5, wherein the pressure of the pressurizer is 50 to 500 kPaG, and the pressure of the decompressor is 0 to 50 kPaG. 減圧器からの水和物スラリを加圧器へ向けポンプで圧送し、ポンプでの加圧による昇温分だけ水和物スラリを冷却器で降温させることとする請求項5に記載の気体分離方法。   6. The gas separation method according to claim 5, wherein the hydrate slurry from the decompressor is pumped by a pump toward the pressurizer, and the hydrate slurry is cooled by the cooler by an amount of temperature rise due to pressurization by the pump. .
JP2014187213A 2014-09-16 2014-09-16 Gas separation device and gas separation method Active JP6280474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187213A JP6280474B2 (en) 2014-09-16 2014-09-16 Gas separation device and gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187213A JP6280474B2 (en) 2014-09-16 2014-09-16 Gas separation device and gas separation method

Publications (2)

Publication Number Publication Date
JP2016059834A JP2016059834A (en) 2016-04-25
JP6280474B2 true JP6280474B2 (en) 2018-02-14

Family

ID=55796768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187213A Active JP6280474B2 (en) 2014-09-16 2014-09-16 Gas separation device and gas separation method

Country Status (1)

Country Link
JP (1) JP6280474B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660603A (en) * 1995-09-05 1997-08-26 International Process Services, Inc. Process for separating selected components from multi-component natural gas streams
JP4313603B2 (en) * 2003-04-28 2009-08-12 三井造船株式会社 Heat storage system using gas hydrate
JP4911515B2 (en) * 2007-05-15 2012-04-04 独立行政法人産業技術総合研究所 Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same
JP4915399B2 (en) * 2008-07-04 2012-04-11 Jfeエンジニアリング株式会社 Method and apparatus for collecting and releasing gas using a hydrate containing a quaternary ammonium salt as a guest molecule
JP4684365B2 (en) * 2009-05-26 2011-05-18 三井造船株式会社 Separation apparatus and method for gas to be separated
JP5477364B2 (en) * 2011-12-01 2014-04-23 Jfeエンジニアリング株式会社 Method and apparatus for collecting and releasing gas using a hydrate containing a quaternary ammonium salt as a guest molecule
JP5769112B2 (en) * 2011-12-07 2015-08-26 Jfeエンジニアリング株式会社 Gas separation method and apparatus and gas treatment method and apparatus

Also Published As

Publication number Publication date
JP2016059834A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP4151942B2 (en) Gas hydrate generating apparatus, manufacturing apparatus, and manufacturing method
JP2006206635A (en) Method for separating and refining methane and apparatus for separating and refining methane
Castellani et al. Carbon dioxide capture using gas hydrate technology
US20150290581A1 (en) Carbon dioxide absorbing composition including antisolvent, and method and apparatus for absorbing carbon dioxide using the same
JP2004075771A (en) Apparatus for producing gas hydrate
CN111996049A (en) Device and method for removing acid gas in natural gas by combining hydrate method and membrane separation method
Tu et al. Review on separation of coalbed methane by hydrate method
Balraj et al. Experimental investigation of microwave-assisted regeneration of carbon-rich aqueous solutions
JP2002356685A (en) Method and apparatus for producing gas hydrate
JP6280474B2 (en) Gas separation device and gas separation method
JP6427455B2 (en) Ozone hydrate manufacturing apparatus and ozone hydrate manufacturing method
JP6320883B2 (en) Gas separation device and gas separation method
JP2014188405A (en) Apparatus and method for separating carbon dioxide
JP2005179629A (en) Method for separating mixed gas, separating device of mixed gas and mixed gas-treating system
JP5769112B2 (en) Gas separation method and apparatus and gas treatment method and apparatus
JP2013226549A (en) Concentration/recovery method and removal method for molecule containing high mass-number isotope
JP6322100B2 (en) Gas separation device and gas separation method
JP6202715B2 (en) Hydrogen compound decomposition hydrogen recovery apparatus and method
JP2012236740A (en) Method for forming hydrogen hydrate, and hydrogen storing system
JP4620440B2 (en) Gas hydrate generating apparatus and generating method
JP6557537B2 (en) Ozone hydrate manufacturing apparatus and ozone hydrate manufacturing method
JP2003231892A (en) Method for producing gas hydrate and installation for producing the same
JP4268015B2 (en) Heavy water concentration method, heavy water concentration device
JP4441619B2 (en) Bunsen reactor with separation function
JP2006075740A (en) Ionic liquid refining process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250