JP6320883B2 - Gas separation device and gas separation method - Google Patents

Gas separation device and gas separation method Download PDF

Info

Publication number
JP6320883B2
JP6320883B2 JP2014187214A JP2014187214A JP6320883B2 JP 6320883 B2 JP6320883 B2 JP 6320883B2 JP 2014187214 A JP2014187214 A JP 2014187214A JP 2014187214 A JP2014187214 A JP 2014187214A JP 6320883 B2 JP6320883 B2 JP 6320883B2
Authority
JP
Japan
Prior art keywords
hydrate
gas
particle size
target gas
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014187214A
Other languages
Japanese (ja)
Other versions
JP2016059835A (en
Inventor
井田 博之
博之 井田
土居 真
真 土居
孝郎 海老沼
孝郎 海老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
JFE Engineering Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical JFE Engineering Corp
Priority to JP2014187214A priority Critical patent/JP6320883B2/en
Publication of JP2016059835A publication Critical patent/JP2016059835A/en
Application granted granted Critical
Publication of JP6320883B2 publication Critical patent/JP6320883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、混合気体から目的とする気体(以下「目的気体」という)を選択的に水和物により捕集することを通じて、混合気体から該目的気体を分離する装置及び方法に関する。   The present invention relates to an apparatus and a method for separating a target gas from a mixed gas by selectively collecting the target gas (hereinafter referred to as “target gas”) from the mixed gas with a hydrate.

本発明において、次に掲げる用語の意味又は解釈は以下のとおりとする。この用語の意味又は解釈は、本発明の技術的範囲が均等の範囲にまで及ぶことを妨げるものではない。   In the present invention, the meaning or interpretation of the following terms is as follows. The meaning or interpretation of this term does not preclude the technical scope of the present invention from reaching an equivalent scope.

(1)「水和物」とは、包接水和物の略称である。ホスト、ホスト物質又はホスト分子と呼ばれる水分子が構成するトンネル形、層状、網状、籠状などの構造(包接格子)内に、ゲスト物質、ゲスト分子又はゲスト化合物と呼ばれる他の分子が入り込む又は取り込まれることで形成され、生成される物質を包接水和物という。ゲスト物質の例としては、テトラnブチルアンモニウム塩、テトラisoペンチルアンモニウム塩、トリnブチル・ペンチルアンモニウム塩等のアルキルアンモニウム塩に代表される第四級アンモニウム塩、アルキルホスホニウム塩、アルキルスルホニウム塩などがある。本発明における「水和物」には、準包接水和物が含まれる。包接水和物を生成するゲスト物質を水和物生成物という。   (1) “Hydrate” is an abbreviation for clathrate hydrate. Other molecules called guest substances, guest molecules, or guest compounds enter tunnel-like, layer-like, network-like, cage-like structures (inclusion lattices) formed by water molecules called hosts, host substances, or host molecules, or A substance formed and produced by incorporation is called clathrate hydrate. Examples of guest materials include quaternary ammonium salts typified by alkyl ammonium salts such as tetra-n-butylammonium salt, tetra-isopentylammonium salt, tri-n-butyl-pentylammonium salt, alkylphosphonium salts, and alkylsulfonium salts. is there. The “hydrate” in the present invention includes quasi-clathrate hydrate. A guest substance that produces clathrate hydrate is referred to as a hydrate product.

(2)水和物のゲスト物質、すなわち、水和物生成物の水溶液、より詳しくは一種又は二種以上の水和物生成物を溶質とし、水を溶媒とする水溶液を、冷却すると水和物が生成される。また、本発明において、「水和物を生成する液体」とは、冷却されて水和物を生成する水和物生成物を含む液体をいう。水和物を生成する液体を冷却し水和物が生成されると、水和物と水和物を生成する液体の混合物となる。   (2) A hydrate guest substance, that is, an aqueous solution of a hydrate product, more specifically, an aqueous solution containing one or more hydrate products as a solute and water as a solvent, is hydrated when cooled. Things are generated. In the present invention, the “liquid that forms a hydrate” refers to a liquid containing a hydrate product that is cooled to form a hydrate. When the liquid that forms the hydrate is cooled to form the hydrate, a mixture of the hydrate and the liquid that forms the hydrate is obtained.

(3)「水和物のスラリ」とは、水和物がそのゲスト物質の水溶液、すなわち、水和物生成物の水溶液又は水溶媒の中に分散又は懸濁してスラリ状を呈するに至ったものをいう。水和物が少量であっても(換言すれば水和物の存在比率が低くても)、また、水和物の量が多くても、該水溶液又は水溶媒に水和物が分散又は懸濁しているのであれば、それは「水和物のスラリ」に該当する。   (3) “Slurry of hydrate” means that the hydrate is dispersed or suspended in an aqueous solution of the guest substance, that is, an aqueous solution of a hydrate product or an aqueous solvent, to form a slurry. Say things. Even if the amount of hydrate is small (in other words, even if the proportion of hydrate is low) or the amount of hydrate is large, the hydrate is dispersed or suspended in the aqueous solution or aqueous solvent. If it is cloudy, it is a “hydrate slurry”.

(4)「水和物生成温度」とは、水和物のゲスト物質の水溶液を冷却したとき、その水溶液の中で水和物が生成する温度をいう。   (4) “Hydrate formation temperature” refers to a temperature at which a hydrate is formed in an aqueous solution of the hydrate guest substance when cooled.

目的気体と目的気体以外の気体から成る混合気体から目的気体を選択的に水和物により捕集し分離する技術は、アルキルアンモニウム塩、アルキルホスホニウム塩、アルキルスルホニウム塩などを水和物生成物とする水和物により目的気体を捕集分離する技術が好例となり、目的気体が含まれない環境又は目的気体の濃度が所定濃度未満の環境の下で水和物を予め生成し、引き続き該水和物により混合気体から該目的気体を選択的に捕集して分離する技術が開示されている(特許文献1参照)。   A technique for selectively collecting and separating a target gas from a mixed gas composed of a target gas and a gas other than the target gas by a hydrate includes alkylammonium salt, alkylphosphonium salt, alkylsulfonium salt and the like as hydrate products. An example is a technique for collecting and separating a target gas by a hydrate that generates hydrate in advance under an environment that does not contain the target gas or an environment in which the concentration of the target gas is less than a predetermined concentration. A technique for selectively collecting and separating a target gas from a mixed gas by an object is disclosed (see Patent Document 1).

特許文献1の気体分離装置は、目的気体が含まれない環境下で水和物を生成する水和物生成装置と、水和物生成装置で生成された水和物が存在する環境に混合気体を供給して水和物に目的気体を捕集させる気体捕集装置と、目的気体を捕集した水和物から目的気体を放出させる気体放出装置とを有している。   The gas separation device of Patent Document 1 includes a hydrate generation device that generates a hydrate in an environment that does not include a target gas, and a mixed gas in an environment in which the hydrate generated by the hydrate generation device exists. And a gas collector that collects the target gas in the hydrate, and a gas release device that releases the target gas from the hydrate that collected the target gas.

特許文献1では、水和物生成装置は、水和物を生成するゲスト物質を含む水溶液が流通過程で一時的に貯留される生成槽に冷却機能を備える熱交換器を備えている。この水溶液が熱交換器により冷却されると水和物を生成し、生成槽には水和物が水溶液中に分散又は懸濁している水和物スラリが貯留される。   In patent document 1, the hydrate production | generation apparatus is equipped with the heat exchanger which has a cooling function in the production tank in which the aqueous solution containing the guest substance which produces | generates a hydrate is temporarily stored in a distribution | circulation process. When this aqueous solution is cooled by the heat exchanger, a hydrate is produced, and a hydrate slurry in which the hydrate is dispersed or suspended in the aqueous solution is stored in the production tank.

気体捕集装置は、水和物生成装置からの水和物スラリを受けると共に、目的気体を含む混合気体をも受けて、この混合気体が水和物スラリと混合されて接触し、目的気体が水和物に選択的に取り込まれて捕集される。   The gas collector receives a hydrate slurry from the hydrate generator and also receives a mixed gas containing the target gas. The mixed gas is mixed with and contacted with the hydrate slurry. It is selectively taken up and collected by the hydrate.

このようにして、特許文献1では、目的気体が含まれない環境下で上記水溶液を冷却することで水和物スラリを生成し、この水和物スラリに混合気体を接触させることで混合気体中の目的気体を水和物で選択的に捕集している。   Thus, in Patent Document 1, a hydrate slurry is generated by cooling the aqueous solution in an environment that does not contain the target gas, and the mixed gas is brought into contact with the hydrate slurry by mixing in the mixed gas. The target gas is selectively collected with hydrates.

水和物を生成する液体を冷却して水和物を生成する際には、水和物を生成する液体の温度が水和物生成温度以下にまで低下しても液体状態であるという過冷却現象が伴う。過冷却が解除されると急激に水和物が生成されるため、混合気体から目的気体を分離してこれを捕集するために水和物の生成を行うと、過冷却が解除された後に、水和物を生成する液体と目的気体とを収容する容器や配管の内壁面、その他望ましくない部位に水和物の付着を招来し、冷却効率を低下させ水和物の生成に支障を生じさせたり、水和物を生成する液体の流送に支障を生じさせたり、閉塞を生じさせるなど、水和物の生成、搬送その他の処理に不具合を生じさせる。   When the hydrate-forming liquid is cooled to produce a hydrate, it is supercooled so that it remains in a liquid state even if the temperature of the hydrate-forming liquid drops below the hydrate formation temperature. With the phenomenon. When supercooling is released, a hydrate is generated abruptly. Therefore, if the hydrate is generated to separate the target gas from the mixed gas and collect it, the supercooling is released. In addition, hydrate adheres to the inner wall of pipes and pipes that contain the liquid that produces hydrate and the target gas, and other undesired parts, reducing cooling efficiency and hindering hydrate formation. Causing troubles in the production, transportation and other processes of the hydrate, such as causing troubles in the flow of the liquid that produces the hydrate, and causing clogging.

特許文献1の気体分離装置では、目的気体の捕集前に水和物がすでに生成されているので、目的気体捕集のために水和物スラリをさらに冷却しても、水和物スラリ中にすでに存在しているスラリが核となって、上述のような目的気体捕集時に最初から水溶液を冷却して水和物を生成する際に生じる過冷却現象を防止又は抑制し、過冷却現象による不具合を防止することができる。   In the gas separation device of Patent Document 1, since the hydrate is already generated before the target gas is collected, even if the hydrate slurry is further cooled for collecting the target gas, This prevents or suppresses the supercooling phenomenon that occurs when the aqueous solution is cooled from the beginning when the target gas is collected as described above, and the hydrate is produced when the target gas is collected. It is possible to prevent problems caused by

特開2013−119063JP2013-119063

特許文献1の気体捕集装置では、水和物生成装置で生成された水和物が水和物生成物の水溶液に分散又は懸濁している水和物スラリの供給を受け、この水和物スラリに目的気体を含む混合気体を供給してこれらを混合し、水和物に混合気体から目的気体が選択的に取り込まれ捕集される。水和物スラリ中の水和物と目的気体との接触は、水和物生成物の水溶液に目的気体が溶解し水和物と接触すること(前者)や、気泡状の目的気体が直接水和物と接触すること(後者)により行われる。   In the gas collector of Patent Document 1, a hydrate slurry generated by the hydrate generator is dispersed or suspended in an aqueous solution of the hydrate product. The mixed gas containing the target gas is supplied to the slurry and mixed with each other, and the target gas is selectively taken into the hydrate and collected. The contact between the hydrate in the hydrate slurry and the target gas is that the target gas dissolves in the aqueous solution of the hydrate product and comes into contact with the hydrate (the former). It is carried out by contact with the Japanese product (the latter).

しかし、前者では、目的気体の水溶液への溶解速度や溶解度がほぼ定まっているため、水和物と目的気体との接触効率を大幅に向上させるのは困難であり、また後者では、水和物生成装置で生成された水和物をそのまま用いるため水和物の形状が塊状である場合には比表面積が小さく接触効率が小さいなど、特許文献1の気体捕集装置では、水和物による目的気体の捕集効率を向上させることが困難であり、実用的なプロセスとして構築することに問題がある。   However, in the former, since the dissolution rate and solubility of the target gas in the aqueous solution are almost fixed, it is difficult to greatly improve the contact efficiency between the hydrate and the target gas. Since the hydrate produced by the production apparatus is used as it is, when the shape of the hydrate is a lump, the specific surface area is small and the contact efficiency is low. It is difficult to improve the gas collection efficiency, and there is a problem in constructing it as a practical process.

本発明は、かかる事情に鑑み、水和物により混合気体から目的気体を選択的に捕集して分離するに当たり、水和物と目的気体との接触効率が高く、水和物が目的気体を捕集する捕集効率が高い気体分離装置及び気体分離方法を提供することを課題とする。   In view of such circumstances, the present invention has a high contact efficiency between the hydrate and the target gas when the target gas is selectively collected and separated from the mixed gas by the hydrate. It is an object to provide a gas separation device and a gas separation method with high collection efficiency for collection.

本発明によれば、上述の課題は、以下のように構成される気体分離装置、気体分離方法により解決される。   According to the present invention, the above-described problems are solved by a gas separation device and a gas separation method configured as follows.

<気体分離装置>
目的気体を含む混合気体から該目的気体を分離する気体分離装置であって、
水和物を生成する水和物生成装置と、水和物生成装置で生成された水和物を造粒して所定の粒径の粒状水和物を製造する造粒装置と、該造粒装置で造粒された粒状水和物に混合気体を接触させて該粒状水和物に目的気体を捕集させて目的気体以外の気体を放出した後、該目的気体を捕集した該粒状水和物から目的気体を放出させる気体捕集放出装置とを有し、
水和物生成装置は、水和物生成物の水溶液を冷却して水和物を生成する冷却手段と、水和物の生成に至らなかった水溶液を脱水除去する脱水手段とを有し、
気体捕集放出装置は、造粒装置で造粒された粒状水和物を受け入れて該粒状水和物の充填層を形成する充填塔と、上記充填層に目的気体を含む混合気体を送入する送入手段と、上記充填層の粒状水和物を減圧する減圧手段とを有し、
充填層の粒状水和物に送入手段により送入された混合気体を接触させ、混合気体から目的気体を粒状水和物に捕集させ、目的気体を捕集した後の粒状水和物を減圧手段により減圧して該粒状水和物から目的気体を放出させることを特徴とする気体分離装置。
<Gas separator>
A gas separation device for separating a target gas from a mixed gas containing the target gas,
Hydrate producing apparatus for producing hydrate, granulating apparatus for producing granular hydrate having a predetermined particle size by granulating hydrate produced by hydrate producing apparatus, and granulation The granular water obtained by bringing the mixed gas into contact with the granular hydrate granulated by the apparatus, collecting the target gas in the granular hydrate and releasing a gas other than the target gas, and collecting the target gas A gas collecting and discharging device for discharging the target gas from the Japanese product,
The hydrate generator has a cooling means for cooling the aqueous solution of the hydrate product to generate a hydrate, and a dehydrating means for dehydrating and removing the aqueous solution that has not resulted in the formation of the hydrate,
The gas collection and release device receives a granular hydrate granulated by the granulating device and forms a packed bed of the granular hydrate, and feeds a mixed gas containing the target gas into the packed bed. An in-feed means for reducing pressure and a decompression means for depressurizing the granular hydrate of the packed bed,
The mixed gas fed by the feeding means is brought into contact with the granular hydrate of the packed bed, the target gas is collected in the granular hydrate from the mixed gas, and the granular hydrate after collecting the target gas is collected. A gas separation device characterized in that a target gas is released from the granular hydrate by reducing the pressure by a decompression means.

<気体分離方法>
目的気体を含む混合気体から該目的気体を分離する気体分離方法であって、
水和物を生成する水和物生成工程と、該水和物生成工程で生成された水和物を造粒して所定の粒径の粒状水和物を製造する造粒工程と、該造粒工程で造粒された粒状水和物に混合気体を接触させて該粒状水和物に目的気体を捕集させて目的気体以外の気体を放出した後、該目的気体を捕集した該粒状水和物から目的気体を放出させる気体捕集放出工程とを有し、
水和物生成工程は、水和物生成物の水溶液を冷却して水和物を生成するとともに、水和物の生成に至らなかった水溶液を脱水除去し、
気体捕集放出工程は、造粒工程で造粒された粒状水和物を受け入れて該粒状水和物の充填層を形成し、目的気体を含む混合気体を上記充填層に送入し、粒状水和物に混合気体を接触させ混合気体から目的気体を粒状水和物に捕集させ目的気体以外の気体を放出し、目的気体を捕集した粒状水和物を減圧して該粒状水和物から目的気体を放出させることを特徴とする気体分離方法。
<Gas separation method>
A gas separation method for separating a target gas from a mixed gas containing the target gas,
A hydrate production step for producing a hydrate, a granulation step for producing a granular hydrate having a predetermined particle size by granulating the hydrate produced in the hydrate production step, The granular hydrate granulated in the granulation step is brought into contact with the mixed gas, the target gas is collected in the granular hydrate, and the gas other than the target gas is released, and then the granular gas is collected. A gas collecting and releasing step for releasing the target gas from the hydrate,
In the hydrate production step, the aqueous solution of the hydrate product is cooled to produce a hydrate, and the aqueous solution that has not resulted in the production of the hydrate is dehydrated and removed.
The gas collection and release step accepts the granular hydrate granulated in the granulation step, forms a packed bed of the granular hydrate, sends a mixed gas containing the target gas into the packed bed, The mixed gas is brought into contact with the hydrate, the target gas is collected from the mixed gas into the granular hydrate, the gas other than the target gas is released, and the granular hydrate that has collected the target gas is decompressed to form the granular hydrate. A gas separation method characterized by discharging a target gas from an object.

このような構成の本発明の気体分離装置そして気体分離方法では、造粒装置(工程)で造粒された粒状水和物が、気体捕集放出装置(工程)にて充填層を形成し、混合気体が該充填層の粒状水和物と接触する。すなわち、混合気体は、水溶液が存在しない状態で粒状水和物のみと直接接触して、混合気体から効率よく目的気体が水和物により捕集される。   In the gas separation device and the gas separation method of the present invention having such a configuration, the granular hydrate granulated in the granulation device (process) forms a packed bed in the gas collection / release device (process), The mixed gas comes into contact with the granular hydrate of the packed bed. That is, the mixed gas is in direct contact with only the granular hydrate in the absence of an aqueous solution, and the target gas is efficiently collected by the hydrate from the mixed gas.

以上のように、本発明は、粒状水和物に目的気体を含む混合気体を直接接触させるため、水和物スラリ中の水和物と接触させることに比べて目的気体の捕集効率を大幅に増加させることができ、捕集効率の高い気体分離装置及び気体分離方法を提供できる。   As described above, in the present invention, since the mixed gas containing the target gas is brought into direct contact with the granular hydrate, the collection efficiency of the target gas is greatly increased as compared with the contact with the hydrate in the hydrate slurry. Therefore, it is possible to provide a gas separation device and a gas separation method with high collection efficiency.

本発明の実施形態装置の概要構成図である。It is a general | schematic block diagram of embodiment apparatus of this invention.

本発明の実施形態の気体分離装置について、その各構成装置の説明に先立ち、水和物生成物、水和物を生成する液体そして目的気体について説明する。   Regarding the gas separation device according to the embodiment of the present invention, the hydrate product, the liquid for producing the hydrate, and the target gas will be described prior to the description of each component device.

<水和物生成物>
水和物を生成するゲスト物質(水和物生成物)としては、第四級アンモニウム塩、第四級ホスホニウム塩、第四級スルホニウム塩などを用いることができる。第四級アンモニウム塩としては、臭化テトラnブチルアンモニウム(TBAB)、臭化テトラisoペンチルアンモニウム(TiPAB)、臭化トリnブチルペンチルアンモニウム(TBPAB)、フッ化テトラnブチルアンモニウム(TBAF)、塩化テトラnブチルアンモニウム(TBACl)、ヨウ化テトラnブチルアンモニウム(TBAI)などのテトラアルキルアンモニウム塩などが代表的な例として挙げられるが、これらに限定されるものではない。
<Hydrate product>
As a guest substance (hydrate product) that forms a hydrate, a quaternary ammonium salt, a quaternary phosphonium salt, a quaternary sulfonium salt, or the like can be used. Quaternary ammonium salts include tetra-n-butylammonium bromide (TBAB), tetra-isopentylammonium bromide (TiPAB), tri-n-butylpentylammonium bromide (TBPAB), tetra-n-butylammonium fluoride (TBAF), chloride Typical examples include tetraalkylammonium salts such as tetra-n-butylammonium (TBACl) and tetra-n-butylammonium iodide (TBAI), but are not limited thereto.

<水和物を生成する液体>
水和物を生成する液体としての水和物生成物を含む水溶液としては、上記の水和物生成物を含む水溶液を用いることができる。また、水和物生成物を含む水溶液として、臭化テトラisoペンチルアンモニウム(TiPAB)の水溶液が好ましい。臭化テトラisoペンチルアンモニウムの調和融点は30℃であり、水溶液の濃度を調整して水和物生成温度を0〜30℃の範囲に調整することが容易であるからである。
<Liquid that produces hydrate>
As an aqueous solution containing a hydrate product as a liquid for producing a hydrate, an aqueous solution containing the hydrate product can be used. Further, as the aqueous solution containing the hydrate product, an aqueous solution of tetraisopentylammonium bromide (TiPAB) is preferable. This is because the harmonic melting point of tetraisopentylammonium bromide is 30 ° C., and it is easy to adjust the concentration of the aqueous solution to adjust the hydrate formation temperature in the range of 0 to 30 ° C.

また、水和物生成物を含む水溶液として、臭化テトラisoペンチルアンモニウムを含む二種以上の第四級アンモニウム塩の水溶液が好ましい。臭化テトラisoペンチルアンモニウム以外の第四級アンモニウム塩としては、臭化テトラnブチルアンモニウムが好ましい。臭化テトラnブチルアンモニウムは比較的安価で入手し易いので、臭化テトラisoペンチルアンモニウムと臭化テトラnブチルアンモニウムとを適切に配合することにより、水和物生成温度を0〜30℃の範囲に調整することが容易であるとともに経済的に優れた気体を捕集し放出して分離する装置、方法を構成することができる。   Moreover, as an aqueous solution containing a hydrate product, an aqueous solution of two or more quaternary ammonium salts containing tetraisopentylammonium bromide is preferable. As a quaternary ammonium salt other than tetraisopentylammonium bromide, tetra-n-butylammonium bromide is preferable. Since tetra-n-butylammonium bromide is relatively inexpensive and readily available, the hydrate formation temperature is in the range of 0 to 30 ° C. by properly blending tetraisopentylammonium bromide and tetra-n-butylammonium bromide. It is possible to construct an apparatus and a method for collecting, releasing, and separating gas which is easy to adjust and is economically excellent.

<目的気体>
混合気体から水和物により選択的に捕集し分離する目的気体としては、例えば、二酸化炭素、酸素、硫化水素、二酸化硫黄、メタンなどが挙げられる。
<Target gas>
Examples of the target gas that is selectively collected and separated from the mixed gas by hydrate include carbon dioxide, oxygen, hydrogen sulfide, sulfur dioxide, and methane.

混合気体から目的気体を捕集して分離することの例として、メタンと二酸化炭素を含む混合気体から目的気体として二酸化炭素を分離しメタン含有率の高い燃料ガスを得ることや、燃焼排ガスなどの混合気体から二酸化炭素を分離し二酸化炭素濃縮ガスを得ること、空気から酸素を分離し酸素富化空気を得ることなどが挙げられる。また、化学原料ガス中に含まれる硫化水素を触媒の劣化防止を目的に除去すること、燃焼排ガス中の二酸化硫黄を環境保全の観点から分離することも好適な例である。   Examples of collecting and separating a target gas from a mixed gas include separation of carbon dioxide as a target gas from a mixed gas containing methane and carbon dioxide to obtain a fuel gas having a high methane content, combustion exhaust gas, etc. For example, carbon dioxide is separated from a mixed gas to obtain a carbon dioxide-enriched gas, and oxygen is separated from air to obtain oxygen-enriched air. In addition, removal of hydrogen sulfide contained in the chemical raw material gas for the purpose of preventing deterioration of the catalyst and separation of sulfur dioxide in the combustion exhaust gas from the viewpoint of environmental conservation are also suitable examples.

以下、添付図面を用いて、本発明に係る気体分離装置そして気体分離方法について、その実施形態を説明する。   Embodiments of a gas separation device and a gas separation method according to the present invention will be described below with reference to the accompanying drawings.

<実施形態>
図1に示される本実施形態の気体分離装置は、水和物を用いて目的気体を含む混合気体から目的気体を分離するために、該目的気体が含まれない環境の下で水和物を生成する水和物生成装置1と、水和物生成装置1で生成された水和物を造粒して所定の粒径の粒状水和物(後述の「大粒径水和物」)を製造する造粒装置2と、造粒装置2で製造された粒状水和物に混合気体を接触させて該水和物に目的気体を捕集させて目的気体以外の気体を放出した後、該目的気体を捕集した該粒状水和物から目的気体を放出させる気体捕集放出装置3とを有している。これらの各装置の詳細については、以下において、その工程と共に詳述する。
<Embodiment>
The gas separation device of the present embodiment shown in FIG. 1 uses a hydrate to separate a target gas from a mixed gas containing the target gas. The produced hydrate production | generation apparatus 1 and the hydrate produced | generated by the hydrate production | generation apparatus 1 are granulated, and the granular hydrate (after-mentioned "large-particle-size hydrate") of a predetermined particle size is obtained. The granulating device 2 to be manufactured and the granular hydrate manufactured by the granulating device 2 are brought into contact with a mixed gas to collect the target gas in the hydrate and release a gas other than the target gas. A gas collecting / releasing device 3 for discharging the target gas from the granular hydrate that has collected the target gas. Details of each of these devices will be described below together with the process.

<水和物生成装置:水和物生成工程>
本実施形態における水和物生成装置1は、水和物生成物を含む水溶液を冷却して水和物を生成して、水和物が水溶液中に分散又は懸濁してなる水和物スラリを得る水和物スラリ製造部1Aと、水和物スラリを脱水し後述の塊状水和物や小粒径水和物を得る脱水部1Bとを順に有している。
<Hydrate generator: Hydrate generator>
The hydrate generator 1 in the present embodiment cools an aqueous solution containing a hydrate product to generate a hydrate, and a hydrate slurry in which the hydrate is dispersed or suspended in the aqueous solution. A hydrate slurry manufacturing unit 1A to be obtained and a dehydration unit 1B for dehydrating the hydrate slurry to obtain a block hydrate and a small particle size hydrate described later are sequentially provided.

水和物生成装置の水和物スラリ製造部1Aは、冷却手段を備え、生成槽内に収容した水和物生成物を含む水溶液を冷却して水和物を生成し、その水和物が水和物生成物を含む水溶液に分散又は懸濁してなる水和物スラリを生成するようになっており、冷却手段としては冷媒を供給して冷却する熱交換器が好ましい。   The hydrate slurry manufacturing unit 1A of the hydrate generating device includes a cooling means, and cools the aqueous solution containing the hydrate product accommodated in the generating tank to generate a hydrate, and the hydrate is A hydrate slurry that is dispersed or suspended in an aqueous solution containing a hydrate product is generated, and a cooling unit is preferably a heat exchanger that is cooled by supplying a refrigerant.

この水和物スラリ製造部1Aにおける水和物スラリ生成工程において、冷却手段により、水和物生成物を含む水溶液を冷却する冷却温度は0℃より高い温度とすることが好ましい。つまり生成する水和物スラリの温度が0℃より高い温度になるようにする。冷却温度を0℃より高い温度で冷却するようにすれば、冷媒を供給するための冷却手段として、冷凍機または冷水を外気と熱交換させるクーリングタワーを用いることができ、容易に冷熱を得て冷媒を供給することができる。特に水和物を生成するゲスト物質としてTiPABを用いた場合は、0〜30℃の範囲、例えば15℃以上で水和物を生成できるので、外気の熱エネルギーを利用することが可能であり、より経済的な手法を選択することができる。   In the hydrate slurry generating step in the hydrate slurry manufacturing unit 1A, the cooling temperature for cooling the aqueous solution containing the hydrate product by the cooling means is preferably higher than 0 ° C. That is, the temperature of the produced hydrate slurry is set to a temperature higher than 0 ° C. If the cooling temperature is cooled to a temperature higher than 0 ° C., the cooling tower for supplying the refrigerant can use a refrigerator or a cooling tower for exchanging heat with the cold water, and can easily obtain the cold heat to obtain the refrigerant. Can be supplied. In particular, when TiPAB is used as a guest substance for generating a hydrate, a hydrate can be generated in the range of 0 to 30 ° C., for example, 15 ° C. or more, and thus it is possible to utilize the thermal energy of the outside air. A more economical approach can be selected.

水和物スラリ製造部1Aは、水和物生成物を含む水溶液を収容した生成槽などに攪拌機構を設ける構成が好ましい。水和物スラリ製造部1Aにおいては、冷却によって水和物が生成され、生成された水和物が攪拌されることにより、水和物粒子が水和物生成物を含む水溶液に分散又は懸濁した水和物スラリが生成される。また、水和物生成物を含む水溶液が攪拌されながら冷却されることにより過冷却が速やかに解除されるので、水和物を効率よく生成できる。   The hydrate slurry production unit 1A preferably has a configuration in which a stirring mechanism is provided in a production tank containing an aqueous solution containing a hydrate product. In the hydrate slurry manufacturing unit 1A, a hydrate is generated by cooling, and the generated hydrate is stirred to disperse or suspend the hydrate particles in an aqueous solution containing the hydrate product. Hydrate slurry is produced. Moreover, since supercooling is cancelled | released rapidly by cooling the aqueous solution containing a hydrate product, stirring, a hydrate can be produced | generated efficiently.

はじめに水和物生成物を含む水溶液は運転開始用ポンプ(図示せず)を介して水和物スラリ製造部1Aに送られ、水和物生成温度以下まで冷却される。   First, an aqueous solution containing a hydrate product is sent to the hydrate slurry manufacturing unit 1A via an operation start pump (not shown) and cooled to a hydrate formation temperature or lower.

水和物生成工程において水和物スラリ製造部1Aの水和物生成物を含む水溶液を収容する生成槽内を攪拌したり、あるいは該水和物と同種または異種の化合物の結晶の添加などを行う過冷却解除手段を有していると、過冷却解除が促進され、水和物生成を円滑に進めることができる。水和物生成槽内は過冷却解除により水和物生成が始まると凝固熱発現のため温度が上昇し、水和物生成完了の後は上昇した槽内温度は低下する。この温度変化の経緯を監視し水和物生成の終了を検知する。水和物が完全に生成した後、水和物と水和物生成物を含む水溶液の混合物(水和物スラリ)は脱水工程のために脱水部1Bに移送されるが、移送用配管内では新たに水和物が生成しないため、閉塞などの問題を起こす可能性が低い。   In the hydrate production step, stirring the inside of the production tank containing the aqueous solution containing the hydrate product of the hydrate slurry production unit 1A, or adding crystals of the same or different compound as the hydrate When it has the supercooling cancellation | release means to perform, supercooling cancellation | release is accelerated | stimulated and hydrate production | generation can be advanced smoothly. In the hydrate production tank, when hydrate production starts by releasing the supercooling, the temperature rises due to the development of heat of solidification, and after completion of the hydrate production, the elevated temperature in the tank falls. The process of this temperature change is monitored to detect the end of hydrate formation. After the hydrate is completely formed, the mixture of the hydrate and the aqueous solution containing the hydrate product (hydrate slurry) is transferred to the dehydration unit 1B for the dehydration process. Since no new hydrate is formed, there is a low possibility of causing problems such as blockage.

水和物生成装置1の脱水部1Bは、水和物スラリ製造部1Aから受けた水和物スラリを固液分離する脱水手段を備えていて、この脱水手段により水和物スラリから水溶液が分離除去される。脱水部1Bでは水溶液が除去されるので、造粒装置2には水溶液不存在の水和物のみが送り込まれる。このとき、造粒装置2へ送られる水和物の殆んどは、造粒装置2で所定の粒径で造粒されて得られる大粒径水和物よりも大きい不定形状の塊状(塊状水和物)あるいは上記所定の粒径よりも小さい不定形状の細粒状(小粒径水和物)をなしている。また、循環路(図示せず)を設けて、上記脱水手段により分離除去された水溶液を水和物スラリ製造部1Aへ帰還させることにより、該水溶液を水和物スラリの生成に再利用することとしてもよい。   The dehydrating unit 1B of the hydrate generating apparatus 1 includes a dehydrating unit for solid-liquid separation of the hydrate slurry received from the hydrate slurry manufacturing unit 1A, and the aqueous solution is separated from the hydrate slurry by the dehydrating unit. Removed. Since the aqueous solution is removed in the dehydrating unit 1B, only the hydrate in the absence of the aqueous solution is fed into the granulator 2. At this time, most of the hydrate to be sent to the granulating apparatus 2 is an indefinite lump (lumps) larger than the large particle size hydrate obtained by granulating with a predetermined particle diameter in the granulating apparatus 2. Hydrate) or indefinitely-shaped fine particles (small particle size hydrate) smaller than the predetermined particle size. In addition, by providing a circulation path (not shown) and returning the aqueous solution separated and removed by the dehydrating means to the hydrate slurry manufacturing unit 1A, the aqueous solution is reused for the generation of the hydrate slurry. It is good.

脱水部1Bにおける脱水手段は、固液分離ができればその形式に限定されず、いかなる形式の手段でもよい。   The dehydrating unit in the dehydrating unit 1B is not limited to that type as long as solid-liquid separation can be performed, and any type of unit may be used.

水和物生成装置1としては、上記のように水和物スラリを製造し脱水手段により水溶液を分離して固体状の水和物を得る装置の他に、冷却した水和物生成物を含む水溶液を水和物生成温度より低い気相中でノズルから噴出することで固体状の水和物を生成する装置でもよい。   The hydrate generator 1 includes a cooled hydrate product in addition to an apparatus for producing a hydrate slurry as described above and separating an aqueous solution by dehydration means to obtain a solid hydrate. The apparatus which produces | generates a solid hydrate by ejecting aqueous solution from a nozzle in the gaseous phase lower than hydrate production | generation temperature may be sufficient.

<造粒装置:造粒工程>
造粒装置2は、水和物生成装置1の脱水部1Bから受けた塊状水和物や小粒径水和物を造粒して、塊状水和物よりも小さく小粒径水和物よりも大きい所定の粒径の粒状水和物(大粒径水和物)を製造する。ここで、「所定の粒径」とは、粒径が所定値に設定されている場合のみならず、所定範囲をもって設定されている場合をも含む。既述したように、脱水部1Bで生成された水和物は塊状や小粒径の細粒状である。塊状の水和物をそのまま気体捕集放出装置3で気体捕集に用いても、該塊状の水和物の比表面積は小さく、目的気体との接触効率が低く捕集効率が低い。一方、小粒径の細粒状の水和物をそのまま気体捕集放出装置3で気体捕集に用いる場合、気体捕集放出装置3で気体捕集を行う前に、該細粒状の水和物が崩壊してさらに細粒化するおそれがある。
<Granulation device: Granulation process>
The granulating device 2 granulates a massive hydrate or a small particle hydrate received from the dehydrating unit 1B of the hydrate generating device 1, and is smaller than the massive hydrate from a small particle hydrate. A granular hydrate (large particle size hydrate) having a large predetermined particle diameter is produced. Here, the “predetermined particle size” includes not only the case where the particle size is set to a predetermined value but also the case where the particle size is set with a predetermined range. As described above, the hydrate produced in the dehydrating unit 1B is a lump or a fine particle having a small particle size. Even when the massive hydrate is used as it is for gas collection by the gas collection and release device 3, the specific surface area of the massive hydrate is small, the contact efficiency with the target gas is low, and the collection efficiency is low. On the other hand, when the fine particle hydrate having a small particle size is used as it is for gas collection by the gas collection / release device 3, the fine particle hydrate is collected before gas collection by the gas collection / release device 3. May collapse and become finer.

本実施形態では、水和物を造粒して所定の粒径の大粒径水和物を製造し、後述するように、気体捕集放出装置3にて該大粒径水和物と目的気体とを接触させ目的気体を捕集させる。このように水和物形状を大粒径の粒状とすると、塊状の場合と比べて比表面積を大きくして目的気体の捕集効率を高くすることができる。また、造粒することにより水和物の強度が向上するので、水和物が小粒径の細粒状である場合と比べて、水和物が融解しにくいのに加え、水和物を工業的なプロセスで使用しても崩壊して細粒化することがない。さらに、気体捕集放出装置3に供給される大粒径水和物の粒径がほぼ均一となるので、不定形状の塊状水和物や小粒径水和物と比べて、気体捕集放出装置3に供給される大粒径水和物の量と捕集される目的気体量との関係を把握しやすく、装置の設計や運転が容易となり、安定した気体分離を行うことができる。   In this embodiment, a hydrate is granulated to produce a large particle size hydrate having a predetermined particle size, and the large particle size hydrate and the purpose are collected by the gas collection and release device 3 as described later. The target gas is collected by contacting with the gas. Thus, when the hydrate shape is a large particle size, the specific surface area can be increased and the collection efficiency of the target gas can be increased as compared with the case of the lump shape. In addition, since the strength of hydrates is improved by granulation, the hydrates are not easily melted compared to the case where the hydrates are fine particles with a small particle size. Even when used in a typical process, it does not collapse and become finely divided. Furthermore, since the particle size of the large particle hydrate supplied to the gas collection / release device 3 is almost uniform, the gas collection / release is larger than that of an indeterminate massive hydrate or small particle hydrate. It is easy to grasp the relationship between the amount of the large particle size hydrate supplied to the device 3 and the amount of target gas to be collected, the device can be easily designed and operated, and stable gas separation can be performed.

造粒装置2では、攪拌造粒、流動層造粒、転動造粒、押出造粒、圧縮造粒など工業プロセスで用いられている種々の造粒方式により水和物を造粒することができる。   In the granulator 2, the hydrate can be granulated by various granulation methods used in industrial processes such as stirring granulation, fluidized bed granulation, rolling granulation, extrusion granulation, and compression granulation. it can.

造粒装置2で製造された大粒径水和物は、気体捕集放出装置3の後述の充填塔3Aへ供給される。   The large particle size hydrate produced by the granulating device 2 is supplied to a packed tower 3A described later of the gas collecting / releasing device 3.

<気体捕集放出装置:気体捕集放出工程>
気体捕集放出装置3は、造粒装置2で製造された大粒径水和物を受け入れて収容し該大粒径水和物の充填層を形成する充填塔3Aと、上記充填層へ目的気体を含む混合気体を送入する送入手段としてのブロワ3Bと、上記充填層の大粒径水和物を減圧する減圧手段としての減圧ブロワ3Cを有している。
<Gas collection / release device: Gas collection / release process>
The gas collection and release device 3 receives and accommodates the large particle size hydrate produced by the granulation device 2 and forms a packed bed of the large particle size hydrate, It has a blower 3B as a feeding means for feeding a mixed gas containing gas, and a decompression blower 3C as a decompression means for decompressing the large particle size hydrate of the packed bed.

充填塔3Aには、造粒装置2で製造された大粒径水和物を受け入れるための受入口3A−1が塔上部に設けられている。また、該充填塔3Aには、後述の気体捕集工程にて目的気体を含む混合気体が送入される送気口3A−2が塔下部に、そして該混合気体から目的気体が大粒径水和物に捕集された後の目的気体以外の気体を排出する排出口3A−3が塔上部に設けられている。さらに、該充填塔3Aには、後述の気体放出工程にて目的気体を充填塔3A外に放出するための放出口3A−4が塔上部に設けられている。充填塔3Aにおける受入口3A−1、送気口3A−2、排出口3A−3そして放出口3A−4の位置は、上述の位置に限定されず、充填塔3Aの形状等に応じて最適な位置に設ければよい。   The packed tower 3 </ b> A is provided with an inlet 3 </ b> A- 1 for receiving the large particle size hydrate produced by the granulator 2 at the upper part of the tower. Further, the packed tower 3A has an air supply port 3A-2 into which a mixed gas containing a target gas is fed in a gas collecting step described later, and the target gas has a large particle diameter from the mixed gas. An outlet 3A-3 for discharging a gas other than the target gas after being collected by the hydrate is provided in the upper part of the tower. Further, the packed tower 3A is provided with an outlet 3A-4 at the upper part of the tower for discharging the target gas to the outside of the packed tower 3A in a gas releasing step described later. The positions of the inlet 3A-1, the air inlet 3A-2, the outlet 3A-3, and the outlet 3A-4 in the packed tower 3A are not limited to the positions described above, and are optimal according to the shape of the packed tower 3A and the like. What is necessary is just to provide in the position.

気体捕集放出装置3では、目的気体を含む混合気体を上記充填層の大粒径水和物と接触させて該混合気体から目的気体を大粒径水和物に捕集させる気体捕集工程と、目的気体を捕集した後の上記充填層の大粒径水和物を減圧して該大粒径水和物から目的気体を放出させる気体放出工程とが順次行われる。以下、気体捕集放出工程を気体捕集工程そして気体放出工程に分けて説明する。   In the gas collection / release device 3, a gas collection step of bringing the mixed gas containing the target gas into contact with the large particle size hydrate of the packed bed and collecting the target gas from the mixed gas into the large particle size hydrate. And a gas release step of depressurizing the large particle size hydrate of the packed bed after collecting the target gas and releasing the target gas from the large particle size hydrate. Hereinafter, the gas collection / release process will be described by dividing it into a gas collection process and a gas release process.

[気体捕集工程]
造粒装置2で製造された大粒径水和物は、気体捕集放出装置3に移送され、充填塔3A内へ受入口3A−1から充填されて、該充填塔3A内で固定床としての充填層が形成される。そして、ブロワ3Bの作動によって目的気体を含む混合気体を送気口3A−2から上記充填層に供給して、大粒径水和物と目的気体を含む混合気体とを接触させることで、大粒径水和物に混合気体から目的気体が選択的に取り込まれ、該目的気体が捕集され、目的気体を捕集した後の気体である目的気体以外の気体が排出口3A−3から充填塔3A外へ排出される。
[Gas collection process]
The large particle size hydrate produced by the granulating device 2 is transferred to the gas collecting / releasing device 3, filled into the packed tower 3A from the receiving port 3A-1, and used as a fixed bed in the packed tower 3A. The filled layer is formed. And by supplying the mixed gas containing the target gas to the packed bed from the air supply port 3A-2 by the operation of the blower 3B, the large particle size hydrate and the mixed gas containing the target gas are brought into contact with each other. The target gas is selectively taken from the mixed gas into the particle size hydrate, the target gas is collected, and a gas other than the target gas, which is the gas after collecting the target gas, is filled from the outlet 3A-3. It is discharged out of the tower 3A.

本実施形態では、混合気体は大粒径水和物と直接に接触するため、水和物スラリ中の水和物と接触させる従来の手法に比べて目的気体の捕集効率を大幅に増加させることができ、捕集効率の高い気体分離装置を提供できる。また、混合気体は大粒径水和物の粒間空隙を流通するので、従来のような水溶液が共存するスラリ中を流通する場合に比し、流通抵抗が小さく、混合気体送入のための動力が小さくてすむ。   In this embodiment, since the mixed gas is in direct contact with the large particle size hydrate, the collection efficiency of the target gas is greatly increased compared to the conventional method in which the mixed gas is in contact with the hydrate in the hydrate slurry. And a gas separation device with high collection efficiency can be provided. In addition, since the mixed gas flows through the intergranular space of the large particle size hydrate, the flow resistance is small compared to the case of flowing through the slurry in which the aqueous solution coexists as in the prior art, and it is necessary for feeding the mixed gas. The power is small.

混合気体は大粒径水和物の充填層を単に通過させるだけでも良いが、循環路(図示せず)を設けて充填塔3Aの排出口3A−3から排出されまだ目的気体が残存する混合気体を充填塔3Aへ再度供給することにすれば、目的気体の捕集効率を高めることができる。   The mixed gas may simply pass through the packed bed of large particle size hydrate, but a mixture (not shown) is provided through the exhaust port 3A-3 of the packed tower 3A and the target gas still remains. If the gas is supplied again to the packed tower 3A, the collection efficiency of the target gas can be increased.

[気体放出工程]
気体捕集工程にて混合気体から目的気体が上記充填層の大粒径水和物に捕集された後、減圧ブロワ3Cの作動によって上記大粒径水和物を減圧することにより該大粒径水和物から目的気体が抜き出され、該目的気体が放出口3A−4から充填塔3A外へ放出される。目的気体を放出した大粒径水和物は充填塔3A内に留まり気体捕集工程で再利用される。
[Gas release process]
After the target gas is collected from the mixed gas into the large particle size hydrate of the packed bed in the gas collection step, the large particle size hydrate is decompressed by operating the vacuum blower 3C. The target gas is extracted from the diameter hydrate, and the target gas is discharged out of the packed tower 3A from the discharge port 3A-4. The large particle size hydrate from which the target gas has been released remains in the packed tower 3A and is reused in the gas collection step.

気体捕集放出工程が行われている間、水和物生成装置1及び造粒装置2は停止しているが、気体捕集放出装置3における大粒径水和物の捕集能力が低下したときには、水和物生成装置1及び造粒装置2によって大粒径水和物が生成され、気体捕集放出装置3へ供給される。   While the gas collection / release process is being performed, the hydrate generation device 1 and the granulation device 2 are stopped, but the collection capability of the large particle size hydrate in the gas collection / release device 3 has decreased. Sometimes, a large particle size hydrate is generated by the hydrate generating device 1 and the granulating device 2 and supplied to the gas collecting / releasing device 3.

本実施形態では、減圧手段としての減圧ブロワ3Cが気体捕集放出装置3の充填塔3Aに接続されている形態を説明したが、これに代えて、減圧手段として真空ポンプを用いてもよいし、充填塔3A自体に減圧機能を設けてもよい。   In the present embodiment, the form in which the decompression blower 3C as the decompression means is connected to the packed tower 3A of the gas collection and release device 3 has been described. Alternatively, a vacuum pump may be used as the decompression means. The packed tower 3A itself may be provided with a pressure reducing function.

1 水和物生成装置
2 造粒装置
3 気体捕集放出装置
3A 充填塔
3A−2 送気口
3A−3 排出口
3B ブロワ(送入手段)
3C 減圧ブロワ(減圧手段)
DESCRIPTION OF SYMBOLS 1 Hydrate production | generation apparatus 2 Granulation apparatus 3 Gas collection | release apparatus 3A Packing tower 3A-2 Air supply port 3A-3 Discharge port 3B Blower (infeed means)
3C vacuum blower (pressure reduction means)

Claims (2)

目的気体を含む混合気体から該目的気体を分離する気体分離装置であって、水和物を生成する水和物生成装置と、水和物生成装置で生成された水和物を造粒して所定の粒径の範囲の大粒径水和物を製造する造粒装置と、該造粒装置で造粒された大粒径水和物に混合気体を接触させて該大粒径水和物に目的気体を捕集させて目的気体以外の気体を放出した後、該目的気体を捕集した該大粒径水和物から目的気体を放出させる気体捕集放出装置とを有し、
水和物生成装置は、水和物生成物の水溶液を冷却して水和物を生成する冷却手段と、水和物粒子が水和物生成物の水溶液中に分散又は懸濁してなる水和物スラリを得る水和物スラリ製造手段と、水和物スラリを受け水和物の生成に至らなかった水溶液を脱水除去し塊状水和物や小粒径水和物を得る脱水手段とを有し、
造粒装置は、脱水手段により脱水され水溶液が存在しない水和物を受け、塊状水和物や小粒径水和物を造粒して、塊状水和物よりも小さく小粒径水和物よりも大きい所定の粒径範囲の大粒径水和物を製造し、
気体捕集放出装置は、造粒装置で造粒された大粒径水和物を受け入れて該大粒径水和物の充填層を形成し、目的気体を含む混合気体を上記充填層に送入し、大粒径水和物の粒間空隙を流通させて水和物生成物の水溶液が存在しない状態で、大粒径水和物に混合気体を直接接触させ、混合気体から目的気体を選択的に大粒径水和物に取り込み捕集して目的気体以外の気体を充填層外へ放出し、目的気体を捕集した大粒径水和物を減圧して該大粒径水和物から目的気体を放出させ目的気体を得ることを特徴とする気体分離装置。
A gas separation device for separating a target gas from a mixed gas containing a target gas, the hydrate generating device generating a hydrate, and granulating the hydrate generated by the hydrate generating device granulator and, granulated mixture gas into contact with the large diameter hydrate the large grain hydrate granulated apparatus for producing large particle diameter hydrate predetermined range of particle size after releasing the gas other than the target gas by collecting the desired gas, and a gas collecting emission device for emitting the target gas from the large grain hydrate were collected said purpose gas,
The hydrate generator comprises a cooling means for cooling an aqueous solution of the hydrate product to form a hydrate, and a hydration formed by dispersing or suspending hydrate particles in the aqueous solution of the hydrate product. A hydrate slurry manufacturing means for obtaining a solid slurry, and a dehydration means for dehydrating and removing an aqueous solution which has not resulted in the formation of a hydrate by receiving a hydrate slurry to obtain a bulk hydrate or a small particle size hydrate. And
The granulator receives a hydrate that is dehydrated by a dehydration means and does not have an aqueous solution, granulates a bulk hydrate or a small particle hydrate, and is smaller than the bulk hydrate and has a smaller particle size hydrate. Producing a large particle size hydrate with a larger particle size range than
Gas collecting emission device accepts the granulated large particle size hydrated in the granulating apparatus to form a packed bed of the large grain size hydrate, feeding the mixed gas containing the target gas to the packed bed The mixed gas is directly brought into contact with the large particle size hydrate in a state where there is no aqueous solution of the hydrate product through the intergranular space of the large particle size hydrate, and the target gas is removed from the mixed gas. releasing gas other than the target gas to the filling layer outside of selectively uptake large径水hydrate collection, the large径水 sum vacuo large grain hydrate were collected object gas A gas separation device characterized in that a target gas is obtained by discharging a target gas from an object.
目的気体を含む混合気体から該目的気体を分離する気体分離方法であって、水和物を生成する水和物生成工程と、該水和物生成工程で生成された水和物を造粒して所定の粒径範囲大粒径水和物を製造する造粒工程と、該造粒工程で造粒された大粒径水和物に混合気体を接触させて該大粒径水和物に目的気体を捕集させて目的気体以外の気体を放出した後、該目的気体を捕集した該大粒径水和物から目的気体を放出させる気体捕集放出工程とを有し、
水和物生成工程は、水和物生成物の水溶液を冷却して水和物を生成して、水和物粒子が水和物生成物の水溶液中に分散又は懸濁してなる水和物スラリを得る水和物スラリ製造工程と、水和物スラリを受け水和物の生成に至らなかった水溶液を脱水除去し塊状水和物や小粒径水和物を得る脱水工程とを有し、
造粒工程は、脱水工程により脱水され水溶液が存在しない水和物を受け、塊状水和物や小粒径水和物を造粒して、塊状水和物よりも小さく小粒径水和物よりも大きい所定の粒径範囲の大粒径水和物を製造し、
気体捕集放出工程は、造粒工程で造粒された大粒径水和物を受け入れて該大粒径水和物の充填層を形成し、目的気体を含む混合気体を上記充填層に送入し、大粒径水和物の粒間空隙を流通させて水和物生成物の水溶液が存在しない状態で、大粒径水和物に混合気体を直接接触させ混合気体から目的気体を選択的に大粒径水和物に取り込み捕集して目的気体以外の気体を充填層外へ放出する気体捕集工程と、目的気体を捕集した大粒径水和物を減圧して該大粒径水和物から目的気体を放出させ目的気体を得る気体放出工程とを有することを特徴とする気体分離方法。
A gas separation method for separating a target gas from a mixed gas containing the target gas, the hydrate generating step for generating a hydrate, and the hydrate generated in the hydrate generating step is granulated. granulation step and, the large particle size hydrated by contacting the mixed gas to the granulated large grain hydrate granulation process for producing a large particle diameter hydrate predetermined particle size range Te after releasing the gas other than the target gas by collecting the desired gas, and a gas collecting releasing step for releasing the target gas from the large grain hydrate were collected said purpose gas,
The hydrate formation step is a hydrate slurry in which an aqueous solution of a hydrate product is cooled to form a hydrate, and hydrate particles are dispersed or suspended in the aqueous solution of the hydrate product. A hydrate slurry manufacturing step for obtaining a hydrate slurry, and a dehydration step for obtaining a bulk hydrate or a small particle size hydrate by dehydrating and removing an aqueous solution that has not resulted in the formation of a hydrate upon receiving the hydrate slurry ,
The granulation process receives a hydrate that is dehydrated by the dehydration process and does not have an aqueous solution, granulates a bulk hydrate or a small particle hydrate, and is smaller than the bulk hydrate and has a smaller particle size hydrate. Producing a large particle size hydrate with a larger particle size range than
Gas collecting releasing step accepts the granulated large particle size hydrated in the granulating step to form a packed bed of the large grain size hydrate, feeding the mixed gas containing the target gas to the packed bed Type, with no by circulating intergranular voids of large径水hydrate exists aqueous solutions of the hydrate product, contacting the mixed gas with a large grain diameter hydrate directly, the target gas from the gas mixture a gas absorption step of releasing the gas other than the target gas to the filling layer outside of selectively uptake large径水hydrate collected and vacuum large grain hydrate were collected objective gas the gas separation method characterized by having a gas releasing step to obtain the desired gas to release the target gas from the large grain hydrate.
JP2014187214A 2014-09-16 2014-09-16 Gas separation device and gas separation method Active JP6320883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187214A JP6320883B2 (en) 2014-09-16 2014-09-16 Gas separation device and gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187214A JP6320883B2 (en) 2014-09-16 2014-09-16 Gas separation device and gas separation method

Publications (2)

Publication Number Publication Date
JP2016059835A JP2016059835A (en) 2016-04-25
JP6320883B2 true JP6320883B2 (en) 2018-05-09

Family

ID=55796753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187214A Active JP6320883B2 (en) 2014-09-16 2014-09-16 Gas separation device and gas separation method

Country Status (1)

Country Link
JP (1) JP6320883B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171015B2 (en) 2017-08-16 2022-11-15 国立大学法人高知大学 Unmanned aerial vehicle, usage thereof, study lesson review support system and study lesson review support method
JP7296153B2 (en) 2019-11-12 2023-06-22 株式会社Liberaware flying object
JP6932408B1 (en) 2020-09-25 2021-09-08 株式会社岩谷技研 Cabin for balloons

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4313603B2 (en) * 2003-04-28 2009-08-12 三井造船株式会社 Heat storage system using gas hydrate
US6946017B2 (en) * 2003-12-04 2005-09-20 Gas Technology Institute Process for separating carbon dioxide and methane
JP4698698B2 (en) * 2008-03-31 2011-06-08 三井造船株式会社 Gas hydrate granulator
JP5769112B2 (en) * 2011-12-07 2015-08-26 Jfeエンジニアリング株式会社 Gas separation method and apparatus and gas treatment method and apparatus

Also Published As

Publication number Publication date
JP2016059835A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
US10370276B2 (en) Near-zero-release treatment system and method for high concentrated organic wastewater
JP6320883B2 (en) Gas separation device and gas separation method
JP2011025201A (en) Method for absorbing carbon dioxide, and method for manufacturing clathrate hydrate using the same absorption method
Yang et al. Multi-cycle methane hydrate formation in micro droplets of gelatinous dry solution
JP5163738B2 (en) Cladding hydrate having latent heat storage performance, manufacturing method and manufacturing apparatus thereof, latent heat storage medium, method of increasing latent heat storage amount of clathrate hydrate, and processing device for increasing latent heat storage amount of clathrate hydrate
JP4634900B2 (en) Method and apparatus for producing solid fuel using low-grade coal as raw material
JP5156903B2 (en) Continuous production and dehydration apparatus and method of gas hydrate by centrifugal principle
KR20140060415A (en) Composition for absorbing carbon dioxide comprising anti-solvent and method and apparatus for absorbing carbon dioxide using the same
JP6322100B2 (en) Gas separation device and gas separation method
JP5052386B2 (en) Gas hydrate manufacturing equipment
JP2004035840A (en) Gas-hydrate dehydrator
JP5769112B2 (en) Gas separation method and apparatus and gas treatment method and apparatus
JP6976656B2 (en) Power generation system
JP2005283094A (en) Method and system for treating exhaust gas
CN103007841B (en) Preparation method and device for direct phase change heat transfer type gas hydrates
US9457295B2 (en) Systems and methods for separating mine tailings from water-absorbing polymers and regenerating the separated water-absorbing polymers
JP4488769B2 (en) Hydrate generation method and generation apparatus
JP3891032B2 (en) Gas hydrate continuous production method and apparatus
JP6280474B2 (en) Gas separation device and gas separation method
JP4062431B2 (en) Gas clathrate manufacturing method and manufacturing apparatus
JP5489150B2 (en) Production method of clathrate hydrate
Zhang et al. A comprehensive review on the characteristics and kinetics of freshwater separation by hydrate-based method: Current progress, challenges and perspectives
JP5477364B2 (en) Method and apparatus for collecting and releasing gas using a hydrate containing a quaternary ammonium salt as a guest molecule
Cao et al. Nucleating agent enhanced thermal desalination at the triple point
JP2012233022A (en) Apparatus for manufacturing reaction water for forming gas hydrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180404

R150 Certificate of patent or registration of utility model

Ref document number: 6320883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250