JP4911515B2 - Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same - Google Patents

Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same Download PDF

Info

Publication number
JP4911515B2
JP4911515B2 JP2007129564A JP2007129564A JP4911515B2 JP 4911515 B2 JP4911515 B2 JP 4911515B2 JP 2007129564 A JP2007129564 A JP 2007129564A JP 2007129564 A JP2007129564 A JP 2007129564A JP 4911515 B2 JP4911515 B2 JP 4911515B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrate
pressure
hydrogen storage
clathrate hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007129564A
Other languages
Japanese (ja)
Other versions
JP2008285341A (en
Inventor
太郎 川村
知 樋口
佳孝 山本
道香 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007129564A priority Critical patent/JP4911515B2/en
Publication of JP2008285341A publication Critical patent/JP2008285341A/en
Application granted granted Critical
Publication of JP4911515B2 publication Critical patent/JP4911515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Epoxy Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、有機化合物のハイドレートからなる水素吸蔵体及びそれを用いた水素供給方法に関する。   The present invention relates to a hydrogen storage body comprising a hydrate of an organic compound and a hydrogen supply method using the same.

クラスレートハイドレート(包接水和物)は、水分子(ホスト分子)で構成されるカゴ状構造の中にゲスト分子を包接した、氷状の結晶化合物である(図1参照)。ゲスト分子としてはメタン、CO2等のガス分子や、THF等の有機化合物が知られている。これまで水素はゲスト分子として結晶中に取り込まれることはないと考えられてきたが、近年の研究により約200MPa以上の高圧条件(非特許文献1)やテトラヒドロフラン(THF)添加等(非特許文献2及び3参照)により、水素の包接が可能であることが明らかになってきている。
また、あらかじめTHF-水よりTHFハイドレートを合成し、それに対して水素を加圧・減圧することで、水素を吸蔵・排出させることにより、吸蔵・排出挙動の時間依存性、圧力依存性、温度依存性などを調べることもできる(非特許文献4参照)。
Clathrate hydrate (inclusion hydrate) is an ice-like crystalline compound in which a guest molecule is included in a cage structure composed of water molecules (host molecules) (see FIG. 1). As guest molecules, gas molecules such as methane and CO 2 and organic compounds such as THF are known. Until now, it has been thought that hydrogen is not taken into the crystal as a guest molecule. However, recent research has shown that high pressure conditions of about 200 MPa or higher (Non-patent Document 1), addition of tetrahydrofuran (THF), etc. (Non-Patent Document 2) And 3), it has become clear that hydrogen can be included.
In addition, by synthesizing THF hydrate from THF-water in advance and pressurizing and depressurizing hydrogen, the hydrogen is occluded and discharged, so that the time dependence, pressure dependence, temperature Dependencies can also be examined (see Non-Patent Document 4).

ここでは、ラマン分光法による吸蔵・排出挙動測定が行われ、また、 水素吸蔵・排出挙動の時間依存性についても検討され、クラスレートハイドレート中への水素吸蔵反応は30min以内でほぼ完了していることが明らかとなっている。
さらに、ここでは、水素吸蔵・排出挙動の圧力依存性ついても検討され、昇圧過程では圧力と共に水素吸蔵量が増加し、減圧過程においては、昇圧過程と同様に圧力低下に伴って水素が排出されることが判明した。水素吸蔵・排出挙動の温度依存性を調べたところ、温度が低くなるにしたがって吸・排出量比が増加することが確かめられている。
Here, the occlusion / exhaust behavior was measured by Raman spectroscopy, and the time dependence of the hydrogen occlusion / exhaust behavior was examined. The hydrogen occlusion reaction into clathrate hydrate was almost completed within 30 min. It is clear that
Furthermore, the pressure dependence of the hydrogen storage / discharge behavior is also examined here. The hydrogen storage amount increases with the pressure in the pressurization process, and in the decompression process, hydrogen is discharged as the pressure decreases in the same manner as the pressurization process. Turned out to be. When the temperature dependence of the hydrogen storage / discharge behavior was examined, it was confirmed that the absorption / discharge ratio increased as the temperature decreased.

MaoWL, Mao HK, Goncharov AF, Struzhkin VV, Hu Q, Shu J,Hemley RJ, Somayazulu M,Zhao Y. Science, 2002. 297. 2247MaoWL, Mao HK, Goncharov AF, Struzhkin VV, Hu Q, Shu J, Hemley RJ, Somayazulu M, Zhao Y. Science, 2002. 297. 2247 FlorusseLJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF,Marsh KN, Sloan ED. Science. 2004. 306. 469FlorusseLJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED. Science. 2004. 306. 469 LeeH, Lee JW, Kim D Y, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI,Ripmeester JA. Nature. 2005. 434. 743LeeH, Lee JW, Kim D Y, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA. Nature. 2005. 434. 743 川村太郎, 山本佳孝, 大竹道香,樋口知,遠藤肇,第15回日本エネルギー学会大会講演要旨集, 2006年8月4日, 97Taro Kawamura, Yoshitaka Yamamoto, Michika Otake, Tomo Higuchi, Satoshi Endo, Proc. 15th Annual Meeting of the Japan Institute of Energy, August 4, 2006, 97

本発明は、各種有機化合物の中から、入手しやすく、水素の吸蔵量か多く、かつ安全な化合物を見つけ出し、実用に供することができる水素吸蔵体及びこの水素吸蔵体を用いた水素供給方法を提供する。   The present invention provides a hydrogen storage body that can be easily obtained from various organic compounds, has a large amount of hydrogen storage, and can be used practically, and a hydrogen supply method using this hydrogen storage body. provide.

上記目的を達成するために本発明は、多くの実験を行い、アセトン、プロピレンオキシド、1,3-ジオキソラン、2,5-ジヒドロフランから選ばれる有機化合物のハイドレートが目的を達成することを見出し、本発明を完成させるに至った。
すなわち、本発明は、アセトン、プロピレンオキシド、1,3-ジオキソラン、2,5-ジヒドロフランから選ばれる有機化合物のハイドレートからなる水素吸蔵体である。
また、本発明は、アセトン、プロピレンオキシド、1,3-ジオキソラン、2,5-ジヒドロフランから選ばれる有機化合物のハイドレートからなる水素吸蔵体を、低温高圧で水素を吸蔵させ、高温低圧で水素を放出させることを特徴とする水素供給方法である。
ここにおいて、本発明では、低温高圧が、−30〜−1℃、3〜20MPaであり、高温低圧が0〜50℃、0.1〜5MPaとすることができる。
In order to achieve the above object, the present invention has conducted many experiments and found that a hydrate of an organic compound selected from acetone, propylene oxide, 1,3-dioxolane, and 2,5-dihydrofuran achieves the object. The present invention has been completed.
That is, the present invention is a hydrogen storage material comprising a hydrate of an organic compound selected from acetone, propylene oxide, 1,3-dioxolane, and 2,5-dihydrofuran.
The present invention also provides a hydrogen storage material comprising a hydrate of an organic compound selected from acetone, propylene oxide, 1,3-dioxolane, and 2,5-dihydrofuran, storing hydrogen at low temperature and high pressure, The hydrogen supply method is characterized in that the hydrogen is released.
Here, in the present invention, the low temperature and high pressure can be -30 to -1 ° C and 3 to 20 MPa, and the high and low pressure can be 0 to 50 ° C and 0.1 to 5 MPa.

本発明の有機化合物のハイドレートからなる水素吸蔵体は、入手しやすく、水素の吸蔵量か多く、かつ安全な化合物で、効率よく、低温高圧で水素を吸蔵させ、高温低圧で水素を放出させることが出来るため、水素供給方法に用いることが出来る。   The hydrogen occluding body comprising the hydrate of the organic compound of the present invention is an easily obtainable, large amount of occluding hydrogen, and is a safe compound that efficiently absorbs hydrogen at low temperature and high pressure and releases hydrogen at high temperature and low pressure. Therefore, it can be used for a hydrogen supply method.

本発明の有機化合物のハイドレートとして用いるアセトン、プロピレンオキシド、1,3-ジオキソラン、2,5-ジヒドロフランから選ばれる有機化合物の一般的な性質は、以下のとおりである。
(アセトン)
沸点:56℃
融点:−95℃
引火点:−18℃
発火点:465℃
密度:0.8
許容濃度:500ppm(TWA)
発ガン性:A4
分類(日本方式):引火性液体、急性毒性物質。
有害性等:眼の刺激性、中枢神経への影響あり。魚毒性が低い。
(プロピレンオキシド)
沸点:34℃
融点:−104℃
引火点:−37℃
発火点:449℃
密度:0.8
許容濃度:2ppm(TWA)
発ガン性:A3
分類(日本方式):引火性、高圧ガス、特定有害物
有害性等:眼、皮膚、肺への刺激作用、及び中枢神経に対する弱い抑制作用。極めて引火性が高い。
(1,3-ジオキソラン)
沸点:78℃
融点:−29℃
引火点:−4℃
発火点:240℃
密度:1.07
許容濃度:20ppm(TWA)
発ガン性:データなし
分類(日本方式):引火性液体
有害性等:眼、皮膚への刺激性、中枢神経への影響あり。引火性物質、有害性物質。
(2,5-ジヒドロフラン)
沸点:66℃
融点:℃
引火点:−16℃
発火点:℃
密度:0,94
許容濃度:データなし(TWA)
発ガン性:データなし
分類(日本方式):引火性液体
有害性等:特別な有害性は報告されていない
General properties of an organic compound selected from acetone, propylene oxide, 1,3-dioxolane, and 2,5-dihydrofuran used as a hydrate of the organic compound of the present invention are as follows.
(acetone)
Boiling point: 56 ° C
Melting point: -95 ° C
Flash point: -18 ° C
Ignition point: 465 ° C
Density: 0.8
Allowable concentration: 500ppm (TWA)
Carcinogenicity: A4
Classification (Japanese method): Flammable liquid, acute toxic substance.
Harmfulness: Irritating to eyes, affecting central nervous system. Low fish toxicity.
(Propylene oxide)
Boiling point: 34 ° C
Melting point: -104 ° C
Flash point: -37 ° C
Auto-ignition temperature: 449 ° C
Density: 0.8
Allowable concentration: 2ppm (TWA)
Carcinogenicity: A3
Classification (Japanese method): Flammability, high-pressure gas, harmful to specified hazardous substances, etc .: Stimulation on eyes, skin and lungs, and weak suppression on central nervous system. Extremely flammable.
(1,3-dioxolane)
Boiling point: 78 ° C
Melting point: -29 ° C
Flash point: -4 ° C
Ignition point: 240 ° C
Density: 1.07
Allowable concentration: 20ppm (TWA)
Carcinogenicity: No data Classification (Japanese method): Flammable liquid hazard, etc .: Irritating to eyes and skin, may affect central nervous system. Flammable substances and harmful substances.
(2,5-dihydrofuran)
Boiling point: 66 ° C
Melting point: ° C
Flash point: -16 ° C
Ignition point: ° C
Density: 0,94
Allowable concentration: No data available (TWA)
Carcinogenicity: No data Classification (Japanese method): Flammable liquid hazard, etc .: No special hazard reported

また、水素吸蔵特性が知られたテトラヒドロフランの一般的な性質は、以下のとおりである。
沸点:66℃
融点:−108.5℃
引火点:−14.5℃
発火点:321℃
密度:0.89
許容濃度:50ppm(TWA)
発ガン性:A3
分類(日本方式):引火性液体、急性毒性物質。
有害性等:眼、皮膚、気道を刺激する。極めて引火性が高い。
さらに、比較例として用いた1,4-ジオキサンの一般的な性質は、以下のとおりである。
沸点:101℃
融点:12℃
引火点:12℃
発火点:180℃
密度:1.03
許容濃度:20ppm(TWA)
発ガン性:A3
分類(日本方式):引火性液体、有害性等の有害物質
有害性等:継続的に摂取される場合は、人の健康を損なう恐れがある。BODでの分解性は低いが、魚類への蓄積性は低い。
(補足)
許容濃度(TWA):低い方が有害
発ガン性:A1→A4の順で発ガン性が低い。
Moreover, the general properties of tetrahydrofuran with known hydrogen storage properties are as follows.
Boiling point: 66 ° C
Melting point: -108.5 ° C
Flash point: -14.5 ° C
Auto-ignition temperature: 321 ° C
Density: 0.89
Allowable concentration: 50ppm (TWA)
Carcinogenicity: A3
Classification (Japanese method): Flammable liquid, acute toxic substance.
Harmfulness: Irritating to eyes, skin and respiratory tract. Extremely flammable.
Furthermore, the general properties of 1,4-dioxane used as a comparative example are as follows.
Boiling point: 101 ° C
Melting point: 12 ° C
Flash point: 12 ° C
Ignition point: 180 ° C
Density: 1.03
Allowable concentration: 20ppm (TWA)
Carcinogenicity: A3
Classification (Japanese method): Hazardous substances such as flammable liquids, hazards, etc .: If ingested continuously, human health may be impaired. Degradability in BOD is low, but accumulation in fish is low.
(Supplement)
Tolerable concentration (TWA): lower is harmful carcinogenicity: carcinogenicity is lower in the order of A1 → A4.

これらの物質について、その特性をまとめて表1に示す。

Figure 0004911515
主に入手し易さは値段から、扱いやすさは引火性、安全性は許容濃度と発ガン性から判断した。
本発明では、図2に示す装置を用いて、ハイドレートに水素を吸蔵させ、ハイドレートから水素を排出させる。 Table 1 summarizes the properties of these substances.
Figure 0004911515
Ease of availability was mainly judged by price, ease of handling was judged by flammability, and safety was judged by allowable concentration and carcinogenicity.
In the present invention, the apparatus shown in FIG. 2 is used to store hydrogen in the hydrate and discharge the hydrogen from the hydrate.

<アセトンクラスレートハイドレートの水素吸蔵能力>
(アセトン濃度:5.56 mol%)
アセトンクラスレートハイドレート(アセトン濃度:5.56 mol%)について、水素吸蔵・排出量を求めた。予めアセトンクラスレートハイドレートを粒径250μm程度に粉砕し、クラスレートハイドレートの初期試料重量を測定した後、反応容器に封入した。温度を−40℃に安定させた後、水素により圧力を大気圧から10MPaに昇圧した。加圧直後(5〜10min)は圧力変化が大きく、時間の経過と共に変化は小さくなり、90〜120minで吸蔵反応はほぼ終了していることが分かった。以上により、今回の実験条件(粒径250μm、温度−40℃、圧力10MPa)においてはクラスレートハイドレート中への水素吸蔵反応は120min以内でほぼ完了していることが明らかとなった。ハイドレートが十分に水素を吸蔵した後(120min以上)、圧力を大気圧まで減圧し容器を閉塞した。吸蔵された水素が放出されることにより容器内圧力が上昇し、状態方程式により、水素吸蔵量を求めた。以上により求められた、−40℃、10MPaにおけるアセトンクラスレートハイドレートの水素吸蔵量は平均0.027 mol/molであった。結果を図3に示す。以上の結果より、アセトンクラスレートハイドレートの水素吸蔵性能はテトラヒドロフランクラスレートハイドレートとほぼ同等であることが分かった。
<Hydrogen storage capacity of acetone clathrate hydrate>
(Acetone concentration: 5.56 mol%)
The amount of hydrogen occluded and discharged was determined for acetone clathrate hydrate (acetone concentration: 5.56 mol%). Acetone clathrate hydrate was pulverized in advance to a particle size of about 250 μm, the initial sample weight of clathrate hydrate was measured, and then sealed in a reaction vessel. After stabilizing the temperature at −40 ° C., the pressure was increased from atmospheric pressure to 10 MPa with hydrogen. Immediately after pressurization (5 to 10 min), the pressure change was large, and the change decreased with time. It was found that the occlusion reaction was almost completed in 90 to 120 min. From the above, it has been clarified that under the present experimental conditions (particle size 250 μm, temperature −40 ° C., pressure 10 MPa), the hydrogen occlusion reaction into clathrate hydrate is almost completed within 120 min. After the hydrate sufficiently occluded hydrogen (120 min or more), the pressure was reduced to atmospheric pressure and the vessel was closed. As the stored hydrogen was released, the internal pressure of the container increased, and the hydrogen storage amount was determined from the equation of state. The hydrogen storage amount of acetone clathrate hydrate obtained at -40 ° C. and 10 MPa was 0.027 mol / mol on average. The results are shown in FIG. From the above results, it was found that the hydrogen occlusion performance of acetone clathrate hydrate is almost equivalent to tetrahydrofuran clathrate hydrate.

<プロピレンオキシドクラスレートハイドレートの水素吸蔵能力>
(プロピレンオキシド濃度:5.56 mol%)
プロピレンオキシドクラスレートハイドレート(プロピレンオキシド濃度:5.56 mol%)について、水素吸蔵・排出量を求めた。予めプロピレンオキシドクラスレートハイドレートを粒径250μm程度に粉砕し、クラスレートハイドレートの初期試料重量を測定した後、反応容器に封入した。温度を−40℃に安定させた後、水素により圧力を大気圧から10MPaに昇圧した。加圧直後(5〜10min)は圧力変化が大きく、時間の経過と共に変化は小さくなり、90〜120minで吸蔵反応はほぼ終了していることが分かった。以上により、今回の実験条件(粒径250μm、温度−40℃、圧力10MPa)においてはクラスレートハイドレート中への水素吸蔵反応は120min以内でほぼ完了していることが明らかとなった。ハイドレートが十分に水素を吸蔵した後(120min以上)、圧力を大気圧まで減圧し容器を閉塞した。吸蔵された水素が放出されることにより容器内圧力が上昇し、状態方程式により、水素吸蔵量を求めた。以上により求められた、−40℃、10MPaにおけるプロピレンオキシドクラスレートハイドレートの水素吸蔵量は平均0.029 mol/molであった。結果を図3に示す。以上の結果より、プロピレンオキシドクラスレートハイドレートの水素吸蔵性能はテトラヒドロフランクラスレートハイドレートとほぼ同等であることが分かった。
<Hydrogen storage capacity of propylene oxide clathrate hydrate>
(Propylene oxide concentration: 5.56 mol%)
The hydrogen storage / discharge amount was determined for propylene oxide clathrate hydrate (propylene oxide concentration: 5.56 mol%). Propylene oxide clathrate hydrate was pulverized in advance to a particle size of about 250 μm, and the initial sample weight of clathrate hydrate was measured, and then sealed in a reaction vessel. After stabilizing the temperature at −40 ° C., the pressure was increased from atmospheric pressure to 10 MPa with hydrogen. Immediately after pressurization (5 to 10 min), the pressure change was large, and the change decreased with time. It was found that the occlusion reaction was almost completed in 90 to 120 min. From the above, it has been clarified that under the present experimental conditions (particle size 250 μm, temperature −40 ° C., pressure 10 MPa), the hydrogen occlusion reaction into clathrate hydrate is almost completed within 120 min. After the hydrate sufficiently occluded hydrogen (120 min or more), the pressure was reduced to atmospheric pressure and the vessel was closed. As the stored hydrogen was released, the internal pressure of the container increased, and the hydrogen storage amount was determined from the equation of state. The hydrogen storage amount of propylene oxide clathrate hydrate obtained at -40 ° C. and 10 MPa was 0.029 mol / mol on average. The results are shown in FIG. From the above results, it was found that the hydrogen storage performance of propylene oxide clathrate hydrate was almost equivalent to that of tetrahydrofuran clathrate hydrate.

<1,3-ジオキソランクラスレートハイドレートの水素吸蔵能力>
(1,3-ジオキソラン濃度:5.56 mol%)
1,3-ジオキソランクラスレートハイドレート(1,3-ジオキソラン濃度:5.56 mol%)について、水素吸蔵・排出量を求めた。予め1,3-ジオキソランクラスレートハイドレートを粒径250μm程度に粉砕し、クラスレートハイドレートの初期試料重量を測定した後、反応容器に封入した。温度を−40℃に安定させた後、水素により圧力を大気圧から10MPaに昇圧した。加圧直後(5〜10min)は圧力変化が大きく、時間の経過と共に変化は小さくなり、90〜120minで吸蔵反応はほぼ終了していることが分かった。以上により、今回の実験条件(粒径250μm、温度−40℃、圧力10MPa)においてはクラスレートハイドレート中への水素吸蔵反応は120min以内でほぼ完了していることが明らかとなった。ハイドレートが十分に水素を吸蔵した後(120min以上)、圧力を大気圧まで減圧し容器を閉塞した。吸蔵された水素が放出されることにより容器内圧力が上昇し、状態方程式により、水素吸蔵量を求めた。以上により求められた、−40℃、10MPaにおける1,3-ジオキソランクラスレートハイドレートの水素吸蔵量は平均0.028 mol/molであった。結果を図3に示す。以上の結果より、1,3-ジオキソランクラスレートハイドレートの水素吸蔵性能はテトラヒドロフランクラスレートハイドレートとほぼ同等であることが分かった。
実施例1及び実施例2と同様にして、
<Hydrogen storage capacity of 1,3-dioxolane clathrate hydrate>
(1,3-dioxolane concentration: 5.56 mol%)
The amount of hydrogen occluded and discharged was determined for 1,3-dioxolane clathrate hydrate (1,3-dioxolane concentration: 5.56 mol%). 1,3-dioxolane clathrate hydrate was pulverized in advance to a particle size of about 250 μm, the initial sample weight of clathrate hydrate was measured, and then sealed in a reaction vessel. After stabilizing the temperature at −40 ° C., the pressure was increased from atmospheric pressure to 10 MPa with hydrogen. Immediately after pressurization (5 to 10 min), the pressure change was large, and the change decreased with time. It was found that the occlusion reaction was almost completed in 90 to 120 min. From the above, it has been clarified that under the present experimental conditions (particle size 250 μm, temperature −40 ° C., pressure 10 MPa), the hydrogen occlusion reaction into clathrate hydrate is almost completed within 120 min. After the hydrate sufficiently occluded hydrogen (120 min or more), the pressure was reduced to atmospheric pressure and the vessel was closed. As the stored hydrogen was released, the internal pressure of the container increased, and the hydrogen storage amount was determined from the equation of state. The hydrogen storage amount of 1,3-dioxolane clathrate hydrate obtained at -40 ° C. and 10 MPa was 0.028 mol / mol on average. The results are shown in FIG. From the above results, it was found that the hydrogen storage performance of 1,3-dioxolane clathrate hydrate was almost equivalent to that of tetrahydrofuran clathrate hydrate.
Similar to Example 1 and Example 2,

<2,5-ジヒドロフランクラスレートハイドレートの水素吸蔵能力>
(2,5-ジヒドロフラン濃度:5.56 mol%)
2,5-ジヒドロフランクラスレートハイドレート(2,5-ジヒドロフラン濃度:5.56 mol%)について、水素吸蔵・排出量を求めた。予め2,5-ジヒドロフランクラスレートハイドレートを粒径250μm程度に粉砕し、クラスレートハイドレートの初期試料重量を測定した後、反応容器に封入した。温度を−40℃に安定させた後、水素により圧力を大気圧から10MPaに昇圧した。加圧直後(5〜10min)は圧力変化が大きく、時間の経過と共に変化は小さくなり、90〜120minで吸蔵反応はほぼ終了していることが分かった。以上により、今回の実験条件(粒径250μm、温度−40℃、圧力10MPa)においてはクラスレートハイドレート中への水素吸蔵反応は120min以内でほぼ完了していることが明らかとなった。ハイドレートが十分に水素を吸蔵した後(120min以上)、圧力を大気圧まで減圧し容器を閉塞した。吸蔵された水素が放出されることにより容器内圧力が上昇し、状態方程式により、水素吸蔵量を求めた。以上により求められた、−40℃、10MPaにおける2,5-ジヒドロフランクラスレートハイドレートの水素吸蔵量は平均0.029 mol/molであった。結果を図3に示す。以上の結果より、2,5-ジヒドロフランクラスレートハイドレートの水素吸蔵性能はテトラヒドロフランクラスレートハイドレートとほぼ同等であることが分かった。
<Hydrogen storage capacity of 2,5-dihydrofuran clathrate hydrate>
(2,5-dihydrofuran concentration: 5.56 mol%)
The amount of hydrogen occluded and discharged was determined for 2,5-dihydrofuran clathrate hydrate (2,5-dihydrofuran concentration: 5.56 mol%). 2,5-dihydrofuran clathrate hydrate was pulverized to a particle size of about 250 μm in advance, and the initial sample weight of clathrate hydrate was measured, and then sealed in a reaction vessel. After stabilizing the temperature at −40 ° C., the pressure was increased from atmospheric pressure to 10 MPa with hydrogen. Immediately after pressurization (5 to 10 min), the pressure change was large, and the change decreased with time. It was found that the occlusion reaction was almost completed in 90 to 120 min. From the above, it has been clarified that under the present experimental conditions (particle size 250 μm, temperature −40 ° C., pressure 10 MPa), the hydrogen occlusion reaction into clathrate hydrate is almost completed within 120 min. After the hydrate sufficiently occluded hydrogen (120 min or more), the pressure was reduced to atmospheric pressure and the vessel was closed. As the stored hydrogen was released, the internal pressure of the container increased, and the hydrogen storage amount was determined from the equation of state. The hydrogen storage capacity of 2,5-dihydrofuran clathrate hydrate obtained at -40 ° C. and 10 MPa was 0.029 mol / mol on average. The results are shown in FIG. From the above results, it was found that the hydrogen storage performance of 2,5-dihydrofuran clathrate hydrate is almost equivalent to that of tetrahydrofuran clathrate hydrate.

(従来例)
<テトラヒドロフランクラスレートハイドレートの水素吸蔵能力>
(THF濃度:5.56 mol%)
THFクラスレートハイドレート(THF濃度:5.56 mol%)について、圧力を大気圧から2MPaに昇圧した。加圧直後(5〜10min)は圧力変化が大きく、時間の経過と共に変化は小さくなり、30〜60minで吸蔵反応はほぼ終了していることが分かった。その後、段階的に12MPaまで昇圧させたが、この傾向はそれぞれの圧力で同様に見られた。以上により、今回の実験条件(粒径約250μm、温度−3℃、圧力2-12MPa)においてはクラスレートハイドレート中への水素吸蔵反応は30min以内でほぼ完了していることが明らかとなった。
THFクラスレートハイドレート(THF濃度:5.56 mol%)について、水素吸蔵・排出量を求めた。予めTHFクラスレートハイドレートを粒径250μm程度に粉砕し、クラスレートハイドレートの初期試料重量を測定した後、反応容器に封入した。温度を−40℃に安定させた後、水素により圧力を大気圧から10MPaに昇圧した。加圧直後(5〜10min)は圧力変化が大きく、時間の経過と共に変化は小さくなり、90〜120minで吸蔵反応はほぼ終了していることが分かった。以上により、今回の実験条件(粒径250μm、温度−40℃、圧力10MPa)においてはクラスレートハイドレート中への水素吸蔵反応は120min以内でほぼ完了していることが明らかとなった。ハイドレートが十分に水素を吸蔵した後(120min以上)、圧力を大気圧まで減圧し容器を閉塞した。吸蔵された水素が放出されることにより容器内圧力が上昇し、状態方程式により、水素吸蔵量を求めた。以上により求められた、−40℃、10MPaにおけるTHFクラスレートハイドレートの水素吸蔵量は平均0.027 mol/molであった。結果を図3に示す。また、水素吸蔵・排出挙動の圧力依存性は、ハイドレートに対して水素圧力を変化させラマン分析を行うことにより、調べることができる。さらに、 水素吸蔵・排出挙動の温度依存性についても、ハイドレートの初期試料重量を測定することにより調べることができる。
(Conventional example)
<Hydrogen clathrate hydrate hydrogen storage capacity>
(THF concentration: 5.56 mol%)
For THF clathrate hydrate (THF concentration: 5.56 mol%), the pressure was increased from atmospheric pressure to 2 MPa. Immediately after pressurization (5 to 10 min), the pressure change was large, and the change decreased with time. It was found that the occlusion reaction was almost completed in 30 to 60 min. Thereafter, the pressure was increased stepwise to 12 MPa, and this tendency was similarly observed at each pressure. From the above, it became clear that the hydrogen storage reaction into clathrate hydrate was almost completed within 30 min under the present experimental conditions (particle size: about 250 μm, temperature: -3 ° C, pressure: 2-12 MPa). .
The amount of hydrogen occluded and discharged was determined for THF clathrate hydrate (THF concentration: 5.56 mol%). The THF clathrate hydrate was pulverized in advance to a particle size of about 250 μm, and the initial sample weight of the clathrate hydrate was measured, and then sealed in a reaction vessel. After stabilizing the temperature at −40 ° C., the pressure was increased from atmospheric pressure to 10 MPa with hydrogen. Immediately after pressurization (5 to 10 min), the pressure change was large, and the change decreased with time. It was found that the occlusion reaction was almost completed in 90 to 120 min. From the above, it has been clarified that under the present experimental conditions (particle size 250 μm, temperature −40 ° C., pressure 10 MPa), the hydrogen occlusion reaction into clathrate hydrate is almost completed within 120 min. After the hydrate sufficiently occluded hydrogen (120 min or more), the pressure was reduced to atmospheric pressure and the vessel was closed. As the stored hydrogen was released, the internal pressure of the container increased, and the hydrogen storage amount was determined from the equation of state. The hydrogen storage amount of the THF clathrate hydrate obtained at -40 ° C. and 10 MPa was 0.027 mol / mol on average. The results are shown in FIG. In addition, the pressure dependence of the hydrogen storage / discharge behavior can be examined by performing a Raman analysis while changing the hydrogen pressure with respect to the hydrate. Furthermore, the temperature dependence of the hydrogen storage / discharge behavior can also be investigated by measuring the initial sample weight of hydrate.

(比較例1)
1,4-ジオキサンについても、実施例1と同様にして、テトラヒドロフランハイドレートを用いて、ハイドレートの10MPaにおける水素吸蔵・排出量を求めた。結果を図3に示す。
図3から、本件発明のアセトン、プロピレンオキシド、1,3-ジオキソラン、2,5-ジヒドロフランから選ばれる有機化合物のハイドレートは、水素吸蔵体として有効であることが判明した。
(Comparative Example 1)
For 1,4-dioxane, as in Example 1, the amount of hydrogen occluded and discharged at 10 MPa was determined using tetrahydrofuran hydrate. The results are shown in FIG.
From FIG. 3, it was found that the hydrate of an organic compound selected from acetone, propylene oxide, 1,3-dioxolane, and 2,5-dihydrofuran of the present invention is effective as a hydrogen storage material.

本発明の有機化合物のハイドレートからなる水素吸蔵体は、入手しやすく、水素の吸蔵量か多く、かつ安全な化合物であり、効率よく、低温高圧で水素を吸蔵させ、高温低圧で水素を放出させることが出来るため、水素供給方法に用いることが出来、多様な形態で水素を供給することが出来るため、産業上利用価値が高い。   The hydrogen occluding material comprising the hydrate of the organic compound of the present invention is a safe compound that is easy to obtain, has a large amount of occluding hydrogen, and efficiently absorbs hydrogen at low temperature and high pressure, and releases hydrogen at high temperature and low pressure. Therefore, it can be used in a hydrogen supply method and can be supplied in various forms, and thus has high industrial utility value.

クラスレートハイドレートの模式図Schematic diagram of clathrate hydrate クラスレートハイドレートによる水素吸蔵、水素排出の装置Hydrogen storage and discharge equipment with clathrate hydrate 各種有機化合物クラスレートハイドレートの水素吸蔵量Hydrogen storage capacity of various organic compound clathrate hydrates

Claims (2)

ロピレンオキシド、1,3-ジオキソラン、2,5-ジヒドロフランから選ばれる有機化合物のハイドレートからなる水素吸蔵体。 Profile propylene oxide, 1,3-dioxolane, hydrogen absorbing material comprising a hydrate of an organic compound selected from 2,5-dihydrofuran. ロピレンオキシド、1,3-ジオキソラン、2,5-ジヒドロフランから選ばれる有機化合物のハイドレートからなる水素吸蔵体を、低温高圧で水素を吸蔵させ、高温低圧で水素を放出させることを特徴とする水素供給方法であって、
低温高圧が−40〜−1℃、3〜20MPaであり、高温低圧が0〜50℃、0.1〜5MPaである方法
Profile propylene oxide, 1,3-dioxolane, 2,5-hydrogen absorbing material comprising a hydrate of an organic compound selected from the dihydrofuran; and characterized in that by absorbing hydrogen at low temperature and high pressure, to release hydrogen at a high temperature low pressure a hydrogen supply method for,
A method in which the low temperature and high pressure are -40 to -1 ° C and 3 to 20 MPa, and the high and low pressure is 0 to 50 ° C and 0.1 to 5 MPa .
JP2007129564A 2007-05-15 2007-05-15 Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same Expired - Fee Related JP4911515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129564A JP4911515B2 (en) 2007-05-15 2007-05-15 Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129564A JP4911515B2 (en) 2007-05-15 2007-05-15 Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same

Publications (2)

Publication Number Publication Date
JP2008285341A JP2008285341A (en) 2008-11-27
JP4911515B2 true JP4911515B2 (en) 2012-04-04

Family

ID=40145445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129564A Expired - Fee Related JP4911515B2 (en) 2007-05-15 2007-05-15 Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same

Country Status (1)

Country Link
JP (1) JP4911515B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769112B2 (en) * 2011-12-07 2015-08-26 Jfeエンジニアリング株式会社 Gas separation method and apparatus and gas treatment method and apparatus
JP6280474B2 (en) * 2014-09-16 2018-02-14 Jfeエンジニアリング株式会社 Gas separation device and gas separation method
CN109390156B (en) * 2017-08-04 2019-11-15 惠州市宙邦化工有限公司 One kind disappears hydrogen agent and preparation method thereof, aluminum electrolytic capacitor electrolyte
CN111483977B (en) * 2020-05-06 2022-07-05 深圳市霍沃科技有限公司 Compound capable of instantly generating high-concentration hydrogen by dissolving in water and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735960B2 (en) * 2001-10-30 2004-05-18 Carnegie Institution Of Washington Composition and method for hydrogen storage
JP5062421B2 (en) * 2005-05-13 2012-10-31 栗田工業株式会社 Hydrogen storage method
JP4452831B2 (en) * 2005-09-20 2010-04-21 国立大学法人 筑波大学 Hydrogen storage method and hydrogen storage body

Also Published As

Publication number Publication date
JP2008285341A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP4911515B2 (en) Hydrogen storage body comprising hydrate of organic compound and hydrogen supply method using the same
Vilella et al. Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes
CN101377265B (en) Methods for stabilizing gas hydrates and compositions
Haffner-Staton et al. High yield and high packing density porous carbon for unprecedented CO 2 capture from the first attempt at activation of air-carbonized biomass
JP2015081346A (en) Method of producing gas hydrate using method of injecting mixed gas of carbon dioxide and air
RU2014120518A (en) POROUS SPLITTING AGENT, ITS CONTAINING BATCH, COMPOSITION OF POROUS PACKING AGENT, METHOD FOR ITS USE AND METHOD FOR PRODUCING POROUS POPPING AGENT
US8569206B2 (en) Porous carbon material and a method of production thereof
Seo et al. Equilibrium, kinetics, and spectroscopic studies of SF6 hydrate in NaCl electrolyte solution
Akhmetshina et al. Solubility of H2S and CO2 in imidazolium-based ionic liquids with bis (2-ethylhexyl) sulfosuccinate anion
Prasad et al. Synergistic effects of amino acids in clathrates hydrates: Gas capture and storage applications
Varin et al. The effect of ball milling under hydrogen and argon on the desorption properties of MgH2 covered with a layer of Mg (OH) 2
Kida et al. CO2 capture from CH4–CO2 mixture by gas–solid contact with tetrahydrofuran clathrate hydrate
Huang et al. Rational introduction of nitridizing agent to hydrothermal carbonization for enhancing CO2 capture performance of tobacco stalk-based porous carbons
JP6757705B2 (en) Spherical phenolic resin activated carbon for methane storage, its production method, methane storage material using the activated carbon, and methane storage method using the activated carbon.
Chen et al. Self-preservation effect exceeding 273.2 K by introducing deuterium oxide to form methane hydrate
Kudryavtseva et al. Separation of CH4-CO2 gas mixture by gas hydrate crystallisation: A parametric study
Gao et al. Coalbed methane hydrate separation: An experimental study using ordered mesoporous materials
Liu et al. Exploring the chemical activation effects of CsHCO3 in preparing N-doped carbonaceous CO2 adsorbents
Sidek et al. Effect of impregnated activated carbon on carbon dioxide adsorption performance for biohydrogen purification
CN105080479B (en) For adsorbing cleanser of volatile chloride and preparation method thereof in lighter hydrocarbons tail gas
AL-Hemeri et al. Removal of heavy metals from industrial wastewater by use of Cyclopentane-Clathrate Hydrate formation technology
ES2586309T3 (en) Polyethylene for the production of open head drums
JP2017031042A (en) Process for producing activated charcoal, and activated charcoal
JP2015518511A5 (en)
CN105646865B (en) A kind of carbon dioxide preserves the fast synthesis method of material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

R150 Certificate of patent or registration of utility model

Ref document number: 4911515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees