JP4620440B2 - Gas hydrate generating apparatus and generating method - Google Patents

Gas hydrate generating apparatus and generating method Download PDF

Info

Publication number
JP4620440B2
JP4620440B2 JP2004351841A JP2004351841A JP4620440B2 JP 4620440 B2 JP4620440 B2 JP 4620440B2 JP 2004351841 A JP2004351841 A JP 2004351841A JP 2004351841 A JP2004351841 A JP 2004351841A JP 4620440 B2 JP4620440 B2 JP 4620440B2
Authority
JP
Japan
Prior art keywords
reaction vessel
gas hydrate
water
water surface
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004351841A
Other languages
Japanese (ja)
Other versions
JP2006160835A (en
Inventor
新井  敬
裕一 加藤
徹 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004351841A priority Critical patent/JP4620440B2/en
Publication of JP2006160835A publication Critical patent/JP2006160835A/en
Application granted granted Critical
Publication of JP4620440B2 publication Critical patent/JP4620440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、反応容器内の上部空間部に原料ガスを供給する原料ガス供給手段と、前記反応容器内の前記上部空間部に水を噴霧して供給する噴霧式水供給手段とを備え、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成装置及び生成方法に関する。   The present invention comprises a raw material gas supply means for supplying a raw material gas to the upper space portion in the reaction vessel, and a spray-type water supply means for supplying water by spraying the upper space portion in the reaction vessel. The present invention relates to a gas hydrate generating apparatus and a generating method for generating a gas hydrate by bringing the raw material gas into contact with the sprayed water under the temperature and pressure conditions.

ガスハイドレートは、水分子が結合して形成された立体構造の籠の内部に、例えば天然ガスの成分であるメタン、エタン、プロパン、ブタン等の炭化水素や二酸化炭素等のガス分子が取り込まれて形成される包接(クラスレート)水和物(ハイドレート)の総称である。すなわちガスハイドレートは、原料ガス分子と水分子からなる氷状の固体物質であり、水分子が形成する立体的な籠状構造の内部に原料ガス分子を包接した安定な包接化合物の一種である。このガスハイドレートは、ガス包蔵量が比較的大きいと共に、大きな生成・分解エネルギーや、ハイドレート化ガスの選択性等の特徴ある性質を有しているため、例えば、天然ガス等の輸送・貯蔵手段や、蓄熱システム、アクチュエータ、特定成分ガスの分離回収等の多様な用途が可能であり、盛んに研究がなされている。   In gas hydrate, gas molecules such as hydrocarbons such as methane, ethane, propane, and butane, which are natural gas components, and carbon dioxide are taken into the interior of the three-dimensional structure formed by combining water molecules. It is a general term for clathrate hydrates (hydrates) formed in this way. In other words, gas hydrate is an ice-like solid substance composed of source gas molecules and water molecules, and is a kind of stable inclusion compound in which source gas molecules are included inside a three-dimensional cage structure formed by water molecules. It is. This gas hydrate has a relatively large gas storage capacity, and has characteristic properties such as large generation / decomposition energy and selectivity of hydrated gas. For example, transportation and storage of natural gas, etc. Various applications such as means, heat storage systems, actuators, and separation and recovery of specific component gases are possible, and research is actively conducted.

ガスハイドレートは、通常、高圧・低温条件の下で生成される。生成方法として、以下の方式が良く知られている。原料ガスを高圧に充填した反応容器の上部から冷却した水を噴霧することにより、水滴が原料ガス中を落下する際に水滴表面にガスハイドレートを生成させる、いわゆる「水噴霧方式」や、原料ガスを水中に気泡として導入(バブリング)することにより、原料ガスの気泡が水中を上昇する際に気泡表面にガスハイドレートを生成させる、いわゆる「バブリング方式」等である。   Gas hydrate is usually generated under high pressure and low temperature conditions. The following methods are well known as generation methods. By spraying water cooled from the top of the reaction vessel filled with the raw material gas at a high pressure, when the water drops fall in the raw material gas, gas hydrate is generated on the surface of the water droplets. A so-called “bubbling method” or the like in which gas hydrate is generated on the bubble surface when the gas bubbles of the source gas rise in the water by introducing (bubbling) the gas as bubbles in the water.

このガスハイドレートを生成する装置の従来技術の一例として、特許文献1(特開2003−327980号公報)に記載の装置が挙げられる。反応容器内で原料ガスと水を接触させて生成したガスハイドレートは、比重が水より小さいため、反応容器内の水面上に浮いてガスハイドレートの層を形成する。前記接触反応を継続させることにより、このガスハイドレートは水面上に次第に溜まっていく。このガスハイドレートは、水面上に次第に溜まっていくことにより成長して塊状になりやすい。ガスハイドレートが塊になるとその流動性が低下し、取り出し口から流入させ更に取り出し管内を流動させて反応容器外へ取り出すことが困難になる。   As an example of the prior art of an apparatus for generating this gas hydrate, there is an apparatus described in Patent Document 1 (Japanese Patent Laid-Open No. 2003-327980). Since the gas hydrate produced by contacting the raw material gas and water in the reaction vessel has a specific gravity smaller than that of water, it floats on the water surface in the reaction vessel to form a gas hydrate layer. By continuing the contact reaction, the gas hydrate gradually accumulates on the water surface. This gas hydrate tends to grow and become a lump by gradually accumulating on the water surface. When the gas hydrate is agglomerated, the fluidity of the gas hydrate is reduced, and it becomes difficult to flow out from the outlet and to flow out of the reaction tube and out of the reaction vessel.

そこで、反応容器内の水面部分に掻き寄せ羽根を設け、該掻き寄せ羽根を回転させて水面に浮いているガスハイドレートを撹拌して流動性を保ちつつ、反応容器の中心側に掻き寄せて集合させ、反応容器の中心部に配置された取り出し口からガスハイドレートのスラリーを流入させて取り出し管内を流動させて外部に取り出すように構成されている。
ここで、掻き寄せ羽根は、基端が水面上に位置し、下端が水面下に没入するように配置されている。すなわち、掻き寄せ羽根は、水面上に浮いているガスハイドレートに直接接触して回転し、該ガスハイドレートを反応容器の中心部に掻き寄せるようになっている。
Therefore, a scraping blade is provided on the water surface portion in the reaction vessel, and the scraping blade is rotated to agitate the gas hydrate floating on the water surface to keep the fluidity, while scraping to the center side of the reaction vessel. The gas hydrate slurry is caused to flow in through the take-out pipe through the take-out port arranged at the center of the reaction vessel, and then taken out to the outside.
Here, the scraping blade is disposed such that the base end is located on the water surface and the lower end is immersed below the water surface. That is, the scraping blade rotates in direct contact with the gas hydrate floating on the water surface, and scrapes the gas hydrate toward the center of the reaction vessel.

特開2003−327980号公報JP 2003-327980 A

従来のガスハイドレート生成装置は、掻き寄せ羽根が水面上に浮いているガスハイドレートに直接接触して回転する構造であるため、掻き寄せ羽根の表面にガスハイドレートが付着して蓄積し、円滑な掻き寄せが出来なくなり、ガスハイドレートスラリーの取り出し管への誘導排出が不安定となり、最後にはガスハイドレートスラリーの反応容器外への取り出しが困難になる問題があった。   Since the conventional gas hydrate generator has a structure in which the scraping blade rotates in direct contact with the gas hydrate floating on the water surface, the gas hydrate adheres and accumulates on the surface of the scraping blade, There was a problem that smooth squeezing could not be performed, the induction discharge of the gas hydrate slurry to the take-out pipe became unstable, and finally it was difficult to take out the gas hydrate slurry out of the reaction vessel.

本発明の目的は、ガスハイドレートスラリーの反応容器外への取り出しを経時的に安定化することのできるガスハイドレートの生成装置を提供することにある。   The objective of this invention is providing the production | generation apparatus of the gas hydrate which can stabilize taking-out of the gas hydrate slurry out of the reaction vessel with time.

上記目的を達成するため、本発明の第1の態様は、反応容器と、前記反応容器内の上部空間部に原料ガスを供給する原料ガス供給手段と、前記反応容器内の前記上部空間部に水を噴霧して供給する噴霧式水供給手段とを備え、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成装置であって、回転翼全体が反応容器内の水面下に位置し、該回転翼の回転により反応容器内の水に旋回流を発生し、該旋回流の遠心力によって水面に浮いているガスハイドレートを前記旋回流の中央部に集める旋回流発生手段と、前記水面付近であって且つ反応容器の中央部付近に配置された抜き出し口から、前記旋回流によって集められた前記ガスハイドレートのスラリーが流入して該スラリーを反応容器外に抜き出す抜き出し手段と、を備えていることを特徴とする。   In order to achieve the above object, the first aspect of the present invention includes a reaction vessel, a raw material gas supply means for supplying a raw material gas to the upper space in the reaction vessel, and the upper space in the reaction vessel. A gas hydrate generation device that includes a spray-type water supply means that sprays and supplies water, and generates gas hydrate by bringing the raw material gas into contact with the sprayed water under predetermined temperature and pressure conditions. A gas hydrate which is located below the water surface in the reaction vessel, generates a swirling flow in the water in the reaction vessel by the rotation of the rotating blade, and floats on the water surface by the centrifugal force of the swirling flow The gas hydrate slurry collected by the swirling flow from the swirling flow generating means that collects the swirling flow at the central portion of the swirling flow, and the extraction port disposed near the water surface and near the central portion of the reaction vessel. Inflow Characterized in that it comprises a means extracting withdrawing slurry from the reaction vessel, the.

本発明によれば、回転翼全体が反応容器内の水面下に位置する旋回流発生手段の、当該回転翼の回転により反応容器内の水に旋回流を発生し、この旋回流の遠心力によって水面に浮いている前記ガスハイドレートを該旋回流の中央部に集め、抜き出し手段の抜き出し口に流入させて反応容器外に抜き出すように構成されている。従って、当該回転翼はガスハイドレートに非接触であるため、従来のような翼表面へのガスハイドレート付着の問題は無く、旋回流を経時的に安定して発生させることができる。
これにより、ガスハイドレートの反応容器外への抜き出しを安定して継続させることができる。更に、旋回流の遠心力の作用によって水より比重の小さいガスハイドレートを中央部に集めるため、ガスハイドレートスラリーの濃度を簡単に濃縮することができる。
According to the present invention, the swirling flow generating means whose entire rotating blade is located below the water surface in the reaction vessel generates a swirling flow in the water in the reaction vessel by the rotation of the rotating blade, and the centrifugal force of the swirling flow generates The gas hydrate floating on the water surface is collected at the center of the swirling flow, and flows into the extraction port of the extraction means to be extracted out of the reaction vessel. Therefore, since the rotor blade is not in contact with the gas hydrate, there is no problem of gas hydrate adhesion to the blade surface as in the prior art, and a swirl flow can be stably generated over time.
Thereby, the extraction of the gas hydrate out of the reaction vessel can be stably continued. Furthermore, since the gas hydrate having a specific gravity smaller than that of water is collected in the center by the action of the centrifugal force of the swirling flow, the concentration of the gas hydrate slurry can be easily concentrated.

また、本発明の第2の態様は、第1の態様において、前記旋回流発生手段は、反応容器の内壁寄りであって周方向に等間隔に配置された2つ以上の回転翼と、各回転翼を下端に固定し、水面下から水面上に鉛直方向に延びた支持棒と、水面上において各支持棒を回転軸に繋げる連結部とを備えていることを特徴とする。   Further, a second aspect of the present invention is the first aspect, wherein the swirl flow generating means includes two or more rotor blades arranged at equal intervals in the circumferential direction near the inner wall of the reaction vessel, A rotary blade is fixed to the lower end, and includes a support rod that extends vertically from below the water surface to the water surface, and a connecting portion that connects each support rod to the rotation shaft on the water surface.

本発明によれば、第1の態様に基づく作用効果に加えて、回転翼を下端に固定する当該支持棒が、水面上のガスハイドレート層の周辺部に対して局部的に撹拌作用をすることになるため、当該旋回流の遠心力によるガスハイドレートの中央部への集め作用がアシストされる効果が得られる。   According to the present invention, in addition to the effect based on the first aspect, the support rod for fixing the rotor blade to the lower end locally agitates the peripheral portion of the gas hydrate layer on the water surface. Therefore, an effect of assisting the collecting action of the gas hydrate to the center by the centrifugal force of the swirling flow is obtained.

また、本発明の第3の態様は、第1の態様において、前記抜き出し手段は、前記抜き出し口から鉛直下方に延設された抜き出し管を備え、前記旋回流発生手段は、前記回転翼が前記抜き出し管を回転中心として回転するように構成されていることを特徴とする。   According to a third aspect of the present invention, in the first aspect, the extraction unit includes an extraction pipe extending vertically downward from the extraction port, and the swirl flow generation unit includes the rotary blade The extraction tube is configured to rotate about the rotation center.

本発明によれば、前記抜き出し手段は、前記抜き出し口から鉛直下方に延設された抜き出し管を備え、前記旋回流発生手段は、前記回転翼が前記抜き出し管を回転中心として回転するように構成されている。従って、第1の態様に基づく作用効果に加えて、回転翼と水面との間に旋回流を乱すものが存在しないので、旋回流の安定性が増し、該旋回流に基づく遠心力の均一性が高まり、ガスハイドレートスラリーの濃度を精度良く濃縮することができる。   According to the present invention, the extraction means includes an extraction pipe extending vertically downward from the extraction port, and the swirl flow generation means is configured such that the rotary blade rotates about the extraction pipe as a rotation center. Has been. Therefore, in addition to the effect based on the first aspect, there is no object that disturbs the swirling flow between the rotor blade and the water surface, so that the stability of the swirling flow is increased and the uniformity of the centrifugal force based on the swirling flow is increased. And the concentration of the gas hydrate slurry can be concentrated with high accuracy.

また、本発明の第4の態様は、反応容器内の上部空間部に原料ガスを供給し、前記反応容器内の前記上部空間部に水を噴霧して供給し、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成方法であって、反応容器内の水面下に位置する回転翼の回転により反応容器内の水に旋回流を発生し、水面に浮いている前記ガスハイドレートを前記旋回流の遠心力によって中央部に集め、前記水面付近であって且つ反応容器の中央部付近に配置された抜き出し口から、前記旋回流によって集められた前記ガスハイドレートのスラリーを反応容器外に抜き出すことを特徴とする。
本発明によれば、第1の態様と同様の作用効果を得ることができる。
Further, the fourth aspect of the present invention is that a source gas is supplied to the upper space part in the reaction vessel, water is sprayed and supplied to the upper space part in the reaction vessel, and a predetermined temperature and pressure condition is satisfied. A gas hydrate generating method for generating gas hydrate by bringing the raw material gas and the sprayed water into contact with each other, wherein the water in the reaction vessel is converted by rotation of a rotary blade located below the water surface in the reaction vessel. The gas hydrate that generates a swirling flow and floats on the water surface is collected in the central portion by the centrifugal force of the swirling flow, and from the outlet located near the water surface and near the central portion of the reaction vessel, The gas hydrate slurry collected by the swirling flow is extracted from the reaction vessel.
According to the present invention, the same effect as that of the first aspect can be obtained.

本発明によれば、回転翼はガスハイドレートに非接触であるため、従来のような翼表面へのガスハイドレート付着の問題は無く、旋回流を経時的に安定して発生させることができる。従って、ガスハイドレートの反応容器外への抜き出しを安定して継続させることができる。更に、旋回流の遠心力の作用によって水より比重の小さいガスハイドレートを中央部に集めるため、ガスハイドレートスラリーの濃度を簡単に濃縮することができる。   According to the present invention, since the rotor blade is not in contact with the gas hydrate, there is no problem of gas hydrate adhesion to the blade surface as in the prior art, and a swirling flow can be stably generated over time. . Therefore, the extraction of the gas hydrate out of the reaction vessel can be stably continued. Furthermore, since the gas hydrate having a specific gravity smaller than that of water is collected in the center by the action of the centrifugal force of the swirling flow, the concentration of the gas hydrate slurry can be easily concentrated.

以下、図面に基づいて本発明の実施の形態を説明する。
[実施例1]
図1は本発明に係る天然ガスハイドレート生成装置の一実施例を示す概略構成図である。反応容器1の上部に、該反応容器1内の上部空間部3に天然ガスから成る原料ガス5を供給する原料ガス供給手段を構成するガスノズル7が設けられている。このガスノズル7は、図示しないガス供給源に連通され、制御された噴射量で原料ガス5を反応容器1内に噴射するようになっている。また、反応容器1の上部の他の部位に、反応容器1内の上部空間部3に水9を噴霧する噴霧式水供給手段を構成する噴霧ノズル11が設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Example 1]
FIG. 1 is a schematic configuration diagram showing an embodiment of a natural gas hydrate generating apparatus according to the present invention. A gas nozzle 7 constituting a raw material gas supply means for supplying a raw material gas 5 made of natural gas to the upper space 3 in the reaction vessel 1 is provided at the upper part of the reaction vessel 1. The gas nozzle 7 communicates with a gas supply source (not shown) and injects the raw material gas 5 into the reaction vessel 1 with a controlled injection amount. In addition, a spray nozzle 11 that constitutes a spray-type water supply unit that sprays water 9 onto the upper space 3 in the reaction container 1 is provided at another part of the upper part of the reaction container 1.

反応容器1内は、公知の方法により、所定の温度及び圧力に調整される。本実施例では温度は3℃、圧力は5MPaである。この温度及び圧力の下で、前記原料ガス5と前記噴霧された水9が接触してガスハイドレート13が生成するようになっている。ガスハイドレートは、反応に供した原料の水の量に対して生成量は1〜5重量%程度と僅かであるため、原料ガス5と水9とを反応容器1内に循環供給することにより生成するガスハイドレートを水面上に蓄積してその量を増加させ、濃縮している。通常、その後の反応容器1からの抜き出し易さや更なる濃縮装置の能力等との関連性を考慮して、ガスハイドレートスラリーの濃度を10〜30重量%、望ましくは20重量%程度に濃縮するようにしている。   The inside of the reaction vessel 1 is adjusted to a predetermined temperature and pressure by a known method. In this embodiment, the temperature is 3 ° C. and the pressure is 5 MPa. Under this temperature and pressure, the raw material gas 5 and the sprayed water 9 come into contact with each other to generate a gas hydrate 13. Since the amount of gas hydrate produced is as small as about 1 to 5% by weight with respect to the amount of raw material water used for the reaction, the raw material gas 5 and water 9 are circulated and fed into the reaction vessel 1. The generated gas hydrate is accumulated on the water surface to increase its amount and concentrate. In general, the concentration of the gas hydrate slurry is concentrated to 10 to 30% by weight, preferably about 20% by weight in consideration of the ease of subsequent extraction from the reaction vessel 1 and the ability of the further concentration apparatus. I am doing so.

図1の装置おいては、水9の循環供給構造が示されている。すなわち、反応容器1の水面下の容器底部付近に、液体としての水90の取り出し口15が設けられ、該取り出し口15と前記噴霧ノズル11は循環ライン17を介して接続されている。循環ライン17には循環用ポンプ19と熱交換機21が設けられている。循環用ポンプ19は、液体としての水90を取り出し口15から噴霧ノズル11に向けて送ると共に、噴霧ノズル11の噴霧力を発生させる働きをする。熱交換機21は、ガスハイドレートを生成する原料としての水の温度条件(本実施例では3℃)にまで水温を下げる働きを担うものである。
尚、ガスハイドレートは、水と原料ガスとの接触により水和反応が行われて生成するが、その際、生成熱が発生する。この生成熱(メタンの場合98kcal/kg)を除去するために公知の冷却装置23が設けられている。
In the apparatus of FIG. 1, a circulating supply structure of water 9 is shown. That is, a takeout port 15 for water 90 as a liquid is provided near the bottom of the vessel below the water surface of the reaction vessel 1, and the takeout port 15 and the spray nozzle 11 are connected via a circulation line 17. The circulation line 17 is provided with a circulation pump 19 and a heat exchanger 21. The circulation pump 19 sends water 90 as a liquid from the take-out port 15 toward the spray nozzle 11 and generates a spray force of the spray nozzle 11. The heat exchanger 21 serves to lower the water temperature to the temperature condition of water as a raw material for generating gas hydrate (3 ° C. in the present embodiment).
The gas hydrate is generated by a hydration reaction by contact between water and the raw material gas, and at this time, heat of generation is generated. In order to remove this generated heat (98 kcal / kg in the case of methane), a known cooling device 23 is provided.

そして、反応容器1内の液体としての水90に旋回流を発生させる旋回流発生装置25が設けられている。該旋回流発生装置25は、回転翼27,27,…全体が反応容器1内の水面下に位置し、回転翼27,27,…の鉛直軸回りの回転により反応容器1内の水90に旋回流を発生し、該旋回流の遠心力によって水面に浮いているガスハイドレート13を前記旋回流の中央部29に集めるように構成されている。   A swirling flow generating device 25 is provided for generating a swirling flow in the water 90 as the liquid in the reaction vessel 1. The swirl flow generator 25 is located entirely under the water surface in the reaction vessel 1 in the rotor blades 27, 27,... A swirling flow is generated, and the gas hydrate 13 floating on the water surface by the centrifugal force of the swirling flow is collected in the central portion 29 of the swirling flow.

本実施例では、反応容器1の内壁31寄りであって周方向に等間隔に配置された4つの回転翼27,27,…と、各回転翼27,27,…を下端に固定し、水面下から水面上に鉛直方向に延びた4本の支持棒33,33,…と、水面上において各支持棒33,33,…を1本の回転軸35に繋げる4本の連結部37,37,…とを備えて、当該旋回流発生装置25が構成されている。図1において、符号39は回転軸35を回転する駆動装置を示す。   In this embodiment, four rotary blades 27, 27,..., Which are close to the inner wall 31 of the reaction vessel 1 and arranged at equal intervals in the circumferential direction, and the rotary blades 27, 27,. Four support rods 33, 33,... Vertically extending from below to the water surface, and four connecting portions 37, 37 that connect each support rod 33, 33,. The swirl flow generating device 25 is configured. In FIG. 1, the code | symbol 39 shows the drive device which rotates the rotating shaft 35. In FIG.

ここで、回転翼27,27,…の形状及びサイズ等、また回転翼27,27,…の回転速度等の具体的設定は相対的であり、画一的には決まらない。要は水面に浮いているガスハイドレート13を、発生させる旋回流の遠心力によって、水との比重の差を利用して該旋回流の中央部29に集めることができるように設定される。理想的には、水面の波立ちがほとんど無く、水面下も乱流がほとんど無く、水面中央部が最も凹んだ側面視V字形状の一様な凹面が形成されるような旋回流が望ましいと言えるが、実質的はここまでしなくても旋回流の前記役割は果たせる。   Here, the specific settings such as the shape and size of the rotor blades 27, 27,... And the rotational speed of the rotor blades 27, 27,... Are relative and are not determined uniformly. In short, the gas hydrate 13 floating on the water surface is set so that it can be collected in the central portion 29 of the swirling flow by utilizing the difference in specific gravity with water by the centrifugal force of the swirling flow to be generated. Ideally, it is desirable to have a swirl flow in which there is almost no undulation on the water surface, there is almost no turbulent flow below the water surface, and a uniform concave surface having a V-shaped side view with the most concave central portion of the water surface is formed. However, the role of the swirling flow can be fulfilled substantially without doing so.

更に、上記の如く集められたガスハイドレート13のスラリーを反応容器1の外部に抜き出す為の抜き出し装置40が設けられている。該抜き出し装置40は、本実施例では、水面付近であって且つ反応容器1の中央部付近に抜き出し口41を位置させ、該抜き出し口41から鉛直下方に延設された抜き出し管43と、該抜き出し管43に設けられた抜き出し用ポンプ45を備えている。ガスハイドレート13のスラリーは、抜き出し管41に流入し、抜き出し管43を通って反応容器1の外部に抜き出される。   Furthermore, an extraction device 40 for extracting the slurry of the gas hydrate 13 collected as described above to the outside of the reaction vessel 1 is provided. In this embodiment, the extraction device 40 has an extraction port 41 located near the water surface and near the center of the reaction vessel 1, and an extraction pipe 43 extending vertically downward from the extraction port 41, An extraction pump 45 provided in the extraction pipe 43 is provided. The slurry of the gas hydrate 13 flows into the extraction pipe 41 and is extracted to the outside of the reaction vessel 1 through the extraction pipe 43.

次に上記実施例1の作用を説明する。
本実施例では、回転翼27,27,…全体が反応容器1内の水面下に位置する旋回流発生装置25の、当該回転翼27,27,…の回転により反応容器1内の水90に旋回流を発生し、この旋回流の遠心力によって水面に浮いているガスハイドレート13を該旋回流の中央部に集め、抜き出し装置40の抜き出し口41に流入させて反応容器1外に抜き出すように構成されている。従って、当該回転翼27,27,…はガスハイドレート13に非接触であるため、従来のような翼表面へのガスハイドレート付着の問題は無く、旋回流を経時的に安定して発生させることができる。
これにより、ガスハイドレート13の反応容器1」外への抜き出しを安定して継続させることができる。更に、旋回流の遠心力の作用によって水より比重の小さいガスハイドレート13を中央部に集めるため、ガスハイドレートスラリーの濃度を簡単に濃縮することができる。
Next, the operation of the first embodiment will be described.
In this embodiment, the rotating blades 27, 27,... Of the swirling flow generator 25 located entirely below the water surface in the reaction vessel 1 are turned into the water 90 in the reaction vessel 1 by the rotation of the rotating blades 27, 27,. A swirling flow is generated, and the gas hydrate 13 floating on the water surface is collected at the center of the swirling flow by the centrifugal force of the swirling flow, and flows into the extraction port 41 of the extraction device 40 to be extracted out of the reaction vessel 1. It is configured. Therefore, since the rotor blades 27, 27,... Are not in contact with the gas hydrate 13, there is no problem of gas hydrate adhesion to the blade surface as in the prior art, and a swirling flow is stably generated over time. be able to.
Thereby, the extraction of the gas hydrate 13 out of the reaction vessel 1 ”can be stably continued. Furthermore, since the gas hydrate 13 having a specific gravity smaller than that of water is collected in the central portion by the action of the centrifugal force of the swirling flow, the concentration of the gas hydrate slurry can be easily concentrated.

更に、回転翼27,27,…を下端に固定する支持棒33,33,…は、水面上のガスハイドレート13の層の周辺部に対して局部的に撹拌作用をすることになるため、当該旋回流の遠心力によるガスハイドレート13の中央部への集め作用がアシストされる。   Further, the support rods 33, 33,... That fix the rotary blades 27, 27,... At the lower end locally agitate the periphery of the gas hydrate 13 layer on the water surface. The action of collecting the gas hydrate 13 at the center by the centrifugal force of the swirling flow is assisted.

[実施例2]
図2は本発明に係る天然ガスハイドレート生成装置の他の実施例を示す概略構成図である。本実施例では、旋回流発生装置25は、反応容器1の底部中央部に配設され、その主要構成部となる回転翼28と、該回転翼28の回転軸36と、該回転軸36を回転する駆動装置38とから構成されている。また、抜き出し装置40は、前記旋回流発生装置25が反応容器1の底部中央部に配設されたことにより、抜き出し管44はL字状に曲げられて反応容器1の側面を貫通するように配設されている。尚、噴霧ノズル11は、反応容器1の上部中央部に設けられている。その他の構成は、図1に示した実施例1と同様なので、同一部分に同一符号を付してその説明は省略する。
[Example 2]
FIG. 2 is a schematic diagram showing another embodiment of the natural gas hydrate generating apparatus according to the present invention. In this embodiment, the swirling flow generating device 25 is disposed at the center of the bottom of the reaction vessel 1, and includes a rotary blade 28 as a main component, a rotary shaft 36 of the rotary blade 28, and the rotary shaft 36. And a driving device 38 that rotates. Further, the extraction device 40 is arranged so that the extraction pipe 44 is bent in an L shape and penetrates the side surface of the reaction vessel 1 by arranging the swirling flow generating device 25 at the center of the bottom of the reaction vessel 1. It is arranged. The spray nozzle 11 is provided in the upper center portion of the reaction vessel 1. Since other configurations are the same as those of the first embodiment shown in FIG. 1, the same reference numerals are given to the same portions, and the description thereof is omitted.

実施例2によれば、回転翼28と水面との間にL字状に曲げられた抜き出し管44が存在するため、その分だけ旋回流が乱れやすいが、実用上は有効なレベルで、該旋回流の遠心力の作用によってガスハイドレート13を中央部に集めることができ、ガスハイドレートスラリーの濃度を濃縮することができる。   According to the second embodiment, since the extraction pipe 44 bent in an L shape exists between the rotary blade 28 and the water surface, the swirling flow is easily disturbed by that amount, but at a practically effective level, The gas hydrate 13 can be collected at the center by the action of the centrifugal force of the swirling flow, and the concentration of the gas hydrate slurry can be concentrated.

[実施例3]
図3は本発明に係る天然ガスハイドレート生成装置の更に他の実施例を示す概略構成図である。本実施例では、旋回流発生装置25は、抜き出し口41から鉛直下方に延設された抜き出し管43を回転中心として、回転翼26が回転するように構成されている。回転翼26の軸部42は、反応容器1の底部を貫通して回転可能に形成され、反応容器1外に設けられたモータ46を駆動力源として回転するようになっている。貫通部の液体のシールについては公知の技術が適用されている。尚、回転翼26は図示の例に限定されず、反応容器内に設けた耐圧の水中モータ(図示せず)によって駆動してもよい。その他の構成は、図1に示した実施例1又は図2に示した実施例2と同様なので、同一部分に同一符号を付してその説明は省略する。
[Example 3]
FIG. 3 is a schematic configuration diagram showing still another embodiment of the natural gas hydrate generator according to the present invention. In the present embodiment, the swirling flow generating device 25 is configured such that the rotary blade 26 rotates around the extraction pipe 43 extending vertically downward from the extraction port 41. The shaft portion 42 of the rotary blade 26 is formed so as to be able to rotate through the bottom of the reaction vessel 1, and rotates using a motor 46 provided outside the reaction vessel 1 as a driving force source. A known technique is applied to the liquid seal in the through portion. The rotary blade 26 is not limited to the illustrated example, and may be driven by a pressure-resistant underwater motor (not shown) provided in the reaction vessel. Since other configurations are the same as those of the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. 2, the same portions are denoted by the same reference numerals, and the description thereof is omitted.

実施例3によれば、抜き出し装置40は、前記抜き出し口41から鉛直下方に延設された抜き出し管43を備え、旋回流発生装置25は、回転翼26が前記抜き出し管43を回転中心として回転するように構成されている。すなわち、回転翼26と水面との間に旋回流を乱すものが存在しないので、旋回流の安定性が実施例1や実施例2に比べて増し、該旋回流に基づく遠心力の均一性が一層高まり、ガスハイドレートスラリーの濃度を精度良く濃縮することができる。   According to the third embodiment, the extraction device 40 includes an extraction pipe 43 that extends vertically downward from the extraction port 41, and the swirling flow generator 25 has a rotating blade 26 that rotates about the extraction pipe 43 as a rotation center. Is configured to do. That is, since there is nothing that disturbs the swirling flow between the rotor blades 26 and the water surface, the stability of the swirling flow is increased compared to the first and second embodiments, and the uniformity of the centrifugal force based on the swirling flow is increased. This further increases the concentration of the gas hydrate slurry with high accuracy.

本発明は、反応容器内の上部空間部に原料ガスを供給する原料ガス供給手段と、前記反応容器内の前記上部空間部に水を噴霧して供給する噴霧式水供給手段とを備え、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成装置及び生成方法に利用可能である。   The present invention comprises a raw material gas supply means for supplying a raw material gas to the upper space portion in the reaction vessel, and a spray-type water supply means for supplying water by spraying the upper space portion in the reaction vessel. It can be used for a gas hydrate generating device and a generating method for generating gas hydrate by bringing the raw material gas into contact with the sprayed water under the temperature and pressure conditions.

本発明に係る天然ガスハイドレート生成装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the natural gas hydrate production | generation apparatus which concerns on this invention. 本発明に係る天然ガスハイドレート生成装置の他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of the natural gas hydrate production | generation apparatus which concerns on this invention. 本発明に係る天然ガスハイドレート生成装置の更に他の実施例を示す概略構成図である。It is a schematic block diagram which shows the further another Example of the natural gas hydrate production | generation apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 反応容器
3 上部空間部
5 原料ガス
9 噴霧された水
13 ガスハイドレート
21 熱交換機
25 旋回流発生装置
26〜28 回転翼
27 回転翼
29 旋回流の中央部
33 支持棒
40 抜き出し装置
41 抜き出し口
42 軸部
43 抜き出し管
46 モータ
90 液体としての水
DESCRIPTION OF SYMBOLS 1 Reaction container 3 Upper space part 5 Raw material gas 9 Sprayed water 13 Gas hydrate 21 Heat exchanger 25 Swirling flow generators 26-28 Rotary blade 27 Rotary blade 29 Center part of rotational flow 33 Support rod 40 Extraction device 41 Extraction port 42 Shaft part 43 Extraction pipe 46 Motor 90 Water as liquid

Claims (4)

反応容器と、前記反応容器内の上部空間部に原料ガスを供給する原料ガス供給手段と、前記反応容器内の前記上部空間部に水を噴霧して供給する噴霧式水供給手段と、を備え、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成装置であって、
回転翼全体が反応容器内の水面下に位置し、該回転翼の回転により反応容器内の水に旋回流を発生し、該旋回流の遠心力によって水面に浮いているガスハイドレートを前記旋回流の中央部に集める旋回流発生手段と、
前記水面付近であって且つ反応容器の中央部付近に配置された抜き出し口から、前記旋回流によって集められた前記ガスハイドレートのスラリーが流入して該スラリーを反応容器外に抜き出す抜き出し手段と、を備え
前記旋回流発生手段は、反応容器の内壁寄りであって周方向に等間隔に配置された2つ以上の回転翼と、各回転翼を下端に固定し、水面下から水面上に鉛直方向に延びた支持棒と、水面上において各支持棒を回転軸に繋げる連結部と、を備えていることを特徴とするガスハイドレート生成装置。
A reaction vessel, source gas supply means for supplying a source gas to the upper space in the reaction vessel, and spray water supply means for supplying water by spraying the upper space in the reaction vessel. A gas hydrate generating device for generating gas hydrate by bringing the raw material gas into contact with the sprayed water under a predetermined temperature and pressure condition,
The entire rotor blade is located below the water surface in the reaction vessel, and the rotating blade generates a swirling flow in the water in the reaction vessel, and the swirling force causes the gas hydrate floating on the water surface to swirl. A swirl flow generating means for collecting at the center of the flow;
An extraction means for extracting the slurry out of the reaction vessel by flowing the slurry of the gas hydrate collected by the swirling flow from an extraction port disposed near the water surface and near the center of the reaction vessel; equipped with a,
The swirling flow generating means includes two or more rotor blades arranged at equal intervals in the circumferential direction near the inner wall of the reaction vessel, and each rotor blade is fixed to the lower end, and vertically extends from below the water surface to the water surface. A gas hydrate generating apparatus comprising: an extended support bar; and a connecting part that connects each support bar to a rotating shaft on the water surface .
反応容器と、前記反応容器内の上部空間部に原料ガスを供給する原料ガス供給手段と、前記反応容器内の前記上部空間部に水を噴霧して供給する噴霧式水供給手段と、を備え、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成装置であって、
回転翼全体が反応容器内の水面下に位置し、該回転翼の回転により反応容器内の水に旋回流を発生し、該旋回流の遠心力によって水面に浮いているガスハイドレートを前記旋回流の中央部に集める旋回流発生手段と、
前記水面付近であって且つ反応容器の中央部付近に配置された抜き出し口から、前記旋回流によって集められた前記ガスハイドレートのスラリーが流入して該スラリーを反応容器外に抜き出す抜き出し手段と、を備え
前記旋回流発生手段は、前記回転翼の回転軸が、前記反応容器の底部中央部を貫通して回転可能、且つ、該回転軸全体が水面下に位置するように構成されており、
前記抜き出し手段は、前記抜き出し口から延設されるとともに、前記回転翼と水面との間を通って前記反応容器の側面を貫通するように配設された抜き出し管を備えていることを特徴とするガスハイドレート生成装置。
A reaction vessel, source gas supply means for supplying a source gas to the upper space in the reaction vessel, and spray water supply means for supplying water by spraying the upper space in the reaction vessel. A gas hydrate generating device for generating gas hydrate by bringing the raw material gas into contact with the sprayed water under a predetermined temperature and pressure condition,
The entire rotor blade is located below the water surface in the reaction vessel, and the rotating blade generates a swirling flow in the water in the reaction vessel, and the swirling force causes the gas hydrate floating on the water surface to swirl. A swirl flow generating means for collecting at the center of the flow;
An extraction means for extracting the slurry from the reaction vessel by flowing the slurry of the gas hydrate collected by the swirling flow from an extraction port disposed near the water surface and near the center of the reaction vessel; equipped with a,
The swirl flow generating means is configured such that the rotary shaft of the rotary blade can rotate through the center of the bottom of the reaction vessel, and the entire rotary shaft is located below the water surface.
The extraction means includes an extraction tube that extends from the extraction port and is disposed so as to pass through the side surface of the reaction vessel through between the rotary blade and the water surface. Gas hydrate generator.
反応容器内の上部空間部に原料ガスを供給し、前記反応容器内の前記上部空間部に水を噴霧して供給し、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成方法であって、
反応容器内の水面下に位置し、前記反応容器の内壁寄りであって周方向に等間隔に配置された2つ以上の回転翼の回転により反応容器内の水に旋回流を発生し、水面に浮いている前記ガスハイドレートを前記旋回流の遠心力と、各回転翼を下端に固定するとともに水面下から水面上に鉛直方向に延びた支持棒による、前記水面上のガスハイドレート層の周辺部に対する撹拌作用によって中央部に集め、前記水面付近であって且つ反応容器の中央部付近に配置された抜き出し口から、前記旋回流によって集められた前記ガスハイドレートのスラリーを反応容器外に抜き出すことを特徴とするガスハイドレート生成方法。
A raw material gas is supplied to the upper space part in the reaction vessel, and water is sprayed and supplied to the upper space part in the reaction vessel. Under the predetermined temperature and pressure conditions, the raw material gas and the sprayed water are supplied. A gas hydrate production method for producing gas hydrate by contacting
A swirling flow is generated in the water in the reaction vessel by the rotation of two or more rotor blades located under the water surface in the reaction vessel and near the inner wall of the reaction vessel and arranged at equal intervals in the circumferential direction. The gas hydrate layer floating on the water surface is formed by a centrifugal force of the swirl flow and a support rod that fixes each rotor blade to the lower end and extends vertically from below the water surface to the water surface. The gas hydrate slurry collected by the swirling flow is collected out of the reaction vessel from an extraction port arranged near the water surface and near the central portion of the reaction vessel. A method for producing a gas hydrate comprising extracting.
反応容器内の上部空間部に原料ガスを供給し、前記反応容器内の前記上部空間部に水を噴霧して供給し、所定の温度及び圧力条件の下、前記原料ガスと前記噴霧された水を接触させてガスハイドレートを生成するガスハイドレート生成方法であって、
前記反応容器の底部中央部を貫通して回転可能、且つ、全体が水面下に位置するように構成された回転軸に支持された、該反応容器内の水面下に位置する回転翼の回転により反応容器内の水に旋回流を発生し、水面に浮いている前記ガスハイドレートを前記旋回流の遠心力によって中央部に集め、前記水面付近であって且つ反応容器の中央部付近に配置された抜き出し口から、前記旋回流によって集められた前記ガスハイドレートのスラリーを流入させ、前記抜き出し口から延設されるとともに、前記回転翼と水面との間を通って前記反応容器の側面を貫通するように配設された抜き出し管によって反応容器外に抜き出すことを特徴とするガスハイドレート生成方法。
A raw material gas is supplied to the upper space part in the reaction vessel, and water is sprayed and supplied to the upper space part in the reaction vessel. Under the predetermined temperature and pressure conditions, the raw material gas and the sprayed water are supplied. A gas hydrate production method for producing gas hydrate by contacting
By rotation of a rotary blade located below the water surface in the reaction vessel , which is supported by a rotating shaft configured to be rotatable through the center of the bottom of the reaction vessel and to be entirely located below the water surface. A swirling flow is generated in the water in the reaction vessel, and the gas hydrate floating on the water surface is collected in the central portion by the centrifugal force of the swirling flow, and is disposed near the water surface and near the central portion of the reaction vessel. The gas hydrate slurry collected by the swirling flow is caused to flow from the outlet, and extends from the outlet and passes between the rotor blade and the water surface and penetrates the side surface of the reaction vessel. A gas hydrate production method characterized in that the gas hydrate is drawn out of the reaction vessel by means of an extraction pipe arranged to do so .
JP2004351841A 2004-12-03 2004-12-03 Gas hydrate generating apparatus and generating method Expired - Fee Related JP4620440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351841A JP4620440B2 (en) 2004-12-03 2004-12-03 Gas hydrate generating apparatus and generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351841A JP4620440B2 (en) 2004-12-03 2004-12-03 Gas hydrate generating apparatus and generating method

Publications (2)

Publication Number Publication Date
JP2006160835A JP2006160835A (en) 2006-06-22
JP4620440B2 true JP4620440B2 (en) 2011-01-26

Family

ID=36663224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351841A Expired - Fee Related JP4620440B2 (en) 2004-12-03 2004-12-03 Gas hydrate generating apparatus and generating method

Country Status (1)

Country Link
JP (1) JP4620440B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859727B2 (en) * 2007-03-29 2012-01-25 三井造船株式会社 Method and apparatus for producing natural gas hydrate
JP4909787B2 (en) * 2007-03-29 2012-04-04 三井造船株式会社 Method and apparatus for producing natural gas hydrate
WO2008120770A1 (en) * 2007-03-29 2008-10-09 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing natural gas hydrate and apparatus therefor
KR101302371B1 (en) 2011-12-16 2013-09-06 주식회사 동서 The Method for Producing Gas Hydrate
CN103623766B (en) * 2013-12-10 2015-03-11 中国科学院广州能源研究所 Spraying device for rapidly forming gas hydrate
CN108671858B (en) * 2018-08-06 2023-06-27 西南石油大学 Quick synthesis device and method for hydrate
CN109731530A (en) * 2018-12-17 2019-05-10 中国科学院广州能源研究所 Electrostatic atomization acts on lower hydrate continuous generation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155787A (en) * 1979-05-21 1980-12-04 Murakami Masako Recovery device of oil floating on water
JP2003327980A (en) * 2002-05-13 2003-11-19 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously producing gas hydrate and apparatus therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO127820B (en) * 1968-12-23 1973-08-20 Bertin & Cie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155787A (en) * 1979-05-21 1980-12-04 Murakami Masako Recovery device of oil floating on water
JP2003327980A (en) * 2002-05-13 2003-11-19 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously producing gas hydrate and apparatus therefor

Also Published As

Publication number Publication date
JP2006160835A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP3168013B2 (en) Method for producing gas hydrate
JP4620440B2 (en) Gas hydrate generating apparatus and generating method
US8367880B2 (en) Device and method for continuous hydrate production and dehydration by centrifugal force
US20140348720A1 (en) Gas-liquid circulating type of hydrate reactor
CN101166714B (en) Apparatus for urea synthesis
JP4798887B2 (en) Gas-liquid counter-flow type gas hydrate manufacturing apparatus and manufacturing method
JP2002356685A (en) Method and apparatus for producing gas hydrate
JP4620439B2 (en) Gas hydrate generating apparatus and generating method
JP2001010989A (en) Device for producing methane hydrate and method for producing the same
JP5129508B2 (en) Gas hydrate washing tower
JP2003327980A (en) Method for continuously producing gas hydrate and apparatus therefor
JP2009119463A (en) Method for generating gas hydrate in sea and gas hydrate generator
JP2004217487A (en) Device and method for manufacturing hydrogen gas inclusion hydrate
JP2006116503A (en) Concentrator of low-concentration gas-hydrate slurry and gas-hydrate production plant
JP5127537B2 (en) Liquid cooling apparatus and method for gas hydrate manufacturing apparatus
JP4676151B2 (en) Gas hydrate manufacturing method and manufacturing apparatus
JP5514197B2 (en) Gas purification apparatus and gas purification method
JP2003231892A (en) Method for producing gas hydrate and installation for producing the same
JP4062431B2 (en) Gas clathrate manufacturing method and manufacturing apparatus
JP2001203180A (en) Supercritical fluid stirring mechanism and supercritical fluid cleaning, extracting and reacting equipment in which the stirring mechanism is built-in
JP2007238674A (en) Apparatus for producing gas hydrate
JP2006152027A (en) Apparatus for producing gas hydrate
JP5230962B2 (en) Gas hydrate production system
JP2004182885A (en) Method for producing gas-hydrate and apparatus therefor
JP4062510B2 (en) Gas clathrate manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141105

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees