JP6278297B2 - Junction structure and semiconductor device using the same - Google Patents

Junction structure and semiconductor device using the same Download PDF

Info

Publication number
JP6278297B2
JP6278297B2 JP2013153360A JP2013153360A JP6278297B2 JP 6278297 B2 JP6278297 B2 JP 6278297B2 JP 2013153360 A JP2013153360 A JP 2013153360A JP 2013153360 A JP2013153360 A JP 2013153360A JP 6278297 B2 JP6278297 B2 JP 6278297B2
Authority
JP
Japan
Prior art keywords
spring
joint
joining
resin
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013153360A
Other languages
Japanese (ja)
Other versions
JP2015026634A (en
Inventor
谷江 尚史
尚史 谷江
貴志 澄川
貴志 澄川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Kyoto University
Original Assignee
Hitachi Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kyoto University filed Critical Hitachi Ltd
Priority to JP2013153360A priority Critical patent/JP6278297B2/en
Priority to TW103121214A priority patent/TWI549244B/en
Priority to PCT/JP2014/069008 priority patent/WO2015012188A1/en
Publication of JP2015026634A publication Critical patent/JP2015026634A/en
Application granted granted Critical
Publication of JP6278297B2 publication Critical patent/JP6278297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/2745Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Springs (AREA)
  • Die Bonding (AREA)

Description

本発明は、接合構造およびその接合構造を用いた半導体装置に関する。   The present invention relates to a junction structure and a semiconductor device using the junction structure.

複数の部材を接合するために、はんだ付けや接着剤など、従来より、様々な接合技術が適用されている。そのような接合技術の中には、特許文献1および特許文献2に記載されているように、部材の接合面に、らせん状などの形状を有する小さな構造体を複数設け、本構造体同士の接触や、本構造体と他の構造体との接触により、複数の部材を接合する技術も知られている。   In order to join a plurality of members, various joining techniques such as soldering and an adhesive have been conventionally applied. In such a joining technique, as described in Patent Literature 1 and Patent Literature 2, a plurality of small structures having a spiral shape or the like are provided on the joining surfaces of the members, A technique for joining a plurality of members by contact or contact between this structure and another structure is also known.

特許文献1に記載の技術では、幅20mm、長さ50mmの銅シートの表面に、長さ5mmのらせん状の接触導体を多数立設し、このような接触導体を絡み合わせることにより、銅シートどうしを接合する。   In the technique described in Patent Document 1, a large number of spiral contact conductors having a length of 5 mm are erected on the surface of a copper sheet having a width of 20 mm and a length of 50 mm, and these contact conductors are entangled to form a copper sheet. Join each other.

特許文献2に記載の技術では、半導体素子が取り付けられる回路実装基板上に、直径20〜50μmのAuやAl線からなる螺旋構造あるいは格子構造をした緩衝材を接着剤内部にランダムに複数配置した導電性弾性体が設けられる。この導電体弾性体に、半導体素子に設けられた金属バンプを差し込むことにより、半導体素子と回路実装基板が接合される。   In the technique described in Patent Document 2, a plurality of buffer materials having a spiral structure or a lattice structure made of Au or Al wire having a diameter of 20 to 50 μm are randomly arranged inside the adhesive on a circuit mounting substrate to which a semiconductor element is attached. A conductive elastic body is provided. By inserting metal bumps provided on the semiconductor element into the conductive elastic body, the semiconductor element and the circuit mounting substrate are joined.

上記のような特許文献1や特許文献2に記載の技術によれば、電気的または機械的あるいは熱的な接続の信頼性が向上する。   According to the techniques described in Patent Document 1 and Patent Document 2 described above, the reliability of electrical, mechanical, or thermal connection is improved.

特開2003−299506号公報(段落0016および0020、図3)JP 2003-299506 A (paragraphs 0016 and 0020, FIG. 3) 特開2006−287091号公報(段落0036および0040、図1および2)JP 2006-287091 A (paragraphs 0036 and 0040, FIGS. 1 and 2)

異なる部材を接合する接合構造に荷重や変位が作用する場合、被接合部材の間に配置される接合部の破断防止、被接合部材と接合部の界面はく離防止が問題となる。そのため、接合部自体や界面の強度の大きい接合構造が望まれる。   When a load or displacement acts on a joining structure that joins different members, there is a problem of preventing breakage of the joint portion disposed between the members to be joined and preventing separation of the interface between the member to be joined and the joint portion. For this reason, a bonded structure having a high strength at the bonded portion itself or at the interface is desired.

特に、パワー半導体デバイスなど、異なる材料からなる部材が組み合わされて用いられる装置では、熱応力が不可避的に発生する。また、装置の小型化や高密度化に伴って、熱応力が増加しており、今後もその傾向にある。このため、このような装置においては、上記の問題はより顕著である。   In particular, in an apparatus using a combination of members made of different materials such as a power semiconductor device, thermal stress is inevitably generated. In addition, thermal stress is increasing with the miniaturization and high density of the device, and this trend is in the future. For this reason, in such an apparatus, the above problem is more remarkable.

これに対し、前述の従来技術では、接合層や部材界面の強度を大幅に向上することが難しかった。   On the other hand, in the above-described conventional technology, it is difficult to significantly improve the strength of the bonding layer and the member interface.

そこで、本発明は、複数の部材を接合する際に、接合層や部材界面の強度を大幅に向上することができる接合構造、およびその接合構造を用いた半導体装置を提供する。   Therefore, the present invention provides a bonding structure that can greatly improve the strength of the bonding layer and the member interface when bonding a plurality of members, and a semiconductor device using the bonding structure.

上記課題を解決するために、本発明による接合構造においては、被接合部材間の接合部に、形状寸法が1μm未満すなわちナノオーダスケールの寸法を有するスプリング状のナノ構造体を設ける。   In order to solve the above-described problem, in the joining structure according to the present invention, a spring-like nanostructure having a shape dimension of less than 1 μm, that is, a nano-order scale, is provided at a joint between joined members.

上記のような本発明の一態様は、第1の部材と、第2の部材と、第1の部材と第2の部材とを接合する接合部とを備える接合構造であり、本接合構造において、接合部が複数のスプリング状のナノ構造体を備える。   One embodiment of the present invention as described above is a joint structure including a first member, a second member, and a joint portion that joins the first member and the second member. The junction includes a plurality of spring-like nanostructures.

なお、第1および第2の部材は、導体,半導体,絶縁体のいずれであっても良い。また、スプリング状のナノ構造体は、金属材料などの導体材料や、セラミックス材料などの絶縁材料を用いることができる。また、スプリング形状としては、例えば、螺旋状すなわちコイル状や、互いに連結した複数の直線部を有する多直線状あるいは折れ線状などの形状とすることができる。   The first and second members may be conductors, semiconductors, or insulators. For the spring-like nanostructure, a conductive material such as a metal material or an insulating material such as a ceramic material can be used. The spring shape may be, for example, a spiral shape, that is, a coil shape, a multi-line shape having a plurality of linear portions connected to each other, or a polygonal line shape.

さらに、上記本発明による接合構造は、半導体装置における、リードフレームと放熱ベースとの接合や、リードフレームと封止樹脂との接合に適用できる。   Furthermore, the joining structure according to the present invention can be applied to joining a lead frame and a heat dissipation base and joining a lead frame and a sealing resin in a semiconductor device.

本発明によれば、ナノ構造体自体がバルク材料よりも強度が高くなること、および接合面に非常に多数のナノ構造体を配置できるため、接合部の機械的強度、および部材と接合部との界面の機械的強度が大幅に向上する。これらにより、接合の信頼性が大幅に向上する。   According to the present invention, the strength of the nanostructure itself is higher than that of the bulk material, and a large number of nanostructures can be arranged on the joint surface. The mechanical strength of the interface is greatly improved. As a result, the reliability of bonding is greatly improved.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

第1の実施例である半導体装置の断面模式図である。1 is a schematic cross-sectional view of a semiconductor device according to a first embodiment. 接合部の破壊モードを示す。Indicates the failure mode of the joint. 接合部の破壊モードを示す。Indicates the failure mode of the joint. 接合部の破壊モードを示す。Indicates the failure mode of the joint. 第1の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of a 1st Example is shown. 第1の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of a 1st Example is shown. 第1の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of a 1st Example is shown. 第1の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of a 1st Example is shown. 第1の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of a 1st Example is shown. 第1の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of a 1st Example is shown. スプリング層の上面写真および断面写真である。It is the upper surface photograph and cross-sectional photograph of a spring layer. スプリング層の圧子押し込み試験装置の模式図であるIt is a schematic diagram of an indenter indentation test device for a spring layer. 圧子押し込み試験の測定結果を示す。The measurement result of an indenter indentation test is shown. 圧子押し込み試験の測定結果を示す。The measurement result of an indenter indentation test is shown. 圧子押し込み試験の測定結果を示す。The measurement result of an indenter indentation test is shown. 第2の実施例である接合構造の断面模式図である。It is a cross-sectional schematic diagram of the junction structure which is a 2nd Example. 接合構造の性質を示す。The properties of the joint structure are shown. 第3の実施例である接合構造の断面模式図である。It is a cross-sectional schematic diagram of the junction structure which is a 3rd Example. 多直線形状のスプリング層の断面写真である。It is a cross-sectional photograph of a multi-linear spring layer. 第4の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of the 4th example is shown. 第4の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of the 4th example is shown. 第4の実施例の接合構造の製造方法を示す。The manufacturing method of the junction structure of the 4th example is shown. 二直線形状のスプリングの変形挙動のシミュレーション結果を示す。The simulation result of the deformation behavior of a bilinear spring is shown. 三直線形状のスプリングの変形挙動のシミュレーション結果を示す。The simulation result of the deformation behavior of a trilinear spring is shown. 第5の実施例である接合構造の断面模式図である。It is a cross-sectional schematic diagram of the junction structure which is a 5th Example. 第5の実施例である接合構造の断面模式図である。It is a cross-sectional schematic diagram of the junction structure which is a 5th Example. 第5の実施例である接合構造の断面模式図である。It is a cross-sectional schematic diagram of the junction structure which is a 5th Example. 第6の実施例である接合構造の断面模式図である。It is a cross-sectional schematic diagram of the junction structure which is a 6th Example. 第7の実施例である接合構造の断面模式図である。It is a cross-sectional schematic diagram of the junction structure which is a 7th Example. 第8の実施例である半導体装置の断面模式図である。It is a cross-sectional schematic diagram of the semiconductor device which is an 8th Example.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施例である半導体装置の断面模式図である。   FIG. 1 is a schematic sectional view of a semiconductor device according to a first embodiment of the present invention.

本実施例においては、半導体素子1がはんだ2を介して金属材料からなるリードフレーム3と接合され、そのリードフレーム3と金属材料からなる放熱ベース5が絶縁層4を含む接合部を介して接合されている。なお、これらの部材以外にも、半導体素子1上面に設けられた端子とリードフレームとを電気的に接続するワイヤや、半導体装置全体を封止する封止材、半導体装置と外部回路とを電気的に接続するための電極端子などが設けられるが、図1では省略している。   In this embodiment, the semiconductor element 1 is joined to a lead frame 3 made of a metal material via a solder 2, and the lead frame 3 and a heat dissipation base 5 made of a metal material are joined via a joint portion including an insulating layer 4. Has been. In addition to these members, wires for electrically connecting the terminals provided on the upper surface of the semiconductor element 1 and the lead frame, a sealing material for sealing the entire semiconductor device, and the semiconductor device and the external circuit are electrically connected. An electrode terminal or the like for connection is provided, but is omitted in FIG.

本実施例では、半導体素子1として、1辺約10mm、厚さ約0.1mmのシリコンチップに形成されたIGBT(Insulated Gate Bipolar Transistor)を用いている。なお、IGBTは代表的なパワー半導体デバイスとして公知である。   In this embodiment, an IGBT (Insulated Gate Bipolar Transistor) formed on a silicon chip having a side of about 10 mm and a thickness of about 0.1 mm is used as the semiconductor element 1. The IGBT is known as a typical power semiconductor device.

リードフレーム3には厚さ約0.5mmの銅を用いることで熱抵抗および電気抵抗を低減し、放熱ベース5にはアルミニウムを用いることで放熱性を確保しながら軽量化を図っている。このとき、絶縁層4において、リードフレーム3の表面に設けたスプリング層4aと放熱ベース5の表面に設けたスプリング層4bが機械的に絡み合って嵌合すると共に、スプリング層間も含むリードフレーム3と放熱ベース5の間の空間に、充填部材として樹脂4cが充填されている。   The lead frame 3 uses copper having a thickness of about 0.5 mm to reduce thermal resistance and electrical resistance, and the heat radiating base 5 uses aluminum to reduce the weight while ensuring heat dissipation. At this time, in the insulating layer 4, the spring layer 4a provided on the surface of the lead frame 3 and the spring layer 4b provided on the surface of the heat radiating base 5 are mechanically entangled and fitted, and the lead frame 3 including the spring layer A space between the heat dissipation bases 5 is filled with a resin 4c as a filling member.

スプリング層4a,4bにおいては、スプリング形状を有するナノ構造体(以下、単にスプリングと記す)が、複数あるいは多数配列されている。なお、本実施例においては、コイル状のスプリングが配列されている。ここで、ナノ構造体とは、その幾何学的寸法が、1μmよりも小さなナノスケールである構造体である。   In the spring layers 4a and 4b, a plurality of or many nanostructures having a spring shape (hereinafter simply referred to as springs) are arranged. In this embodiment, coiled springs are arranged. Here, the nanostructure is a structure whose geometric dimension is nanoscale smaller than 1 μm.

本実施例では、リードフレーム3の表面に設けたスプリング層4aと放熱ベース5の表面に設けたスプリング層4bをそれぞれ窒化珪素製すなわちセラミックス製のスプリングで構成し、樹脂4cにエポキシ系樹脂を用いることで、リードフレーム3と放熱ベース5の間の電気的絶縁性を確保している。また、絶縁層4の厚さは、要求される絶縁性能に応じて10〜100μmとする。スプリング層4a、4bにおいては、コイル状のスプリングが密に配置されている。各スプリングの形状は、線径が約40nm、コイル外径が約120nm、コイルピッチが約150nmであり、リードフレーム3や放熱ベース5から垂直方向に離れた位置ほど線径やコイル外径が大きくなる。   In this embodiment, the spring layer 4a provided on the surface of the lead frame 3 and the spring layer 4b provided on the surface of the heat radiating base 5 are respectively constituted by springs made of silicon nitride, that is, ceramics, and epoxy resin is used for the resin 4c. Thus, electrical insulation between the lead frame 3 and the heat dissipation base 5 is ensured. Moreover, the thickness of the insulating layer 4 shall be 10-100 micrometers according to the insulation performance requested | required. In the spring layers 4a and 4b, coiled springs are densely arranged. Each spring has a wire diameter of about 40 nm, a coil outer diameter of about 120 nm, and a coil pitch of about 150 nm, and the wire diameter and the coil outer diameter are larger as the position is away from the lead frame 3 and the heat dissipation base 5 in the vertical direction. Become.

本実施例では、リードフレーム3に銅、放熱ベース5にアルミニウムを用いているので、絶縁層4は線膨張係数の異なる材料を接合している。このため、半導体素子1の動作発熱や使用環境温度の変化によって半導体装置の温度が変化すると、リードフレーム3と放熱ベース5の熱変形に差が生じるが、この変形差を絶縁層4で吸収する。本実施例では、絶縁層4が樹脂4cと低弾性なナノ構造体からなるスプリング層4a,4bで構成されているため、絶縁層4は、弾性率が低減され、確実に変形を吸収できる。   In this embodiment, since the lead frame 3 is made of copper and the heat dissipation base 5 is made of aluminum, the insulating layer 4 is joined with materials having different linear expansion coefficients. For this reason, when the temperature of the semiconductor device changes due to the operation heat generation of the semiconductor element 1 or the change in the use environment temperature, a difference occurs in the thermal deformation of the lead frame 3 and the heat dissipation base 5. . In this embodiment, since the insulating layer 4 is composed of the resin 4c and the spring layers 4a and 4b made of a low-elasticity nanostructure, the insulating layer 4 has a reduced elastic modulus and can reliably absorb deformation.

本実施例では、スプリング層4a,4bのナノ構造体の材料が絶縁性の高い窒化珪素であるため、リードフレーム3の表面に設けたスプリング層4aと放熱ベース表面に設けたスプリング層4bが嵌合によって接触あるいは隣接しても、リードフレーム3と放熱ベース5の電気的絶縁性を確保できる。   In this embodiment, since the material of the nanostructures of the spring layers 4a and 4b is silicon nitride having a high insulating property, the spring layer 4a provided on the surface of the lead frame 3 and the spring layer 4b provided on the surface of the heat dissipation base are fitted. Even if they are contacted or adjacent to each other, electrical insulation between the lead frame 3 and the heat dissipation base 5 can be ensured.

図2は、接合部の代表的な破壊モードを示す。   FIG. 2 shows a typical failure mode of the joint.

図2(a)は被接合部の界面がはく離するモード、図2(b)は接合層内部をき裂が進展するモード、図2(c)はスプリングと充填樹脂の界面がはく離するモードである。   2A is a mode in which the interface of the bonded portion is peeled off, FIG. 2B is a mode in which a crack propagates inside the bonding layer, and FIG. 2C is a mode in which the interface between the spring and the filling resin is peeled off. is there.

本実施例では、コイルピッチが約150nmであることから、それぞれリードフレーム3の表面や放熱ベース5の表面の単位面積(1mm)当たりに配置されるスプリングは約4×10本であり、線径が約40nmであることから界面の単位面積(1mm)当たりのスプリングの面積はπ×(20×10−6×4×10=0.05mm、すなわち総面積の5%である。窒化珪素のバルク材の強度は、一般に約700MPa以上である。さらに、ナノスプリング層のスプリングを構成する材料は、ナノスケールの構造体であることから結晶内部に転位が発生し難く、後述する試験結果の様にバルク材よりも降伏応力や強度が2倍以上大きい。このことから、スプリングの強度をバルク材の2倍の1400MPaとすると、界面の強度は1400MPaの5%の70MPaとなる。これは樹脂4cに用いたエポキシ樹脂の強度より数倍大きい。このことから、本実施例の接合構造では、スプリング層を持たない接合構造と比較して図2(a)に示したような被接合部材と接合部との界面がはく離するモードに対して高い信頼性が得られる。 In this embodiment, since the coil pitch is about 150 nm, the number of springs arranged per unit area (1 mm 2 ) on the surface of the lead frame 3 and the surface of the heat dissipation base 5 is about 4 × 10 7 . Since the wire diameter is about 40 nm, the area of the spring per unit area (1 mm 2 ) of the interface is π × (20 × 10 −6 ) 2 × 4 × 10 7 = 0.05 mm 2 , that is, 5% of the total area. It is. The strength of the bulk material of silicon nitride is generally about 700 MPa or more. Furthermore, since the material constituting the spring of the nanospring layer is a nanoscale structure, dislocations are unlikely to occur inside the crystal, and yield stress and strength are more than double that of the bulk material as shown in the test results described later. large. From this, when the strength of the spring is 1400 MPa, which is twice that of the bulk material, the strength of the interface is 70%, which is 5% of 1400 MPa. This is several times larger than the strength of the epoxy resin used for the resin 4c. From this, in the joining structure of the present embodiment, it is higher than the joining structure having no spring layer as compared with the mode in which the interface between the joined member and the joining portion as shown in FIG. Reliability is obtained.

また、本実施例では、リードフレーム3の表面に設けたスプリング層4aと放熱ベース5の表面に設けたスプリング層4bが嵌合しているため、絶縁層4が破断する場合には、少なくともリードフレーム3の表面に設けたスプリング層4aと放熱ベース5の表面に設けたスプリング層4bのどちらかが断線することになる。したがって、接合層4を含む接合部の破壊強度は、少なくともスプリング層の強度相当になる。   In this embodiment, since the spring layer 4a provided on the surface of the lead frame 3 and the spring layer 4b provided on the surface of the heat dissipation base 5 are fitted, at least the lead is required when the insulating layer 4 breaks. Either the spring layer 4a provided on the surface of the frame 3 or the spring layer 4b provided on the surface of the heat dissipation base 5 is disconnected. Therefore, the breaking strength of the joint including the joining layer 4 is at least equivalent to the strength of the spring layer.

上述の様に、スプリング層の強度は充填樹脂として用いたエポキシ樹脂の強度より数倍大きい。このことから、本実施例の接合構造では、図2(b)に示したような接合部内部をき裂が進展するモードに対しても高い信頼性が得られる。   As described above, the strength of the spring layer is several times greater than the strength of the epoxy resin used as the filling resin. From this, in the joining structure of the present embodiment, high reliability can be obtained even for the mode in which the crack propagates inside the joint as shown in FIG.

本実施例では、スプリングを密に並べて配置できるため、被接合部材の表面単位体積当たりに非常に多くのナノスプリングを配置できる。その結果、充填樹脂と3次元形状を持つスプリングの接合面積が大きくなる。スプリングと充填樹脂の界面の応力は、界面に負荷される荷重を接合面積で割った値であるため、接合面積の大きい本実施例では界面の応力を大幅に低減できる。このため、本実施例の接合構造では、図2(c)に示すような、スプリングと充填樹脂の界面がはく離するモードに対しても高い信頼性が得られる。   In this embodiment, since the springs can be arranged closely, a very large number of nanosprings can be arranged per unit surface volume of the member to be joined. As a result, the joint area between the filling resin and the spring having a three-dimensional shape is increased. Since the stress at the interface between the spring and the filling resin is a value obtained by dividing the load applied to the interface by the bonding area, the stress at the interface can be greatly reduced in this embodiment having a large bonding area. For this reason, in the joining structure of a present Example, high reliability is acquired also with respect to the mode in which the interface of a spring and filling resin peels as shown in FIG.2 (c).

ところで、マクロスケールの接合構造では、接合端部の近傍において、その他の領域よりも顕著に応力が大きくなる。これは、接合端部の応力分布が特異性を持つ応力特異場となるためであり、異材の接合端部では理論上応力は無限大となる。一般にこの応力特異性が表れるのは接合端部から数10〜数100nm以上の領域である。ところが、本実施例で用いるスプリング層では、ナノオーダの構造体が密に配置されており、マクロスケールで特異場となる領域にも複数の構造体が配列される。このため、スプリング層の端部では応力特異性が顕著には現れなくなり、接合端部での応力増加を防止できる。   By the way, in the macro-scale joining structure, the stress is remarkably larger in the vicinity of the joining end portion than in other regions. This is because the stress distribution at the joint end becomes a singular stress singular field, and the stress is theoretically infinite at the joint end of the dissimilar material. In general, this stress singularity appears in the region of several tens to several hundreds of nm or more from the joint end. However, in the spring layer used in this embodiment, nano-order structures are densely arranged, and a plurality of structures are also arranged in a region that becomes a singular field on a macro scale. For this reason, the stress singularity does not appear remarkably at the end of the spring layer, and an increase in stress at the joined end can be prevented.

以上のように、本実施例の接合構造によれば、接合部のいずれの破壊モードに対しても高い信頼性が得られる。すなわち、接合部自体や、接合部と被接合部材の界面の強度を大幅に向上することができる。   As described above, according to the joint structure of the present embodiment, high reliability can be obtained for any failure mode of the joint portion. That is, the strength of the joint itself and the interface between the joint and the member to be joined can be greatly improved.

次に、図3(a)〜(c)と図4(a)〜(c)に、本実施例の接合構造の製造方法を示す。なお、本製造方法においては、例えば、文献、Takayuki Kitamura, et al, “FRACTURE NANOMECHANICS”, PAN STANFORD PUBLISHING(2011), ISBN 978-981-4241-83-0に記載されている、公知のナノ構造体製造方法を用いている。   Next, FIGS. 3A to 3C and FIGS. 4A to 4C show a method for manufacturing the joint structure of this embodiment. In this production method, for example, known nanostructures described in the literature, Takayuki Kitamura, et al, “FRACTURE NANOMECHANICS”, PAN STANFORD PUBLISHING (2011), ISBN 978-981-4241-83-0. The body manufacturing method is used.

はじめに、図3(a)に示すような被接合部材21のスプリング層を形成する表面に、図3(b)が示すように、真空蒸着法にて表面層22を形成する。この表面層22は、被接合部材21と次工程で形成されるスプリングの接合性を高めると共に、被接合部材21の表面粗さを整えて平坦化する。次に、図3(c)に示すように、被接合部材21のスプリング層を形成する表面に、斜め方向から真空蒸着法にて蒸着原子23を堆積させる。このとき、被接合部材21を回転させながら蒸着原子23を堆積させることで、原子がコイル状に堆積し、被接合部材21の表面に付着あるいは固着するコイル状のスプリング層24が形成される。なお、スプリングは、その長さ方向が被接合部材21の表面に垂直な方向になるように、被接合部材21の表面上に立設される。   First, as shown in FIG. 3B, the surface layer 22 is formed on the surface of the member 21 to be joined as shown in FIG. The surface layer 22 enhances the bondability between the member to be bonded 21 and the spring formed in the next process, and adjusts the surface roughness of the member to be bonded 21 to make it flat. Next, as illustrated in FIG. 3C, vapor deposition atoms 23 are deposited on the surface of the bonded member 21 on which the spring layer is formed by a vacuum vapor deposition method from an oblique direction. At this time, by depositing the vapor deposition atoms 23 while rotating the member 21 to be bonded, the atoms are deposited in a coil shape, and a coiled spring layer 24 that adheres to or adheres to the surface of the member 21 to be bonded is formed. The spring is erected on the surface of the member to be bonded 21 so that the length direction thereof is perpendicular to the surface of the member 21 to be bonded.

次に、図4(a)に示すように、被接合部材21と被接合部材31を、それぞれのナノスプリング層が形成された面が対面するように配置する。次に、図4(b)が示すように、接合部材21と被接合部材31を押し付けることで、被接合部材21の表面に設けたスプリング層24と被接合部材31の表面に設けたスプリング層32が機械的に嵌合される。これにより、両被接合部材は、接合されて、互いに位置決めされる。このとき、スプリングの形状によっては、被接合部材21と被接合部材31を押し付ける際に、超音波などで振動を付加することで、スプリング層どうしがより嵌合しやすくなる。次に、図4(c)が示すように、嵌合したスプリング間に樹脂33を充填することで、被接合部材21と被接合部材31がより強固に接合される。   Next, as shown to Fig.4 (a), the to-be-joined member 21 and the to-be-joined member 31 are arrange | positioned so that the surface in which each nanospring layer was formed may face. Next, as shown in FIG. 4B, a spring layer 24 provided on the surface of the member 21 to be bonded and a spring layer provided on the surface of the member 31 to be bonded by pressing the bonding member 21 and the member 31 to be bonded. 32 is mechanically fitted. Thereby, both to-be-joined members are joined and positioned mutually. At this time, depending on the shape of the spring, when the member to be bonded 21 and the member to be bonded 31 are pressed, vibration is applied with ultrasonic waves or the like, so that the spring layers are more easily fitted. Next, as shown in FIG. 4C, the member to be bonded 21 and the member to be bonded 31 are more firmly bonded by filling the resin 33 between the fitted springs.

このとき、被接合部材21と被接合部材31はナノスプリングの嵌合によって接合されているため、樹脂33を充填しなくても接合できる。この場合、被接合部材やスプリング層を傷つけることなくリペアすることができる。なお、接合構造の用途に応じて、樹脂33の有無を適宜選択することができる。   At this time, since the member to be bonded 21 and the member to be bonded 31 are bonded by the fitting of the nanospring, they can be bonded without being filled with the resin 33. In this case, the repair can be performed without damaging the member to be joined and the spring layer. It should be noted that the presence or absence of the resin 33 can be appropriately selected according to the use of the bonding structure.

図5〜7を用いて、スプリング層の力学特性を説明する。   The mechanical characteristics of the spring layer will be described with reference to FIGS.

図5は、Ni製のナノオーダのコイルが密に配置されたスプリング層の上面写真および断面写真である。各スプリングの形状は、線径が約40nm、コイル外径が約120nm、コイルピッチが約150nmであり、高さ約400nmである。本発明者は、このナノスプリング層に圧子を押し込み、そのときの荷重と変位の関係からナノスプリング層の力学特性を検討した。   FIG. 5 is a top view photograph and a sectional photograph of a spring layer in which Ni nano-order coils are densely arranged. Each spring has a wire diameter of about 40 nm, a coil outer diameter of about 120 nm, a coil pitch of about 150 nm, and a height of about 400 nm. The inventor has pushed the indenter into the nanospring layer, and studied the mechanical characteristics of the nanospring layer from the relationship between the load and the displacement at that time.

図6にナノスプリング層の圧子押し込み試験装置の模式図を示す。原子間力顕微鏡に10μN〜10mNの微小荷重制御が可能なHysitron社製Triboscopeを組み込んだ装置を用いて、スプリング層に曲率半径10.44μmの円錐圧子を押し込んだときの荷重−変位関係を取得した。変位測定分解能は0.2nmである。測定は荷重制御にて実施し、同じ荷重を2度付加して荷重−変位関係に変化が無いときには弾性変形範囲と判定し、その後同じ位置において荷重を増加して再び同じ荷重を2度付加することを繰り返した。この手順を繰り返すことで、降伏する荷重とそのときの変位を求めた。   FIG. 6 shows a schematic diagram of a nanospring layer indenter indentation test apparatus. The load-displacement relationship was obtained when a conical indenter with a radius of curvature of 10.44 μm was pushed into the spring layer using a device incorporating a Hysitron Triboscope capable of controlling a minute load of 10 μN to 10 mN in an atomic force microscope. . The displacement measurement resolution is 0.2 nm. Measurement is performed by load control. When the same load is applied twice and the load-displacement relationship does not change, the elastic deformation range is determined, and then the load is increased at the same position and the same load is applied twice again. Repeated that. By repeating this procedure, the yielding load and the displacement at that time were obtained.

図7(a)〜(c)に測定結果を示す。縦軸が荷重、横軸が変位量である。荷重19.0μN(図7(a))、20.2μN(図7(b))の条件では、1回目と2回目の荷重−変位関係に変化は見られず、弾性変形範囲であった。一方、荷重22.0μN(図7(c))の条件では、1回目と2回目の荷重−変位関係が変化し、1回目の荷重付加によって降伏したと判断できる。この試験を、測定位置を変えて3回実施したところ、降伏した荷重は、21.9μN,15.2μN,10.6μNであり、これら荷重に対する変位は、それぞれ21.7nm,24.6nm,20.8nmであった。平均値はそれぞれ15.9μN、22.4nmである。   7A to 7C show the measurement results. The vertical axis is the load, and the horizontal axis is the displacement. Under the conditions of a load of 19.0 μN (FIG. 7A) and 20.2 μN (FIG. 7B), no change was observed in the first-second load-displacement relationship, and the elastic deformation range. On the other hand, under the condition of a load of 22.0 μN (FIG. 7C), it can be determined that the first-second load-displacement relationship has changed and the yield has been increased by applying the first load. When this test was performed three times at different measurement positions, the yielded loads were 21.9 μN, 15.2 μN, and 10.6 μN, and the displacements for these loads were 21.7 nm, 24.6 nm, and 20 respectively. .8 nm. The average values are 15.9 μN and 22.4 nm, respectively.

コイルスプリングを変位uだけ圧縮したときに発生するせん断応力τは、一般に、次式(1)で表される。   The shear stress τ generated when the coil spring is compressed by the displacement u is generally expressed by the following equation (1).

Figure 0006278297
Figure 0006278297

ここで、Gは横弾性係数、dは線径、nは有効巻数、Dは平均コイル径である。式(1)に、ナノ構造体のスプリングの物性値と寸法を代入し、変位uに塑性変形が発生する変位の平均値22.4nmを代入すると、塑性変形が発生するせん断応力τは759MPaと求まり、Misesの相当応力に変換すると1.32GPaとなる。この値がスプリングを構成する材料の降伏応力であり、Niバルク材の降伏応力と比較して2倍以上大きい。バルク材よりも降伏応力が大きいのは、ナノスケールの構造では、表面からの転位が入り難いためである。   Here, G is a transverse elastic modulus, d is a wire diameter, n is an effective number of turns, and D is an average coil diameter. By substituting the physical property value and dimensions of the spring of the nanostructure into equation (1) and substituting the average value of 22.4 nm of displacement at which plastic deformation occurs for displacement u, the shear stress τ at which plastic deformation occurs is 759 MPa. It is 1.32 GPa when converted to Mises equivalent stress. This value is the yield stress of the material constituting the spring, which is twice or more larger than the yield stress of the Ni bulk material. The reason why the yield stress is larger than that of the bulk material is that dislocations from the surface are difficult to enter in the nanoscale structure.

図8は、本発明の第2の実施例である接合構造の断面模式図を示す。第1の実施例とは異なり、被接合部材21の表面に設けたスプリング層24と被接合部材31の表面に設けたスプリング層32が、機械的に嵌合されることなく、被接合部材の接合面に対して垂直方向に離れており、被接合部材21,31は、樹脂33によって接合されている。   FIG. 8 is a schematic cross-sectional view of a joint structure according to the second embodiment of the present invention. Unlike the first embodiment, the spring layer 24 provided on the surface of the member 21 to be joined and the spring layer 32 provided on the surface of the member 31 to be joined are not mechanically fitted to each other. The members 21 and 31 are separated from each other in a direction perpendicular to the bonding surface, and the bonded members 21 and 31 are bonded by the resin 33.

本実施例では、スプリング層どうしが嵌合されていないが、接合層がスプリング層を備えることにより、図2(a)に示した被接合部材と接合部の界面がはく離するモード、図2(c)に示したスプリングと樹脂の界面がはく離するモードに対する信頼性は向上する。樹脂によって被接合部材を接合する場合、一般に、図2(b)に示す樹脂内部をき裂が進展するモードよりも、図2(a)や(c)に示す界面がはく離するモードに対する強度が小さくなる。従って、樹脂を用いた接合層に本実施例を適用することで、図2(a)や(c)の2つのモードの信頼性が向上し、接合の信頼性を向上できる。   In the present embodiment, the spring layers are not fitted to each other, but the joining layer includes the spring layer, whereby the interface between the joined member and the joining portion shown in FIG. The reliability of the mode shown in c) in which the interface between the spring and the resin peels is improved. When joining a member to be joined by resin, in general, the strength against the mode in which the interface shown in FIGS. 2A and 2C peels is higher than the mode in which a crack propagates inside the resin shown in FIG. Get smaller. Therefore, by applying the present embodiment to the bonding layer using a resin, the reliability of the two modes of FIGS. 2A and 2C is improved, and the reliability of the bonding can be improved.

図9に、スプリングを持たない公知の接合構造と、スプリングを有するミリオーダの面ファスナーを持つ接合構造、本発明の第1の実施例および第2の実施例である各接合構造の性質をまとめて示す。   FIG. 9 summarizes the properties of a known joining structure having no spring, a joining structure having a millimeter-order surface fastener having a spring, and each joining structure according to the first and second embodiments of the present invention. Show.

スプリングを持たない公知の接合構造は、剛性の低い充填樹脂だけで構成されているために剛性が小さく、変形吸収性が良い。ナノ構造体のスプリングを持つ第1および第2の実施例の接合構造も、ナノスプリングは剛性が小さいため、変形吸収性が良い。一方、ミリオーダの面ファスナーを持つ接合構造では、スプリングの曲げ剛性が線径の3乗に比例するために線径の大きいミリオーダの面ファスナーの剛性が非常に大きく、変形吸収性が低い。スプリングに発生する応力は線径の2乗に比例する。そのため、ナノ構造体のスプリングを持つ接合構造ではスプリングに発生する応力は小さいが、ミリオーダでは非常に大きな応力が発生してスプリング自体が破壊し易い。このことから、第1および第2の実施例の効果の1つである変形吸収性の高さは、ナノオーダのスプリング層を用いることで実現できるものである。   A known joint structure having no spring is composed only of a low-rigidity filling resin, and therefore has low rigidity and good deformation absorption. The joining structures of the first and second embodiments having nanostructure springs also have good deformation absorption because nanosprings have low rigidity. On the other hand, in a joint structure having a millimeter-order surface fastener, the bending rigidity of the spring is proportional to the cube of the wire diameter. Therefore, the rigidity of the millimeter-order surface fastener having a large wire diameter is very large, and the deformation absorption is low. The stress generated in the spring is proportional to the square of the wire diameter. Therefore, although the stress generated in the spring is small in the joint structure having the nanostructure spring, a very large stress is generated in the milli-order and the spring itself is easily broken. Therefore, the high deformation absorption, which is one of the effects of the first and second embodiments, can be realized by using a nano-order spring layer.

図2(a)〜(c)に示した3種類の接合層破壊モードに対して、スプリングを持たない公知の接合構造ではスプリングによる強度向上がない。ミリオーダのスプリングを持つ接合構造では、スプリング自体の強度は大きいが、接合端部とスプリングの距離が大きくなるため、スプリングの無い領域では図2(a)に示すモードの防止が難しい。また、ナノオーダのスプリングと比較してスプリングの表面積が小さいため、図2(c)に示すモードの防止効果は小さい。これらのことから、第1および第2の実施例の効果の1つである接合部の信頼性向上は、ナノオーダのスプリング層を用いることで実現できるものである。   In contrast to the three types of bonding layer failure modes shown in FIGS. 2A to 2C, the known bonding structure having no spring does not improve the strength due to the spring. In the joint structure having a milli-order spring, the strength of the spring itself is large, but the distance between the joint end and the spring is large, and therefore it is difficult to prevent the mode shown in FIG. Further, since the surface area of the spring is smaller than that of the nano-order spring, the effect of preventing the mode shown in FIG. 2C is small. For these reasons, the improvement in the reliability of the joint, which is one of the effects of the first and second embodiments, can be realized by using a nano-order spring layer.

ところで、一般に、充填樹脂と比較してスプリングに用いる窒化珪素などの材料は熱伝導率が大きい。そのため、スプリングを持たない接合構造や、上下のスプリングがかみ合わさっていない接合構造と比較して、ミリオーダ、ナノオーダいずれもスプリングがかみ合っている接合構造の熱抵抗は小さくできる。   By the way, in general, a material such as silicon nitride used for the spring has a higher thermal conductivity than the filling resin. Therefore, the thermal resistance of the joining structure in which the spring is engaged in both the milli-order and the nano-order can be reduced as compared with the joining structure having no spring and the joining structure in which the upper and lower springs are not engaged.

絶縁性に関しては、いずれの接合構造でも樹脂厚さの調整で確保する。   Insulation properties are ensured by adjusting the resin thickness in any joint structure.

製造性に関して、スプリングを持たない接合構造や、上下のスプリングがかみ合わさっていない接合構造では厚さ方向の制約が小さいのに対して、ミリオーダやナノオーダのスプリングを持つ構造では厚さの制約が大きくなる。ただし、ミリオーダやナノオーダのスプリングを持つ構造では、常温接合が可能であるために接合後の残留応力を小さくできること、樹脂充填前はリペアが可能である。   In terms of manufacturability, the thickness structure is less constrained in joint structures that do not have springs or in which the upper and lower springs are not engaged, whereas thickness restrictions are larger in structures that have milli- or nano-order springs. Become. However, a structure having a milli-order or nano-order spring can be bonded at room temperature, so that the residual stress after bonding can be reduced, and repair can be performed before resin filling.

これらのことから、第1および第2の実施例は、上述したような性質を考慮して、用途に応じて選択して用いることができる。これにより、各用途で要求される信頼性を向上することができる。   For these reasons, the first and second embodiments can be selected and used according to the application in consideration of the above-described properties. Thereby, the reliability requested | required by each use can be improved.

図10は、本発明の第3の実施例である接合構造の断面模式図を示す。本実施例は、第1および第2の実施例とは異なり、樹脂と平板状の被接合部材を接合する接合構造である。本実施例では、コイル状のスプリング層32は、樹脂33と被接合部材31の表面の内、被接合部材31の表面のみに設けられ、かつ被接合部材の樹脂33内に延びる。すなわち、スプリンク層は、被接合部材31と、他方の接合部材となる樹脂33の界面に設けられる。本実施例によっても、第2の実施例と同様に、図2(a)や(c)のモードに対して高い信頼性が得られる。   FIG. 10 is a schematic cross-sectional view of a joint structure according to the third embodiment of the present invention. Unlike the first and second embodiments, this embodiment has a joining structure for joining a resin and a flat plate-like member. In this embodiment, the coil-shaped spring layer 32 is provided only on the surface of the member to be bonded 31 among the surfaces of the resin 33 and the member to be bonded 31 and extends into the resin 33 of the member to be bonded. That is, the sprinkling layer is provided at the interface between the member to be bonded 31 and the resin 33 serving as the other bonding member. Also according to the present embodiment, high reliability can be obtained for the modes of FIGS. 2A and 2C as in the second embodiment.

図11〜14を用いて、本発明の第4の実施例である接合構造を説明する。   A junction structure according to a fourth embodiment of the present invention will be described with reference to FIGS.

図3および図4を用いて説明したスプリング層の製造方法において、斜め蒸着法によって原子を堆積させるとき、接合部材の回転方法を制御すると、スプリングを複数の直線部からなる多直線状あるいは折れ線状に成長させることができる。   In the spring layer manufacturing method described with reference to FIGS. 3 and 4, when the atoms are deposited by the oblique evaporation method, the spring is controlled in a multi-linear shape or a polygonal shape including a plurality of linear portions by controlling the rotation method of the joining member. Can grow into.

図11に、このような多直線形状を備えたナノ構造体のスプリング層の一例として、二本の直線部を有する多直線状(以下、二直線形状と記す)のスプリング層の断面写真を示す。スプリングを多直線状あるいは折れ線状とすると、スプリングの密度を増やすことができるため、信頼性の向上や熱抵抗の低減に有効である。   FIG. 11 shows a cross-sectional photograph of a multi-linear spring layer (hereinafter referred to as “bi-linear shape”) having two linear portions as an example of the nano-structure spring layer having such a multi-linear shape. . If the springs are multi-linear or polygonal, the density of the springs can be increased, which is effective for improving reliability and reducing thermal resistance.

図12(a)〜(c)は、三本の直線部を有する多直線状(以下、三直線形状と記す)のスプリング層による接合構造を示す。   FIGS. 12A to 12C show a joining structure by a multi-linear (hereinafter, referred to as “three linear shapes”) spring layer having three linear portions.

図12(a)に示すように、スプリング32(24)は、被接合部材31(21)の表面から上方(下方)に伸びる直線部32a(24a)と、直線部32a(24a)の上端(下端)から上方(下方)に伸びる直線部32b(24b)と、直線部32b(24b)の上端(下端)から上方(下方)に伸びる直線部32c(24c)を有する。これら三直線部が互いに連結した折れ線状をなすことにより、一つのスプリングが構成されている。   As shown in FIG. 12A, the spring 32 (24) includes a straight portion 32a (24a) extending upward (downward) from the surface of the member to be joined 31 (21), and an upper end of the straight portion 32a (24a) ( The linear portion 32b (24b) extends upward (downward) from the lower end and the linear portion 32c (24c) extends upward (downward) from the upper end (lower end) of the linear portion 32b (24b). A spring is formed by forming these three straight portions into a polygonal line connected to each other.

図12(a)に示すように、被接合部材21において三直線形状のスプリング24が設けられた面と、被接合部材31において三直線形状のスプリング32が設けられた面を互いに向き合わせた状態で、図12(b)が示すように、被接合部材21と被接合部材31を押し付ける。このときの押し付け力によってスプリングに塑性変形を発生し、スプリングにおける直線部間の折れ曲がりが大きくなる部分が生じる。すなわち、スプリング24,32がフック状に変形し、互いにひっかかる箇所が生じる。これにより、被接合部材21と被接合部材31は、高い信頼性にて接合され、互いに位置決めされる。なお、さらに、図12(c)が示すように、樹脂33を充填することにより、接合の信頼性が向上する。   As shown in FIG. 12A, the surface of the member 21 to be joined provided with the trilinear spring 24 and the surface of the member to be joined 31 provided with the trilinear spring 32 are faced to each other. Then, as shown in FIG. 12B, the member 21 and the member 31 are pressed. A plastic deformation is generated in the spring by the pressing force at this time, and a portion where the bending between the linear portions of the spring becomes large is generated. That is, the springs 24 and 32 are deformed into a hook shape, and a place where they are caught is generated. Thereby, the to-be-joined member 21 and the to-be-joined member 31 are joined by high reliability, and are positioned mutually. Furthermore, as shown in FIG. 12C, filling the resin 33 improves the bonding reliability.

図11に示した二直線形状のスプリングによっても、図12に示した三直線形状のスプリングを用いた場合と同様の接合構造が可能である。なお、以下に述べるように、三直線以上の直線部を有するスプリングを用いることが好ましい。   Also with the bilinear spring shown in FIG. 11, the same joining structure as in the case of using the trilinear spring shown in FIG. 12 is possible. As will be described below, it is preferable to use a spring having three or more straight portions.

図13および図14は、それぞれ、二直線形状のスプリングおよび三直線形状のスプリングを押し付けたときの塑性変形挙動を、有限要素法でシミュレーションした結果を示す。   FIGS. 13 and 14 show the results of simulating the plastic deformation behavior when a bilinear spring and a trilinear spring are pressed, respectively, using the finite element method.

図13に示す二直線形状のスプリングの場合、押し付けられる前、直線部bは直線部aの上端から上方へ伸びているが、押し付けられたときには被接合部材表面にほぼ平行になる。その後除荷されると、直線部bは、スプリングバックによって若干元の形状に近づくため、押し付け前と同様に直線部aの上端から上方へ伸びている。これに対し、図14に示す三直線形状のスプリングの場合、押し付けられる前、直線部cは直線部bの上端から上方へ伸びているが、押し付けられたときには直線部bの端から下方へ伸びる。その後除荷されても、直線部cは、その伸びる方向が保持される。すなわち、三直線部以上の多直線形状のスプリングの場合、塑性変形後に、二直線形状のスプリングの場合よりも曲がり具合が大きなフック形状となる。従って、三本以上の直線部を有する多直線状のスプリングどうしは、二直線形状のスプリングどうしよりも、嵌合しやすい。これにより、三本以上の直線部を有する多直線状のスプリングを用いれば、より大きな接合強度を有する、信頼性の高い接合構造が得られる。   In the case of the bilinear spring shown in FIG. 13, before being pressed, the straight portion b extends upward from the upper end of the straight portion a, but when pressed, it is substantially parallel to the surface of the member to be joined. When the load is subsequently unloaded, the straight portion b slightly approaches the original shape due to the spring back, and thus extends upward from the upper end of the straight portion a as before pressing. On the other hand, in the case of the trilinear spring shown in FIG. 14, before being pressed, the linear portion c extends upward from the upper end of the linear portion b, but when pressed, it extends downward from the end of the linear portion b. . Even if it is unloaded after that, the extending direction of the straight line portion c is maintained. That is, in the case of a multi-linear spring having three or more linear portions, the hook shape has a larger bending degree after plastic deformation than in the case of a bi-linear spring. Therefore, multi-linear springs having three or more straight portions are easier to fit than bi-linear springs. As a result, if a multi-linear spring having three or more straight portions is used, a highly reliable joint structure having greater joint strength can be obtained.

図15(a)〜(c)は、本発明の第5の実施例である接合構造の断面模式図を示す。本実施例においては、図15(a)に示すように、他の実施例と異なり、一方の被接合部材21の表面には多直線状(三直線形状)のスプリング層24が設けられ、他方の被接合部材31の表面にはコイル形状のスプリング層32が設けられる。すなわち、上下の被接合部材でスプリングの形状が異なる。図15(b)に示すように、本接合構造においても、接合時に接合部材を押し付けることで、図14に示したように、多直線形状のスプリングは、曲がり具合の大きなフック状に変形する。変形した多直線状のスプリングがコイル形状のスプリングとかみ合うことで、被接合部材21,31が、接合され、互いに位置決めされる。これにより、接合強度が向上し、高い接合の信頼性が得られる。また、両部材間のがたつきを防止できる。さらに、図15(c)に示すように、樹脂33を充填することにより、接合の信頼性が向上する。   FIGS. 15A to 15C are schematic cross-sectional views of a joining structure according to a fifth embodiment of the present invention. In this embodiment, as shown in FIG. 15 (a), unlike the other embodiments, the surface of one member 21 to be joined is provided with a multi-line (tri-linear) spring layer 24, and the other A coil-shaped spring layer 32 is provided on the surface of the member to be joined 31. That is, the shape of the spring differs between the upper and lower members to be joined. As shown in FIG. 15 (b), also in this joining structure, by pressing the joining member at the time of joining, as shown in FIG. 14, the multi-linear spring is deformed into a hook shape with a large degree of bending. The deformed multi-linear spring meshes with the coil-shaped spring, whereby the joined members 21 and 31 are joined and positioned relative to each other. Thereby, joint strength improves and high joint reliability is obtained. Moreover, rattling between both members can be prevented. Furthermore, as shown in FIG. 15C, filling the resin 33 improves the bonding reliability.

図16は、本発明の第6の実施例である接合構造の断面模式図を示す。他の実施例とは異なり、被接合部材21の表面に設けた、四本の直線部を有する多直線状(以下、四直線形状と記す)のスプリング層24と被接合部材31表面に設けた四直線形状のスプリング層32が、機械的に嵌合されることなく、被接合部材21,31の各表面に垂直方向に離れ、被接合部材21,31は樹脂33によって接合されている。   FIG. 16 is a schematic cross-sectional view of the joint structure according to the sixth embodiment of the present invention. Unlike the other embodiments, it is provided on the surface of the member to be bonded 31 and the spring layer 24 having four linear portions (hereinafter referred to as “four linear shapes”) provided on the surface of the member to be bonded 21. The four straight spring layers 32 are separated from each surface of the members 21 and 31 in a vertical direction without being mechanically fitted, and the members 21 and 31 are bonded by the resin 33.

本実施例では、スプリング層が嵌合されていないが、図2(a)に示した被接合部の界面がはく離するモード、および図2(c)に示したスプリングと充填樹脂の界面がはく離するモードに対する信頼性は向上できる。樹脂で接合する場合、一般に、図2(b)に示す樹脂内部をき裂が進展するモードよりも、図2(a)や(c)に示す界面がはく離するモードの強度が小さくなる。従って、本実施例によって図2(a)や(c)の2つのモードの信頼性が向上するので、樹脂による接合の信頼性を向上できる。   In this embodiment, the spring layer is not fitted, but the interface of the bonded portion shown in FIG. 2A and the interface between the spring and the filling resin shown in FIG. The reliability of the mode to be improved can be improved. In the case of joining with resin, in general, the strength of the mode in which the interface shown in FIGS. 2A and 2C peels is smaller than the mode in which the crack propagates inside the resin shown in FIG. Therefore, since the reliability of the two modes in FIGS. 2A and 2C is improved by this embodiment, the reliability of bonding with resin can be improved.

また、多直線状のスプリングを用いることで、スプリングの密度を増加できるため、接合の信頼性の向上や熱抵抗の低減に有効である。また、本実施例ではスプリングを変形させないため、二本以上の直線部を有する多直線状であれば、同等の接合強度が得られる。   In addition, since the density of the springs can be increased by using a multi-line spring, it is effective for improving the reliability of bonding and reducing the thermal resistance. Further, in this embodiment, since the spring is not deformed, an equivalent joint strength can be obtained if it is a multi-linear shape having two or more straight portions.

なお、本実施例の変形例として、スプリング層24とスプリング層32のどちらか一方をコイル状のスプリング層に変えることができる。   As a modification of the present embodiment, one of the spring layer 24 and the spring layer 32 can be changed to a coiled spring layer.

図17は、本発明の第7の実施例である接合構造の断面模式図を示す。他の実施例とは異なり、樹脂33と平板状の被接合部材31を接合する接合構造に、多直線状(四直線形状)のスプリング層を用いている。本実施例では、スプリング層32は、樹脂33と被接合部材31の表面の内、被接合部材の表面のみに配置される。これにより、図2(a)や(c)のモードに対しては高い信頼性が得られる。また、多直線状のスプリングを用いることで、スプリングの密度を増加できるため、信頼性の向上や熱抵抗の低減により有効である。   FIG. 17 is a schematic cross-sectional view of the joint structure according to the seventh embodiment of the present invention. Unlike the other embodiments, a multi-line (four straight line) spring layer is used for the bonding structure for bonding the resin 33 and the flat plate-shaped member 31. In the present embodiment, the spring layer 32 is disposed only on the surface of the member to be bonded among the surfaces of the resin 33 and the member to be bonded 31. Thereby, high reliability is obtained for the modes of FIGS. 2 (a) and 2 (c). Moreover, since the density of a spring can be increased by using a multi-linear spring, it is effective for improving reliability and reducing thermal resistance.

図18は、本発明の第8の実施例である半導体装置の断面模式図である。本実施例は、樹脂モールド型の半導体装置であり、図1の実施例における半導体素子1,リードフレーム3および放熱ベース5の各表面が、封止樹脂121によって被覆されている。5第1の実施例とは異なり、スプリング層が絶縁層4に設けられているだけでなく、リードフレーム3と樹脂121の界面にもコイル状のスプリング層4dが設けられている(図中の拡大図参照)。このスプリング層4dによって、リードフレーム3と封止樹脂121との界面強度が向上し、リードフレーム3と封止樹脂121のはく離を防止できる。   FIG. 18 is a schematic sectional view of a semiconductor device according to an eighth embodiment of the present invention. The present embodiment is a resin mold type semiconductor device, and each surface of the semiconductor element 1, the lead frame 3 and the heat dissipation base 5 in the embodiment of FIG. 5 Unlike the first embodiment, not only the spring layer is provided on the insulating layer 4, but also the coiled spring layer 4d is provided at the interface between the lead frame 3 and the resin 121 (in the drawing). See enlarged view). By this spring layer 4d, the interface strength between the lead frame 3 and the sealing resin 121 is improved, and the peeling between the lead frame 3 and the sealing resin 121 can be prevented.

なお、本発明は前述した各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した各実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、さらに、ある実施形態の構成に他の実形態の構成を加えることも可能である。さらにまた、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。   In addition, this invention is not limited to each embodiment mentioned above, Various modifications are included. For example, each of the above-described embodiments has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. A part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and further, the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, or replace other configurations for a part of the configuration of each embodiment.

例えば、被接合部材毎に、あるいは接合部ごとに、スプリングの寸法や形状および配置密度を異ならしめても良い。スプリングの材料としては、上述した窒化けい素やニッケルに限らず、窒化アルミなどのセラミックス材料や銅などの金属材料を用いることができる。すなわち、スプリングの寸法,形状,配置密度や材料は、接合部が備える機械的強度,電気的特性や熱的特性に応じて、適宜選択あるいは変更することができる。なお、被接合部材としては、金属,樹脂,セラミックスなど、各種の固体材料が適用できる。   For example, the size, shape, and arrangement density of the springs may be different for each member to be joined or for each joint. The material of the spring is not limited to the above-mentioned silicon nitride and nickel, and a ceramic material such as aluminum nitride and a metal material such as copper can be used. That is, the size, shape, arrangement density, and material of the spring can be appropriately selected or changed according to the mechanical strength, electrical characteristics, and thermal characteristics of the joint. Various solid materials such as metals, resins, and ceramics can be applied as the members to be joined.

また、図1の半導体装置において、リードフレーム3における半導体素子1との接合面に、ニッケルなどのはんだ濡れ性の良い金属からなるスプリンク状のナノ構造体を設けることにより、半導体素子1とリードフレーム3との電気導電性を確保しながら、接合強度を向上できる。また、半導体素子1とリードフレーム3との間の熱抵抗が低減され、放熱性が向上する。本構成は、言わば、図10における一方の被接合部材である樹脂をはんだに置き換えたものである。   Further, in the semiconductor device of FIG. 1, the semiconductor element 1 and the lead frame are provided by providing sprinkled nanostructures made of a metal having good solder wettability such as nickel on the joint surface of the lead frame 3 with the semiconductor element 1. The bonding strength can be improved while ensuring the electrical conductivity with 3. In addition, the thermal resistance between the semiconductor element 1 and the lead frame 3 is reduced, and heat dissipation is improved. In other words, this configuration is obtained by replacing the resin, which is one member to be joined in FIG. 10, with solder.

1 … 半導体素子
2 … はんだ
3 … リードフレーム
4 … 絶縁層
4a,4b,4d … スプリング層
4c … 樹脂
5 … 放熱ベース
21 … 被接合部材
22 … 表面層
23 … 蒸着原子
24 … スプリング層
31 … 被接合部材
32 … スプリング層
33 … 樹脂
121 … 封止樹脂
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element 2 ... Solder 3 ... Lead frame 4 ... Insulating layer 4a, 4b, 4d ... Spring layer 4c ... Resin 5 ... Radiation base 21 ... Joined member 22 ... Surface layer 23 ... Vapor deposition atom 24 ... Spring layer 31 ... Covered Joining member 32 ... spring layer 33 ... resin 121 ... sealing resin

Claims (9)

第1の部材と、第2の部材と、前記第1の部材と前記第2の部材とを接合する接合部と、を備える接合構造において、
前記接合部が、複数のスプリング形状のナノ構造体を有し、
前記複数のスプリング形状のナノ構造体は、前記第1の部材および前記第2の部材の少なくとも一方の表面に設けられ、
前記接合部において、前記第1の部材の表面に設けられたスプリング形状のナノ構造体と、前記第2の部材の表面に設けられたスプリング形状のナノ構造体とが互に接合面に対して垂直方向に離れ、かつ樹脂が充填され、
前記第1の部材と前記第2の部材が、前記樹脂によって接合されていることを特徴とする接合構造。
In a joining structure comprising a first member, a second member, and a joining portion that joins the first member and the second member,
The joint has a plurality of spring-shaped nanostructures;
The plurality of spring-shaped nanostructures are provided on at least one surface of the first member and the second member;
In the joint portion, a spring-shaped nanostructure provided on the surface of the first member and a spring-shaped nanostructure provided on the surface of the second member are mutually connected to the joint surface. Left vertically and filled with resin,
The joining structure, wherein the first member and the second member are joined by the resin.
請求項1に記載の接合構造において、前記第1の部材の表面に設けられたスプリング形状のナノ構造体と、前記第2の部材の表面に設けられたスプリング形状のナノ構造体との少なくとも一方がコイル状であることを特徴とする接合構造。   2. The joining structure according to claim 1, wherein at least one of a spring-shaped nanostructure provided on a surface of the first member and a spring-shaped nanostructure provided on a surface of the second member. Is a coiled structure. 請求項1に記載の接合構造において、
前記第1の部材の表面に設けられたスプリング形状のナノ構造体と、前記第2の部材の表面に設けられたスプリング形状のナノ構造体との少なくとも一方が複数本の直線部を有する多直線状であることを特徴とする接合構造。
The joint structure according to claim 1,
At least one of a spring-shaped nanostructure provided on the surface of the first member and a spring-shaped nanostructure provided on the surface of the second member has a plurality of straight lines. Joining structure characterized by being in a shape.
請求項3に記載の接合構造において、
前記多直線状は三本以上の直線部を有することを特徴とする接合構造。
In the junction structure according to claim 3,
The multi-line shape has three or more straight portions.
第1の部材と、第2の部材と、前記第1の部材と前記第2の部材とを接合する接合部と、を備える接合構造において、
前記接合部が、複数のスプリング形状のナノ構造体を有し、
前記複数のスプリング形状のナノ構造体は、前記第1の部材および前記第2の部材の少なくとも一方の表面に設けられ、
前記接合部において、前記第1の部材の表面に設けられたスプリング形状のナノ構造体と、前記第2の部材の表面に設けられたスプリング形状のナノ構造体とが、互に嵌合しており、
前記第1の部材の表面に設けられたスプリング形状のナノ構造体と、前記第2の部材の表面に設けられたスプリング形状のナノ構造体との一方が、複数の直線部を有する多直線状であり、他方がコイル状であり、
フック状に変形した前記多直線状のナノ構造体と、前記コイル状のナノ構造体とがかみ合うことを特徴とする接合構造。
In a joining structure comprising a first member, a second member, and a joining portion that joins the first member and the second member,
The joint has a plurality of spring-shaped nanostructures;
The plurality of spring-shaped nanostructures are provided on at least one surface of the first member and the second member;
In the joint, a spring-shaped nanostructure provided on the surface of the first member and a spring-shaped nanostructure provided on the surface of the second member are fitted together. And
One of a spring-shaped nanostructure provided on the surface of the first member and a spring-shaped nanostructure provided on the surface of the second member has a plurality of linear portions. And the other is coiled,
A joining structure, wherein the multi-linear nanostructure deformed into a hook shape meshes with the coil-shaped nanostructure.
請求項5に記載の接合構造において、前記多直線状は三本以上の直線部を有することを特徴とする接合構造。   6. The joining structure according to claim 5, wherein the multi-linear shape has three or more straight portions. 請求項1に記載の接合構造において、前記接合部では、前記スプリング形状のナノ構造体が絶縁性セラミックで構成され、前記樹脂は絶縁性であり、前記第1の部材と前記第2の部材とが絶縁性を有する前記接合部によって接合されることを特徴とする接合構造。   2. The bonding structure according to claim 1, wherein, in the bonding portion, the spring-shaped nanostructure is made of an insulating ceramic, the resin is insulating, and the first member and the second member Is joined by the joint having an insulating property. 請求項5に記載の接合構造において、前記接合部では、前記スプリング形状のナノ構造体が絶縁性セラミックで構成され、さらに、絶縁性樹脂が充填され、前記第1の部材と前記第2の部材とが絶縁性を有する前記接合部によって接合されることを特徴とする接合構造。   6. The joining structure according to claim 5, wherein, in the joining portion, the spring-shaped nanostructure is made of an insulating ceramic, further filled with an insulating resin, and the first member and the second member. Are joined by the joint having insulating properties. 請求項7または請求項8に記載の接合構造において、前記絶縁性セラミックが窒化けい素であることを特徴とする接合構造。   9. The joint structure according to claim 7, wherein the insulating ceramic is silicon nitride.
JP2013153360A 2013-07-24 2013-07-24 Junction structure and semiconductor device using the same Active JP6278297B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013153360A JP6278297B2 (en) 2013-07-24 2013-07-24 Junction structure and semiconductor device using the same
TW103121214A TWI549244B (en) 2013-07-24 2014-06-19 Joint structure and semiconductor device using it
PCT/JP2014/069008 WO2015012188A1 (en) 2013-07-24 2014-07-17 Bonding structure and semiconductor device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153360A JP6278297B2 (en) 2013-07-24 2013-07-24 Junction structure and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2015026634A JP2015026634A (en) 2015-02-05
JP6278297B2 true JP6278297B2 (en) 2018-02-14

Family

ID=52393230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153360A Active JP6278297B2 (en) 2013-07-24 2013-07-24 Junction structure and semiconductor device using the same

Country Status (3)

Country Link
JP (1) JP6278297B2 (en)
TW (1) TWI549244B (en)
WO (1) WO2015012188A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018145968A1 (en) * 2017-02-09 2018-08-16 Siemens Aktiengesellschaft Power module
JP6797760B2 (en) * 2017-07-11 2020-12-09 株式会社日立製作所 Semiconductor module and manufacturing method of semiconductor module

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364351A (en) * 1986-09-04 1988-03-22 Toshiba Corp Lead frame
JP2003299506A (en) * 2002-04-08 2003-10-21 Sumitomo Wiring Syst Ltd Conductive hook and loop fastener
JP3841768B2 (en) * 2003-05-22 2006-11-01 新光電気工業株式会社 Package parts and semiconductor packages
DE102004048201B4 (en) * 2004-09-30 2009-05-20 Infineon Technologies Ag Semiconductor component with a bonding agent layer, and method for its production
DE102005020453B4 (en) * 2005-04-29 2009-07-02 Infineon Technologies Ag Semiconductor component with a flat conductor structure and method for producing a flat conductor structure and method for producing a semiconductor component
JP5001068B2 (en) * 2007-06-01 2012-08-15 三菱電機株式会社 Manufacturing method of heat dissipation member
JP5396721B2 (en) * 2008-02-26 2014-01-22 パナソニック株式会社 Thermally conductive cured product, heat dissipation substrate using the same, and manufacturing method thereof
JP2010171200A (en) * 2009-01-22 2010-08-05 Shinko Electric Ind Co Ltd Heat radiator of semiconductor package
US8405996B2 (en) * 2009-06-30 2013-03-26 General Electric Company Article including thermal interface element and method of preparation
JP5356972B2 (en) * 2009-10-20 2013-12-04 新光電気工業株式会社 Heat dissipating component, manufacturing method thereof, and semiconductor package
WO2011111112A1 (en) * 2010-03-12 2011-09-15 富士通株式会社 Heat dissipating structure and production method therefor
WO2013065101A1 (en) * 2011-10-31 2013-05-10 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP5986808B2 (en) * 2012-06-04 2016-09-06 日東電工株式会社 Joining member and joining method

Also Published As

Publication number Publication date
TW201519385A (en) 2015-05-16
WO2015012188A1 (en) 2015-01-29
TWI549244B (en) 2016-09-11
JP2015026634A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
CN108242401B (en) Method for producing an electronic module assembly and electronic module assembly
US8933568B2 (en) Semiconductor device
JP6287789B2 (en) Power module and manufacturing method thereof
JP3988735B2 (en) Semiconductor device and manufacturing method thereof
CN106663639B (en) Semiconductor device
US11909379B2 (en) MEMS device having a connection portion formed of a eutectic alloy
JP4501533B2 (en) Manufacturing method of semiconductor device
JP6278297B2 (en) Junction structure and semiconductor device using the same
JP5854011B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2014109014A1 (en) Semiconductor device and method for manufacturing same
JP6621714B2 (en) Semiconductor device
JP5870113B2 (en) Semiconductor device
JP6406996B2 (en) Semiconductor device
EP3038150A1 (en) Chip scale package with flexible interconnect
JP5240021B2 (en) Semiconductor device and manufacturing method thereof
JP4961398B2 (en) Semiconductor device
JP4333483B2 (en) Semiconductor device
TW200536131A (en) Semiconductor chip package
WO2011024819A1 (en) Semiconductor device and method for designing wire bonding structure for semiconductor device
JP5315268B2 (en) Electronic equipment
JP7421935B2 (en) semiconductor equipment
JP2005064467A (en) Interposer and semiconductor device using the same
JP2015226061A (en) Interconnect devices for electronic packaging assemblies
JP5177910B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180105

R150 Certificate of patent or registration of utility model

Ref document number: 6278297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350