JP6274393B2 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP6274393B2
JP6274393B2 JP2013180325A JP2013180325A JP6274393B2 JP 6274393 B2 JP6274393 B2 JP 6274393B2 JP 2013180325 A JP2013180325 A JP 2013180325A JP 2013180325 A JP2013180325 A JP 2013180325A JP 6274393 B2 JP6274393 B2 JP 6274393B2
Authority
JP
Japan
Prior art keywords
stress relaxation
layer
piezoelectric element
relaxation layer
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013180325A
Other languages
Japanese (ja)
Other versions
JP2015050289A (en
Inventor
阿隅 一将
一将 阿隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013180325A priority Critical patent/JP6274393B2/en
Publication of JP2015050289A publication Critical patent/JP2015050289A/en
Application granted granted Critical
Publication of JP6274393B2 publication Critical patent/JP6274393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子に関する。   The present invention relates to a piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by applying a voltage.

従来、圧電素子には、圧電素子を変位させたときに変位する部分に対して圧電的に不活性な部分に発生する応力を緩和する応力緩和層が設けられたものが知られている。このような応力緩和層は、基本的に内部電極と同一の積層面上において内部電極を囲うように配置される(特許文献1、2参照)。   2. Description of the Related Art Conventionally, a piezoelectric element is known in which a stress relaxation layer is provided to relieve stress generated in a piezoelectrically inactive portion with respect to a portion that is displaced when the piezoelectric element is displaced. Such a stress relaxation layer is disposed so as to surround the internal electrode basically on the same laminated surface as the internal electrode (see Patent Documents 1 and 2).

このような内部電極と同一の積層面上に設けられた応力緩和層は、せいぜい内部電極の端までしか形成できないが、内部電極層と異なる層に応力緩和層を形成すれば圧電的に活性な層内側まで形成することができ、さらに応力を緩和することができる。   A stress relaxation layer provided on the same laminated surface as such an internal electrode can be formed only up to the end of the internal electrode. However, if the stress relaxation layer is formed in a layer different from the internal electrode layer, it is piezoelectrically active. It can be formed up to the inside of the layer, and the stress can be relaxed.

特許第2994492号公報Japanese Patent No. 2994492 特許第2951129号公報Japanese Patent No. 2951129

例えば、内部電極層と異なる層に応力緩和層を形成された従来の圧電素子の例として、図9、図10に示すような圧電素子が挙げられる。図9および図10において、(a)、(b)は、それぞれ斜視図および側断面図を示している。図9に示す圧電素子800は、圧電層810と内部電極820、825とが交互に積層されて形成されている。応力緩和層840は、異なる極性の内部電極820と内部電極825との間に、圧電素子800の外周に接してその一周にわたり設けられている。内部電極820は、応力緩和層840が接する外部電極850に接続され、内部電極825は、外部電極850とは異なる極性の外部電極855に接続されている。   For example, as an example of a conventional piezoelectric element in which a stress relaxation layer is formed in a layer different from the internal electrode layer, there are piezoelectric elements as shown in FIGS. 9 and 10, (a) and (b) show a perspective view and a side sectional view, respectively. The piezoelectric element 800 shown in FIG. 9 is formed by alternately stacking piezoelectric layers 810 and internal electrodes 820 and 825. The stress relaxation layer 840 is provided between the internal electrode 820 and the internal electrode 825 having different polarities and in contact with the outer periphery of the piezoelectric element 800 over the entire periphery. The internal electrode 820 is connected to the external electrode 850 that is in contact with the stress relaxation layer 840, and the internal electrode 825 is connected to the external electrode 855 having a polarity different from that of the external electrode 850.

一方、図10に示す圧電素子900は、圧電層910と内部電極920、925とが交互に積層されて形成されている。積層方向に隣り合う内部電極925の間に、圧電素子900の外周の一周にわたり応力緩和層940が設けられている。いずれの内部電極925も、同じ外部電極955に接続されている。   On the other hand, the piezoelectric element 900 shown in FIG. 10 is formed by alternately stacking piezoelectric layers 910 and internal electrodes 920 and 925. Between the internal electrodes 925 adjacent in the stacking direction, a stress relaxation layer 940 is provided over the entire circumference of the piezoelectric element 900. Both internal electrodes 925 are connected to the same external electrode 955.

上記のような応力緩和層はポーラスな材質であったり、あらかじめ亀裂を生成したものである。そして、このような応力緩和層をまたいで圧電素子の側面上に外部電極が形成されている。したがって、外部電極をスクリーン印刷で形成する場合、電極ペーストが応力緩和層に入り込む危険性がある。また、その後外部電極にリード線を接続するときの半田にクリーム半田を使用した場合、半田が応力緩和層に入り込む危険性がある。   The stress relieving layer as described above is made of a porous material or has been cracked beforehand. An external electrode is formed on the side surface of the piezoelectric element across the stress relaxation layer. Therefore, when the external electrode is formed by screen printing, there is a risk that the electrode paste enters the stress relaxation layer. Further, when cream solder is used as the solder for connecting the lead wire to the external electrode thereafter, there is a risk that the solder may enter the stress relaxation layer.

応力緩和層に導電性材料が入り込んだ場合、応力緩和層は外部電極と同極の極性を持ち、上下の内部電極との間でマイグレーションを起こしやすくなり、マイグレーションを起こせばそこが破壊の起点となってしまう。   When a conductive material enters the stress relaxation layer, the stress relaxation layer has the same polarity as that of the external electrode, and migration is likely to occur between the upper and lower internal electrodes. turn into.

本発明は、このような事情に鑑みてなされたものであり、応力緩和層からのマイグレーションを防止でき、そこが破壊の起点となるのを防止できる圧電素子を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the piezoelectric element which can prevent the migration from a stress relaxation layer and can prevent that there becomes a starting point of destruction.

(1)上記の目的を達成するため、本発明の圧電素子は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子であって、積層面に平行な層面を有し、外周に接して形成され、複数の圧電層あたりに1層の割合で設けられて駆動による応力を緩和する応力緩和層を備え、前記応力緩和層は、全内部電極を積層方向に投影して得られる活性領域に一部が含まれ、前記応力緩和層の積層方向の一方に一部でも重なりを有する直近の内部電極および積層方向の他方に一部でも重なりを有する直近の内部電極のいずれもが、前記応力緩和層に接する外部電極と同じ極性であることを特徴としている。   (1) In order to achieve the above object, the piezoelectric element of the present invention is a piezoelectric element in which piezoelectric layers and internal electrodes are alternately laminated and expands and contracts by application of voltage, and has a layer surface parallel to the laminated surface. And a stress relaxation layer that is formed in contact with the outer periphery and is provided in a ratio of one layer per a plurality of piezoelectric layers to relieve stress due to driving, and the stress relaxation layer projects all internal electrodes in the stacking direction. A part of the active region obtained in this manner, and either the nearest internal electrode having at least one overlap in the stacking direction of the stress relaxation layer or the nearest internal electrode having at least part of the other in the stacking direction. Is characterized by having the same polarity as the external electrode in contact with the stress relaxation layer.

これにより、応力緩和層に接する外部電極から電極ペーストや半田等の導電性物質が入り込んでも直近の内部電極との間に電界がかからないため、マイグレーションを防止でき、そこが破壊の起点となるのを防止できる。   As a result, even if a conductive material such as electrode paste or solder enters from the external electrode in contact with the stress relaxation layer, an electric field is not applied to the nearest internal electrode, so that migration can be prevented, and that is the starting point of destruction. Can be prevented.

本発明によれば、応力緩和層とその直近の内部電極との間に電界がかからないためマイグレーションを防止でき、そこが破壊の起点となるのを防止できる。   According to the present invention, since an electric field is not applied between the stress relaxation layer and the nearest internal electrode, migration can be prevented, and it can be prevented that this becomes a starting point of destruction.

(a)〜(c)それぞれ第1の実施形態の圧電素子を示す斜視図および平断面図である。(A)-(c) It is the perspective view and plane sectional view which respectively show the piezoelectric element of 1st Embodiment. 第1の実施形態の圧電素子を示す側断面図である。It is a sectional side view which shows the piezoelectric element of 1st Embodiment. 参考例の圧電素子を示す斜視図である。It is a perspective view which shows the piezoelectric element of a reference example . (a)〜(c)それぞれ参考例の圧電素子を示す平断面図である。(A)-(c) It is a plane sectional view which shows the piezoelectric element of a reference example , respectively. 参考例の圧電素子を示す側断面図である。It is a sectional side view which shows the piezoelectric element of a reference example. (a)〜(c)それぞれ参考例の圧電素子を示す斜視図および平断面図である。(A)-(c) It is the perspective view and plane sectional view which respectively show the piezoelectric element of a reference example . 参考例の圧電素子を示す側断面図である。It is a sectional side view which shows the piezoelectric element of a reference example. (a)、(b)それぞれ各圧電素子の故障確率をワイブルプロットしたグラフならびに各圧電素子の平均圧電印加時間およびワイブル係数を示す表である。(A), (b) It is the table | surface which shows the average piezoelectric application time of each piezoelectric element, and the Weibull coefficient, respectively, the graph which plotted the failure probability of each piezoelectric element. (a)、(b)それぞれ従来の圧電素子を示す斜視図および側断面図である。(A), (b) is the perspective view and side sectional view which respectively show the conventional piezoelectric element. (a)、(b)それぞれ従来の圧電素子を示す斜視図および側断面図である。(A), (b) is the perspective view and side sectional view which respectively show the conventional piezoelectric element.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

[第1の実施形態]
(圧電素子の構成)
図1(a)〜(c)は、それぞれ圧電素子100を示す斜視図および平断面図である。図2は、圧電素子100を示す側断面図である。圧電素子100は、矩形体に形成され、圧電層110と内部電極120、125とが交互に積層され、電圧の印加により伸縮する。
[First Embodiment]
(Configuration of piezoelectric element)
1A to 1C are a perspective view and a plan sectional view showing the piezoelectric element 100, respectively. FIG. 2 is a side sectional view showing the piezoelectric element 100. The piezoelectric element 100 is formed in a rectangular body, the piezoelectric layers 110 and the internal electrodes 120 and 125 are alternately stacked, and expands and contracts when a voltage is applied.

圧電素子100は、駆動による応力を緩和するための応力緩和層140、145を有している。応力緩和層140、145は、複数の圧電層あたりに1層の割合で設けられており、積層面に平行な層面を有し、外周に接して形成されている。なお、積層面とは、圧電素子の積層方向(伸縮方向)に垂直な面を指す。   The piezoelectric element 100 includes stress relaxation layers 140 and 145 for relaxing stress due to driving. The stress relaxation layers 140 and 145 are provided in a ratio of one layer per a plurality of piezoelectric layers, have a layer surface parallel to the laminated surface, and are formed in contact with the outer periphery. In addition, a lamination surface refers to a surface perpendicular | vertical to the lamination direction (stretching direction) of a piezoelectric element.

応力緩和層140は、側面101に接して設けられ、応力緩和層145は、側面101とは反対側の側面102に接して設けられている。応力緩和層140、145は、24層の圧電層に1層の割合以上、2層の圧電層に1層の割合以下であることが好ましい。24層の圧電層に1層の割合以上10層の圧電層に1層の割合以下であればさらに好ましい。   The stress relaxation layer 140 is provided in contact with the side surface 101, and the stress relaxation layer 145 is provided in contact with the side surface 102 opposite to the side surface 101. It is preferable that the stress relaxation layers 140 and 145 have a ratio of one layer to 24 piezoelectric layers and a ratio of one layer to two piezoelectric layers. More preferably, the ratio of one layer to 24 piezoelectric layers is equal to or less than the ratio of one layer to ten piezoelectric layers.

図1(b)に示すように、内部電極120は、外周の内側に基本的に外周の形状と相似形の矩形に形成され、一方の側面101に外部電極150に接続するための取り出し電極部が形成されている。同様に、内部電極125は、基本的に外周の形状と相似形の矩形に形成され、他方の側面102に外部電極155に接続するための取り出し電極部が形成されている。   As shown in FIG. 1B, the internal electrode 120 is basically formed in a rectangular shape similar to the shape of the outer periphery on the inner side of the outer periphery, and is connected to the external electrode 150 on one side surface 101. Is formed. Similarly, the internal electrode 125 is basically formed in a rectangular shape similar to the shape of the outer periphery, and an extraction electrode portion for connecting to the external electrode 155 is formed on the other side surface 102.

また、図1(c)に示すように、応力緩和層140は、側面101、正面103および背面104に接するように外周に沿って設けられており、平断面図ではコ字状である。同様に、応力緩和層145は、側面102、正面103および背面104に接するように外周に沿って設けられており、平断面図ではコ字状である。   Moreover, as shown in FIG.1 (c), the stress relaxation layer 140 is provided along the outer periphery so that the side surface 101, the front surface 103, and the back surface 104 may be touched, and it is U shape in a plane sectional view. Similarly, the stress relaxation layer 145 is provided along the outer periphery so as to be in contact with the side surface 102, the front surface 103, and the back surface 104, and is U-shaped in a plan sectional view.

図2に示すように、応力緩和層140、145は、電圧の印加により変位する活性領域に一部が含まれる。すなわち、応力緩和層140、145の先端部は、図2の境界Aの内部側に入っている。活性領域は、全内部電極120、125を積層方向(伸縮方向)に投影して得られる領域(図2の境界Aより内部側)であり、異なる電位の内部電極が積層方向に重なり合う領域に一致する。   As shown in FIG. 2, the stress relaxation layers 140 and 145 are partially included in an active region that is displaced by application of a voltage. That is, the tip portions of the stress relaxation layers 140 and 145 are inside the boundary A in FIG. The active region is a region (inner side from the boundary A in FIG. 2) obtained by projecting all the internal electrodes 120 and 125 in the stacking direction (stretching direction), and coincides with a region where internal electrodes of different potentials overlap in the stacking direction. To do.

図2に示すように、応力緩和層140の積層方向の一方(図中の上側方向)に一部でも重なりを有する直近の内部電極120は、応力緩和層140に接する外部電極150と同極である。また、応力緩和層140の積層方向の他方(図中の下側方向)に一部でも重なりを有する直近の内部電極120も、応力緩和層に接する外部電極150と同極である。   As shown in FIG. 2, the nearest internal electrode 120 that overlaps at least partially in one of the lamination directions of the stress relaxation layer 140 (upward direction in the drawing) has the same polarity as the external electrode 150 in contact with the stress relaxation layer 140. is there. In addition, the nearest internal electrode 120 that overlaps at least partly in the other side of the stress relaxation layer 140 in the stacking direction (the lower direction in the drawing) is also the same polarity as the external electrode 150 in contact with the stress relaxation layer.

これにより、応力緩和層140に接する外部電極150から電極ペーストや半田等の導電性物質が入り込んでも直近の内部電極120との間に電界がかからないため、マイグレーションを防止でき、そこが破壊の起点となるのを防止できる。このような構造は、側面102の側に設けられた応力緩和層145および内部電極125の配置についても同様に設けられている。このように、圧電素子100では、同じ極性の内部電極に挟まれた不活性層に応力緩和層が形成されている。   Thereby, even if a conductive substance such as electrode paste or solder enters from the external electrode 150 in contact with the stress relaxation layer 140, no electric field is applied to the nearest internal electrode 120, so that migration can be prevented, which is the starting point of destruction. Can be prevented. Such a structure is similarly provided for the arrangement of the stress relaxation layer 145 and the internal electrode 125 provided on the side surface 102. Thus, in the piezoelectric element 100, the stress relaxation layer is formed in the inactive layer sandwiched between the internal electrodes having the same polarity.

(圧電素子の作製方法)
次に、上記のように構成された圧電素子100の製造方法について説明する。まず、PZT等の圧電体を含むスラリーを用い、引き上げ成形、ドクターブレード成形、押出成形等の方法によってグリーンシートを形成する。
(Method for manufacturing piezoelectric element)
Next, a method for manufacturing the piezoelectric element 100 configured as described above will be described. First, using a slurry containing a piezoelectric material such as PZT, a green sheet is formed by a method such as pulling molding, doctor blade molding, or extrusion molding.

圧電体のグリーンシートを準備し、内部電極または応力緩和層が設けられる位置の各グリーンシートに対して、内部電極用および応力緩和層用のパターンをスクリーン印刷等により塗布する。その際には、内部電極用として電極ペースト(Ag−Pd合金等)を塗布し、その後、乾燥させて焼成前電極膜を形成する。   A piezoelectric green sheet is prepared, and a pattern for an internal electrode and a stress relaxation layer is applied to each green sheet at a position where the internal electrode or the stress relaxation layer is provided by screen printing or the like. In that case, an electrode paste (Ag—Pd alloy or the like) is applied for an internal electrode, and then dried to form a pre-fired electrode film.

応力緩和層用としては、非焼結材料(チタン酸鉛等)のペーストを塗布する。非焼結材料は、圧電素子の焼成温度過程では焼結しない材料である。非焼結材料のペーストは、非焼結材料の粉末、バインダ、可塑剤および有機溶剤を所定の割合で混合して得られる。たとえば、非焼結材料にはチタン酸鉛、バインダにはエチルセルロース、可塑剤にはフタル酸ジオクチル、有機溶剤にはブチルカルビトールが挙げられる。なお、非焼結材料にはカーボン等、焼成時に焼き飛んで応力緩和層を形成するものが含まれる。   For the stress relaxation layer, a paste of a non-sintered material (such as lead titanate) is applied. The non-sintered material is a material that does not sinter during the firing temperature process of the piezoelectric element. The non-sintered material paste is obtained by mixing a non-sintered material powder, a binder, a plasticizer, and an organic solvent in a predetermined ratio. For example, the non-sintered material includes lead titanate, the binder includes ethyl cellulose, the plasticizer includes dioctyl phthalate, and the organic solvent includes butyl carbitol. The non-sintered material includes a material such as carbon that burns away during firing to form a stress relaxation layer.

次に、電極膜および非焼結材料膜が形成された複数のグリーンシートを積層する。なお、積層体の作製前に、予め、応力緩和層が、内部電極の何層かに1箇所の所定の割合で形成されるように設計しておく。その際には、応力緩和層の積層方向の一方に一部でも重なりを有する直近の内部電極と、応力緩和層の積層方向の他方に一部でも重なりを有する直近の内部電極とが、応力緩和層に接する外部電極と同極になるように設計する。   Next, a plurality of green sheets on which an electrode film and a non-sintered material film are formed are stacked. In addition, before producing the laminated body, it is designed in advance so that the stress relaxation layer is formed at a predetermined ratio at one place in several layers of the internal electrode. In that case, the stress relaxation layer is formed by the nearest internal electrode having at least one overlap in one of the lamination directions of the stress relaxation layer and the nearest internal electrode having at least one overlap in the other of the lamination directions of the stress relaxation layer. Design to have the same polarity as the external electrode in contact with the layer.

次に、積層されたグリーンシートをプレス成形した後、加熱して、グリーンシート、電極ペーストおよび非焼結材料ペースト中の有機成分を脱脂する。有機成分は加熱によって分解され気体となってグリーンシートやペースト膜から抜ける。   Next, after the laminated green sheet is press-molded, it is heated to degrease the organic components in the green sheet, the electrode paste, and the non-sintered material paste. The organic component is decomposed by heating to become a gas and escapes from the green sheet or paste film.

このようにして脱脂された積層体を焼成する。このとき、非焼結材料は焼結せず、非焼結材料を塗布した箇所には応力緩和層140、145が形成される。そして、焼結体を適宜加工し、圧電素子100を作製できる。   The laminated body thus degreased is fired. At this time, the non-sintered material is not sintered, and the stress relaxation layers 140 and 145 are formed at locations where the non-sintered material is applied. Then, the sintered body can be appropriately processed to produce the piezoelectric element 100.

(圧電アクチュエータ)
上記のような圧電素子100を用いて圧電アクチュエータを構成できる。圧電アクチュエータは、圧電素子100を直列に接着し、圧電素子100の内部電極120、125に接続された外部電極150、155をリード線で接続して構成される。これにより、応力緩和層140、145が破壊の起点にならない圧電アクチュエータを提供できる。
(Piezoelectric actuator)
A piezoelectric actuator can be configured using the piezoelectric element 100 as described above. The piezoelectric actuator is configured by bonding the piezoelectric element 100 in series and connecting external electrodes 150 and 155 connected to the internal electrodes 120 and 125 of the piezoelectric element 100 with lead wires. Thereby, it is possible to provide a piezoelectric actuator in which the stress relaxation layers 140 and 145 do not become a starting point of destruction.

例えば、複数の圧電素子100を積層方向に接着して多連化し、多連化された圧電素子100に分極処理を行い、キャップを被せることで圧電素子100が多連化されたポジショナ用アクチュエータを作製できる。   For example, a positioner actuator in which a plurality of piezoelectric elements 100 are bonded in the stacking direction to perform multiple treatment, polarization processing is performed on the multiple piezoelectric elements 100, and the piezoelectric elements 100 are multiplexed by covering them with a cap. Can be made.

参考例
図3は、活性層に応力緩和層が設けられた参考例の圧電素子200を示す斜視図である。図4(a)〜(c)は、いずれも参考例の圧電素子200を示す平断面図である。図5は、参考例の圧電素子200を示す側断面図である。圧電素子200は、矩形体に形成され、圧電層210と内部電極220、220a、225、225aとが交互に積層され、電圧の印加により伸縮する。
[ Reference example ]
FIG. 3 is a perspective view showing a piezoelectric element 200 of a reference example in which a stress relaxation layer is provided in the active layer. FIGS. 4A to 4C are plan sectional views showing a piezoelectric element 200 of a reference example . FIG. 5 is a side sectional view showing a piezoelectric element 200 of a reference example . The piezoelectric element 200 is formed in a rectangular shape, and the piezoelectric layers 210 and the internal electrodes 220, 220a, 225, and 225a are alternately stacked, and expand and contract when a voltage is applied.

図4(a)に示すように、内部電極220は、外周の内側に基本的に外周の形状と相似形の矩形に形成され、側面201に外部電極250に接続するための取り出し電極部が形成されている。同様に、内部電極225は、基本的に外周の形状と相似形の矩形に形成され、他方の側面202に外部電極255に接続するための取り出し電極部が形成されている。   As shown in FIG. 4A, the internal electrode 220 is formed in a rectangular shape basically similar to the shape of the outer periphery on the inner side of the outer periphery, and an extraction electrode portion for connecting to the external electrode 250 is formed on the side surface 201. Has been. Similarly, the internal electrode 225 is basically formed in a rectangular shape similar to the shape of the outer periphery, and an extraction electrode portion for connecting to the external electrode 255 is formed on the other side surface 202.

また、図4(b)、図5に示すように、応力緩和層240は、側面201、202、正面203および背面204に接するように外周に沿って設けられており、平断面図ではロ字状である。   As shown in FIGS. 4B and 5, the stress relaxation layer 240 is provided along the outer periphery so as to contact the side surfaces 201 and 202, the front surface 203, and the back surface 204. Is.

一方、図4(c)、図5に示すように、内部電極225aは、外周の内側に矩形に形成され、側面202側に、外部電極255に接続するための取り出し電極部が形成されている。内部電極225aは、側面201側の端部が応力緩和層240より内側の位置になるように形成されている。同様に、内部電極220aは、外周の内側に矩形に形成され、側面201側に、外部電極250に接続するための取り出し電極部が形成されている。内部電極220aは、側面202側の端部が応力緩和層240より内側の位置になるように形成されている。   On the other hand, as shown in FIGS. 4C and 5, the internal electrode 225 a is formed in a rectangular shape on the inner side of the outer periphery, and an extraction electrode portion for connecting to the external electrode 255 is formed on the side surface 202 side. . The internal electrode 225a is formed so that the end portion on the side surface 201 side is positioned inside the stress relaxation layer 240. Similarly, the internal electrode 220a is formed in a rectangular shape inside the outer periphery, and an extraction electrode portion for connecting to the external electrode 250 is formed on the side surface 201 side. The internal electrode 220a is formed so that the end on the side surface 202 side is positioned inside the stress relaxation layer 240.

このような配置において、内部電極225aは、応力緩和層240に接する外部電極250とは異なる極性の電極として応力緩和層240の積層面に直近の積層面の位置に設けられている。そして、内部電極225aは、電圧印加時に隣合う内部電極220aに対して生じる電界が、応力緩和層240にかからない位置に設けられている。このような配置は、内部電極220aと応力緩和層240との位置についても同様である。   In such an arrangement, the internal electrode 225a is provided at a position on the laminated surface closest to the laminated surface of the stress relaxing layer 240 as an electrode having a polarity different from that of the external electrode 250 in contact with the stress relaxing layer 240. The internal electrode 225 a is provided at a position where an electric field generated with respect to the adjacent internal electrode 220 a when a voltage is applied is not applied to the stress relaxation layer 240. Such an arrangement is the same for the positions of the internal electrode 220a and the stress relaxation layer 240.

これにより、応力緩和層240を活性層に設けるとともに、活性層を多く設けることができ、効率の良い圧電素子を構成できる。また、電界が応力緩和層240の先端部に集中せず、応力緩和層240の先端を起点とする破壊を防止できる。   Thereby, while providing the stress relaxation layer 240 in an active layer, many active layers can be provided and an efficient piezoelectric element can be comprised. Further, the electric field is not concentrated on the tip of the stress relaxation layer 240, and the breakage starting from the tip of the stress relaxation layer 240 can be prevented.

参考例
上記参考例では、応力緩和層が活性層に設けられているが、さらに応力緩和層に接する外部電極とは異なる極性の電極として応力緩和層の積層面に直近の積層面の位置に設けられた内部電極が応力緩和層と同一の積層面に設けられてい
[ Reference example ]
In the above reference example , the stress relaxation layer is provided in the active layer, but is further provided as an electrode having a polarity different from that of the external electrode in contact with the stress relaxation layer at the position of the lamination surface closest to the lamination surface of the stress relaxation layer. internal electrodes that are provided in the same lamination plane and the stress relaxation layer.

図6(a)〜(c)は、それぞれ参考例の圧電素子300を示す斜視図および平断面図である。図7は、参考例の圧電素子300を示す側断面図である。圧電素子300は、矩形体に形成され、圧電層310と内部電極320、325とが交互に積層され、電圧の印加により伸縮する。 6A to 6C are a perspective view and a plan sectional view showing a piezoelectric element 300 of a reference example , respectively. FIG. 7 is a side sectional view showing a piezoelectric element 300 of a reference example . The piezoelectric element 300 is formed in a rectangular body, the piezoelectric layers 310 and the internal electrodes 320 and 325 are alternately stacked, and expands and contracts when a voltage is applied.

圧電素子300は、駆動による応力を緩和するための応力緩和層340、345を有している。応力緩和層340、345は、複数の圧電層あたりに1層の割合で設けられており、積層面に平行な層面を有し、外周に接して形成されている。   The piezoelectric element 300 includes stress relaxation layers 340 and 345 for relaxing stress due to driving. The stress relaxation layers 340 and 345 are provided in a ratio of one layer per a plurality of piezoelectric layers, have a layer surface parallel to the laminated surface, and are formed in contact with the outer periphery.

図6(b)に示すように、内部電極320は、外周の内側に基本的に外周の形状と相似形の矩形に形成され、一方の側面301側に外部電極350に接続するための取り出し電極部が形成されている。同様に、内部電極325は、基本的に外周の形状と相似形の矩形に形成され、他方の側面302側に外部電極355に接続するための取り出し電極部が形成されている。   As shown in FIG. 6B, the internal electrode 320 is basically formed in a rectangular shape similar to the shape of the outer periphery on the inner side of the outer periphery, and is an extraction electrode for connecting to the external electrode 350 on one side surface 301 side. The part is formed. Similarly, the internal electrode 325 is basically formed in a rectangular shape similar to the shape of the outer periphery, and an extraction electrode portion for connecting to the external electrode 355 is formed on the other side surface 302 side.

図6(c)に示すように、応力緩和層340は、側面301、正面303および背面304に接するように外周に沿って設けられており、平断面図ではコ字状である。内部電極325aは、矩形に形成され、側面302側に外部電極355に接続するための取り出し電極部が形成されている。内部電極325aは、応力緩和層340と同一の積層面に設けられており、応力緩和層340との間には十分な間隙が空けられている。   As shown in FIG. 6C, the stress relaxation layer 340 is provided along the outer periphery so as to be in contact with the side surface 301, the front surface 303, and the back surface 304, and is U-shaped in the plan sectional view. The internal electrode 325a is formed in a rectangular shape, and an extraction electrode portion for connecting to the external electrode 355 is formed on the side surface 302 side. The internal electrode 325 a is provided on the same stacked surface as the stress relaxation layer 340, and a sufficient gap is provided between the internal electrode 325 a and the stress relaxation layer 340.

このように、応力緩和層340に接する外部電極350とは異なる極性の電極として、応力緩和層340の積層面に直近の積層面の位置に設けられた内部電極325aは、応力緩和層340と同一の積層面に設けられている。これにより、活性層を多く設けられるとともに、バランス良く応力緩和層を配置した圧電素子を構成できる。   As described above, the internal electrode 325 a provided at the position of the laminated surface closest to the laminated surface of the stress relaxing layer 340 as the electrode having a different polarity from the external electrode 350 in contact with the stress relaxing layer 340 is the same as the stress relaxing layer 340. Are provided on the laminated surface. Accordingly, it is possible to configure a piezoelectric element in which many active layers are provided and the stress relaxation layer is arranged in a well-balanced manner.

同様に、応力緩和層345は、側面302および正面303、背面304に接するように外周に沿って設けられており、平断面図ではコ字状である。内部電極320aは、矩形に形成され、側面301側に外部電極350に接続するための取り出し電極部が形成されている。内部電極320aは、応力緩和層345と同一の積層面に設けられており、応力緩和層345との間には十分な間隙が空けられている。   Similarly, the stress relaxation layer 345 is provided along the outer periphery so as to be in contact with the side surface 302, the front surface 303, and the back surface 304, and is U-shaped in a plan sectional view. The internal electrode 320a is formed in a rectangular shape, and an extraction electrode portion for connecting to the external electrode 350 is formed on the side surface 301 side. The internal electrode 320 a is provided on the same laminated surface as the stress relaxation layer 345, and a sufficient gap is provided between the internal electrode 320 a and the stress relaxation layer 345.

[実施例、比較例]
図1〜2、図6〜7に示す形態の圧電素子100、300をそれぞれ実施例1、2として作製した。また、図9、図10に示す形態の圧電素子800、900をそれぞれ比較例1、2として作製した。6×6×10mmの寸法で内部電極を120層、応力緩和層を11層有する圧電素子を実施例1、2および比較例1、2として作製した。
[Examples and Comparative Examples]
Piezoelectric elements 100 and 300 having the forms shown in FIGS. 1 and 2 and FIGS. Also, piezoelectric elements 800 and 900 having the forms shown in FIGS. 9 and 10 were produced as Comparative Examples 1 and 2, respectively. Piezoelectric elements having dimensions of 6 × 6 × 10 mm and 120 internal electrodes and 11 stress relaxation layers were produced as Examples 1 and 2 and Comparative Examples 1 and 2, respectively.

作製した圧電素子に同じ電圧を印加したところ、実施例1の変位は11μm、実施例2の変位は10μmであった。一方、比較例1の変位は、10μmであり、比較例2の変位は、11μmであった。   When the same voltage was applied to the produced piezoelectric element, the displacement in Example 1 was 11 μm and the displacement in Example 2 was 10 μm. On the other hand, the displacement of Comparative Example 1 was 10 μm, and the displacement of Comparative Example 2 was 11 μm.

また、各圧電素子を5Hzで0−150Vの矩形波で駆動した。図8(a)は、各圧電素子の故障確率をワイブルプロットしたグラフである。図8(b)は、各圧電素子の平均圧電印加時間およびワイブル係数を示す表である。図8(a)、(b)によれば、比較例1、2に対して、実施例1、2では明らかに圧電印加時間あたりの故障確率が低減していることが分かった。また、特に実施例1より実施例2の方がさらに故障し難いことが分かった。   Each piezoelectric element was driven with a rectangular wave of 0 to 150 V at 5 Hz. FIG. 8A is a graph obtained by Weibull plotting the failure probability of each piezoelectric element. FIG. 8B is a table showing the average piezoelectric application time and the Weibull coefficient of each piezoelectric element. 8A and 8B show that the failure probability per piezoelectric application time is clearly reduced in Examples 1 and 2 compared to Comparative Examples 1 and 2. In particular, it was found that Example 2 was more difficult to break down than Example 1.

100 圧電素子
101、102 側面
103 正面
104 背面
110 圧電層
120、125 内部電極
140、145 応力緩和層
150、155 外部電極
200 圧電素子
201、202 側面
210 圧電層
220、220a、225、225a 内部電極
240、245 応力緩和層
250、255 外部電極
300 圧電素子
301、302 側面
303 正面
304 背面
310 圧電層
320、320a、325、325a 内部電極
340、345 応力緩和層
350、355 外部電極
A 活性領域の境界
100 Piezoelectric elements 101, 102 Side surface 103 Front surface 104 Rear surface 110 Piezoelectric layer 120, 125 Internal electrode 140, 145 Stress relaxation layer 150, 155 External electrode 200 Piezoelectric element 201, 202 Side surface 210 Piezoelectric layer 220, 220a, 225, 225a Internal electrode 240 245 Stress relaxation layer 250, 255 External electrode 300 Piezoelectric element 301, 302 Side surface 303 Front surface 304 Rear surface 310 Piezoelectric layer 320, 320a, 325, 325a Internal electrode 340, 345 Stress relaxation layer 350, 355 External electrode A Active region boundary

Claims (1)

圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子であって、
積層面に平行な層面を有し、外周に接して形成され、複数の圧電層あたりに1層の割合で設けられて駆動による応力を緩和する応力緩和層を備え、
前記応力緩和層のそれぞれ全ては、全内部電極を積層方向に投影して得られ、前記積層方向において内部電極全てが重なり合う領域である活性領域に一部が含まれ、
前記応力緩和層の積層方向の一方に一部でも重なりを有する直近の内部電極および積層方向の他方に一部でも重なりを有する直近の内部電極のいずれもが、前記応力緩和層に接する外部電極と同じ極性であることを特徴とする圧電素子。
Piezoelectric elements in which piezoelectric layers and internal electrodes are alternately stacked and expand and contract by application of voltage,
A stress relief layer that has a layer surface parallel to the laminated surface, is formed in contact with the outer periphery, is provided at a rate of one layer per a plurality of piezoelectric layers, and relaxes stress due to driving;
Each of the stress relaxation layers is obtained by projecting all internal electrodes in the stacking direction, and part of the active region is an area where all the internal electrodes overlap in the stacking direction,
Both the nearest internal electrode that overlaps at least partially in one of the lamination directions of the stress relaxation layer and the nearest internal electrode that overlaps at least partially in the other of the lamination directions are both external electrodes in contact with the stress relaxation layer and A piezoelectric element having the same polarity.
JP2013180325A 2013-08-30 2013-08-30 Piezoelectric element Expired - Fee Related JP6274393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013180325A JP6274393B2 (en) 2013-08-30 2013-08-30 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013180325A JP6274393B2 (en) 2013-08-30 2013-08-30 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2015050289A JP2015050289A (en) 2015-03-16
JP6274393B2 true JP6274393B2 (en) 2018-02-07

Family

ID=52700066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013180325A Expired - Fee Related JP6274393B2 (en) 2013-08-30 2013-08-30 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP6274393B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188628A (en) * 2016-04-08 2017-10-12 日本特殊陶業株式会社 Piezoelectric element, manufacturing method thereof, and piezoelectric actuator
AT523510B1 (en) * 2020-01-29 2021-10-15 Piezocryst Advanced Sensorics Structured, piezoelectric sensor element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2824116B2 (en) * 1990-03-20 1998-11-11 富士通株式会社 Multilayer piezoelectric actuator
JP2994492B2 (en) * 1991-06-25 1999-12-27 太平洋セメント株式会社 Multilayer piezoelectric actuator and method of manufacturing the same
JP2001102646A (en) * 1999-09-28 2001-04-13 Tokin Ceramics Corp Laminated piezoelectric ceramic
JP4967239B2 (en) * 2005-02-04 2012-07-04 Tdk株式会社 Multilayer piezoelectric element
JP2006351602A (en) * 2005-06-13 2006-12-28 Nec Tokin Corp Multilayer piezoelectric actuator device
JP4911066B2 (en) * 2007-02-26 2012-04-04 株式会社デンソー Multilayer piezoelectric element
CN201994344U (en) * 2008-09-26 2011-09-28 株式会社村田制作所 Piezoelectric laminating body
JP5635319B2 (en) * 2010-07-20 2014-12-03 太平洋セメント株式会社 Piezoelectric element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015050289A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JPH04214686A (en) Electrostrictive effect element
JP2006203070A (en) Lamination piezoelectric element
JP6274393B2 (en) Piezoelectric element
JP2009131138A (en) Laminated type piezoelectric actuator element
JPH10241993A (en) Laminated ceramic electronic component
JP2013197250A (en) Piezoelectric element, manufacturing method therefor and manufacturing method of piezoelectric actuator
JP5792529B2 (en) Piezoelectric element
JP6226451B2 (en) Piezoelectric element and piezoelectric actuator
JP2008243924A (en) Laminated type piezoelectric actuator element and laminated type piezoelectric actuator
JP5635319B2 (en) Piezoelectric element and manufacturing method thereof
JP5643561B2 (en) Piezoelectric element and manufacturing method thereof
JP6300255B2 (en) Piezoelectric element, piezoelectric actuator and piezoelectric transformer
JP5409703B2 (en) Manufacturing method of multilayer piezoelectric actuator
US7233099B2 (en) Multilayer piezoelectric element
JP6729100B2 (en) Piezoelectric element
JP2739117B2 (en) Manufacturing method of multilayer ceramic element
JP4359873B2 (en) Ceramic laminated electromechanical transducer and method for manufacturing the same
JP6898167B2 (en) Laminated piezoelectric element
JP5205689B2 (en) Multilayer piezoelectric element
JP2007266468A (en) Laminated piezoelectric element
JP2014187061A (en) Piezoelectric element and manufacturing method therefor
JP4373904B2 (en) Multilayer piezoelectric element
JP2008288259A (en) Laminated piezoelectric actuator element, and laminated piezoelectric actuator
JPH01184968A (en) Manufacture of laminar piezoelectric element
JP6542618B2 (en) Piezoelectric actuator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6274393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees