JP5643561B2 - Piezoelectric element and manufacturing method thereof - Google Patents

Piezoelectric element and manufacturing method thereof Download PDF

Info

Publication number
JP5643561B2
JP5643561B2 JP2010163192A JP2010163192A JP5643561B2 JP 5643561 B2 JP5643561 B2 JP 5643561B2 JP 2010163192 A JP2010163192 A JP 2010163192A JP 2010163192 A JP2010163192 A JP 2010163192A JP 5643561 B2 JP5643561 B2 JP 5643561B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
stress relaxation
relaxation layer
piezoelectric
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010163192A
Other languages
Japanese (ja)
Other versions
JP2012028411A (en
Inventor
阿隅 一将
一将 阿隅
熊本 憲二
憲二 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2010163192A priority Critical patent/JP5643561B2/en
Publication of JP2012028411A publication Critical patent/JP2012028411A/en
Application granted granted Critical
Publication of JP5643561B2 publication Critical patent/JP5643561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子およびその製造方法に関し、特に発生する応力の緩和に関する。   The present invention relates to a piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by application of a voltage, and a method for manufacturing the same, and particularly relates to relaxation of generated stress.

圧電素子は、圧電層と内部電極を交互に積層させ、電圧の印加による変位を利用する素子である。圧電素子では、圧電的に活性な圧電層が変位し、不活性な部分は変位しない。そのため、圧電素子を変位させたときに圧電素子内に応力が発生する。このような応力を緩和する方法の一つとして、応力緩和層を配置する方法が知られている。応力緩和層は、内部電極と同一面上で内部電極の周囲を囲うように配置されており、駆動時に生じる応力を緩和している(特許文献1、2参照)。   A piezoelectric element is an element in which piezoelectric layers and internal electrodes are alternately stacked and displacement due to application of voltage is used. In the piezoelectric element, the piezoelectrically active piezoelectric layer is displaced, and the inactive portion is not displaced. Therefore, stress is generated in the piezoelectric element when the piezoelectric element is displaced. As one method of relieving such stress, a method of disposing a stress relieving layer is known. The stress relaxation layer is disposed so as to surround the periphery of the internal electrode on the same plane as the internal electrode, and relieves stress generated during driving (see Patent Documents 1 and 2).

特許2994492号公報Japanese Patent No. 2994492 特許2951129号公報Japanese Patent No. 2951129

しかしながら、上記のような応力緩和層は、材料力学的な欠陥として横方向の荷重に対する破壊の起点となりうる。特に、圧電素子の角部分が荷重に弱くなる。そのため、圧電素子を積層方向に連結する接着工程の取り扱いで折れる不具合が発生することがある。一方、応力緩和層が無い圧電素子構造では、圧電素子の動作中に応力が発生し、応力によるクラックが生じる向きや大きさが制御できないことがある。   However, the stress relaxation layer as described above can be a starting point of fracture against a lateral load as a material mechanical defect. In particular, the corners of the piezoelectric element are vulnerable to load. Therefore, the malfunction which may break by the handling of the adhesion process which connects a piezoelectric element to a lamination direction may generate | occur | produce. On the other hand, in a piezoelectric element structure without a stress relaxation layer, stress may be generated during the operation of the piezoelectric element, and the direction and size of cracks due to the stress may not be controlled.

本発明は、このような事情に鑑みてなされたものであり、製造工程において強度を保持し、かつ、製造後の動作中には十分に応力を緩和できる圧電素子とその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a piezoelectric element that can maintain strength in a manufacturing process and can sufficiently relieve stress during operation after manufacturing, and a manufacturing method thereof. With the goal.

(1)上記の目的を達成するため、本発明の圧電素子は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子であって、内部電極の積層方向への投影が重なり合う活性領域の周囲において外周に対して閉じられ、非焼結材料または空隙で形成された準応力緩和層と、前記準応力緩和層が外周に対して開くことで形成され、駆動による応力を緩和する応力緩和層と、を備えることを特徴としている。   (1) In order to achieve the above object, the piezoelectric element of the present invention is a piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by application of voltage, and the internal electrodes are projected in the stacking direction. Is formed by opening the quasi-stress relaxation layer with respect to the outer periphery, which is closed with respect to the outer periphery around the overlapping active region and formed of a non-sintered material or voids. And a stress relaxation layer that relaxes.

これにより、準応力緩和層は外周に対して閉じられているため、圧電素子は積層方向に垂直な方向の荷重に対して強度を有する。また、応力緩和層は、圧電素子に電圧印加した状態に発生する応力を緩和することができる。その結果、分極処理までの製造工程では準応力緩和層で強度を維持し、その後、外周に対して開いた応力緩和層で応力を緩和することができる。   Thereby, since the quasi-stress relaxation layer is closed with respect to the outer periphery, the piezoelectric element has strength against a load in a direction perpendicular to the stacking direction. Moreover, the stress relaxation layer can relieve the stress generated in a state where a voltage is applied to the piezoelectric element. As a result, in the manufacturing process up to the polarization treatment, the strength can be maintained by the quasi-stress relaxation layer, and then the stress can be relaxed by the stress relaxation layer opened to the outer periphery.

(2)また、本発明の圧電素子は、前記準応力緩和層と前記応力緩和層の合計の領域に対する前記応力緩和層の領域の割合は、8%以上であることを特徴としている。これにより、圧電素子に電圧印加し、圧電素子が動作したときに応力緩和層が機能し、十分に応力を緩和できる。   (2) In the piezoelectric element of the present invention, the ratio of the stress relaxation layer region to the total region of the quasi-stress relaxation layer and the stress relaxation layer is 8% or more. Thereby, when a voltage is applied to the piezoelectric element and the piezoelectric element operates, the stress relaxation layer functions, and the stress can be sufficiently relaxed.

(3)また、本発明の圧電素子は、前記準応力緩和層を外周に対して閉じている外周壁の厚さは、0.05mm以上0.35mm以下であることを特徴としている。これにより、製造工程で強度を維持しつつ、分極処理時に準応力緩和層が開口させることができる。すなわち、外周壁の厚さが0.05mm以上であるため製造工程の途中まで強度を維持し、0.35mm以下であるため壁を取り応力を緩和可能な状態にすることができる。   (3) In the piezoelectric element of the present invention, the thickness of the outer peripheral wall closing the quasi-stress relaxation layer with respect to the outer periphery is 0.05 mm or more and 0.35 mm or less. Thereby, the quasi-stress relaxation layer can be opened during the polarization treatment while maintaining the strength in the manufacturing process. That is, since the thickness of the outer peripheral wall is 0.05 mm or more, the strength is maintained until the middle of the manufacturing process, and since it is 0.35 mm or less, the wall can be taken and the stress can be relaxed.

(4)また、本発明の圧電素子の製造方法は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子の製造方法であって、圧電セラミックスのグリーンシートに電極ペーストおよび所定の焼成温度過程では焼結しない非焼結材料を印刷する工程と、前記印刷が施されたグリーンシート含め、圧電セラミックスのグリーンシートを積層して圧着する工程と、前記圧着により得られた成形体を脱脂、焼成する工程と、前記焼成された焼成体を分極処理する工程とを含み、前記非焼結材料は、焼成体となったときに、内部電極の積層方向への投影が重なり合う活性領域の周囲において外周まで至らない領域に印刷されることを特徴とする。   (4) A method for manufacturing a piezoelectric element according to the present invention is a method for manufacturing a piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by application of a voltage, and the electrode paste is applied to a green sheet of piezoelectric ceramics. And a step of printing a non-sintered material that does not sinter in a predetermined firing temperature process, a step of laminating and pressing a piezoelectric ceramic green sheet including the printed green sheet, and the pressure bonding. Including a step of degreasing and firing the molded body and a step of polarizing the fired fired body, and when the non-sintered material becomes a fired body, projections in the stacking direction of the internal electrodes overlap. Printing is performed in a region that does not reach the outer periphery around the active region.

これにより、製造工程中では外周壁により強度が維持され、折損等の不具合を防止できる。また、その後、分極処理により外周壁が壊れた応力緩和層で応力を緩和することができる。   Thereby, in a manufacturing process, intensity | strength is maintained with an outer peripheral wall, and malfunctions, such as breakage, can be prevented. Moreover, stress can be relieved by a stress relieving layer whose outer peripheral wall is broken by polarization treatment thereafter.

本発明によれば、製造工程において強度を保持し、かつ、製造後の動作中には十分に応力を緩和できる。   According to the present invention, strength can be maintained in the manufacturing process, and stress can be sufficiently relaxed during operation after manufacturing.

本発明に係る圧電素子を示す(a)斜視図、(b)平断面図、(c)平断面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) Perspective view, (b) Plan sectional view, (c) Plan sectional view showing a piezoelectric element according to the present invention. 本発明に係る圧電素子を示す側断面図である。It is a sectional side view which shows the piezoelectric element which concerns on this invention. 製造工程の一場面における焼成体を示す斜視図である。It is a perspective view which shows the sintered body in one scene of a manufacturing process. 比較例の圧電素子を示す(a1)、(a2)斜視図、(b1)、(b2)断面図、(c1)、(c2)断面図である。(A1), (a2) perspective view, (b1), (b2) sectional view, (c1), (c2) sectional view showing a piezoelectric element of a comparative example.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

図1(a)〜(c)は、それぞれ圧電素子100を示す斜視図、準応力緩和層140の位置の断面図、応力緩和層140の位置の断面図である。圧電素子100は、圧電層110と内部電極120とが積層方向Zについて交互に積層され、矩形に形成されている。圧電層110は、たとえばPZTのような圧電材料で構成され、厚み方向の互い違いの向きに分極されている。内部電極120は、対向する側面上で外部電極130に取り出されており、隣り合う内部電極120に異なる電圧を印加できるように形成されている。内部電極120へ電圧を印加することで各圧電層110が歪み、圧電素子全体が伸縮する。なお、圧電アクチュエータとして圧電素子100を説明するが、本発明は必ずしもこれに限定されない。また、圧電素子100は矩形に限らず様々な形態をとりうる。   FIGS. 1A to 1C are a perspective view showing the piezoelectric element 100, a sectional view of the quasi-stress relaxation layer 140, and a sectional view of the stress relaxation layer 140, respectively. In the piezoelectric element 100, the piezoelectric layers 110 and the internal electrodes 120 are alternately stacked in the stacking direction Z, and are formed in a rectangular shape. The piezoelectric layer 110 is made of, for example, a piezoelectric material such as PZT, and is polarized in alternate directions in the thickness direction. The internal electrode 120 is taken out to the external electrode 130 on the opposite side surface, and is formed so that a different voltage can be applied to the adjacent internal electrode 120. By applying a voltage to the internal electrode 120, each piezoelectric layer 110 is distorted and the entire piezoelectric element expands and contracts. In addition, although the piezoelectric element 100 is demonstrated as a piezoelectric actuator, this invention is not necessarily limited to this. In addition, the piezoelectric element 100 is not limited to a rectangular shape and can take various forms.

圧電素子100は、積層方向Zの両端部に設けられた保護層と電圧の印加により駆動する活性層とに区分できる。さらに、活性層は、内部電極120の積層方向Zへの投影が重なり合う中央の活性領域(図示せず)と内部電極120が外部とショートしないように設けられた周囲の領域とに区分できる。活性領域は、圧電素子100において実際に駆動する領域である。活性領域は電圧により駆動するが、その周囲の領域は、電圧の印加により変形せず応力が生じる。   The piezoelectric element 100 can be divided into a protective layer provided at both ends in the stacking direction Z and an active layer driven by application of voltage. Further, the active layer can be divided into a central active region (not shown) where projections of the internal electrodes 120 in the stacking direction Z overlap and a peripheral region provided so that the internal electrodes 120 do not short-circuit with the outside. The active region is a region that is actually driven in the piezoelectric element 100. The active region is driven by voltage, but the surrounding region is not deformed by the application of the voltage, and stress is generated.

圧電素子100は、準応力緩和層140および応力緩和層150を有している。図2は、圧電素子100を示す側断面図である。図2に示す断面は、図1(b)(c)における断面Aに対応している。準応力緩和層140は、活性領域の周囲において外周壁141により外周に対して閉じられ、非焼結材料または空隙で形成されている。外周壁141は、原則、外周に沿って連続的に形成されているが、一周のうち一部が閉じて、残りの部分が開いていてもよい。   The piezoelectric element 100 has a quasi-stress relaxation layer 140 and a stress relaxation layer 150. FIG. 2 is a side sectional view showing the piezoelectric element 100. The cross section shown in FIG. 2 corresponds to the cross section A in FIGS. The quasi-stress relaxation layer 140 is closed with respect to the outer periphery by the outer peripheral wall 141 around the active region, and is formed of a non-sintered material or a void. In principle, the outer peripheral wall 141 is continuously formed along the outer periphery. However, a part of the outer periphery may be closed and the remaining part may be opened.

外周壁141の厚さは、0.05mm以上0.35mm以下であることが好ましい。これにより、たとえば焼成時に形成された外周壁141のうち分極工程において8%以上の外周壁141が壊れ、8%分の準応力緩和層140を応力緩和層150に変えることができる。圧電素子100が120層の準応力緩和層140を有する場合には、準応力緩和層140のうちの10層程度が応力緩和層150になれば十分である。   The thickness of the outer peripheral wall 141 is preferably 0.05 mm or more and 0.35 mm or less. Thereby, for example, 8% or more of the outer peripheral wall 141 in the outer peripheral wall 141 formed at the time of firing is broken in the polarization step, and the quasi-stress relaxation layer 140 for 8% can be changed to the stress relaxation layer 150. When the piezoelectric element 100 has 120 quasi-stress relaxation layers 140, it is sufficient that about 10 of the quasi-stress relaxation layers 140 become the stress relaxation layers 150.

外周壁141の厚さが0.35mmより厚い場合には、分極工程において8%以下しか外周壁141が壊れず十分な数の応力緩和層150が形成されないことがある。その場合には、応力緩和層150を起点に大きな亀裂が活性領域まで侵入し、圧電素子100が破壊することがある。   When the thickness of the outer peripheral wall 141 is greater than 0.35 mm, the outer peripheral wall 141 may be broken only by 8% or less in the polarization step, and a sufficient number of stress relaxation layers 150 may not be formed. In that case, a large crack may enter the active region starting from the stress relaxation layer 150, and the piezoelectric element 100 may be destroyed.

準応力緩和層140は、圧電素子100の製造工程において外周壁141が壊れ、外周に対して開くことで、応力緩和層150に変わる。製造工程の途中まで準応力緩和層140が、外周に対して閉じていることで、工程でかかる横負荷に耐久できる程度の圧電素子100の強度が維持される。通常、圧電素子100は、分極処理工程まで強度が維持されれば十分であり、外周壁141は分極処理工程において壊れるよう設計されていることが好ましい。   The quasi-stress relaxation layer 140 is changed to the stress relaxation layer 150 when the outer peripheral wall 141 is broken and opened with respect to the outer periphery in the manufacturing process of the piezoelectric element 100. Since the quasi-stress relaxation layer 140 is closed with respect to the outer periphery until the middle of the manufacturing process, the strength of the piezoelectric element 100 that can withstand the lateral load applied in the process is maintained. Usually, the piezoelectric element 100 is sufficient if the strength is maintained until the polarization treatment step, and the outer peripheral wall 141 is preferably designed to be broken in the polarization treatment step.

応力緩和層150は、活性領域の周囲の領域に形成されている。応力緩和層150は、準応力緩和層140が壊れ、外周に対して開くことで形成され、駆動による応力を緩和する。各応力緩和層150は、積層方向Zに垂直な断面上で外周に接して形成されている。その結果、応力を外に逃がし、圧電素子100の駆動による応力を緩和することができる。   The stress relaxation layer 150 is formed in a region around the active region. The stress relaxation layer 150 is formed when the quasi-stress relaxation layer 140 is broken and opened with respect to the outer periphery, and relieves stress due to driving. Each stress relaxation layer 150 is formed in contact with the outer periphery on a cross section perpendicular to the stacking direction Z. As a result, the stress is released to the outside, and the stress caused by driving the piezoelectric element 100 can be relaxed.

準応力緩和層140と応力緩和層150の合計の領域に対する応力緩和層の領域の割合は、8%以上である。これにより、圧電素子100に電圧印加し、圧電素子100が動作したときに応力緩和層150が機能し、十分に応力を緩和できる。   The ratio of the stress relaxation layer region to the total region of the quasi-stress relaxation layer 140 and the stress relaxation layer 150 is 8% or more. Accordingly, when a voltage is applied to the piezoelectric element 100 and the piezoelectric element 100 is operated, the stress relaxation layer 150 functions and the stress can be sufficiently relaxed.

(圧電素子の製造方法)
次に、上記のように構成された圧電素子100の製造方法について説明する。まず、圧電体を含むスラリーを用い、引き上げ成形、ドクターブレード成形、押出成形等の方法によってグリーンシートを形成する。グリーンシートには内部電極120用および応力緩和層150用のパターンをスクリーン印刷等により塗布する。内部電極120用として電極ペースト(Ag−Pd合金等)を塗布し、その後、乾燥させて焼成前電極膜を形成する。
(Piezoelectric element manufacturing method)
Next, a method for manufacturing the piezoelectric element 100 configured as described above will be described. First, using a slurry containing a piezoelectric body, a green sheet is formed by a method such as pulling molding, doctor blade molding, or extrusion molding. A pattern for the internal electrode 120 and the stress relaxation layer 150 is applied to the green sheet by screen printing or the like. An electrode paste (Ag—Pd alloy or the like) is applied for the internal electrode 120 and then dried to form a pre-fired electrode film.

そして、さらに準応力緩和層140用として非焼結材料(チタン酸鉛等)のペーストを塗布する。非焼結材料は、圧電素子100の焼成温度過程では焼結しない材料である。非焼結材料のペーストは、非焼結材料の粉末、バインダ、可塑剤および有機溶剤を所定の割合で混合して得られる。たとえば、非焼結材料にはチタン酸鉛、バインダにはエチルセルロース、可塑剤にはフタル酸ジオクチル、有機溶剤にはブチルカルビトールが挙げられる。なお、非焼結材料にはカーボン等、焼成時に焼き飛んで準応力緩和層140を形成するものが含まれる。   Further, a paste of a non-sintered material (such as lead titanate) is applied for the quasi-stress relaxation layer 140. The non-sintered material is a material that does not sinter during the firing temperature process of the piezoelectric element 100. The non-sintered material paste is obtained by mixing a non-sintered material powder, a binder, a plasticizer, and an organic solvent in a predetermined ratio. For example, the non-sintered material includes lead titanate, the binder includes ethyl cellulose, the plasticizer includes dioctyl phthalate, and the organic solvent includes butyl carbitol. The non-sintered material includes a material such as carbon that burns out during firing to form the quasi-stress relaxation layer 140.

非焼結材料のペーストが印刷された各領域は、焼成体となったときに、活性領域の周囲において外周まで至らない領域に印刷される。焼成後に外周となる位置から0.05mm以上0.35mm以下の領域まで印刷することが好ましい。残った外周となる位置までの領域が、焼成により外周壁141となる。   Each region on which the paste of the non-sintered material is printed is printed in a region that does not reach the outer periphery around the active region when it becomes a fired body. It is preferable to print from 0.05 mm to 0.35 mm from the position that becomes the outer periphery after firing. The region up to the remaining outer peripheral position becomes the outer peripheral wall 141 by firing.

次に、電極膜および非焼結材料膜が形成された複数のグリーンシートを積層し、プレス成形した後、加熱して、グリーンシート、電極ペーストおよび非焼結材料ペースト中の有機成分を脱脂する。有機成分は加熱によって分解され気体となってグリーンシートやペースト膜から抜ける。   Next, a plurality of green sheets on which an electrode film and a non-sintered material film are formed are laminated, press-molded, and then heated to degrease the organic components in the green sheet, the electrode paste, and the non-sintered material paste. . The organic component is decomposed by heating to become a gas and escapes from the green sheet or paste film.

このようにして脱脂された積層体を焼成する。このとき、チタン酸鉛は焼結せず、非焼結材料を塗布した箇所には準応力緩和層140が形成される。非焼結材料は、圧電素子100の焼成温度では焼結しない材料である。図3は、製造工程の一場面における焼成体200を示す斜視図である。焼成後に適宜加工することで分極前の焼成体200が得られる。そして、焼結体200を適宜加工し、積層方向Zの端面で接着して多連化する。そして、多連化した焼成体200を分極処理することで、ポジショナ用アクチュエータを作製できる。   The laminated body thus degreased is fired. At this time, lead titanate is not sintered, and a quasi-stress relaxation layer 140 is formed at a location where a non-sintered material is applied. The non-sintered material is a material that does not sinter at the firing temperature of the piezoelectric element 100. FIG. 3 is a perspective view showing the fired body 200 in one scene of the manufacturing process. By appropriately processing after firing, the fired body 200 before polarization is obtained. And the sintered compact 200 is processed suitably, and it adhere | attaches on the end surface of the lamination direction Z, and is made in multiples. And the actuator for positioners can be produced by polarization-processing the baked body 200 made into multiple.

その際には内部電極120間に電圧が印加され、歪が生じるため、一部の準応力緩和層140の外周壁141が壊れ、その準応力緩和層140は応力緩和層150に変わる。このようにして、ポジショナ用アクチュエータとして多連化された圧電素子100が得られる。   At that time, since a voltage is applied between the internal electrodes 120 and distortion occurs, the outer peripheral wall 141 of a part of the quasi-stress relaxation layer 140 is broken, and the quasi-stress relaxation layer 140 is changed to the stress relaxation layer 150. In this way, the piezoelectric element 100 is obtained as a multiple actuator as a positioner actuator.

比較例1、2の圧電素子800、900および実施例1の圧電素子100を製造した。その際に、それぞれ6個の焼成体を接着工程により多連化し、不良の発生を観察した。また、分極処理し、多連化された圧電素子を動作させ、変位量が問題ないことを確認した。   The piezoelectric elements 800 and 900 of Comparative Examples 1 and 2 and the piezoelectric element 100 of Example 1 were manufactured. At that time, each of the six fired bodies was made into multiples by the bonding process, and the occurrence of defects was observed. In addition, it was confirmed that there was no problem with the amount of displacement by operating a piezoelectric element that had been subjected to polarization treatment and connected in multiples.

図4は、比較例1、2の圧電素子800、900を示す(a1)、(a2)斜視図、(b1)、(b2)断面図、(c1)、(c2)断面図である。圧電素子800は、圧電層810と内部電極820が交互に積層して形成されている。圧電層810は、互い違いの向きに分極されている。圧電素子800は、内部電極820の取り出し電極として外部電極830を側面に有し、これらを用いて内部電極120間に電圧を印加することで変位を制御することができる。また、圧電素子800は、内部電極820の周囲の一周にわたり応力緩和層850を有している。   4 are (a1) and (a2) perspective views, (b1) and (b2) cross-sectional views, and (c1) and (c2) cross-sectional views showing the piezoelectric elements 800 and 900 of Comparative Examples 1 and 2. FIG. The piezoelectric element 800 is formed by alternately stacking piezoelectric layers 810 and internal electrodes 820. The piezoelectric layers 810 are polarized in alternate directions. The piezoelectric element 800 has an external electrode 830 on the side surface as an extraction electrode of the internal electrode 820, and the displacement can be controlled by applying a voltage between the internal electrodes 120 using these electrodes. In addition, the piezoelectric element 800 has a stress relaxation layer 850 over one circumference around the internal electrode 820.

また、同様に圧電素子900は、圧電層910と内部電極920が交互に積層して形成されている。圧電層910は、互い違いの向きに分極されている。圧電素子900は、内部電極920の取り出し電極として外部電極930を側面に有し、これらを用いて内部電極120間に電圧を印加することで変位を制御することができる。また、圧電素子900は、内部電極920の周囲の半周(側面の2辺)にわたり応力緩和層950を有している。引用例1、2は通常の応力緩和層を有する圧電素子の作製方法で作製した。   Similarly, the piezoelectric element 900 is formed by alternately stacking piezoelectric layers 910 and internal electrodes 920. The piezoelectric layers 910 are polarized in alternating directions. The piezoelectric element 900 has an external electrode 930 on the side surface as an extraction electrode of the internal electrode 920, and the displacement can be controlled by applying a voltage between the internal electrodes 120 using these electrodes. In addition, the piezoelectric element 900 has a stress relaxation layer 950 over a half circumference (two sides of the side surface) around the internal electrode 920. Reference examples 1 and 2 were produced by a method for producing a piezoelectric element having a normal stress relaxation layer.

実施例1については準応力緩和層140が素子表面に露出しないように、電極パターンおよび非焼結材料パターンを配置した。6mm×6mmの断面に、内部電極が重なり合う5.4mm×5.4mmの活性領域があり、その周囲を0.3mm幅の準応力緩和層140で取り囲む構造とした。加工後の素子の表面には準応力緩和層140は露出していなかった。これを3kV/mmで分極したところ、120層の準応力緩和層140のうち10〜20層で外周壁141が剥離しているのが確認された。上記のように作製された比較例1、2および実施例1の圧電素子について、それぞれ複数の圧電素子を接着工程により多連化し、変位量を計測した表1は、その実験結果を示す表である。変化量は、引用例1の変位量を100%としたときの変位量を%表示している。

Figure 0005643561
In Example 1, the electrode pattern and the non-sintered material pattern were arranged so that the quasi-stress relaxation layer 140 was not exposed on the element surface. A 6 mm × 6 mm cross section has a 5.4 mm × 5.4 mm active region where the internal electrodes overlap, and the periphery is surrounded by a 0.3 mm wide quasi-stress relaxation layer 140. The quasi-stress relaxation layer 140 was not exposed on the surface of the device after processing. When this was polarized at 3 kV / mm, it was confirmed that the outer peripheral wall 141 was peeled in 10 to 20 layers of the 120 quasi-stress relaxation layers 140. Regarding the piezoelectric elements of Comparative Examples 1 and 2 and Example 1 manufactured as described above, Table 1 in which a plurality of piezoelectric elements were connected in series by an adhesion process and the amount of displacement was measured is a table showing the experimental results. is there. As the amount of change, the amount of displacement when the amount of displacement of Cited Example 1 is taken as 100% is displayed in%.
Figure 0005643561

接着工程の不良の主な原因は、接着後の作業中に折れる不良である。実施例のような構造にすることで折れる不良がほぼ無くなった。また、変位量はほぼ同じとなった。これは接着工程後の分極処理の時に、活性部の変位によって剥離部分に応力が加わり、素子内部に隠された応力緩和層が起点となって剥離が生じたと考えられる。剥離が生じた応力緩和層は10〜20層と少ないが、変位が拘束されることはなかった。   The main cause of the defect in the bonding process is a defect that breaks during work after bonding. By using the structure as in the example, almost no defects were broken. Moreover, the amount of displacement was almost the same. It is considered that during the polarization process after the bonding process, stress was applied to the peeled portion due to the displacement of the active portion, and peeling occurred due to the stress relaxation layer hidden inside the element. Although there were few stress relaxation layers with peeling as 10-20 layers, displacement was not restrained.

100 圧電素子
110 圧電層
120 内部電極
130 外部電極
140 準応力緩和層
141 外周壁
150 応力緩和層
200 焼成体
A 断面
Z 積層方向
DESCRIPTION OF SYMBOLS 100 Piezoelectric element 110 Piezoelectric layer 120 Internal electrode 130 External electrode 140 Quasi stress relaxation layer 141 Outer peripheral wall 150 Stress relaxation layer 200 Firing body A Section Z Lamination direction

Claims (3)

圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子であって、
内部電極の積層方向への投影が重なり合う活性領域の周囲において前記圧電素子の外周に対して閉じられ、非焼結材料または空隙で形成された準応力緩和層と、
前記準応力緩和層が前記圧電素子の外周に対して開くことで形成され、駆動による応力を緩和する応力緩和層と、を備え
前記準応力緩和層を前記圧電素子の外周に対して閉じている外周壁の厚さは、0.05mm以上0.35mm以下であることを特徴とする圧電素子。
Piezoelectric elements in which piezoelectric layers and internal electrodes are alternately stacked and expand and contract by application of voltage,
A quasi-stress relaxation layer formed of a non-sintered material or a void, which is closed with respect to the outer periphery of the piezoelectric element around the active region where projections in the stacking direction of the internal electrodes overlap;
The quasi-stress relaxation layer is formed by opening with respect to the outer periphery of the piezoelectric element , and includes a stress relaxation layer that relaxes stress due to driving ,
The thickness of the outer peripheral wall closing the quasi stress relieving layer with respect to the outer periphery of the piezoelectric element, the piezoelectric element characterized der Rukoto than 0.35mm below 0.05 mm.
前記準応力緩和層と前記応力緩和層の合計の領域に対する前記応力緩和層の領域の割合は、8%以上であることを特徴とする請求項1記載の圧電素子。   2. The piezoelectric element according to claim 1, wherein a ratio of a region of the stress relaxation layer to a total region of the quasi-stress relaxation layer and the stress relaxation layer is 8% or more. 圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子の製造方法であって、
圧電セラミックスのグリーンシートに電極ペーストおよび所定の焼成温度過程では焼結しない非焼結材料を印刷する工程と、
前記印刷が施されたグリーンシート含め、圧電セラミックスのグリーンシートを積層して圧着する工程と、
前記圧着により得られた成形体を脱脂、焼成する工程と、
前記焼成された焼成体を分極処理する工程と、を含み、
前記非焼結材料は、焼成体となったときに、内部電極の積層方向への投影が重なり合う活性領域の周囲において前記焼成体の外周まで至らない領域に印刷され、
前記製造された圧電素子において、前記非焼結材料または空隙で形成された準応力緩和層を前記圧電素子の外周に対して閉じている外周壁の厚さは、0.05mm以上0.35mm以下であることを特徴とする圧電素子の製造方法。
Piezoelectric layers and internal electrodes are alternately stacked, and a piezoelectric element manufacturing method that expands and contracts by applying a voltage,
Printing an electrode paste and a non-sintered material that does not sinter in a predetermined firing temperature process on a piezoelectric ceramic green sheet;
Including the green sheet on which the printing has been performed, a step of laminating and pressing the piezoelectric ceramic green sheet; and
Degreasing and firing the molded body obtained by the pressure bonding; and
A step of polarizing the fired fired body,
The non-sintered material is printed in a region that does not reach the outer periphery of the fired body around the active region where the projections in the stacking direction of the internal electrodes overlap when it becomes a fired body ,
In the manufactured piezoelectric element, the thickness of the outer peripheral wall closing the quasi-stress relaxation layer formed of the non-sintered material or the gap with respect to the outer periphery of the piezoelectric element is 0.05 mm or more and 0.35 mm or less. method for manufacturing a piezoelectric element characterized der Rukoto.
JP2010163192A 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof Expired - Fee Related JP5643561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163192A JP5643561B2 (en) 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163192A JP5643561B2 (en) 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012028411A JP2012028411A (en) 2012-02-09
JP5643561B2 true JP5643561B2 (en) 2014-12-17

Family

ID=45781031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163192A Expired - Fee Related JP5643561B2 (en) 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5643561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187061A (en) * 2013-03-21 2014-10-02 Taiheiyo Cement Corp Piezoelectric element and manufacturing method therefor
JP6259194B2 (en) * 2013-03-21 2018-01-10 日本特殊陶業株式会社 Piezoelectric element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084745B2 (en) * 2006-12-15 2012-11-28 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Also Published As

Publication number Publication date
JP2012028411A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JPH04214686A (en) Electrostrictive effect element
JP2008130842A (en) Laminated piezoelectric element
JP5643561B2 (en) Piezoelectric element and manufacturing method thereof
JP5878130B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
TWI482185B (en) Laminated ceramic capacitors
JP2013197250A (en) Piezoelectric element, manufacturing method therefor and manufacturing method of piezoelectric actuator
JP5635319B2 (en) Piezoelectric element and manufacturing method thereof
JP2016021437A (en) Multilayer capacitor and method for manufacturing the same
JP5792529B2 (en) Piezoelectric element
JP2007109754A (en) Multilayer piezoelectric element
JP2007019420A (en) Stacked piezoelectric element
JP2005223014A (en) Multilayer piezoelectric element and its fabrication method
JP6274393B2 (en) Piezoelectric element
JP2018198327A (en) Multilayer capacitor and method of manufacturing the same
JPH10241993A (en) Laminated ceramic electronic component
JP6591771B2 (en) Multilayer capacitor
JP4359873B2 (en) Ceramic laminated electromechanical transducer and method for manufacturing the same
JP6047317B2 (en) Piezoelectric element
JP6035773B2 (en) Multilayer piezoelectric actuator and manufacturing method thereof
JP6226451B2 (en) Piezoelectric element and piezoelectric actuator
JP2007266468A (en) Laminated piezoelectric element
JP2009016617A (en) Stacked piezoelectric element
JP6259194B2 (en) Piezoelectric element
JP4419372B2 (en) Method for manufacturing thin ceramic plate
JP2013077636A (en) Piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees