JP2014187061A - Piezoelectric element and manufacturing method therefor - Google Patents

Piezoelectric element and manufacturing method therefor Download PDF

Info

Publication number
JP2014187061A
JP2014187061A JP2013058856A JP2013058856A JP2014187061A JP 2014187061 A JP2014187061 A JP 2014187061A JP 2013058856 A JP2013058856 A JP 2013058856A JP 2013058856 A JP2013058856 A JP 2013058856A JP 2014187061 A JP2014187061 A JP 2014187061A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
internal electrode
stress relaxation
relaxation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013058856A
Other languages
Japanese (ja)
Inventor
Yutaka Inada
豊 稲田
Kenji Kumamoto
憲二 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2013058856A priority Critical patent/JP2014187061A/en
Publication of JP2014187061A publication Critical patent/JP2014187061A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric element in which migration can be prevented in a stress relaxation layer, by lowering the mobility of metal cations or halogen anions, thereby prolonging the time to short-circuit of positive and negative poles.SOLUTION: A laminated piezoelectric element 100 telescoping by application of a voltage includes piezoelectric layers 110 formed of piezoelectric ceramic, internal electrode layers 120 laminated alternately with the piezoelectric layers 110, and a stress relaxation layer 140 formed by calcining a lead titanate paste added with a hardening element for increasing the insulation resistance, and provided in contact with the outer periphery 145 of the element along the same laminate surface as the internal electrode layers 120.

Description

本発明は、電圧の印加により伸縮する積層型の圧電素子およびその作製方法に関する。   The present invention relates to a laminated piezoelectric element that expands and contracts by application of a voltage and a method for manufacturing the same.

圧電素子は、圧電体層と内部電極を交互に積層させ、電圧の印加による変位を利用する素子であり、電極に挟まれて活性な圧電体層が変位し、不活性な部分は変位しない。そのため、圧電素子を変位させたときに圧電素子内に応力が発生する。従来、このような応力を緩和するための様々な技術が開示されている。   Piezoelectric elements are elements in which piezoelectric layers and internal electrodes are alternately stacked and use displacement due to application of voltage. An active piezoelectric layer is displaced between electrodes, and inactive portions are not displaced. Therefore, stress is generated in the piezoelectric element when the piezoelectric element is displaced. Conventionally, various techniques for relieving such stress have been disclosed.

例えば、特許文献1記載の圧電素子は、圧電セラミックス層において内部電極の外周部分の近傍に位置する部分に、マンガン、鉄、クロム、タングステンから選ばれた1以上の成分を他の部分よりも多く含ませて、内部電極の外周部分の変位量を、この領域の内側から外側に向かって連続的に小さくしている。そして、このような構造により応力破壊を防止しようとしている。   For example, the piezoelectric element described in Patent Document 1 includes one or more components selected from manganese, iron, chromium, and tungsten in a portion located in the vicinity of the outer peripheral portion of the internal electrode in the piezoelectric ceramic layer more than other portions. The displacement amount of the outer peripheral portion of the internal electrode is continuously reduced from the inside to the outside of this region. And it is trying to prevent stress fracture by such a structure.

また、圧電素子に応力緩和層を設ける方法も知られている。応力緩和層は、内部電極と同一面上で内部電極の周囲を囲うように配置され、駆動時に生じる応力を緩和することで、耐久性を向上させるものである。近年、100℃を超えるような高温の環境で圧電アクチュエータが使用されるようになってきており、より高温化での耐久性の向上が求められている。   A method of providing a stress relaxation layer on a piezoelectric element is also known. The stress relaxation layer is arranged so as to surround the periphery of the internal electrode on the same plane as the internal electrode, and improves durability by relaxing the stress generated during driving. In recent years, piezoelectric actuators have been used in a high temperature environment exceeding 100 ° C., and there is a demand for improvement in durability at higher temperatures.

特開2004−158494号公報JP 2004-158494 A

しかしながら、上記のような高温の環境で用いられる圧電素子においては、正極側の応力緩和層に絶縁低下した部位が発生するという現象が生じている。このような部位が成長すると圧電素子が絶縁破壊に至り製品が機能しなくなる。   However, in the piezoelectric element used in the high temperature environment as described above, a phenomenon has occurred in which a portion with reduced insulation occurs in the stress relaxation layer on the positive electrode side. If such a portion grows, the piezoelectric element will break down and the product will not function.

本発明は、このような事情に鑑みてなされたものであり、金属陽イオンやハロゲン陰イオンの移動度を低下させ、正負極の短絡までの時間を長くすることで、応力緩和層における絶縁劣化を防止できる圧電素子およびその作製方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and by reducing the mobility of metal cations and halogen anions and increasing the time until the positive and negative electrodes are short-circuited, insulation deterioration in the stress relaxation layer is achieved. It is an object of the present invention to provide a piezoelectric element capable of preventing the above and a manufacturing method thereof.

(1)上記の目的を達成するため、本発明の圧電素子は、電圧の印加により伸縮する積層型の圧電素子であって、圧電セラミックスで形成された圧電体層と、前記圧電体層と交互に積層された内部電極層と、絶縁抵抗を高めるハード化元素を添加されたチタン酸鉛ペーストが焼成されることで形成され、前記内部電極層と同一積層面に沿って素子外周に接して設けられた応力緩和層と、を備えることを特徴としている。   (1) In order to achieve the above object, the piezoelectric element of the present invention is a stacked piezoelectric element that expands and contracts by application of voltage, and is alternately formed with piezoelectric layers formed of piezoelectric ceramics and the piezoelectric layers. The internal electrode layer is formed by firing a lead titanate paste added with a hardening element that increases insulation resistance, and is provided in contact with the outer periphery of the element along the same laminated surface as the internal electrode layer. And a stress relaxation layer formed thereon.

このように、応力緩和層が絶縁抵抗を高めるハード化元素が添加されたチタン酸鉛ペーストをもとに形成されているため、応力緩和層における金属陽イオンやハロゲン陰イオンの移動度を低下させることができる。その結果、正負極の短絡までの時間を長くでき、高温下での絶縁劣化を防止し耐久性の向上が可能となる。   As described above, since the stress relaxation layer is formed on the basis of the lead titanate paste to which the hardening element for increasing the insulation resistance is added, the mobility of the metal cation and the halogen anion in the stress relaxation layer is lowered. be able to. As a result, it is possible to lengthen the time until the positive and negative electrodes are short-circuited, prevent insulation deterioration at high temperatures, and improve durability.

(2)また、本発明の圧電素子は、前記ハード化元素が、マンガン、鉄、クロムまたはタングステンであることを特徴としている。これにより、応力緩和層の絶縁抵抗を高くすることでマイグレーションの原因となる金属陽イオンやハロゲン陰イオンの移動度を低下できる。   (2) Moreover, the piezoelectric element of the present invention is characterized in that the hardening element is manganese, iron, chromium, or tungsten. Thereby, by increasing the insulation resistance of the stress relaxation layer, the mobility of metal cations and halogen anions that cause migration can be reduced.

(3)また、本発明の圧電素子は、前記内部電極層が、白金もしくはパラジウムなどのイオン化傾向の低い金属により形成されていることを特徴としている。このように、銀等に比べてイオン化傾向の低い例えば白金もしくはパラジウムを用いることで、内部電極層におけるマイグレーションを防止できる。   (3) Further, the piezoelectric element of the present invention is characterized in that the internal electrode layer is formed of a metal having a low ionization tendency such as platinum or palladium. Thus, migration in the internal electrode layer can be prevented by using, for example, platinum or palladium, which has a lower ionization tendency than silver or the like.

(4)また、本発明の圧電素子の作製方法は、電圧の印加により伸縮する積層型の圧電素子の作製方法であって、圧電セラミックスを含むグリーンシートに、導電性材料を含む内部電極層ペーストおよび絶縁抵抗を高めるハード化元素が添加されたチタン酸鉛を含む応力緩和層ペーストを塗布する工程と、前記グリーンシートを積層して成形体を生成する工程と、前記成形体を焼成する工程と、を含むことを特徴としている。   (4) A method for manufacturing a piezoelectric element according to the present invention is a method for manufacturing a stacked piezoelectric element that expands and contracts by application of a voltage, and includes an internal electrode layer paste including a conductive material on a green sheet including piezoelectric ceramics. And a step of applying a stress relaxation layer paste containing lead titanate added with a hardening element that increases insulation resistance, a step of stacking the green sheets to form a molded body, and a step of firing the molded body It is characterized by including.

これにより、応力緩和層の絶縁抵抗を高め、応力緩和層における金属陽イオンやハロゲン陰イオンの移動度を低下させて正負極の短絡までの時間を長くできる。その結果、内部電極層と応力緩和層の双方のマイグレーションを防止した高温下での使用に好適な圧電素子を作製できる。   Thereby, the insulation resistance of the stress relaxation layer can be increased, the mobility of metal cations and halogen anions in the stress relaxation layer can be lowered, and the time until the positive and negative electrodes are short-circuited can be increased. As a result, it is possible to produce a piezoelectric element suitable for use at high temperatures in which migration of both the internal electrode layer and the stress relaxation layer is prevented.

本発明によれば、金属陽イオンやハロゲン陰イオンの移動度を低下させ、正負極の短絡までの時間を長くすることで、応力緩和層におけるマイグレーションを防止できる。   According to the present invention, migration in the stress relaxation layer can be prevented by reducing the mobility of metal cations and halogen anions and increasing the time until the positive and negative electrodes are short-circuited.

(a)〜(c)それぞれ本発明に係る圧電素子を示す斜視図および各平断面図である。(A)-(c) It is a perspective view and each plane sectional view showing a piezoelectric element concerning the present invention, respectively.

次に、本発明の実施の形態について、図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(圧電素子の構成)
図1(a)〜(c)は、それぞれ圧電素子100を示す斜視図、応力緩和層140の位置の各平断面図である。圧電素子100は、電圧の印加により伸縮する積層型の圧電素子であり、圧電体層110と内部電極層120とが積層方向Zについて交互に積層され、矩形体に形成されている。
(Configuration of piezoelectric element)
FIGS. 1A to 1C are a perspective view showing the piezoelectric element 100 and a plan sectional view of the stress relaxation layer 140, respectively. The piezoelectric element 100 is a stacked piezoelectric element that expands and contracts when a voltage is applied, and the piezoelectric layers 110 and the internal electrode layers 120 are alternately stacked in the stacking direction Z and formed into a rectangular body.

圧電体層110は、例えばPZTのような圧電セラミックスで構成され、それぞれの厚み方向の互い違いの向きに分極されている。内部電極層120は、対向する側面上で外部電極130に取り出されており、隣り合う内部電極層120に異なる電圧を印加できるように形成されている。内部電極層120へ電圧を印加することで各圧電体層110が歪み、圧電素子全体が伸縮する。   The piezoelectric layer 110 is made of, for example, piezoelectric ceramics such as PZT, and is polarized in alternate directions in the respective thickness directions. The internal electrode layer 120 is taken out to the external electrode 130 on the opposite side surface, and is formed so that different voltages can be applied to the adjacent internal electrode layers 120. By applying a voltage to the internal electrode layer 120, each piezoelectric layer 110 is distorted and the entire piezoelectric element expands and contracts.

圧電素子100は、積層方向Zの両端部に設けられた保護層と電圧の印加により駆動する活性層とに区分できる。さらに、活性層は、内部電極層120の積層方向Zへの投影が重なり合う中央の活性領域と内部電極層120が外部とショートしないように設けられた周囲の領域とに区分できる。活性領域は、圧電素子100において実際に駆動する領域である。活性領域は電圧により駆動するが、その周囲の領域は、電圧の印加により変形しないため応力が生じる。   The piezoelectric element 100 can be divided into a protective layer provided at both ends in the stacking direction Z and an active layer driven by application of voltage. Furthermore, the active layer can be divided into a central active region where projections in the stacking direction Z of the internal electrode layer 120 overlap and a peripheral region provided so that the internal electrode layer 120 does not short-circuit with the outside. The active region is a region that is actually driven in the piezoelectric element 100. The active region is driven by voltage, but the surrounding region is not deformed by the application of voltage, and stress is generated.

圧電素子100は、応力緩和層140を有している。図1(b)、(c)に示すように、応力緩和層140は、内部電極層120の取り出し部が設けられた向きにより軸対称に設けられている。応力緩和層140は、隣合う2つの側面に沿って断面L字形状に設けられており、応力緩和層140を外周全面に設けないため耐マイグレーション性が向上している。   The piezoelectric element 100 has a stress relaxation layer 140. As shown in FIGS. 1B and 1C, the stress relaxation layer 140 is provided in an axisymmetric manner depending on the direction in which the extraction portion of the internal electrode layer 120 is provided. The stress relaxation layer 140 is provided in an L-shaped cross section along two adjacent side surfaces, and migration resistance is improved because the stress relaxation layer 140 is not provided on the entire outer periphery.

応力緩和層140は、活性領域の周囲の領域に形成されている。応力緩和層140は、絶縁性を有し、内部電極層120と同一積層面(積層方向に垂直な平面)に沿って素子外周145に接して設けられている。   The stress relaxation layer 140 is formed in a region around the active region. The stress relaxation layer 140 has an insulating property, and is provided in contact with the element outer periphery 145 along the same stacked surface as the internal electrode layer 120 (a plane perpendicular to the stacking direction).

このように、応力緩和層140は、活性領域の周囲に設けられており、その結果、圧電素子100の駆動により生じる応力を分散させ、駆動時の応力を緩和することができる。なお、応力緩和層140を内部電極層120と同一面に形成するため、応力緩和のための不活性層を設ける必要がなくなり、その分圧電体層110を有効に活用できる。   As described above, the stress relaxation layer 140 is provided around the active region. As a result, the stress generated by driving the piezoelectric element 100 can be dispersed and the stress during driving can be relaxed. Since the stress relaxation layer 140 is formed on the same surface as the internal electrode layer 120, it is not necessary to provide an inactive layer for stress relaxation, and the piezoelectric layer 110 can be used effectively correspondingly.

応力緩和層140は、絶縁抵抗を高めるハード化元素が添加されたチタン酸鉛の粉末で形成されている。これにより、応力緩和層140で金属陽イオンやハロゲン陰イオンの移動度を低下させることができる。その結果、正負極の短絡までの時間を長くでき、絶縁劣化を防止できる。ハード化元素には、マンガン、鉄、クロム、タングステンが含まれる。上記の元素のうちハード化元素としては特にマンガンが好ましい。なお、応力緩和層140には、ハード化元素が添加されたチタン酸鉛の粉末が脱離し、空隙になっている部分が含まれていてもよい。   The stress relaxation layer 140 is formed of lead titanate powder to which a hardening element that increases insulation resistance is added. Thereby, the mobility of a metal cation or a halogen anion can be reduced by the stress relaxation layer 140. As a result, it is possible to lengthen the time until the positive and negative electrodes are short-circuited, and prevent insulation deterioration. Hardening elements include manganese, iron, chromium, and tungsten. Of the above elements, manganese is particularly preferred as the hardening element. In addition, the stress relaxation layer 140 may include a portion in which the lead titanate powder to which the hardening element is added is detached to form a void.

(圧電素子の製造方法)
次に、上記のように構成された圧電素子100の製造方法について説明する。まず、圧電セラミックスを含むスラリーを用い、引き上げ成形、ドクターブレード成形、押出成形等の方法によってグリーンシートを形成する。
(Piezoelectric element manufacturing method)
Next, a method for manufacturing the piezoelectric element 100 configured as described above will be described. First, using a slurry containing piezoelectric ceramic, a green sheet is formed by a method such as pulling, doctor blade, or extrusion.

グリーンシートには、導電性材料を含む内部電極層120用および絶縁抵抗を高めるハード化元素が添加されたチタン酸鉛の粉末を含む応力緩和層140用のパターンをスクリーン印刷等により塗布する。   The green sheet is coated with a pattern for the internal electrode layer 120 containing a conductive material and for the stress relaxation layer 140 containing a lead titanate powder to which a hardening element for increasing insulation resistance is added by screen printing or the like.

内部電極層120用としては電極ペーストを塗布し、その後、乾燥させて焼成前電極膜を形成する。また、内部電極層120用には、白金、パラジウム、銀パラジウム合金等のペーストを用いることができる。特に、100℃を超えるような高温で用いられる圧電素子では、温度が高いことでマイグレーションが加速される。これに対しては内部電極層120として白金もしくはパラジウムを用いることが好ましい。銀パラジウム合金の内部電極では銀イオン(Ag+)がマイグレーションを生じやすく、イオン化傾向の低い白金もしくはパラジウムの方がマイグレーションを生じ難い。 For the internal electrode layer 120, an electrode paste is applied and then dried to form a pre-fired electrode film. For the internal electrode layer 120, a paste of platinum, palladium, silver palladium alloy or the like can be used. In particular, in a piezoelectric element used at a high temperature exceeding 100 ° C., migration is accelerated due to the high temperature. For this, it is preferable to use platinum or palladium as the internal electrode layer 120. Silver ions (Ag + ) are likely to cause migration in the silver-palladium alloy internal electrode, and platinum or palladium having a lower ionization tendency is less likely to cause migration.

応力緩和層140としてハード化元素が添加されたチタン酸鉛のペーストを塗布する。チタン酸鉛は、圧電素子100の焼成温度過程では焼結しない材料(非焼結材料)である。このようなチタン酸鉛のペーストは、ハード化元素が添加されたチタン酸鉛の粉末、バインダ、可塑剤および有機溶剤を所定の割合で混合して得られる。例えば、バインダにはエチルセルロース、可塑剤にはフタル酸ジオクチル、有機溶剤にはブチルカルビトールが挙げられる。   A lead titanate paste to which a hardening element is added is applied as the stress relaxation layer 140. Lead titanate is a material that does not sinter during the firing temperature of the piezoelectric element 100 (non-sintered material). Such a lead titanate paste is obtained by mixing lead titanate powder, a binder, a plasticizer, and an organic solvent to which a hardening element is added at a predetermined ratio. For example, ethyl cellulose is used as the binder, dioctyl phthalate is used as the plasticizer, and butyl carbitol is used as the organic solvent.

次に、電極膜およびチタン酸鉛膜が形成された複数のグリーンシートを積層し、プレス成形した後、加熱して、グリーンシート、電極ペーストおよびチタン酸鉛ペースト中の有機成分を脱脂する。有機成分は加熱によって分解され気体となってグリーンシートやペースト膜から抜ける。   Next, a plurality of green sheets on which the electrode film and the lead titanate film are formed are laminated, press-molded, and then heated to degrease the organic components in the green sheet, the electrode paste, and the lead titanate paste. The organic component is decomposed by heating to become a gas and escapes from the green sheet or paste film.

このようにして脱脂された積層体を焼成する。このとき、チタン酸鉛ペーストを塗布した箇所には応力緩和層140が形成される。これにより、応力緩和層の絶縁抵抗を高め、応力緩和層における金属陽イオンやハロゲン陰イオンの移動度を低下させることができる。その結果、圧電素子のマイグレーションによる絶縁劣化を防止できる。   The laminated body thus degreased is fired. At this time, the stress relaxation layer 140 is formed at the location where the lead titanate paste is applied. As a result, the insulation resistance of the stress relaxation layer can be increased, and the mobility of metal cations and halogen anions in the stress relaxation layer can be reduced. As a result, it is possible to prevent insulation deterioration due to migration of the piezoelectric element.

ハード化元素が添加されたチタン酸鉛の粉末は、圧電素子100の焼成温度では焼結せずに粉末として残留するが、その一部が脱離して空隙となってもよい。焼成後に適宜加工することで分極前の焼成体が得られる。そして、焼結体を積層方向Zの端面で接着して多連化し、多連化した焼成体を分極処理することで、ポジショナ用アクチュエータを作製できる。   The lead titanate powder to which the hardening element is added does not sinter at the firing temperature of the piezoelectric element 100 but remains as a powder, but a part thereof may be detached to form a void. By appropriately processing after firing, a fired body before polarization is obtained. And the actuator for positioners can be produced by adhere | attaching a sintered compact on the end surface of the lamination direction Z, and making a multiple connection, and polarization-treating the fired body which made the multiple connection.

なお、上記の実施形態では、圧電アクチュエータに用いられる圧電素子100を説明しているが、本発明は必ずしもこのような形態に限定されない。また、圧電素子は矩形体に限らず様々な形態をとりうる。   In the above embodiment, the piezoelectric element 100 used for the piezoelectric actuator is described, but the present invention is not necessarily limited to such a form. Further, the piezoelectric element is not limited to a rectangular body and can take various forms.

(実施例、比較例)
実施例として、グリーンシートにハード化元素が添加されたチタン酸鉛の粉末を含むペーストを応力緩和層用のパターンとして塗布して上記の図1(a)〜(c)に示されるような圧電素子をした。また、比較例として、ハード化元素が添加されていないチタン酸鉛の粉末を含むペーストを応力緩和層用のパターンとして塗布して圧電素子(応力緩和層の材料以外は同じ形態)を作製した。
(Examples and comparative examples)
As an example, a paste including a lead titanate powder added with a hardening element to a green sheet is applied as a pattern for a stress relaxation layer, and the piezoelectric as shown in FIGS. 1 (a) to 1 (c). Made the element. As a comparative example, a paste containing lead titanate powder to which no hardening element was added was applied as a pattern for a stress relaxation layer to produce a piezoelectric element (the same form except for the material of the stress relaxation layer).

これらの圧電素子を分極処理した素子単体に対して、それぞれ85℃、90%RH中で連続駆動させ、所定時間経過後に150VをDCで印加して絶縁抵抗を試験した。試験では、10MΩ以下となったときに絶縁不良と判定した。その結果、実施例では60時間、絶縁抵抗が維持されたところで絶縁不良が生じたが、比較例では12時間の維持で絶縁不良が生じた。   These piezoelectric elements were individually driven at 85 ° C. and 90% RH, and the insulation resistance was tested by applying 150 V with DC after a predetermined time. In the test, it was determined that the insulation was poor when it was 10 MΩ or less. As a result, in the example, insulation failure occurred when the insulation resistance was maintained for 60 hours, but in the comparative example, insulation failure occurred in 12 hours.

次に、それぞれの圧電素子を複数個作製し、これらを多連化し、キャップで封止して分極処理することで圧電アクチュエータを作製した。実施例および比較例のそれぞれの圧電アクチュエータを同じ120℃の条件下で連続駆動し、それらにDCで150Vを印加して絶縁抵抗を試験したところ、実施例では絶縁不良が生じるまで730日間、絶縁抵抗が維持されたが、比較例では240日で絶縁不良が生じた。以上の実験結果により、ハード化元素が添加されたチタン酸鉛の粉末で応力緩和層を形成した圧電素子の方が絶縁不良を生じ難いことが実証された。   Next, a plurality of each of the piezoelectric elements were manufactured, and these were connected in series, sealed with a cap, and subjected to polarization treatment to manufacture a piezoelectric actuator. Each of the piezoelectric actuators of the example and the comparative example was continuously driven under the same 120 ° C. condition, and the insulation resistance was tested by applying 150 V to them. In the example, the insulation was conducted for 730 days until an insulation failure occurred. Although the resistance was maintained, insulation failure occurred in 240 days in the comparative example. From the above experimental results, it was demonstrated that the piezoelectric element in which the stress relaxation layer is formed of the lead titanate powder to which the hardening element is added is less likely to cause insulation failure.

100 圧電素子
110 圧電体層
120 内部電極層
130 外部電極
140 応力緩和層
145 素子外周
Z 積層方向
DESCRIPTION OF SYMBOLS 100 Piezoelectric element 110 Piezoelectric layer 120 Internal electrode layer 130 External electrode 140 Stress relaxation layer 145 Element outer periphery Z Lamination direction

Claims (4)

電圧の印加により伸縮する積層型の圧電素子であって、
圧電セラミックスで形成された圧電体層と、
前記圧電体層と交互に積層された内部電極層と、
絶縁抵抗を高めるハード化元素を添加されたチタン酸鉛ペーストが焼成されることで形成され、前記内部電極層と同一積層面に沿って素子外周に接して設けられた応力緩和層と、を備えることを特徴とする圧電素子。
A laminated piezoelectric element that expands and contracts by application of voltage,
A piezoelectric layer formed of piezoelectric ceramic;
Internal electrode layers alternately stacked with the piezoelectric layers;
A stress relaxation layer formed by firing a lead titanate paste added with a hardening element that increases insulation resistance, and provided in contact with the outer periphery of the element along the same laminated surface as the internal electrode layer; A piezoelectric element characterized by that.
前記ハード化元素は、マンガン、鉄、クロムまたはタングステンであることを特徴とする請求項1記載の圧電素子。   The piezoelectric element according to claim 1, wherein the hardening element is manganese, iron, chromium, or tungsten. 前記内部電極層は、白金またはパラジウムにより形成されていることを特徴とする請求項1または請求項2記載の圧電素子。   The piezoelectric element according to claim 1, wherein the internal electrode layer is made of platinum or palladium. 電圧の印加により伸縮する積層型の圧電素子の作製方法であって、
圧電セラミックスを含むグリーンシートに、導電性材料を含む内部電極層ペーストおよび絶縁抵抗を高めるハード化元素が添加されたチタン酸鉛を含む応力緩和層ペーストを塗布する工程と、
前記グリーンシートを積層して成形体を生成する工程と、
前記成形体を焼成する工程と、を含むことを特徴とする圧電素子の作製方法。
A method for producing a laminated piezoelectric element that expands and contracts by applying a voltage,
Applying an internal electrode layer paste containing a conductive material and a stress relaxation layer paste containing lead titanate to which a hardening element for increasing insulation resistance is added to a green sheet containing piezoelectric ceramics;
Laminating the green sheets to produce a molded body;
And a step of firing the molded body.
JP2013058856A 2013-03-21 2013-03-21 Piezoelectric element and manufacturing method therefor Pending JP2014187061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013058856A JP2014187061A (en) 2013-03-21 2013-03-21 Piezoelectric element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013058856A JP2014187061A (en) 2013-03-21 2013-03-21 Piezoelectric element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2014187061A true JP2014187061A (en) 2014-10-02

Family

ID=51834396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013058856A Pending JP2014187061A (en) 2013-03-21 2013-03-21 Piezoelectric element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2014187061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978635B2 (en) 2015-10-09 2021-04-13 Ngk Spark Plug Co., Ltd. Piezoelectric element, piezoelectric actuator and piezoelectric transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053349A (en) * 1991-06-25 1993-01-08 Onoda Cement Co Ltd Laminated piezo-electric actuator and its manufacture
DE102006024958A1 (en) * 2006-05-29 2007-12-06 Siemens Ag Piezo-actuator for controlling of valve, particularly inject valve of internal-combustion engine, has stack with piezo-ceramic layers and safety layer is arranged in stack, where safety layer has phase transition material
JP2009200359A (en) * 2008-02-22 2009-09-03 Denso Corp Laminated piezoelectric element
JP2011510506A (en) * 2008-01-23 2011-03-31 エプコス アクチエンゲゼルシャフト Piezoelectric multilayer components
JP2012028411A (en) * 2010-07-20 2012-02-09 Taiheiyo Cement Corp Piezoelectric element and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053349A (en) * 1991-06-25 1993-01-08 Onoda Cement Co Ltd Laminated piezo-electric actuator and its manufacture
DE102006024958A1 (en) * 2006-05-29 2007-12-06 Siemens Ag Piezo-actuator for controlling of valve, particularly inject valve of internal-combustion engine, has stack with piezo-ceramic layers and safety layer is arranged in stack, where safety layer has phase transition material
JP2011510506A (en) * 2008-01-23 2011-03-31 エプコス アクチエンゲゼルシャフト Piezoelectric multilayer components
JP2009200359A (en) * 2008-02-22 2009-09-03 Denso Corp Laminated piezoelectric element
JP2012028411A (en) * 2010-07-20 2012-02-09 Taiheiyo Cement Corp Piezoelectric element and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978635B2 (en) 2015-10-09 2021-04-13 Ngk Spark Plug Co., Ltd. Piezoelectric element, piezoelectric actuator and piezoelectric transformer

Similar Documents

Publication Publication Date Title
KR101620296B1 (en) Stack type piezoelectric ceramic element
JP2006203070A (en) Lamination piezoelectric element
JP2005108989A (en) Stacked piezoelectric element and method for manufacturing same
JP6306698B2 (en) Multilayer device and method for manufacturing a multilayer device
JP2014187061A (en) Piezoelectric element and manufacturing method therefor
JP4670260B2 (en) Multilayer electronic components
JPH10241993A (en) Laminated ceramic electronic component
JP2013197250A (en) Piezoelectric element, manufacturing method therefor and manufacturing method of piezoelectric actuator
JP2008243924A (en) Laminated type piezoelectric actuator element and laminated type piezoelectric actuator
JP5792529B2 (en) Piezoelectric element
JP6259194B2 (en) Piezoelectric element
JP5409703B2 (en) Manufacturing method of multilayer piezoelectric actuator
JP6300255B2 (en) Piezoelectric element, piezoelectric actuator and piezoelectric transformer
JP5643561B2 (en) Piezoelectric element and manufacturing method thereof
JP2015050289A (en) Piezoelectric element
JPH0387076A (en) Piezoelectric actuator and manufacture thereof
JP2007266468A (en) Laminated piezoelectric element
JP6226451B2 (en) Piezoelectric element and piezoelectric actuator
JPH0476969A (en) Electrostrictive effect element
JP6898167B2 (en) Laminated piezoelectric element
JP2005005656A (en) Ceramic laminating type electromechanical converting element, and manufacturing method thereof
JP2012028410A (en) Piezoelectric element and manufacturing method thereof
JP2017188628A (en) Piezoelectric element, manufacturing method thereof, and piezoelectric actuator
JP2010287589A (en) Laminated ceramic actuator, and method of manufacturing the same
JP4373904B2 (en) Multilayer piezoelectric element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024