JP2012028410A - Piezoelectric element and manufacturing method thereof - Google Patents

Piezoelectric element and manufacturing method thereof Download PDF

Info

Publication number
JP2012028410A
JP2012028410A JP2010163191A JP2010163191A JP2012028410A JP 2012028410 A JP2012028410 A JP 2012028410A JP 2010163191 A JP2010163191 A JP 2010163191A JP 2010163191 A JP2010163191 A JP 2010163191A JP 2012028410 A JP2012028410 A JP 2012028410A
Authority
JP
Japan
Prior art keywords
stress relaxation
piezoelectric element
outer periphery
piezoelectric
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010163191A
Other languages
Japanese (ja)
Other versions
JP5635319B2 (en
Inventor
Kazumasa Asumi
一将 阿隅
Kenji Kumamoto
憲二 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2010163191A priority Critical patent/JP5635319B2/en
Publication of JP2012028410A publication Critical patent/JP2012028410A/en
Application granted granted Critical
Publication of JP5635319B2 publication Critical patent/JP5635319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric element capable of reducing the defective rate in a manufacturing process of a product utilizing a piezoelectric element and also relaxing the stress inside of the piezoelectric element during driving and a method of manufacturing the same.SOLUTION: A piezoelectric element 100 in which piezoelectric layers 110 and internal electrodes are alternately stacked and which expands and contracts by applying a voltage includes a plurality of stress relaxation layers 150 that relax the stress caused by driving and are formed in contact with an outer periphery on a series of cross-sections vertical to a stacking direction Z around an active region 145 where projections of the internal electrodes in the stacking direction Z overlap. The length of each of the stress relaxation layers 150 along the outer periphery is shorter than the length of one side of the outer periphery. With this configuration, the stress relaxation layers 150 can reduce the stress applied in the piezoelectric element 100 when stress is generated by expansion and contraction of the piezoelectric element 100, and thus the destruction of the piezoelectric element 100 can be prevented. In addition, as the length of each of the stress relaxation layers 150 is shorter than that of one side of the outer periphery, the stress relaxation layers 150 do not cause the destruction and defects hardly occur.

Description

本発明は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子およびその製造方法に関し、特に発生する応力の緩和に関する。   The present invention relates to a piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by application of a voltage, and a method for manufacturing the same, and particularly relates to relaxation of generated stress.

圧電素子は、圧電セラミックスと電極を積層した構造を有している。電圧を印加した時に活性な部分は変形するが、不活性な部分は変形しない。そのため、素子内部で応力が発生する。   The piezoelectric element has a structure in which piezoelectric ceramics and electrodes are laminated. When a voltage is applied, the active part is deformed, but the inactive part is not deformed. Therefore, stress is generated inside the element.

このような応力を緩和する方法の一つに、応力緩和層を設ける方法が知られている(たとえば特許文献1、2参照)。特許文献1、2には、変位させたときに圧電的に不活性な部分に発生する応力を緩和する応力緩和層が、内部電極と同一面上で内部電極の周囲を囲うように配置されている圧電素子が開示されている。   As one of methods for relieving such stress, a method of providing a stress relieving layer is known (see, for example, Patent Documents 1 and 2). In Patent Documents 1 and 2, a stress relaxation layer that relieves stress generated in a piezoelectrically inactive portion when displaced is arranged so as to surround the internal electrode on the same plane as the internal electrode. A piezoelectric element is disclosed.

図9は、このような従来の圧電素子1000の(a)斜視図、(b)(c)断面図、(d)使用後の斜視図である。圧電素子1000の断面は、応力緩和層1050は、内部電極1020の周囲を囲うように配置されている。外部電極1030に電圧を印加すると、応力緩和層1050により圧電素子の変形で発生した応力が緩和される。   FIG. 9 is a (a) perspective view, (b) (c) cross-sectional view, and (d) a perspective view after use of such a conventional piezoelectric element 1000. In the cross section of the piezoelectric element 1000, the stress relaxation layer 1050 is arranged so as to surround the internal electrode 1020. When a voltage is applied to the external electrode 1030, the stress generated by the deformation of the piezoelectric element is relaxed by the stress relaxation layer 1050.

特許2994492号公報Japanese Patent No. 2994492 特許2951129号公報Japanese Patent No. 2951129

しかし、図9(d)に示すように焼成時に応力緩和層1080が必要以上に開くことがある。応力緩和層1080は、材料力学的な欠陥となり、横方向の荷重に対して破壊の起点となりうる。特に圧電素子1000の角部分が荷重に弱い。また、一体焼成によって形成された応力緩和層1050の場合、応力緩和層1050が不均一になることが多く、応力緩和層1050の角の部分に応力が集中し破壊しやすい。そのため、積層方向に垂直の方向の力に対して弱く、圧電素子を利用した製品の製造工程では折損等の不良が発生する場合がある。   However, as shown in FIG. 9D, the stress relaxation layer 1080 may open more than necessary during firing. The stress relaxation layer 1080 becomes a material mechanical defect, and can become a starting point of destruction with respect to a lateral load. In particular, the corners of the piezoelectric element 1000 are vulnerable to load. In the case of the stress relaxation layer 1050 formed by integral firing, the stress relaxation layer 1050 is often non-uniform, and stress concentrates on the corner portions of the stress relaxation layer 1050 and is easily broken. Therefore, it is weak against the force in the direction perpendicular to the stacking direction, and defects such as breakage may occur in the manufacturing process of products using piezoelectric elements.

本発明は、このような事情に鑑みてなされたものであり、圧電素子を利用した製品の製造工程で不良率を低減し、駆動時には内部の応力を緩和できる圧電素子およびその製造方法を提供すること目的とする。   The present invention has been made in view of such circumstances, and provides a piezoelectric element capable of reducing a defect rate in a manufacturing process of a product using a piezoelectric element and relieving internal stress during driving, and a method for manufacturing the same. It is intended.

(1)上記の目的を達成するため、本発明の圧電素子は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子であって、内部電極の積層方向への投影が重なり合う活性領域の周囲において積層方向に垂直な一連の断面上で外周に接して形成され、駆動による応力を緩和する複数の応力緩和層を備え、前記各応力緩和層の外周に沿った長さは、外周の一辺より短いことを特徴としている。   (1) In order to achieve the above object, the piezoelectric element of the present invention is a piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by application of voltage, and the internal electrodes are projected in the stacking direction. A plurality of stress relaxation layers that are formed in contact with the outer periphery on a series of cross-sections perpendicular to the stacking direction around the overlapping active region, and have a length along the outer periphery of each of the stress relaxation layers. Is characterized by being shorter than one side of the outer periphery.

これにより、圧電素子の伸縮により応力が発生した場合、応力緩和層により圧電素子内にかかる応力を低減させ、圧電素子の破壊を防ぐことができる。その一方で、応力緩和層が外周の一辺より短いため、応力緩和層が破壊の起点とならず不良が生じ難い。   Thereby, when a stress is generated due to expansion and contraction of the piezoelectric element, the stress applied in the piezoelectric element can be reduced by the stress relaxation layer, and the destruction of the piezoelectric element can be prevented. On the other hand, since the stress relaxation layer is shorter than one side of the outer periphery, the stress relaxation layer does not serve as a starting point of breakdown and hardly causes a failure.

(2)また、本発明の圧電素子は、前記複数の応力緩和層が、前記積層方向に投影して得られる投影領域の総和が連続していることを特徴としている。これにより、応力が局所的に集中して発生するのを防止し、応力を一様に緩和することができる。   (2) In addition, the piezoelectric element of the present invention is characterized in that the total sum of projected areas obtained by projecting the plurality of stress relaxation layers in the stacking direction is continuous. Thereby, it can prevent that stress concentrates locally and can relieve stress uniformly.

(3)また、本発明の圧電素子は、前記応力緩和層が形成された一連の断面のうち、隣り合う断面上で最も近い応力緩和層同士の間で、前記応力緩和層の前記積層方向への投影領域が互いに重なることを特徴としている。これにより、積層方向に生じる応力を効率的に緩和することができる。   (3) In the piezoelectric element of the present invention, the stress relaxation layers are arranged in the stacking direction between the stress relaxation layers closest to each other in a series of cross sections on which the stress relaxation layers are formed. The projected areas overlap each other. Thereby, the stress which arises in the lamination direction can be relieved efficiently.

(4)また、本発明の圧電素子は、前記各応力緩和層の外周に沿った長さと外周の一辺の長さの比が、12.5%以上33%以下であることを特徴としている。これにより、適当に応力の緩和と機械的な強度のバランスをとり、圧電素子の機能を維持しつつ、不良を防止することができる。   (4) Further, the piezoelectric element of the present invention is characterized in that a ratio of the length along the outer periphery of each stress relaxation layer to the length of one side of the outer periphery is 12.5% or more and 33% or less. As a result, it is possible to prevent defects while appropriately balancing stress relaxation and mechanical strength and maintaining the function of the piezoelectric element.

(5)また、本発明の圧電素子の製造方法は、圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子の製造方法であって、圧電セラミックスのグリーンシートに電極ペーストおよび所定の焼成温度過程では焼結しない非焼結材料を印刷する工程と、前記印刷が施されたグリーンシート含め、圧電セラミックスのグリーンシートを積層して圧着する工程と、前記圧着により得られた成形体を脱脂、焼成する工程と、前記焼成された焼成体を分極処理する工程と、を含み、前記非焼結材料は、焼成体となったときに、内部電極の積層方向への投影が重なり合う活性領域の周囲において外周の一辺より短い領域を占め、かつ前記外周に接するように印刷されることを特徴としている。これにより、内部にかかるストレスを低減させ、破壊され難い圧電素子を製造できる。   (5) A method for manufacturing a piezoelectric element according to the present invention is a method for manufacturing a piezoelectric element in which piezoelectric layers and internal electrodes are alternately stacked and expands and contracts by application of a voltage, and the electrode paste is applied to a green sheet of piezoelectric ceramics. And a step of printing a non-sintered material that does not sinter in a predetermined firing temperature process, a step of laminating and pressing a piezoelectric ceramic green sheet including the printed green sheet, and the pressure bonding. A step of degreasing and firing the molded body, and a step of polarizing the fired fired body. When the non-sintered material becomes a fired body, the projection of the internal electrodes in the stacking direction is performed. It is characterized in that it is printed so as to occupy an area shorter than one side of the outer periphery around the overlapping active area and to touch the outer periphery. Thereby, the stress concerning an inside can be reduced and the piezoelectric element which cannot be destroyed easily can be manufactured.

本発明によれば、圧電素子を利用した製品の製造工程で不良率を低減し、駆動時には内部の応力を緩和できる。   According to the present invention, it is possible to reduce a defect rate in a manufacturing process of a product using a piezoelectric element and relieve internal stress during driving.

本発明に係る圧電素子を示す斜視図である。It is a perspective view which shows the piezoelectric element which concerns on this invention. (a)(b)本発明に係る圧電素子を示す透視図である。(A) (b) It is a perspective view which shows the piezoelectric element which concerns on this invention. (a)(b)本発明に係る圧電素子を示す平断面図である。(A) (b) It is a plane sectional view showing the piezoelectric element concerning the present invention. グリーンシートを示す斜視図である。It is a perspective view which shows a green sheet. 本発明に係る圧電素子を示す斜視図である。It is a perspective view which shows the piezoelectric element which concerns on this invention. 従来の圧電素子の(a1)、(a2)斜視図、(b1)、(b2)断面図、(c1)、(c2)断面図である。(A1), (a2) perspective view, (b1), (b2) sectional view, (c1), (c2) sectional view of a conventional piezoelectric element. 本発明に係る圧電素子の(a1)〜(a3)斜視図、(b1)〜(b3)断面図、(c1)〜(c3)断面図である。It is (a1)-(a3) perspective view, (b1)-(b3) sectional drawing, (c1)-(c3) sectional drawing of the piezoelectric element which concerns on this invention. 本発明に係る圧電素子の(a4)、(a5)斜視図、(b4)、(b5)断面図、(c4)、(c5)断面図である。(A4), (a5) perspective view, (b4), (b5) sectional view, (c4), (c5) sectional view of the piezoelectric element according to the present invention. 従来の圧電素子の(a)斜視図、(b)断面図、(c)断面図、(d)斜視図である。It is (a) perspective view, (b) sectional view, (c) sectional view, (d) perspective view of a conventional piezoelectric element.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

(圧電素子の構成)
図1は、圧電素子100を示す斜視図である。また、図2(a)、(b)は、いずれも圧電素子100を示す透視図である。圧電素子100は、矩形に形成されている。圧電素子100は、圧電層110と内部電極120とが積層方向Zについて交互に積層され、圧電層110は厚み方向の互い違いの向きに分極されている。圧電層110は、たとえばPZTのような圧電材料で構成される。内部電極120は、対向する側面上で外部電極130に取り出されており、隣り合う内部電極120に異なる電圧を印加できるように形成されている。内部電極120へ電圧を印加することで各圧電層110が伸縮し、圧電素子全体が伸縮する。なお、圧電アクチュエータとして圧電素子100を説明しているが、本発明は必ずしもこれに限定されない。また、圧電素子100は矩形に限らず、様々な形態をとりうる。
(Configuration of piezoelectric element)
FIG. 1 is a perspective view showing the piezoelectric element 100. 2A and 2B are perspective views showing the piezoelectric element 100. FIG. The piezoelectric element 100 is formed in a rectangular shape. In the piezoelectric element 100, the piezoelectric layers 110 and the internal electrodes 120 are alternately stacked in the stacking direction Z, and the piezoelectric layers 110 are polarized in alternate directions in the thickness direction. The piezoelectric layer 110 is made of a piezoelectric material such as PZT. The internal electrode 120 is taken out to the external electrode 130 on the opposite side surface, and is formed so that a different voltage can be applied to the adjacent internal electrode 120. By applying a voltage to the internal electrode 120, each piezoelectric layer 110 expands and contracts, and the entire piezoelectric element expands and contracts. Although the piezoelectric element 100 has been described as a piezoelectric actuator, the present invention is not necessarily limited to this. Further, the piezoelectric element 100 is not limited to a rectangular shape, and can take various forms.

圧電素子100は、加工代として積層方向Zの両端部に設けられた保護層141、143と電圧の印加により駆動する活性層142とに区分できる。さらに、活性層142は、内部電極120の積層方向Zへの投影が重なり合う中央の活性領域145と内部電極120が外部とショートしないように設けられた周囲の領域146とに区分できる。活性領域145は、圧電素子100において実際に駆動する領域である。活性領域145は電圧により駆動するが、その周囲の領域146は、電圧の印加により変形せず応力が生じる。   The piezoelectric element 100 can be divided into protective layers 141 and 143 provided at both ends in the stacking direction Z as processing allowances and an active layer 142 driven by application of voltage. Further, the active layer 142 can be divided into a central active region 145 where projections of the internal electrodes 120 in the stacking direction Z overlap and a surrounding region 146 provided so that the internal electrodes 120 do not short-circuit with the outside. The active region 145 is a region that is actually driven in the piezoelectric element 100. The active region 145 is driven by voltage, but the surrounding region 146 is not deformed by the application of voltage, and stress is generated.

応力緩和層150は、活性領域145の周囲の領域146において区切られて複数形成されている。また、各応力緩和層150は、積層方向Zに垂直な一連の断面上で外周に接している。その結果、応力を外に逃がし、圧電素子100の駆動による応力を緩和することができる。   A plurality of stress relaxation layers 150 are formed in a region 146 around the active region 145 so as to be partitioned. Each stress relaxation layer 150 is in contact with the outer periphery on a series of cross sections perpendicular to the stacking direction Z. As a result, the stress is released to the outside, and the stress caused by driving the piezoelectric element 100 can be relaxed.

また、各応力緩和層150の外周に沿った長さWrは、外周の一辺(側面の幅)の長さWより短く、応力緩和層150は、積層方向Zに垂直な断面上で細かく区切られた領域として複数存在している。これにより、焼成の結果、応力緩和層150が外部に対して開いても、不良として破壊の起点とはなり難い。   The length Wr along the outer periphery of each stress relaxation layer 150 is shorter than the length W of one side (side width) of the outer periphery, and the stress relaxation layer 150 is finely divided on a cross section perpendicular to the stacking direction Z. Multiple areas exist. As a result, even if the stress relaxation layer 150 is opened to the outside as a result of firing, it is unlikely to be a starting point of failure as a failure.

図2(b)に示すように、複数の応力緩和層150は積層方向Zに垂直な断面147上の活性領域の周囲に断続的に存在している。そして、応力緩和層150の間で、圧電層が繋がっている領域160は3次元的に連続しているため、圧電素子100は機械的な強度を保つことができる。各応力緩和層150の外周に沿った長さWrと外周一辺の長さWの比は、12.5%以上33%以下であることが好ましい。これにより、応力緩和層150は破壊の起点になりにくくなり、応力緩和の効果と機械的な強度のバランスを適切に実現できる。   As shown in FIG. 2B, the plurality of stress relaxation layers 150 are intermittently present around the active region on the cross section 147 perpendicular to the stacking direction Z. Since the region 160 where the piezoelectric layers are connected between the stress relaxation layers 150 is three-dimensionally continuous, the piezoelectric element 100 can maintain mechanical strength. The ratio between the length Wr along the outer periphery of each stress relaxation layer 150 and the length W of one side of the outer periphery is preferably 12.5% or more and 33% or less. As a result, the stress relaxation layer 150 is less likely to be a starting point of fracture, and the balance between the stress relaxation effect and the mechanical strength can be appropriately realized.

図2(b)は、応力緩和層150とその積層方向Zの投影を示している。図2(b)示すように、複数の応力緩和層150を積層方向Zに投影して得られる投影領域の総和の領域170は連続している。積層方向Zに垂直な一つの断面147については各応力緩和層150が占める領域は断続的であるが、複数の断面についての投影を重ねた総和の領域170は連続している。   FIG. 2B shows a projection of the stress relaxation layer 150 and its stacking direction Z. As shown in FIG. 2B, the total area 170 of the projection areas obtained by projecting the plurality of stress relaxation layers 150 in the stacking direction Z is continuous. Regarding one cross section 147 perpendicular to the stacking direction Z, the area occupied by each stress relaxation layer 150 is intermittent, but the total area 170 obtained by superimposing projections on a plurality of cross sections is continuous.

また、応力緩和層150が形成された積層方向に連なる一連の断面のうち、隣り合う断面上で最も近い応力緩和層同士の間では、応力緩和層150積層方向Zへの投影領域が互いに重なっている。たとえば、隣り合う断面の投影の重なり領域の長さdは応力緩和層150の長さWrに対して、d/Wrが0.1以上になるように設計されていることが好ましい。これにより、複数の応力緩和層150が断続的に設けられていても十分に応力が緩和される。なお、図1には隣り合う断面の投影の重なり領域の長さd、応力緩和層の長さWr、外周一辺の長さWが示されている。   In addition, among a series of cross sections that are continuous in the stacking direction in which the stress relaxation layer 150 is formed, projection regions in the stacking direction Z of the stress relaxation layer 150 overlap each other between the stress relaxation layers that are closest to each other on adjacent cross sections. Yes. For example, the length d of the overlapping region of the projections of adjacent cross sections is preferably designed so that d / Wr is 0.1 or more with respect to the length Wr of the stress relaxation layer 150. Thereby, even if the several stress relaxation layer 150 is provided intermittently, stress is fully relieved. FIG. 1 shows the length d of the overlapping region of adjacent cross-sectional projections, the length Wr of the stress relaxation layer, and the length W of one side of the outer periphery.

図3(a)(b)は、圧電素子100を示す平断面図である。いずれも内部電極120が設けられている断面を示した図である。図3(a)(b)に示すように中央に内部電極120が設けられており、その周囲の領域に応力緩和層150および圧電体が繋がっている領域160が交互に設けられている。なお、図中では応力緩和層150の領域を密度の薄い点描パターンで示している。   3A and 3B are plan sectional views showing the piezoelectric element 100. FIG. Each is a view showing a cross section in which the internal electrode 120 is provided. As shown in FIGS. 3A and 3B, an internal electrode 120 is provided at the center, and regions 160 where the stress relaxation layers 150 and the piezoelectric bodies are connected are alternately provided in the surrounding region. In the figure, the region of the stress relaxation layer 150 is indicated by a low-density pointillistic pattern.

(圧電素子の製造方法)
次に、上記のように構成された圧電素子100の製造方法について説明する。まず、圧電体を含むスラリーを用い、引き上げ成形、ドクターブレード成形、押出成形等の方法によってグリーンシートを形成する。
(Piezoelectric element manufacturing method)
Next, a method for manufacturing the piezoelectric element 100 configured as described above will be described. First, using a slurry containing a piezoelectric body, a green sheet is formed by a method such as pulling molding, doctor blade molding, or extrusion molding.

図4は圧電素子の製造工程の一部を示す斜視図である。図4に示すような圧電体のグリーンシート200を準備し、グリーンシート200には内部電極120用および応力緩和層150用のパターンをスクリーン印刷等により塗布する。内部電極120用として電極ペースト(Ag−Pd合金等)を塗布し、その後、乾燥させて焼成前電極膜を形成する。   FIG. 4 is a perspective view showing a part of the manufacturing process of the piezoelectric element. A piezoelectric green sheet 200 as shown in FIG. 4 is prepared, and a pattern for the internal electrode 120 and the stress relaxation layer 150 is applied to the green sheet 200 by screen printing or the like. An electrode paste (Ag—Pd alloy or the like) is applied for the internal electrode 120 and then dried to form a pre-fired electrode film.

そして、さらに応力緩和層150用として非焼結材料(チタン酸鉛等)のペーストを塗布する。非焼結材料は、圧電素子100の焼成温度過程では焼結しない材料である。非焼結材料のペーストは、非焼結材料の粉末、バインダ、可塑剤および有機溶剤を所定の割合で混合して得られる。たとえば、非焼結材料にはチタン酸鉛、バインダにはエチルセルロース、可塑剤にはフタル酸ジオクチル、有機溶剤にはブチルカルビトールが挙げられる。なお、非焼結材料にはカーボン等、焼成時に焼き飛んで応力緩和層150を形成するものが含まれる。   Further, a paste of a non-sintered material (such as lead titanate) is applied for the stress relaxation layer 150. The non-sintered material is a material that does not sinter during the firing temperature process of the piezoelectric element 100. The non-sintered material paste is obtained by mixing a non-sintered material powder, a binder, a plasticizer, and an organic solvent in a predetermined ratio. For example, the non-sintered material includes lead titanate, the binder includes ethyl cellulose, the plasticizer includes dioctyl phthalate, and the organic solvent includes butyl carbitol. The non-sintered material includes a material such as carbon that burns out during firing to form the stress relaxation layer 150.

非焼結材料のペーストは、電極ペーストを塗布した領域220の周囲で細かく区切られた領域に塗布される。非焼結材料のペーストが印刷された各領域250は、焼成体となったときに、外周の一辺より短く、かつ外周に接するように設ける。   The paste of non-sintered material is applied to a region finely divided around the region 220 to which the electrode paste is applied. Each region 250 on which the paste of the non-sintered material is printed is provided so as to be shorter than one side of the outer periphery and in contact with the outer periphery when it becomes a fired body.

次に、電極膜および非焼結材料膜が形成された複数のグリーンシートを積層し、プレス成形した後、加熱して、グリーンシート、電極ペーストおよび非焼結材料ペースト中の有機成分を脱脂する。有機成分は加熱によって分解され気体となってグリーンシートやペースト膜から抜ける。   Next, a plurality of green sheets on which an electrode film and a non-sintered material film are formed are laminated, press-molded, and then heated to degrease the organic components in the green sheet, the electrode paste, and the non-sintered material paste. . The organic component is decomposed by heating to become a gas and escapes from the green sheet or paste film.

このようにして脱脂された積層体を焼成する。このとき、非焼結材料は焼結せず、非焼結材料を塗布した箇所には応力緩和層150が形成される。そして、焼結体を適宜加工し、加工された複数の焼結体を積層方向に接着して多連化する。多連化された焼成体に分極処理を行い、キャップを被せることで圧電素子100が多連化されたポジショナ用アクチュエータを作製できる。   The laminated body thus degreased is fired. At this time, the non-sintered material is not sintered, and the stress relaxation layer 150 is formed at the location where the non-sintered material is applied. Then, the sintered body is appropriately processed, and a plurality of processed sintered bodies are bonded in the stacking direction to be multiple. An actuator for a positioner in which the piezoelectric elements 100 are connected in series can be manufactured by performing polarization treatment on the fired bodies that are connected in series and covering the caps.

また、圧電素子100は、焼成の結果、応力緩和層150が必要以上に開く場合がある。図5は、一部の応力緩和層の開いた圧電素子100を示す斜視図である。図5に示すような圧電素子100の若干数の応力緩和層180は外部に向かって大きく開口している。しかし、図9に示すような応力緩和層1080とは異なり、外周の一辺に対して応力緩和層の長さが小さいため、開いた応力緩和層180は破壊の起点とならない。   In addition, as a result of firing, the piezoelectric element 100 may open the stress relaxation layer 150 more than necessary. FIG. 5 is a perspective view showing the piezoelectric element 100 with some stress relaxation layers open. Some of the stress relaxation layers 180 of the piezoelectric element 100 as shown in FIG. However, unlike the stress relaxation layer 1080 as shown in FIG. 9, since the length of the stress relaxation layer is small with respect to one side of the outer periphery, the opened stress relaxation layer 180 does not serve as a starting point of destruction.

それぞれ応力緩和層の長さの異なる設計で、複数種の焼成体を作製し、それぞれのタイプについて6個の焼成体を積層方向の端面を接着して多連化した。そして、多連化された焼成体を分極してキャップを被せて、得られたポジショナの変位量を測定し、工程上の不良率を記録した。   A plurality of types of fired bodies were produced with designs having different stress relaxation layer lengths, and six fired bodies for each type were bonded in multiple layers by adhering end faces in the stacking direction. Then, the fired bodies that were serialized were polarized and covered with a cap, and the displacement amount of the obtained positioner was measured, and the defect rate in the process was recorded.

(比較例1、2)
図6(a1)〜(a2)、(b1)〜(b2)、(c1)〜(c2)は、それぞれ比較例1および比較例2を示す斜視図、左側面取り出し電極位置の断面図、右側面取り出し電極位置の断面図である。比較例1の圧電素子1100は、内部電極1120の周囲全体に連続した応力緩和層1150を有している。応力緩和層1150は、応力緩和層長さ対側面長さ比が1となるように設けられている。その他の構成は、上記の実施形態と同様である。このような圧電素子1100を変位方向に接着し多連化してポジショナを作製した。そして、変位量を測定し、接着工程での不良率を記録した。
(Comparative Examples 1 and 2)
6 (a1) to (a2), (b1) to (b2), and (c1) to (c2) are perspective views showing Comparative Example 1 and Comparative Example 2, respectively, a cross-sectional view of a left side extraction electrode position, and a right side It is sectional drawing of a surface extraction electrode position. The piezoelectric element 1100 of Comparative Example 1 has a continuous stress relaxation layer 1150 around the entire periphery of the internal electrode 1120. The stress relaxation layer 1150 is provided so that the ratio of the stress relaxation layer length to the side surface length is 1. Other configurations are the same as those in the above embodiment. Such a piezoelectric element 1100 was bonded in the displacement direction to form a multiple positioner. And the amount of displacement was measured and the defective rate in the adhesion process was recorded.

一方、比較例2の圧電素子1200は、内部電極1220の周囲の2辺に連続した応力緩和層1150を有している。応力緩和層1150は、応力緩和層長さ対側面長さ比が0.9となるように設けられている。その他の構成は、上記の実施形態と同様である。このような圧電素子1200についても接着工程による多連化を行い、ポジショナを作製した。そして、変位量を測定し、接着工程での不良率を記録した。   On the other hand, the piezoelectric element 1200 of Comparative Example 2 has a stress relaxation layer 1150 continuous on two sides around the internal electrode 1220. The stress relaxation layer 1150 is provided so that the ratio of the stress relaxation layer length to the side surface length is 0.9. Other configurations are the same as those in the above embodiment. Such a piezoelectric element 1200 was also subjected to multiple connection by an adhesion process to produce a positioner. And the amount of displacement was measured and the defective rate in the adhesion process was recorded.

(実施例1〜5)
図7(a1)〜(a3)、(b1)〜(b3)、(c1)〜(c3)、図8(a4)〜(a5)、(b4)〜(b5)、(c4)〜(c5)は、それぞれ実施例1〜5の斜視図、左側面取り出し電極位置の断面図、右側面取り出し電極位置の断面図である。
(Examples 1-5)
7 (a1) to (a3), (b1) to (b3), (c1) to (c3), FIGS. 8 (a4) to (a5), (b4) to (b5), (c4) to (c5) ) Are a perspective view of Examples 1 to 5, a cross-sectional view of a left side extraction electrode position, and a cross-sectional view of a right side extraction electrode position, respectively.

実施例1の圧電素子300は、内部電極320の周囲に複数の応力緩和層350を有している。応力緩和層350は、応力緩和層長さ対側面長さ比が12.5%となるように設けられている。また、応力緩和層350が設けられた隣接する断面同士では応力緩和層350の積層方向の投影は重ならず、互い違いに配置されている。その他の構成は、上記の実施形態と同様である。このような圧電素子300を複数作製し、変位方向に接着し多連化してポジショナを作製した。そして、変位量を測定し、接着工程での不良率を記録した。   The piezoelectric element 300 according to the first embodiment includes a plurality of stress relaxation layers 350 around the internal electrode 320. The stress relaxation layer 350 is provided so that the ratio of the stress relaxation layer length to the side surface length is 12.5%. Further, adjacent cross-sections provided with the stress relaxation layers 350 do not overlap in the stacking direction of the stress relaxation layers 350 and are alternately arranged. Other configurations are the same as those in the above embodiment. A plurality of such piezoelectric elements 300 were manufactured, and bonded in the displacement direction to form multiple positioners. And the amount of displacement was measured and the defective rate in the adhesion process was recorded.

実施例2の圧電素子400は、内部電極420の周囲に複数の応力緩和層450を有している。応力緩和層450は、応力緩和層長さ対側面長さ比が25%となるように設けられている。また、応力緩和層450が設けられた隣接する断面同士では応力緩和層450の積層方向の投影は重ならず、互い違いに配置されている。その他の構成は、上記の実施形態と同様である。このような圧電素子400を複数作製し、変位方向に接着し多連化してポジショナを作製した。そして、変位量を測定し、接着工程での不良率を記録した。   The piezoelectric element 400 of Example 2 has a plurality of stress relaxation layers 450 around the internal electrode 420. The stress relaxation layer 450 is provided so that the ratio of the stress relaxation layer length to the side surface length is 25%. In addition, the adjacent cross-sections provided with the stress relaxation layers 450 are arranged in a staggered manner without overlapping the projections in the stacking direction of the stress relaxation layers 450. Other configurations are the same as those in the above embodiment. A plurality of such piezoelectric elements 400 were produced, adhered in the displacement direction, and connected in multiples to produce a positioner. And the amount of displacement was measured and the defective rate in the adhesion process was recorded.

実施例3の圧電素子500は、内部電極520の周囲に複数の応力緩和層550を有している。応力緩和層550は、応力緩和層長さ対側面長さ比が33%となるように設けられている。また、応力緩和層550が設けられた隣接する断面同士では応力緩和層550の積層方向の投影は重ならず、互い違いに配置されている。その他の構成は、上記の実施形態と同様である。このような圧電素子500を複数作製し、変位方向に接着し多連化してポジショナを作製した。そして、変位量を測定し、接着工程での不良率を記録した。   The piezoelectric element 500 of Example 3 has a plurality of stress relaxation layers 550 around the internal electrode 520. The stress relaxation layer 550 is provided so that the stress relaxation layer length to side length ratio is 33%. In addition, the adjacent cross sections provided with the stress relaxation layers 550 are arranged in a staggered manner without overlapping the projections in the stacking direction of the stress relaxation layers 550. Other configurations are the same as those in the above embodiment. A plurality of such piezoelectric elements 500 were manufactured, adhered in the displacement direction, and connected in multiples to prepare a positioner. And the amount of displacement was measured and the defective rate in the adhesion process was recorded.

実施例4の圧電素子600は、内部電極620の周囲に複数の応力緩和層650を有している。応力緩和層650は、応力緩和層長さ対側面長さ比が17%となるように設けられている。また、応力緩和層650が設けられた隣接する断面同士では応力緩和層650の積層方向の投影は17%重なるよう配置されている。その他の構成は、上記の実施形態と同様である。このような圧電素子600を複数作製し、変位方向に接着し多連化してポジショナを作製した。そして、変位量を測定し、接着工程での不良率を記録した。   The piezoelectric element 600 of Example 4 has a plurality of stress relaxation layers 650 around the internal electrode 620. The stress relaxation layer 650 is provided so that the ratio of the stress relaxation layer length to the side surface length is 17%. Further, the adjacent cross sections provided with the stress relaxation layer 650 are arranged so that the projections in the stacking direction of the stress relaxation layer 650 overlap each other by 17%. Other configurations are the same as those in the above embodiment. A plurality of such piezoelectric elements 600 were produced, adhered in the displacement direction, and connected in multiples to produce a positioner. And the amount of displacement was measured and the defective rate in the adhesion process was recorded.

実施例5の圧電素子700は、内部電極720の周囲に複数の応力緩和層750を有している。応力緩和層750は、応力緩和層長さ対側面長さ比が19%となるように設けられている。また、応力緩和層750が設けられた隣接する断面同士では応力緩和層750の積層方向の投影は25%重なるよう配置されている。その他の構成は、上記の実施形態と同様である。このような圧電素子700を複数作製し、変位方向に接着し多連化してポジショナを作製した。そして、変位量を測定し、接着工程での不良率を記録した。   The piezoelectric element 700 of Example 5 has a plurality of stress relaxation layers 750 around the internal electrode 720. The stress relaxation layer 750 is provided such that the ratio of the stress relaxation layer length to the side surface length is 19%. Further, the adjacent cross sections provided with the stress relaxation layer 750 are arranged so that the projections in the stacking direction of the stress relaxation layer 750 overlap each other by 25%. Other configurations are the same as those in the above embodiment. A plurality of such piezoelectric elements 700 were manufactured, and bonded in the displacement direction to form multiple positioners. And the amount of displacement was measured and the defective rate in the adhesion process was recorded.

表1は、比較例1、2および実施例1〜5について応力緩和層の形状および配置と、変位量の比率、接着工程の不良率を示している。

Figure 2012028410
Table 1 shows the shape and arrangement of the stress relaxation layer, the ratio of the amount of displacement, and the defective rate of the bonding process for Comparative Examples 1 and 2 and Examples 1 to 5.
Figure 2012028410

接着工程の不良の主な原因は、焼成体の接着後の作業中に折れる不良である。比較例1、2では、接着工程において不良がそれぞれ0.5%、0.25%発生した。これに対し、実施例1〜5のように、応力緩和層長さを側面長さの33%以下にすることで、接着工程における不良率が0.1%未満となり、不良がほとんど無くなった。さらに応力緩和層長さを側面長さの25%以下に設計したところ接着工程で折れる不良はなくなった。   The main cause of the defect in the bonding process is a defect that breaks during the work after bonding the fired body. In Comparative Examples 1 and 2, defects occurred 0.5% and 0.25%, respectively, in the bonding process. On the other hand, as in Examples 1 to 5, by setting the stress relaxation layer length to 33% or less of the side length, the defect rate in the bonding process was less than 0.1%, and defects were almost eliminated. Furthermore, when the stress relaxation layer length was designed to be 25% or less of the side surface length, there were no defects broken in the bonding process.

比較例1のポジショナの変位量を100%としたときの変位量を測定した。比較例2、実施例3、実施例5の変位量は、比較例1のものとほぼ同じで100%であった。実施例1では5%程度、実施例2と実施例4では2%程度変位量が小さくなった。これは、応力緩和層を短くした場合、応力緩和層がない部分の拘束によって変位が阻害されているためと考えられる。   The displacement amount when the displacement amount of the positioner of Comparative Example 1 was taken as 100% was measured. The displacement amounts of Comparative Example 2, Example 3, and Example 5 were almost the same as those of Comparative Example 1 and were 100%. In Example 1, the amount of displacement was reduced by about 5%, and in Examples 2 and 4, the amount of displacement was reduced by about 2%. This is considered to be because when the stress relaxation layer is shortened, the displacement is hindered by the restraint of the portion where there is no stress relaxation layer.

一方、実施例5については隣合う断面の応力緩和層の投影を積層方向に重ねることで上述の拘束が緩和でき、変位が阻害されなくなったものと考えられる。これにより、応力緩和層が形成された一連の断面のうち、隣り合う断面上で最も近い応力緩和層同士の間では、応力緩和層の積層方向への投影領域が互いに重なる。そのため、接着工程での不良率低減のみならず、変位量も確保されていることが考えられる。   On the other hand, in Example 5, it is considered that the above-described constraint can be relaxed by projecting the stress relaxation layers of adjacent cross sections in the stacking direction, and the displacement is not hindered. Thereby, the projection area | region to the lamination direction of a stress relaxation layer mutually overlaps between the stress relaxation layers nearest on an adjacent cross section among a series of cross sections in which the stress relaxation layer was formed. Therefore, it is conceivable that not only the defective rate is reduced in the bonding process, but also the amount of displacement is secured.

このように、応力緩和層長さ対側面長さを12.5%以上、33%以下とすることで不良率を低減することができることを確認できた。また、重なり長さ対応力緩和長さを25%以上とすることで十分な変位量を確保できることを確認できた。   Thus, it has been confirmed that the defect rate can be reduced by setting the stress relaxation layer length to the side surface length to 12.5% or more and 33% or less. It was also confirmed that a sufficient amount of displacement could be ensured by setting the overlap length corresponding force relaxation length to 25% or more.

100、300、400、500、600、700 圧電素子
110 圧電層
120、320、420、520、620、720 内部電極
130 外部電極
141 保護層
142 活性層
145 活性領域
146 周囲の領域
147 断面
150、350、450、550、650、750 応力緩和層
160 圧電体が繋がっている領域
170 投影領域の総和の領域
180 開いた応力緩和層
200 グリーンシート
220 電極ペーストを塗布した領域
250 非焼結材料のペーストが印刷された各領域
Z 積層方向
100, 300, 400, 500, 600, 700 Piezoelectric element 110 Piezoelectric layer 120, 320, 420, 520, 620, 720 Internal electrode 130 External electrode 141 Protective layer 142 Active layer 145 Active region 146 Surrounding region 147 Cross section 150, 350 , 450, 550, 650, 750 Stress relaxation layer 160 Area where piezoelectric bodies are connected 170 Total area of projection area 180 Open stress relaxation layer 200 Green sheet 220 Area where electrode paste is applied 250 Paste of non-sintered material Each printed area Z Lamination direction

Claims (5)

圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子であって、
内部電極の積層方向への投影が重なり合う活性領域の周囲において積層方向に垂直な一連の断面上で外周に接して形成され、駆動による応力を緩和する複数の応力緩和層を備え、
前記各応力緩和層の外周に沿った長さは、外周の一辺より短いことを特徴とする圧電素子。
Piezoelectric elements in which piezoelectric layers and internal electrodes are alternately stacked and expand and contract by application of voltage,
Provided with a plurality of stress relaxation layers formed in contact with the outer periphery on a series of cross sections perpendicular to the stacking direction around the active region where the projections in the stacking direction of the internal electrodes overlap,
The length along the outer periphery of each said stress relaxation layer is shorter than one side of an outer periphery, The piezoelectric element characterized by the above-mentioned.
前記複数の応力緩和層は、前記積層方向に投影して得られる投影領域の総和が連続していることを特徴とする請求項1記載の圧電素子。   2. The piezoelectric element according to claim 1, wherein the plurality of stress relaxation layers have a total sum of projection areas obtained by projecting in the stacking direction. 前記応力緩和層が形成された一連の断面のうち、隣り合う断面上で最も近い応力緩和層同士の間では、前記応力緩和層の前記積層方向への投影領域が互いに重なることを特徴とする請求項1または請求項2記載の圧電素子。   The projected regions of the stress relaxation layers in the stacking direction overlap each other between the stress relaxation layers closest to each other in a series of cross sections in which the stress relaxation layers are formed. Item 3. The piezoelectric element according to item 1 or 2. 前記各応力緩和層の外周に沿った長さと外周の一辺の長さの比は、12.5%以上33%以下であることを特徴とする請求項1から請求項3のいずれかに記載の圧電素子。   The ratio of the length along the outer periphery of each of the stress relaxation layers and the length of one side of the outer periphery is 12.5% or more and 33% or less, according to any one of claims 1 to 3. Piezoelectric element. 圧電層と内部電極とが交互に積層され、電圧の印加により伸縮する圧電素子の製造方法であって、
圧電セラミックスのグリーンシートに電極ペーストおよび所定の焼成温度過程では焼結しない非焼結材料を印刷する工程と、
前記印刷が施されたグリーンシート含め、圧電セラミックスのグリーンシートを積層して圧着する工程と、
前記圧着により得られた成形体を脱脂、焼成する工程と、
前記焼成された焼成体を分極処理する工程と、を含み、
前記非焼結材料は、焼成体となったときに、内部電極の積層方向への投影が重なり合う活性領域の周囲において外周の一辺より短い領域を占め、かつ前記外周に接するように印刷されることを特徴とする圧電素子の製造方法。
Piezoelectric layers and internal electrodes are alternately stacked, and a piezoelectric element manufacturing method that expands and contracts by applying a voltage,
Printing an electrode paste and a non-sintered material that does not sinter in a predetermined firing temperature process on a piezoelectric ceramic green sheet;
Including the green sheet on which the printing has been performed, a step of laminating and pressing the piezoelectric ceramic green sheet; and
Degreasing and firing the molded body obtained by the pressure bonding; and
A step of polarizing the fired fired body,
When the non-sintered material becomes a fired body, the non-sintered material is printed so as to occupy a region shorter than one side of the outer periphery around the active region where the projections in the stacking direction of the internal electrodes overlap, and touch the outer periphery. A method of manufacturing a piezoelectric element characterized by the above.
JP2010163191A 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof Expired - Fee Related JP5635319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163191A JP5635319B2 (en) 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163191A JP5635319B2 (en) 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012028410A true JP2012028410A (en) 2012-02-09
JP5635319B2 JP5635319B2 (en) 2014-12-03

Family

ID=45781030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163191A Expired - Fee Related JP5635319B2 (en) 2010-07-20 2010-07-20 Piezoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5635319B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009303A1 (en) * 2012-07-09 2014-01-16 Continental Automotive Gmbh Piezoelectric multilayer actuator and injection valve
JP2015050289A (en) * 2013-08-30 2015-03-16 太平洋セメント株式会社 Piezoelectric element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379460U (en) * 1989-12-05 1991-08-13
JP2007157849A (en) * 2005-12-01 2007-06-21 Denso Corp Manufacturing method of stacked piezoelectric element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379460U (en) * 1989-12-05 1991-08-13
JP2007157849A (en) * 2005-12-01 2007-06-21 Denso Corp Manufacturing method of stacked piezoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009303A1 (en) * 2012-07-09 2014-01-16 Continental Automotive Gmbh Piezoelectric multilayer actuator and injection valve
JP2015050289A (en) * 2013-08-30 2015-03-16 太平洋セメント株式会社 Piezoelectric element

Also Published As

Publication number Publication date
JP5635319B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JPH04214686A (en) Electrostrictive effect element
JP6236089B2 (en) Multilayer capacitor and method for manufacturing multilayer capacitor
JP5635319B2 (en) Piezoelectric element and manufacturing method thereof
JP5878130B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP5135674B2 (en) Multilayer piezoelectric element
JP5643561B2 (en) Piezoelectric element and manufacturing method thereof
JP2016021437A (en) Multilayer capacitor and method for manufacturing the same
JP5792529B2 (en) Piezoelectric element
JP6274393B2 (en) Piezoelectric element
JP2013197250A (en) Piezoelectric element, manufacturing method therefor and manufacturing method of piezoelectric actuator
JP6047317B2 (en) Piezoelectric element
JP6047358B2 (en) Multiplexed element and manufacturing method thereof
JP6226451B2 (en) Piezoelectric element and piezoelectric actuator
JP5409703B2 (en) Manufacturing method of multilayer piezoelectric actuator
JP4359873B2 (en) Ceramic laminated electromechanical transducer and method for manufacturing the same
JPH02237083A (en) Laminated piezoelectric element
JP2013077636A (en) Piezoelectric element
JP5859755B2 (en) Piezoelectric element
JP2007266468A (en) Laminated piezoelectric element
JP5604251B2 (en) Piezoelectric element
JP5650365B2 (en) Piezoelectric transformer
JP2009016617A (en) Stacked piezoelectric element
JP5768229B2 (en) Piezoelectric element and manufacturing method thereof
JP2017188628A (en) Piezoelectric element, manufacturing method thereof, and piezoelectric actuator
JP6259194B2 (en) Piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5635319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees