JP5135674B2 - Multilayer piezoelectric element - Google Patents

Multilayer piezoelectric element Download PDF

Info

Publication number
JP5135674B2
JP5135674B2 JP2005297181A JP2005297181A JP5135674B2 JP 5135674 B2 JP5135674 B2 JP 5135674B2 JP 2005297181 A JP2005297181 A JP 2005297181A JP 2005297181 A JP2005297181 A JP 2005297181A JP 5135674 B2 JP5135674 B2 JP 5135674B2
Authority
JP
Japan
Prior art keywords
electrode
electrode lead
piezoelectric element
piezoelectric
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005297181A
Other languages
Japanese (ja)
Other versions
JP2007109754A (en
Inventor
裕人 川口
洋 長谷川
達夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005297181A priority Critical patent/JP5135674B2/en
Publication of JP2007109754A publication Critical patent/JP2007109754A/en
Application granted granted Critical
Publication of JP5135674B2 publication Critical patent/JP5135674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、積層圧電素子に関し、更に詳しくは、圧電体の表面に内部電極が形成された圧電素子を複数積層してなり、奇数層の圧電素子の内部電極と偶数層の圧電素子の内部電極とに各々形成され、これらの内部電極を外部電極に接続するための電極引出し部を備えた積層圧電素子に関する。   The present invention relates to a laminated piezoelectric element, and more specifically, a plurality of piezoelectric elements each having an internal electrode formed on the surface of a piezoelectric body are laminated, and an internal electrode of an odd-numbered piezoelectric element and an internal electrode of an even-numbered piezoelectric element And a laminated piezoelectric element having an electrode lead portion for connecting these internal electrodes to external electrodes.

積層圧電素子は、図15に示すように、圧電体1の表面に内部電極2が形成された圧電素子を複数積層してなり、奇数層の圧電素子の内部電極と偶数層の圧電素子の内部電極との間に電圧を印加することで、圧電体の逆圧電効果による歪みを発生させる。   As shown in FIG. 15, the laminated piezoelectric element is formed by laminating a plurality of piezoelectric elements each having an internal electrode 2 formed on the surface of the piezoelectric body 1, and the internal electrodes of the odd-numbered piezoelectric elements and the even-numbered piezoelectric elements. By applying a voltage between the electrodes, distortion due to the inverse piezoelectric effect of the piezoelectric body is generated.

図16Aは、積層圧電素子を用いた積層圧電バイモルフ3の概略斜視図である。この積層圧電バイモルフ素子3は、中間材4の表面および裏面に積層圧電素子5aおよび積層圧電素子5bをそれぞれ固着して構成されている。積層圧電素子5a,5bは、任意の電圧を加えたときに一方が伸び他方が縮むようにあらかじめ分極されている。そして、図16Bに示すように、積層圧電バイモルフ素子3の一端側を固定部6に固定し、任意の電圧を加えることで素子先端に屈曲変位を発生させることができる。   FIG. 16A is a schematic perspective view of a multilayer piezoelectric bimorph 3 using multilayer piezoelectric elements. The laminated piezoelectric bimorph element 3 is configured by adhering a laminated piezoelectric element 5a and a laminated piezoelectric element 5b to the front surface and the back surface of an intermediate material 4, respectively. The laminated piezoelectric elements 5a and 5b are polarized in advance so that when an arbitrary voltage is applied, one of them extends and the other contracts. Then, as shown in FIG. 16B, bending displacement can be generated at the tip of the element by fixing one end of the multilayered piezoelectric bimorph element 3 to the fixing portion 6 and applying an arbitrary voltage.

積層圧電素子は、上述のように、圧電層と電極層とが交互に積層された構造となっている。このような積層圧電素子の一般的な製法は、まず図17に示すように、圧電粉末と有機バインダ、有機溶剤等を混合したスラリー7をPET等の支持体8上にシート成形機9を用いて薄く成形する。次に、図18に示すように、この成形した圧電シート10の表面に電極ペースト材11をスクリーン印刷などにより形成する。続いて、図19に示すように内部電極となる電極ペースト材11を形成した圧電シート10を複数枚積み重ね、熱圧着した積層体12を作製する。そして、この積層体12を図20に示すように任意のサイズに切断し、脱脂によりバインダを熱分解した後、焼成を行うことで、所定形状の積層圧電素子13が作製される。   As described above, the laminated piezoelectric element has a structure in which piezoelectric layers and electrode layers are alternately laminated. As shown in FIG. 17, a general method for manufacturing such a laminated piezoelectric element is as follows. First, a slurry 7 in which piezoelectric powder, an organic binder, an organic solvent and the like are mixed is used on a support 8 such as PET using a sheet molding machine 9. And thinly mold. Next, as shown in FIG. 18, an electrode paste material 11 is formed on the surface of the formed piezoelectric sheet 10 by screen printing or the like. Subsequently, as shown in FIG. 19, a plurality of piezoelectric sheets 10 on which an electrode paste material 11 serving as an internal electrode is formed are stacked, and a laminated body 12 is produced by thermocompression bonding. Then, the laminated body 12 is cut into an arbitrary size as shown in FIG. 20, the binder is thermally decomposed by degreasing, and then fired to produce a laminated piezoelectric element 13 having a predetermined shape.

一方、積層圧電素子13の内部電極11は、向かい合う電極間に電位差を発生させるため、図21に示すように電気的に交互に接続させる必要がある。例えば、短冊形状のバイモルフ素子の場合でかつ素子の片側の端面から電極を引き出す必要がある場合、図22に示すように素子の端部に各々の電極を引き出すための電極引出し部14を形成する構造となる(下記特許文献1参照)。電極引出し部14の形成幅は、素子端面から見て、内部電極11の形成幅よりも小さく、かつ一様に形成されている。   On the other hand, the internal electrodes 11 of the laminated piezoelectric element 13 need to be electrically connected alternately as shown in FIG. 21 in order to generate a potential difference between the opposing electrodes. For example, in the case of a strip-shaped bimorph element and when it is necessary to pull out an electrode from one end face of the element, an electrode lead-out portion 14 for pulling out each electrode is formed at the end of the element as shown in FIG. It becomes a structure (see Patent Document 1 below). The formation width of the electrode lead-out portion 14 is smaller than the formation width of the internal electrode 11 as viewed from the end face of the element and is formed uniformly.

この場合、図23のように、奇数層の圧電素子の内部電極11Aと偶数層の圧電素子の内部電極11Bとで、その電極引出し部14A,14Bを互いに逆方向に片寄らせて形成し、これらを交互に重ねていく。そして、焼成後、素子の電極引出し側の端面には、電極引出し部14Aと電極引出し部14Bとに対し、それぞれ共通の外部電極が形成されることになる。   In this case, as shown in FIG. 23, the inner electrode 11A of the odd-numbered piezoelectric element and the inner electrode 11B of the even-numbered piezoelectric element are formed by offsetting the electrode lead portions 14A and 14B in the opposite directions. Are stacked alternately. After firing, a common external electrode is formed on each of the electrode lead-out portion 14A and the electrode lead-out portion 14B on the end face on the electrode lead-out side of the element.

特開2002−305331号公報JP 2002-305331 A

さて、圧電素子の焼成工程では、電極形成されている圧電層の収縮量が、電極形成されていない圧電層の収縮量よりも大きくなる傾向を示す。図24は、積層した電極パターンを上から見たときの図である。ハッチング領域P1は電極形成部であり、下層側の内部電極の電極引出し部14Aと上層側の内部電極11Bの電極引出し部14Bとの間に位置する領域P2は、電極非形成部である。   In the piezoelectric element firing step, the amount of contraction of the piezoelectric layer on which the electrode is formed tends to be larger than the amount of contraction of the piezoelectric layer on which no electrode is formed. FIG. 24 is a view of the stacked electrode pattern as viewed from above. The hatched region P1 is an electrode forming portion, and the region P2 located between the electrode leading portion 14A of the lower layer side internal electrode and the electrode leading portion 14B of the upper layer side internal electrode 11B is an electrode non-forming portion.

図24において、焼成時の収縮量は、P1>P2となる。これは、電極層の収縮による影響と、電極層の溶解により圧電焼結性が促進されより収縮し易くなる等の影響と考えられる。ちなみに、圧電素子の焼成過程での収縮は、寸法比として焼成前寸法の70%〜85%程度になり、電極形成部P1と電極非形成部P2の収縮差は、数%〜10%近くになる場合がある。   In FIG. 24, the shrinkage during firing is P1> P2. This is considered to be due to the influence of the contraction of the electrode layer and the influence that the piezoelectric sinterability is promoted by the dissolution of the electrode layer and the contraction becomes easier. Incidentally, the shrinkage in the firing process of the piezoelectric element is about 70% to 85% of the dimension before firing as a dimensional ratio, and the shrinkage difference between the electrode forming part P1 and the electrode non-forming part P2 is close to several% to 10%. There is a case.

このように、電極形成部P1と電極非形成部P2での圧電層の収縮に差が生じると、焼成過程や焼成後の冷却過程において収縮量の差による内部応力で素子の変形が発生し、収縮量の差が著しい時には素子の割れやヒビが発生したり、電極部の層間ショートが発生するおそれがある。   Thus, when there is a difference in the shrinkage of the piezoelectric layer between the electrode forming part P1 and the electrode non-forming part P2, the element is deformed due to internal stress due to the difference in shrinkage during the firing process and the cooling process after firing, When the difference in the amount of shrinkage is significant, there is a risk that the element will be cracked or cracked, or the interlayer short circuit of the electrode part may occur.

本発明は上述の問題に鑑みてなされ、圧電層上の電極形成部と電極非形成部との間の焼成時の収縮差に起因して発生する内部応力を緩和することができる電極形状を備えた積層圧電素子を提供することを課題とする。   The present invention has been made in view of the above-described problems, and has an electrode shape that can relieve internal stress generated due to a shrinkage difference during firing between an electrode forming portion and an electrode non-forming portion on a piezoelectric layer. It is an object of the present invention to provide a laminated piezoelectric element.

以上の課題を解決するに当たり、本発明者らは、各層の内部電極に形成される外部電極接続用の電極引出し部の形状を所定の形状に変更することで、焼成時における圧電層の電極形成部と電極非形成部間の収縮差に起因する内部応力の発生を抑制できることを見出した。   In solving the above problems, the present inventors changed the shape of the electrode lead-out portion for connecting the external electrode formed on the internal electrode of each layer to a predetermined shape, thereby forming the electrode of the piezoelectric layer during firing. It was found that the generation of internal stress due to the difference in shrinkage between the part and the electrode non-formed part can be suppressed.

すなわち、本発明は、圧電体の表面に内部電極が形成された圧電素子を複数積層してなり、各層の圧電素子の内部電極に各々形成され当該内部電極を外部電極に接続するための電極引出し部を当該素子の一端面に備えた積層圧電素子において、奇数層に位置する電極引出し部と偶数層に位置する電極引出し部とは、上記素子端面の幅方向に関し互いに異なる側に配置されているとともに、各層の電極引出し部の基端部間の内寸が、当該各層の電極引出し部の先端部間の内寸よりも小さく形成されている。   That is, the present invention comprises a plurality of piezoelectric elements each having an internal electrode formed on the surface of the piezoelectric body, and is formed on the internal electrode of each layer of the piezoelectric element and is connected to the external electrode. In the laminated piezoelectric element having a portion on one end face of the element, the electrode lead-out portion located in the odd-numbered layer and the electrode lead-out portion located in the even-numbered layer are arranged on different sides with respect to the width direction of the element end face. At the same time, the inner dimension between the base end portions of the electrode lead portions of each layer is formed smaller than the inner dimension between the tip portions of the electrode lead portions of the respective layers.

この構成により、圧電体の表面の電極形成部と電極非形成部との間の焼成時の収縮差に起因して発生する内部応力を緩和することができ、素子割れやヒビ、層間ショート等の発生を抑制することが可能となる。   With this configuration, the internal stress generated due to the shrinkage difference during firing between the electrode forming portion and the electrode non-forming portion on the surface of the piezoelectric body can be reduced, and element cracks, cracks, interlayer shorts, etc. Occurrence can be suppressed.

特に本発明において、各層の圧電素子の電極引出し部は、その先端部の形成幅よりも基端部の形成幅の方が大きくなるように形成されている。電極引出し部の基端部は、内部電極側に向かって形成幅が徐々に大きくなるように形成することができる。   In particular, in the present invention, the electrode lead-out portion of each layer of the piezoelectric element is formed such that the formation width of the base end portion is larger than the formation width of the tip end portion. The base end portion of the electrode lead-out portion can be formed so that the formation width gradually increases toward the internal electrode side.

具体的には、電極引出し部の基端部が傾斜部を介して内部電極と接続される構成としたり、電極引出し部の基端部が段部を介して内部電極と接続される構成とすることができる。   Specifically, the base end portion of the electrode lead portion is connected to the internal electrode via the inclined portion, or the base end portion of the electrode lead portion is connected to the internal electrode via the step portion. be able to.

上記圧電体と内部電極の積層体は、一端部が固定端とされ他端部が自由端とされたバイモルフ素子あるいはモノモルフ素子として用いることができる。この場合、各層の電極引出し部は、素子の固定端側に設けられるのが好ましい。   The laminated body of the piezoelectric body and the internal electrode can be used as a bimorph element or a monomorph element in which one end is a fixed end and the other end is a free end. In this case, it is preferable that the electrode lead-out portion of each layer is provided on the fixed end side of the element.

なお、本発明に係る積層圧電素子の適用例は上述の例に限らず、超音波発生素子や圧電トランス等にも適用可能である。   The application example of the laminated piezoelectric element according to the present invention is not limited to the above-described example, but can be applied to an ultrasonic wave generating element, a piezoelectric transformer, and the like.

以上述べたように、本発明の積層圧電素子によれば、圧電体の表面の電極形成部と電極非形成部との間の焼成時の収縮差に起因して発生する内部応力を効果的に緩和することができるので、素子割れやヒビ、層間ショート等の発生を抑制することが可能となる。   As described above, according to the multilayered piezoelectric element of the present invention, the internal stress generated due to the shrinkage difference during firing between the electrode forming portion and the electrode non-forming portion on the surface of the piezoelectric body is effectively reduced. Since it can be alleviated, it is possible to suppress the occurrence of element cracks, cracks, interlayer shorts, and the like.

以下、本発明の各実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1および図2は本発明の実施の形態による積層圧電素子23の構成を示している。この積層圧電素子23は、シート状の圧電体20の表面に内部電極21(21A,21B)が形成された圧電素子を複数積層して構成されている。各層の内部電極21は、それぞれ電極引出し部24(24A,24B)を介して素子表面に形成された外部電極25(25A,25B)に接続されている。
(First embodiment)
1 and 2 show the configuration of the laminated piezoelectric element 23 according to the embodiment of the present invention. The laminated piezoelectric element 23 is configured by laminating a plurality of piezoelectric elements in which internal electrodes 21 (21A, 21B) are formed on the surface of a sheet-like piezoelectric body 20. The internal electrodes 21 of each layer are connected to external electrodes 25 (25A, 25B) formed on the element surface via electrode lead portions 24 (24A, 24B), respectively.

電極引出し部24は、内部電極21と外部電極25との間を電気的に接続するためのものであり、その形成幅は内部電極21の形成幅よりも小さく、後述するように、内部電極21の形成工程と同時に形成される。電極引出し部24は、積層圧電素子23の一方の端面23F側に引き出され、外部電極25も同様に、圧電素子23の一方の端面23F側を跨ぐようにして形成されている。そして、本実施の形態の積層圧電素子23は、外部電極25に所定の電圧が印加されることで、一方の端面23Fを固定端とし、他方の端面23Vを自由端として振動させるバイモルフ素子として構成されている。   The electrode lead-out portion 24 is for electrically connecting the internal electrode 21 and the external electrode 25, and its formation width is smaller than the formation width of the internal electrode 21, and as will be described later, the internal electrode 21 It is formed simultaneously with the forming step. The electrode lead portion 24 is drawn out to the one end face 23F side of the multilayer piezoelectric element 23, and the external electrode 25 is also formed so as to straddle the one end face 23F side of the piezoelectric element 23. The laminated piezoelectric element 23 of the present embodiment is configured as a bimorph element that vibrates with one end face 23F as a fixed end and the other end face 23V as a free end when a predetermined voltage is applied to the external electrode 25. Has been.

そこで、本実施の形態の積層圧電素子23においては、各層の圧電素子の内部電極21に接続された電極引出し部24は、当該素子の固定端23Fの幅方向に関し互いに異なる側へ偏倚して形成されている。すなわち、図2に示したように、奇数層の圧電素子の内部電極21Aに接続された電極引出し部24Aと、偶数層の圧電素子の内部電極21Bに接続された電極引出し部24Bとは、互いに逆方向に片寄って形成されている。   Therefore, in the laminated piezoelectric element 23 of the present embodiment, the electrode lead portions 24 connected to the internal electrodes 21 of the piezoelectric elements of each layer are formed so as to be biased toward different sides with respect to the width direction of the fixed end 23F of the element. Has been. That is, as shown in FIG. 2, the electrode lead portion 24A connected to the internal electrode 21A of the odd-numbered piezoelectric element and the electrode lead portion 24B connected to the internal electrode 21B of the even-numbered piezoelectric element are mutually connected. It is formed to be offset in the opposite direction.

従って、この積層圧電素子23の固定端23F側から見て、奇数層の電極引出し部24Aは一方側(図1において左方側)に集中し、偶数層の電極引出し部24Bは他方側(図1において右方側)へ集中している。そして、外部電極25は、電極引出し部24Aに共通に接続された電極部25Aと、電極引出し部24Bに共通に接続された電極部25Bとによって構成されている。   Accordingly, when viewed from the fixed end 23F side of the laminated piezoelectric element 23, the odd-numbered electrode lead portions 24A are concentrated on one side (left side in FIG. 1), and the even-numbered electrode lead portions 24B are on the other side (see FIG. 1 on the right side). The external electrode 25 is configured by an electrode portion 25A commonly connected to the electrode lead portion 24A and an electrode portion 25B commonly connected to the electrode lead portion 24B.

次に、この積層圧電素子23の各層の圧電素子の電極引出し部24A,24Bは、外部電極25A,25B側の先端部の形成幅よりも内部電極21A,21B側の基端部の形成幅の方が大きく形成されている(図2)。特に本実施の形態では、電極引出し部24A,24Bの基端部は傾斜部24S,24Sを介して内部電極21A,21Bと接続されることで、内部電極21A,21B側に向かって形成幅が徐々に大きくなるように形成されている。   Next, the electrode lead-out portions 24A and 24B of the piezoelectric elements of each layer of the laminated piezoelectric element 23 have a formation width of the base end portion on the internal electrodes 21A and 21B side rather than the formation width of the distal end portion on the external electrodes 25A and 25B side. It is formed larger (FIG. 2). In particular, in the present embodiment, the base end portions of the electrode lead portions 24A and 24B are connected to the internal electrodes 21A and 21B via the inclined portions 24S and 24S, so that the formation width is increased toward the internal electrodes 21A and 21B. It is formed to gradually increase.

各層における電極引出し部24A,24Bの傾斜部24S,24Sは、図2に示したように奇数層側と偶数層側とで互いに向き合うように形成されている。その結果、この積層圧電素子23の各層の電極引出し部24A,24Bは、平面的に見て、図3Aに示すような関係となる。図においてハッチングで示した領域P1は電極形成領域であり、電極引出し部24Aと電極引出し部24Bとの間の領域P2は電極非形成領域である。   The inclined portions 24S, 24S of the electrode lead portions 24A, 24B in each layer are formed so as to face each other on the odd layer side and the even layer side as shown in FIG. As a result, the electrode lead portions 24A and 24B of each layer of the laminated piezoelectric element 23 have a relationship as shown in FIG. In the figure, a hatched region P1 is an electrode formation region, and a region P2 between the electrode lead portion 24A and the electrode lead portion 24B is an electrode non-formation region.

図3Aは、一方の電極引出し部24Aの傾斜面24Sと他方の電極引出し部24Bの傾斜面24Sとを各々の電極引出し部の基端部側で相互に交差させ、略V字形状の境界部をもつ電極非形成部P2を形成した例を示している。また、図3Bに示すように、一方の電極引出し部24の傾斜面24Sと他方の電極引出し部24Bの傾斜面24Sとを各々の電極引出し部の基端部側で相互に離間させ、略台形状の境界部をもつ電極非形成部P2としてもよい。この電極非形成部P2の電極形成領域P1に対する境界部の形状は、傾斜面24S,24Sの傾斜角によって調整可能である。   In FIG. 3A, the inclined surface 24S of one electrode lead portion 24A and the inclined surface 24S of the other electrode lead portion 24B cross each other at the base end side of each electrode lead portion, and a substantially V-shaped boundary portion The example which formed the electrode non-formation part P2 which has is shown. Further, as shown in FIG. 3B, the inclined surface 24S of one electrode lead portion 24 and the inclined surface 24S of the other electrode lead portion 24B are separated from each other on the base end side of each electrode lead portion, It is good also as the electrode non-formation part P2 which has a shape boundary part. The shape of the boundary portion of the electrode non-forming portion P2 with respect to the electrode forming region P1 can be adjusted by the inclination angles of the inclined surfaces 24S and 24S.

図3A,Bに示したように、本実施の形態の積層圧電素子23は、その固定端23Fに臨む各層の電極引出し部24A,24Bの先端部間の内寸S2が、電極引出し部24A,24Bの基端部間の内寸(S1)よりも大きくなっている。後述するように、焼成時における電極形成部P1と電極非形成部P2間の熱収縮差に起因する素子の割れやヒビ等を回避するために、S1はS2に比べて小さく形成される。なお、図3Aは、S1=0の例を示している。   As shown in FIGS. 3A and 3B, the multilayer piezoelectric element 23 according to the present embodiment has an inner dimension S2 between the tip portions of the electrode lead portions 24A and 24B of each layer facing the fixed end 23F. It is larger than the inner dimension (S1) between the base ends of 24B. As will be described later, S1 is formed smaller than S2 in order to avoid cracking or cracking of the element due to a difference in thermal shrinkage between the electrode forming part P1 and the electrode non-forming part P2 during firing. FIG. 3A shows an example in which S1 = 0.

以上のように構成される本実施の形態の積層圧電素子23は、図示しない中間材の両面に各々固着され、任意の電圧に対して一方の素子が伸び他方の素子が縮むような分極の向きにすることにより、外部電極25A,25B間に所定の電圧を印加することで、図16Bに示したように、各々の素子の自由端に屈曲変位を発生させるアクチュエータを構成することができる。   The laminated piezoelectric element 23 of the present embodiment configured as described above is fixed to both surfaces of an intermediate material (not shown), and the polarization direction is such that one element expands and the other element contracts with respect to an arbitrary voltage. Thus, by applying a predetermined voltage between the external electrodes 25A and 25B, an actuator that generates a bending displacement at the free end of each element as shown in FIG. 16B can be configured.

続いて、以上のように構成される積層圧電素子23の製造方法について説明する。図4はその製造プロセスを示す工程図である。   Then, the manufacturing method of the laminated piezoelectric element 23 comprised as mentioned above is demonstrated. FIG. 4 is a process diagram showing the manufacturing process.

(混合工程)
混合工程前は、Ti(チタン)、Zr(ジルコニウム)、Pb(鉛)などの原料の秤量や混合、仮焼などの圧電材料特有の工程がある。これらの圧電材料は粉末状態になっており、一般的には粒径をメジアン径で1μm以下に微細粉末化される。この微粉末と、有機溶剤を混ぜて溶液を作るのが混合工程で、例えばエタノール、MEK(メチルエチルケトン)などの有機溶剤と、アクリル系等のバインダー樹脂、消泡剤等を所定の混合比率で混ぜ合わせる。なお本例ではチタン酸ジルコン酸鉛系の圧電材料を用いるが、これ以外にもチタン酸バリウム系等の他の圧電材料を用いてもよい。
(Mixing process)
Before the mixing process, there are processes peculiar to piezoelectric materials such as weighing, mixing, and calcining raw materials such as Ti (titanium), Zr (zirconium), and Pb (lead). These piezoelectric materials are in a powder state and are generally finely powdered to have a median diameter of 1 μm or less. This fine powder and an organic solvent are mixed to make a solution. For example, an organic solvent such as ethanol or MEK (methyl ethyl ketone), an acrylic binder resin, an antifoaming agent, etc. are mixed at a predetermined mixing ratio. Match. In this example, lead zirconate titanate piezoelectric material is used, but other piezoelectric materials such as barium titanate may be used.

(シート成形工程)
混合によって圧電粉末は溶液内に分散した状態となり、これをスラリーと呼ぶ。このスラリーを図17に示したようなシート成形機を用いて薄い塗膜を作り、この状態で乾燥させると、ある程度の柔軟性をもったシート(グリーンシート)ができあがる。
(Sheet forming process)
The piezoelectric powder is dispersed in the solution by mixing, and this is called slurry. When this slurry is made into a thin coating film using a sheet molding machine as shown in FIG. 17 and dried in this state, a sheet (green sheet) having a certain degree of flexibility is completed.

(電極印刷工程)
作製されたグリーンシートの上にスクリーン印刷などによって内部電極21および電極引出し部24の印刷形成を行う。このとき、シートはロール状でもよいし、あるいは印刷前に所定のサイズに打ち抜かれていてもよい。内部電極材は、圧電素子の焼成温度を考慮し、本実施の形態では、Ag(銀)とPd(パラジウム)の合金ペーストが用いられる。AgとPdの合金はPd比率が増えれば焼成温度を高くすることができ、例えばPd比率を10〜40%程度とする。なお、電極ペーストに使用されている有機溶剤とグリーンシートの樹脂成分との反応については注意が必要である。
(Electrode printing process)
The internal electrode 21 and the electrode lead-out portion 24 are printed and formed on the produced green sheet by screen printing or the like. At this time, the sheet may be in the form of a roll, or may be punched into a predetermined size before printing. In the present embodiment, an alloy paste of Ag (silver) and Pd (palladium) is used as the internal electrode material in consideration of the firing temperature of the piezoelectric element. In the alloy of Ag and Pd, if the Pd ratio increases, the firing temperature can be increased. For example, the Pd ratio is set to about 10 to 40%. It should be noted that attention must be paid to the reaction between the organic solvent used in the electrode paste and the resin component of the green sheet.

(積層圧着工程)
次に、電極ペーストが印刷されたグリーンシートを目的とする層数だけ積み重ねる。このとき、各々のシートの電極の位置が相互にずれないようにする。具体的には、各シートの所定の隅部に複数の位置決め用の孔を形成しておき、これらの位置決め孔に位置決めピンを嵌合させて全シートを積層する。積層されたグリーンシートは、熱圧着により一体化させる。その後、必要に応じて、このシート積層体を所定サイズに切断する。
(Lamination crimping process)
Next, the green sheets on which the electrode paste is printed are stacked in a desired number of layers. At this time, the positions of the electrodes on the respective sheets are not shifted from each other. Specifically, a plurality of positioning holes are formed in predetermined corners of each sheet, and positioning sheets are fitted into these positioning holes to stack all sheets. The laminated green sheets are integrated by thermocompression bonding. Thereafter, the sheet laminate is cut into a predetermined size as necessary.

(脱脂工程)
熱圧着した積層シートは、必要に応じて分断機などにより所定のサイズに分断し、これを脱脂炉に入れて、積層シートに含まれる有機材料(有機溶剤やバインダー樹脂)を熱分解する。脱脂温度は、使用する樹脂の熱分解特性により決定されるが、本例では400℃〜600℃程度とする。また、脱脂時の昇温速度は、樹脂の分解速度を考慮して適宜に決定される。分解速度を速くし過ぎると脱脂後の素子に膨れや割れが発生するので注意が必要である。
(Degreasing process)
The thermocompression-bonded laminated sheet is divided into a predetermined size by a cleaving machine or the like as necessary, and this is put in a degreasing furnace to thermally decompose organic materials (organic solvent or binder resin) contained in the laminated sheet. The degreasing temperature is determined by the thermal decomposition characteristics of the resin used, but in this example, the degreasing temperature is about 400 ° C to 600 ° C. Moreover, the temperature increase rate at the time of degreasing is appropriately determined in consideration of the decomposition rate of the resin. If the decomposition rate is too high, the element after degreasing will swell and crack, so care must be taken.

(焼成工程)
脱脂した素子は、基本的には圧電粉末と電極材料の残存のみとなり、これを更に高温で焼成してセラミックス体にする。焼成温度は、一般的な圧電素子は1200℃〜1300℃程度であるが、内部電極の溶解温度を考慮して決定される。上述のとおり、内部電極材のPd比率により電極の溶解温度は異なり、10〜40%の範囲であれば、1000℃〜1200℃程度の焼成温度となる。
(Baking process)
The degreased element is basically only the remaining piezoelectric powder and electrode material, which is further fired at a high temperature to form a ceramic body. The firing temperature is about 1200 ° C. to 1300 ° C. for a general piezoelectric element, but is determined in consideration of the melting temperature of the internal electrode. As described above, the melting temperature of the electrode varies depending on the Pd ratio of the internal electrode material.

(外形加工工程)
焼成後の素子は、必要に応じて外形加工を施す。外形加工の目的は、素子の形状を安定化させることや、内部電極に形成された電極引出し部24の先端部を素子端面に露出させることである。図5に外形加工前後の素子の形態を示す。
(Outline processing process)
The element after firing is subjected to external processing as necessary. The purpose of the outer shape processing is to stabilize the shape of the element and to expose the tip end portion of the electrode lead portion 24 formed on the internal electrode to the element end face. FIG. 5 shows the form of the element before and after the outer shape processing.

(外部電極形成)
次に、外形加工した素子の表面に外部電極25となる表面電極を印刷する。電極材料には例えばAgペーストが用いられる。表面電極(外部電極)25は、図1に示したように、素子23の端面23Fに露出した電極引出し部24と接続される。これにより、外部電極25Aと内部電極21Aとの間、および外部電極25Bと内部電極21Bとの間が、それぞれ電極引出し部24Aおよび電極引出し部24Bを介して相互に導通される。
(External electrode formation)
Next, a surface electrode to be the external electrode 25 is printed on the surface of the element that has been subjected to external processing. For example, Ag paste is used as the electrode material. As shown in FIG. 1, the surface electrode (external electrode) 25 is connected to the electrode lead portion 24 exposed on the end face 23 </ b> F of the element 23. Accordingly, the external electrode 25A and the internal electrode 21A and the external electrode 25B and the internal electrode 21B are electrically connected to each other via the electrode lead portion 24A and the electrode lead portion 24B, respectively.

(分極処理工程)
最後に、作製した積層圧電素子23の分極処理を行う。図6A,Bは素子の分極処理工程を示している。図の例は、外部電極25Aに直流電源26の正極を、外部電極25Bに直流電源26の負極をそれぞれ接続している。これにより、隣接する複数組の電極間にそれぞれ並列的に電源電圧が印加され、これら電極間に挟まれている圧電体20の分極処理が行われる。
(Polarization process)
Finally, a polarization process is performed on the manufactured laminated piezoelectric element 23. 6A and 6B show the element polarization process. In the illustrated example, the positive electrode of the DC power source 26 is connected to the external electrode 25A, and the negative electrode of the DC power source 26 is connected to the external electrode 25B. As a result, a power supply voltage is applied in parallel between a plurality of adjacent electrodes, and the polarization of the piezoelectric body 20 sandwiched between these electrodes is performed.

以上のようにして、本実施の形態の積層圧電素子23が製造される。   As described above, the laminated piezoelectric element 23 of the present embodiment is manufactured.

ところで、上述した積層圧電素子23の製造工程、特に焼成工程においては、圧電体の焼成工程における電極形成部と電極非形成部との収縮率差に起因して発生する内部応力による素子の割れやヒビを抑える必要がある。   By the way, in the manufacturing process of the laminated piezoelectric element 23 described above, particularly in the firing process, the cracking of the element due to the internal stress generated due to the difference in contraction rate between the electrode forming portion and the electrode non-forming portion in the firing process of the piezoelectric body. It is necessary to suppress cracks.

そこで、本実施の形態では、内部電極21の電極引出し部24の形状を図3A,Bに示したような傾斜部24Sを設け、電極引出し部24の基端部間の内寸S1を先端部間の内寸S2よりも小さくすることで、焼成時における内部応力を緩和し素子割れやヒビの発生を抑えるようにしている。傾斜部24Sの形成は、電極ペースト材を印刷するスクリーン印刷板のパターン形状の変更だけで済む。   Therefore, in the present embodiment, the shape of the electrode lead portion 24 of the internal electrode 21 is provided with the inclined portion 24S as shown in FIGS. 3A and 3B, and the inner dimension S1 between the base end portions of the electrode lead portion 24 is set to the tip portion. By making it smaller than the inner dimension S2, the internal stress at the time of firing is relieved and the occurrence of element cracks and cracks is suppressed. The inclined portion 24S can be formed only by changing the pattern shape of the screen printing plate on which the electrode paste material is printed.

内部応力の緩和についてはシミュレーションによる解析で電極引出し部の形状変化による効果が確認されている。以下、従来の電極引出し部の形状と本発明の電極引出し部の形状とによる応力分布のシミュレーション解析を中心に本発明の効果について説明する。   Regarding the relaxation of internal stress, the effect by the shape change of the electrode lead-out part has been confirmed by analysis by simulation. Hereinafter, the effect of the present invention will be described focusing on the simulation analysis of the stress distribution by the shape of the conventional electrode lead portion and the shape of the electrode lead portion of the present invention.

図7は、従来の積層圧電素子の電極引出し部の応力解析モデルである。図7に示すように、電極非形成部P2は、隣接する2層の電極引出し部14A,14Bの間に挟まれており、形成幅は一様で、電極形成部P1との境界部は四角形状となっている。そして、焼成による電極形成部P1の寸法は焼成前寸法の70%、同じく電極非形成部P2の寸法は焼成前寸法の85%として、面内の応力分布のシミュレーション解析を行った。なお、電極形成部P1の形成長を10mm、電極非形成部P2の形成長を3mm、電極引出し部14A,14Bの形成幅を各々1mmとした。   FIG. 7 is a stress analysis model of an electrode lead portion of a conventional multilayer piezoelectric element. As shown in FIG. 7, the electrode non-forming portion P2 is sandwiched between two adjacent electrode lead portions 14A and 14B, the formation width is uniform, and the boundary with the electrode forming portion P1 is a square. It has a shape. Then, the simulation analysis of the in-plane stress distribution was performed assuming that the dimension of the electrode forming part P1 by firing was 70% of the dimension before firing and the dimension of the electrode non-formed part P2 was 85% of the dimension before firing. The formation length of the electrode forming portion P1 was 10 mm, the formation length of the electrode non-forming portion P2 was 3 mm, and the formation widths of the electrode lead portions 14A and 14B were each 1 mm.

図8A,Bは図7に示した応力解析モデルのシミュレーション結果を示している。図8Aは面内の応力のスカラー量分布であり、図8Bは面内の応力のベクトル図である。図8Bにおいて、両端の矢印が外向きの成分を引張応力、内向きの成分を圧縮応力で示し、矢印の長さは力の大きさを示している。なお、図9〜図11および図14についても同様である。   8A and 8B show simulation results of the stress analysis model shown in FIG. FIG. 8A is a scalar quantity distribution of in-plane stress, and FIG. 8B is a vector diagram of in-plane stress. In FIG. 8B, the arrows at both ends indicate the outward component as tensile stress, the inward component as compressive stress, and the length of the arrow indicates the magnitude of the force. The same applies to FIGS. 9 to 11 and 14.

図8Bに示したように、電極非形成部(P2)には圧縮応力が加わっており、電極形成部(P1)には引張応力が加わっていることが解る。引張応力の最大値は、0.753e10(0.753×1010)[N/m2]であり、その発生位置は、電極引出し部14A,14Bの基端部にあたる電極形成部と非形成部との境界部にある。焼成時に引張応力が加わることにより、圧電体の焼結過程での空孔の発生や割れを発生させ、溶解した電極材が空孔や割れに浸透して層間の短絡を誘発したり、焼成割れなどの不具合を引き起こす。 As shown in FIG. 8B, it can be seen that compressive stress is applied to the electrode non-forming portion (P2) and tensile stress is applied to the electrode forming portion (P1). The maximum value of the tensile stress is 0.753e10 (0.753 × 10 10 ) [N / m 2 ], and the generation positions thereof are the electrode forming portion and the non-forming portion corresponding to the base end portions of the electrode lead portions 14A and 14B. And at the border. When tensile stress is applied during firing, voids and cracks are generated in the sintering process of the piezoelectric body, and the melted electrode material penetrates into the voids and cracks to induce a short circuit between layers. Cause malfunctions.

一方、図9A,Bは、本実施の形態の積層圧電素子のように、電極引出し部24の基端部に傾斜部24Sを形成したときのシミュレーション結果を示している。図9A,Bに示すように、電極引出し部24の基端部に傾斜部24Sを形成することにより、引張応力や圧縮応力の集中が緩和され、最大引張応力は0.668e10[N/m2]にまで低下させることができた。 On the other hand, FIGS. 9A and 9B show simulation results when the inclined portion 24S is formed at the base end portion of the electrode lead-out portion 24 as in the laminated piezoelectric element of the present embodiment. As shown in FIGS. 9A and 9B, by forming the inclined portion 24S at the base end portion of the electrode lead portion 24, the concentration of tensile stress and compressive stress is alleviated, and the maximum tensile stress is 0.668e10 [N / m 2]. It was able to be reduced to].

また、図10A,Bに示すように、電極引出し部24の基端部に形成される傾斜部24Sの傾斜角を更に大きくすることで、最大引張応力は0.574e10[N/m2]にまで低下させることができた。電極引出し部24の基端部において各層の傾斜部24Sが互いに交差する程度に傾斜部24Sの傾斜角を大きくし、電極形成部と非形成部との境界部をV字形状にした実施形態(図3A参照)においては、図11A,Bに示すように最大引張応力は更に低減し、その大きさは0.447e10[N/m2]であった。 Further, as shown in FIGS. 10A and 10B, the maximum tensile stress is set to 0.574e10 [N / m 2 ] by further increasing the inclination angle of the inclined portion 24S formed at the base end portion of the electrode lead-out portion 24. Could be reduced. Embodiment in which the inclination angle of the inclined portion 24S is increased to the extent that the inclined portions 24S of the respective layers intersect each other at the base end portion of the electrode lead-out portion 24, and the boundary portion between the electrode forming portion and the non-forming portion is V-shaped ( In FIG. 3A), the maximum tensile stress was further reduced as shown in FIGS. 11A and 11B, and the magnitude was 0.447e10 [N / m 2 ].

以上のように、傾斜部24Sの傾斜角は大きくし、各層の電極引出し部24A,24Bの基端部間の内寸S1をその先端部間の内寸S2よりも小さくするほど、内部応力(引張応力)の低減効果が著しくなることが解る。   As described above, the inclination angle of the inclined portion 24S is increased, and as the internal dimension S1 between the base end portions of the electrode lead portions 24A and 24B of each layer is made smaller than the internal dimension S2 between the distal end portions, the internal stress ( It can be seen that the effect of reducing the tensile stress is significant.

従って、本実施の形態の積層圧電素子23によれば、焼成時における電極形成部と非形成部との間の収縮差に起因して発生する内部応力を緩和することができるので、素子割れやヒビ、層間ショートといった種々の不具合を効果的に抑えることが可能となる。   Therefore, according to the laminated piezoelectric element 23 of the present embodiment, the internal stress generated due to the shrinkage difference between the electrode forming portion and the non-forming portion at the time of firing can be relieved. Various problems such as cracks and interlayer shorts can be effectively suppressed.

次に、電極引出し部24の傾斜部24Sの傾斜量について図12を参照して説明する。電極引出し部24の寸法は、素子の幅寸法による制約を受ける。図12はこの関係を示した模式図である。   Next, the amount of inclination of the inclined part 24S of the electrode lead-out part 24 will be described with reference to FIG. The dimension of the electrode lead portion 24 is restricted by the width dimension of the element. FIG. 12 is a schematic diagram showing this relationship.

まず、幅方向については、素子幅Wに対して、内部電極21の幅外形方向のマージンGと、内部電極21間の短絡に対するマージンS2(電極引出し部24の先端部間の内寸)が必要となる。各電極引出し部24の先端部の形成幅D1,D2は、D1=D2=(W−2G−S2)/2となる。例えばW=3mmの場合、外形に対するマージンGは、内部電極印刷の位置精度や焼成時の収縮バラツキや外形加工時の加工位置バラツキ等を考慮すると、G=0.1〜0.3mm程度となる。また、内部電極間の短絡に対するマージンS2は、高温高湿状態での絶縁性確保やマイグレーション等を考慮すると、0.6mm以上は必要となる。よって、D1=D2は幅3mmの素子の場合、0.9〜1.1mm程度となる。   First, with respect to the element width W, a margin G in the width outer shape direction of the internal electrode 21 and a margin S2 with respect to a short circuit between the internal electrodes 21 (inner dimensions between the tip portions of the electrode lead portions 24) are required. It becomes. The formation widths D1 and D2 of the tip end portions of the electrode lead portions 24 are D1 = D2 = (W−2G−S2) / 2. For example, when W = 3 mm, the margin G with respect to the outer shape is about G = 0.1 to 0.3 mm in consideration of the positional accuracy of internal electrode printing, the shrinkage variation during firing, the processing position variation during outer shape processing, and the like. . Further, the margin S2 for the short circuit between the internal electrodes is required to be 0.6 mm or more in consideration of securing insulation and migration in a high temperature and high humidity state. Therefore, D1 = D2 is about 0.9 to 1.1 mm in the case of an element having a width of 3 mm.

電極引出し部24の基端部間の距離(内寸)S1は0でもよいが、電極印刷位置バラツキや積層時のバラツキ等を考慮すると、0.2mm以上は必要となり、この場合、傾斜部24Sの幅方向寸法Kyは最小0.2mmとなる。   The distance (internal dimension) S1 between the base end portions of the electrode lead-out portion 24 may be 0, but in consideration of variations in electrode printing position and stacking, 0.2 mm or more is necessary. In this case, the inclined portion 24S The dimension Ky in the width direction is a minimum of 0.2 mm.

次に、素子の長さ方向については、電極引出し部24の形成長さLはできるだけ短いことが望まれるが、内部電極21の印刷位置精度や焼成時の収縮バラツキや外形加工時の加工位置バラツキ等を考慮すると、1mm以上は必要となる。実際に電極引出し部24に傾斜部24Sを設けた場合、外形加工によって傾斜部24Sを素子端面から露出させると、内部電極21間の短絡に対するマージンS2が減ることになり、好ましくない。従って、外形加工時に傾斜部24Sが素子端面から露出しない設定が必要となり、バラツキを考慮すると、傾斜部24Sの素子長さ方向寸法をKxとしたとき、L−Kxは最小でも0.5mmは必要となる。   Next, regarding the length direction of the element, it is desirable that the formation length L of the electrode lead portion 24 is as short as possible. However, the printing position accuracy of the internal electrode 21, shrinkage variation during firing, and processing position variation during external processing. Considering the above, 1 mm or more is necessary. When the inclined portion 24S is actually provided in the electrode lead-out portion 24, if the inclined portion 24S is exposed from the element end face by external processing, a margin S2 for a short circuit between the internal electrodes 21 is reduced, which is not preferable. Therefore, it is necessary to set the inclined portion 24S not to be exposed from the element end face during the outer shape processing. Considering the variation, when the element length direction dimension of the inclined portion 24S is Kx, L-Kx is required to be 0.5 mm at the minimum. It becomes.

以上のことから、Kyは最小0.2mm、Kxは最小0.5mmとなる。ここで、傾斜比=Ky/Kxと定義すると、最小時の条件では、傾斜比は、0.2mm/0.5mm=0.4となる。なお、図9A,Bに示したシミュレーション結果では傾斜比は0.25、図10A,Bに示したシミュレーション結果では傾斜比は0.35、図11A,Bに示したシミュレーション結果では傾斜比は0.6である。図9〜図11に示した解析モデルを基に実際の試作を行ったところ、従来形状(図8)の電極構造では素子割れや層間ショートが散在的に発生していたのに対し、本実施の形態によれば素子割れや層間ショート不良をほぼ無くすことができた。特に、図10に示した電極構造については、素子割れや層間ショート不良の発生が皆無であったことが確認されている。   From the above, Ky is a minimum of 0.2 mm and Kx is a minimum of 0.5 mm. Here, if the inclination ratio is defined as Ky / Kx, the inclination ratio is 0.2 mm / 0.5 mm = 0.4 under the minimum condition. In the simulation results shown in FIGS. 9A and 9B, the slope ratio is 0.25, in the simulation results shown in FIGS. 10A and 10B, the slope ratio is 0.35, and in the simulation results shown in FIGS. .6. When actual prototypes were made based on the analysis models shown in FIGS. 9 to 11, element cracks and inter-layer shorts were scattered in the conventional electrode structure (FIG. 8). According to this embodiment, it was possible to substantially eliminate element cracks and interlayer short-circuit defects. In particular, it has been confirmed that the electrode structure shown in FIG.

(第2の実施の形態)
図13および図14は本発明の第2の実施の形態を示している。なお、図において上述の第1の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略する。
(Second Embodiment)
13 and 14 show a second embodiment of the present invention. In the figure, portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態では、各層の圧電素子の電極引出し部24(24A,24B)の基端部側に段部24Tを設けることで、電極引出し部24の先端部の形成幅よりも基端部の形成幅を大きくしている点で、上述の第1の実施の形態と異なっている。この電極引出し部24の段部24Tは、図13Aに示したように奇数層側と偶数層側とで互いに向き合うように形成されている。   In the present embodiment, by providing the stepped portion 24T on the base end side of the electrode lead portion 24 (24A, 24B) of the piezoelectric element of each layer, the base end portion is formed more than the formation width of the tip portion of the electrode lead portion 24. The difference from the first embodiment described above is that the formation width is increased. As shown in FIG. 13A, the step portion 24T of the electrode lead portion 24 is formed to face each other on the odd layer side and the even layer side.

その結果、この積層圧電素子の各層の電極引出し部24A,24Bは、平面的に見て、図13Bに示すような関係となり、電極引出し部24の基端部間の内寸S1が、電極引出し部24の先端部間の内寸S2よりも小さく形成されている。なお、図においてハッチングで示した領域P1は電極形成領域であり、電極引出し部24Aと電極引出し部24Bとの間の領域P2は電極非形成領域である。   As a result, the electrode lead portions 24A and 24B of each layer of the multilayer piezoelectric element have a relationship as shown in FIG. 13B in plan view, and the inner dimension S1 between the base end portions of the electrode lead portion 24 is the electrode lead portion. It is formed smaller than the inner dimension S <b> 2 between the front end portions of the portion 24. In the figure, a hatched region P1 is an electrode formation region, and a region P2 between the electrode lead portion 24A and the electrode lead portion 24B is an electrode non-formation region.

図14A,Bは、上述した電極引出し部構造を有する応力解析モデルのシミュレーション結果を示している。本実施の形態においても、従来の電極引出し部構造に比べて最大引張応力が低減し、その大きさは0.642e10[N/m2]であった。 14A and 14B show simulation results of the stress analysis model having the electrode lead portion structure described above. Also in the present embodiment, the maximum tensile stress is reduced as compared with the conventional electrode lead portion structure, and the magnitude thereof is 0.642e10 [N / m 2 ].

従って、本実施の形態においても上述の第1の実施の形態と同様に、焼成時における電極形成部と非形成部との間の収縮差に起因して発生する内部応力を緩和することができるので、素子割れやヒビ、層間ショートといった種々の不具合を効果的に抑えることが可能となる。実際に試作を行って検証したところ、本実施の形態によっても素子割れや層間ショート不良をほぼ無くすことができたことを確認した。   Therefore, also in the present embodiment, as in the first embodiment described above, the internal stress generated due to the shrinkage difference between the electrode forming portion and the non-forming portion at the time of firing can be relaxed. Therefore, it is possible to effectively suppress various problems such as element cracks, cracks, and interlayer shorts. When the prototype was actually tested and verified, it was confirmed that the device cracking and the interlayer short-circuit failure could be substantially eliminated by this embodiment.

以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

例えば以上の実施の形態では、各層の電極引出し部の基端部間の内寸S1が当該各層の電極引出し部の先端部間の内寸S2よりも小さくなるために、各層の電極引出し部に傾斜部24Sあるいは段部24Tを設けたが、傾斜部24Sは直線状に限らず、曲線状に形成されてもよく、また、段部24Tは1段に限らず、2段以上の多段としてもよい。   For example, in the above embodiment, the inner dimension S1 between the base ends of the electrode lead portions of each layer is smaller than the inner dimension S2 between the tip portions of the electrode lead portions of the respective layers. Although the inclined portion 24S or the step portion 24T is provided, the inclined portion 24S is not limited to a linear shape, and may be formed in a curved shape, and the step portion 24T is not limited to a single step, and may be a multi-step of two or more steps. Good.

また、以上の実施の形態では、本発明に係る積層圧電素子を圧電バイモルフ素子に適用した例について説明したが、これに限らず、超音波発生装置や圧電トランス、圧電スピーカ、発振回路・フィルタ回路、圧電振動ジャイロセンサ、更には積層セラミックコンデンサ等にも本発明は適用可能である。   In the above-described embodiments, examples in which the laminated piezoelectric element according to the present invention is applied to a piezoelectric bimorph element have been described. However, the present invention is not limited thereto, and an ultrasonic generator, a piezoelectric transformer, a piezoelectric speaker, an oscillation circuit / filter circuit The present invention can also be applied to piezoelectric vibration gyro sensors, multilayer ceramic capacitors, and the like.

本発明の第1の実施の形態による積層圧電素子23の全体斜視図である。1 is an overall perspective view of a multilayer piezoelectric element 23 according to a first embodiment of the present invention. 積層圧電素子23の内部構造を示す分解斜視図である。3 is an exploded perspective view showing an internal structure of a laminated piezoelectric element 23. FIG. 積層圧電素子23の電極引出し部24を示す要部概略平面図である。3 is a schematic plan view of a main part showing an electrode lead-out portion 24 of a laminated piezoelectric element 23. FIG. 積層圧電素子23の製造方法を説明する工程フロー図である。FIG. 5 is a process flow diagram illustrating a method for manufacturing a laminated piezoelectric element 23. 積層圧電素子23の製造方法における外形加工工程を説明する加工前後の素子平面図である。FIG. 5 is an element plan view before and after processing for explaining an outer shape processing step in the method for manufacturing a laminated piezoelectric element 23. 積層圧電素子23の製造方法における素子の分極処理工程を説明する図である。FIG. 5 is a diagram for explaining an element polarization process in the method for manufacturing a laminated piezoelectric element 23. 従来の積層圧電素子における電極引出し部の応力解析モデル図である。It is a stress analysis model figure of the electrode extraction part in the conventional multilayer piezoelectric element. 従来の積層圧電素子における電極引出し部周辺の応力分布を示すシミュレーション結果である。It is a simulation result which shows the stress distribution around the electrode extraction part in the conventional laminated piezoelectric element. 本発明に係る積層圧電素子23の一構成例における電極引出し部周辺の応力分布を示すシミュレーション結果である。It is a simulation result which shows the stress distribution around the electrode extraction part in one structural example of the multilayer piezoelectric element 23 which concerns on this invention. 本発明に係る積層圧電素子23の他の構成例における電極引出し部周辺の応力分布を示すシミュレーション結果である。It is a simulation result which shows the stress distribution around the electrode extraction part in the other structural example of the multilayer piezoelectric element 23 which concerns on this invention. 本発明に係る積層圧電素子23の更に他の構成例における電極引出し部周辺の応力分布を示すシミュレーション結果である。It is a simulation result which shows the stress distribution around the electrode extraction part in the further another structural example of the laminated piezoelectric element 23 which concerns on this invention. 本発明に係る積層圧電素子23の電極引出し部の構成の一具体例を説明する模式図である。It is a schematic diagram explaining one specific example of a structure of the electrode extraction part of the multilayer piezoelectric element 23 which concerns on this invention. 本発明の第2の実施の形態による積層圧電素子の内部構造を示し、Aは分解斜視図、Bは電極引出し部周辺の平面図である。The internal structure of the laminated piezoelectric element by the 2nd Embodiment of this invention is shown, A is an exploded perspective view, B is a top view of an electrode extraction part periphery. 図13に示した積層圧電素子の電極引出し部周辺の応力分布を示すシミュレーション結果である。It is a simulation result which shows the stress distribution around the electrode extraction part of the laminated piezoelectric element shown in FIG. 積層圧電素子の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of a laminated piezoelectric element. 積層圧電素子を用いて圧電バイモルフ素子を示す図であり、Aは概略斜視図、Bは一作用を説明する側面図である。It is a figure which shows a piezoelectric bimorph element using a laminated piezoelectric element, A is a schematic perspective view, B is a side view explaining 1 effect | action. 積層圧電素子の一製造工程であるシート成形工程を説明する図である。It is a figure explaining the sheet forming process which is one manufacturing process of a lamination piezoelectric element. 積層圧電素子の一製造工程である電極ペースト材の印刷工程を説明する図である。It is a figure explaining the printing process of the electrode paste material which is one manufacturing process of a laminated piezoelectric element. 積層圧電素子の一製造工程であるシート積層工程を説明する図である。It is a figure explaining the sheet | seat lamination process which is one manufacturing process of a lamination piezoelectric element. 積層圧電素子の一製造工程である素子切断工程を説明する図である。It is a figure explaining the element cutting process which is one manufacturing process of a laminated piezoelectric element. 積層圧電素子の電極接続構成を説明する図である。It is a figure explaining the electrode connection structure of a laminated piezoelectric element. 従来の圧電バイモルフ素子の電極接続構造を示す斜視図である。It is a perspective view which shows the electrode connection structure of the conventional piezoelectric bimorph element. 従来の圧電バイモルフ素子の内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of the conventional piezoelectric bimorph element. 従来の圧電バイモルフ素子の電極引出し部の構成を説明する要部平面図である。It is a principal part top view explaining the structure of the electrode extraction part of the conventional piezoelectric bimorph element.

符号の説明Explanation of symbols

20…圧電体、21,21A,21B…内部電極、23…積層圧電素子、23F…素子の固定端、23V…素子の自由端、24,24A,24B…電極引出し部、24S…傾斜部、24T…段部、25,25A,25B…外部電極、P1…電極形成部、P2…電極非形成部、S1…電極引出し部の基端部間の内寸、S2…電極引出し部の先端部間の内寸   DESCRIPTION OF SYMBOLS 20 ... Piezoelectric body, 21, 21A, 21B ... Internal electrode, 23 ... Multilayer piezoelectric element, 23F ... Fixed end of element, 23V ... Free end of element, 24, 24A, 24B ... Electrode extraction part, 24S ... Inclination part, 24T ... Step part, 25, 25A, 25B ... External electrode, P1 ... Electrode forming part, P2 ... No electrode forming part, S1 ... Inner dimension between base end parts of electrode lead part, S2 ... Between tip part of electrode lead part Inside dimension

Claims (2)

シート状の圧電体の表面に第1の電極引出し部と接続される内部電極が形成された第1の圧電素子と、シート状の圧電体の表面に第2の電極引出し部と接続される内部電極が形成された第2の圧電素子とを有し、前記第1及び第2の圧電素子が複数交互に積層されることで構成され、前記第1及び第2の電極引出し部各々の先端部が外部へ露出する素子端面を有する積層体と、
前記素子端面にそれぞれ形成され、前記第1の電極引出し部と接続される第1の電極部と、前記第2の電極引出し部と接続される第2の電極部と、を有する外部電極とを備え、
前記第1及び第2の電極引出し部は、前記内部電極と接続される基端部と、前記素子端面から露出する先端部と、前記基端部と前記先端部との間に形成された傾斜部とをそれぞれ有するとともに、前記素子端面の幅方向に関し互いに異なる側に配置されており
前記第1及び第2の電極引出し部の前記基端部間の内寸がこれらの前記先端部間の内寸よりも小さくなるように、前記第1及び第2の電極引出し部の前記傾斜部が、積層方向から見て、前記基端部側でV字状に相互に交差している
積層圧電素子。
A first piezoelectric element in which an internal electrode connected to the first electrode lead portion is formed on the surface of the sheet-like piezoelectric member, and an internal portion connected to the second electrode lead portion on the surface of the sheet-like piezoelectric member. A second piezoelectric element having electrodes formed thereon, and a plurality of the first and second piezoelectric elements are alternately stacked, and each tip part of each of the first and second electrode lead parts A laminate having an element end face exposed to the outside;
An external electrode formed on each of the element end faces and having a first electrode part connected to the first electrode lead part and a second electrode part connected to the second electrode lead part; Prepared,
The first and second electrode lead portions include a base end portion connected to the internal electrode, a tip end portion exposed from the element end face, and an inclination formed between the base end portion and the tip end portion. Each of which is disposed on different sides with respect to the width direction of the element end face,
The inclined portion of the first and second electrode lead portions so that the inner dimension between the base end portions of the first and second electrode lead portions is smaller than the inner dimension between the tip portions. However, when viewed from the stacking direction, the piezoelectric elements cross each other in a V shape on the base end side .
請求項1に記載の積層圧電素子であって、
前記積層圧電素子は、前記素子端面側が固定端とされ他方の端面が自由端として振動可能なバイモルフ素子を構成する
積層圧電素子。
The laminated piezoelectric element according to claim 1,
The laminated piezoelectric element, a laminated piezoelectric element wherein the element end face constitutes the vibratable bimorph element end face of the other is a fixed end and a free end.
JP2005297181A 2005-10-12 2005-10-12 Multilayer piezoelectric element Expired - Fee Related JP5135674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297181A JP5135674B2 (en) 2005-10-12 2005-10-12 Multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297181A JP5135674B2 (en) 2005-10-12 2005-10-12 Multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2007109754A JP2007109754A (en) 2007-04-26
JP5135674B2 true JP5135674B2 (en) 2013-02-06

Family

ID=38035404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297181A Expired - Fee Related JP5135674B2 (en) 2005-10-12 2005-10-12 Multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP5135674B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287722A (en) * 2009-06-11 2010-12-24 Murata Mfg Co Ltd Electronic component
US9813823B2 (en) 2014-01-30 2017-11-07 Kyocera Corporation Piezoelectric element, and piezoelectric vibrating apparatus, portable terminal, sound generator, sound generating apparatus, and electronic device comprising the piezoelectric element
CN105027581B (en) * 2014-02-27 2018-01-05 京瓷株式会社 Piezo-activator and piezoelectric vibrating device, portable terminal, sound generator, sound generating apparatus, the electronic equipment for possessing it
JPWO2016143619A1 (en) * 2015-03-12 2017-11-24 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
WO2016158743A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 Mother piezoelectric element, laminated piezoelectric element, and manufacturing method for laminated piezoelectric element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965602B2 (en) * 1990-02-26 1999-10-18 日立金属株式会社 Stacked displacement element
JP2001345656A (en) * 2000-06-02 2001-12-14 Seiko Epson Corp Method of manufacturing crystal vibrator and crystal device
JP2003309298A (en) * 2002-04-18 2003-10-31 Ngk Insulators Ltd Piezoelectric/electrostrictive element and its manufacturing method
JP3918095B2 (en) * 2002-11-28 2007-05-23 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
JP2005236360A (en) * 2004-02-17 2005-09-02 Seiko Epson Corp Electrode of piezoelectric vibration chip and piezoelectric vibrator

Also Published As

Publication number Publication date
JP2007109754A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5116250B2 (en) Multilayer piezoelectric element, method for manufacturing the same, and vibration wave driving device
JP2001230462A (en) Piezoelectric transducer
JP5135674B2 (en) Multilayer piezoelectric element
JP5718910B2 (en) Piezoelectric element
JP2006203070A (en) Lamination piezoelectric element
JP2000082852A (en) Multilayered piezoelectric actuator and manufacture thereof
JPWO2017199668A1 (en) Piezoelectric actuator
JP2001094164A (en) Laminated type piezoelectric actuator
JP5821536B2 (en) Multilayer piezoelectric element
JP6591771B2 (en) Multilayer capacitor
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JP5635319B2 (en) Piezoelectric element and manufacturing method thereof
JP2005294761A (en) Stacked piezoelectric element
JP5792529B2 (en) Piezoelectric element
JP5436549B2 (en) Manufacturing method of thin plate-like sintered piezoelectric material
JP2010212315A (en) Multilayer piezoelectric ceramic element and method of manufacturing the same
JP2008041991A (en) Multi-layered piezoelectric actuator element
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JP6809818B2 (en) Piezoelectric actuator
JP5735829B2 (en) Green laminate
JP2010171360A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrator
JP4818853B2 (en) Ultrasonic motor element
JP2009016617A (en) Stacked piezoelectric element
JP2007266468A (en) Laminated piezoelectric element
JP2011049352A (en) Vibrator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees