JP2011049352A - Vibrator - Google Patents

Vibrator Download PDF

Info

Publication number
JP2011049352A
JP2011049352A JP2009196327A JP2009196327A JP2011049352A JP 2011049352 A JP2011049352 A JP 2011049352A JP 2009196327 A JP2009196327 A JP 2009196327A JP 2009196327 A JP2009196327 A JP 2009196327A JP 2011049352 A JP2011049352 A JP 2011049352A
Authority
JP
Japan
Prior art keywords
support plate
layer
laminated
piezoelectric elements
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009196327A
Other languages
Japanese (ja)
Other versions
JP5754879B2 (en
Inventor
Shuhei Tabata
周平 田畑
Hiroyuki Kawamura
寛之 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009196327A priority Critical patent/JP5754879B2/en
Publication of JP2011049352A publication Critical patent/JP2011049352A/en
Application granted granted Critical
Publication of JP5754879B2 publication Critical patent/JP5754879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibrator in which a laminated piezoelectric element can be bonded to a support plate with sufficient positional accuracy, and whose displacement amount can be improved. <P>SOLUTION: The vibrator is provided with: laminated piezoelectric elements 1 and 3 which are provided with a plate laminated body 13 which is formed by alternately laminating a piezoelectric layer 7 and an internal electrode layer 9 and has a pair of rectangular principal surfaces and a pair of side surfaces provided in both end sides in longitudinal direction of the principal surface, and external electrodes 17 and 19 which are provided in a pair of side surfaces of the laminate 13 respectively and are alternately electrically connected to the internal electrode layer 9; and a support plate 5 to which the laminated piezoelectric elements 1 and 3 are joined with an adhesive layer 6. A housing recessed part 23 is formed in the support plate 5, and the support plate side of the laminated piezoelectric elements 1 and 3 is housed in the housing recessed part 23. The adhesive layer 6 is disposed between a recessed part bottom surface 23a and a recessed part side surface 23b which constitute the housing recessed part 23, and the laminated piezoelectric elements 1 and 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動体に関し、特に、コンピュータ、携帯電話機または小型端末機器用の平面スピーカ装置に用いられるバイモルフ型またはユニモルフ型の振動体に関するものである。   The present invention relates to a vibrator, and more particularly to a bimorph or unimorph vibrator used in a flat speaker device for a computer, a mobile phone, or a small terminal device.

従来の積層型圧電素子は、圧電体層と内部電極層とを交互に積層してなり、圧電体層の積層方向に形成された長方形状の一対の主面と内部電極層が長手方向に交互に引き出された一対の側面とを有する板状の積層体と、この積層体の長手方向の両端部に設けられた外部電極とを具備している。   A conventional multilayer piezoelectric element is formed by alternately laminating piezoelectric layers and internal electrode layers, and a pair of rectangular main surfaces formed in the laminating direction of the piezoelectric layers and internal electrode layers alternate in the longitudinal direction. A plate-like laminate having a pair of side surfaces drawn to the outside, and external electrodes provided at both ends in the longitudinal direction of the laminate.

従来の振動体は、図7に示すように、上記のような積層型圧電素子の一方の主面を支持板に接着剤を用いて接合することにより、バイモルフ型(図7(a))およびユニモルフ型(図7(b))の振動体を作製していた(例えば、特許文献1参照)。   As shown in FIG. 7, the conventional vibrating body has a bimorph type (FIG. 7A) and a main surface of the multilayer piezoelectric element as described above bonded to a support plate using an adhesive. A unimorph type (FIG. 7B) vibrator was produced (see, for example, Patent Document 1).

従来の振動体は、図7(a)に示すように、積層型圧電素子30、36を支持板34の上下面に底面側接着剤層35で接合して構成されている。   As shown in FIG. 7A, the conventional vibrating body is configured by bonding laminated piezoelectric elements 30 and 36 to the upper and lower surfaces of a support plate 34 with a bottom surface side adhesive layer 35.

すなわち、積層型圧電素子30、36は、7層の圧電体31と6層の内部電極層32とを交互に積層してなる積層体と、この積層体の上下の主面に形成された表面電極層33aと、積層体の長手方向の両端部にそれぞれ設けられた一対の外部電極33bとを具備している。積層体は板状であり、上下の主面が長方形状とされ、積層体の長手方向には、内部電極層32が交互に引き出された一対の側面を有し、この一対の側面にはそれぞれ外部電極33bが設けられている。   That is, the multilayer piezoelectric elements 30 and 36 are composed of a laminate formed by alternately laminating seven layers of piezoelectric bodies 31 and six layers of internal electrode layers 32, and surfaces formed on the upper and lower main surfaces of the laminate. An electrode layer 33a and a pair of external electrodes 33b provided at both ends in the longitudinal direction of the laminate are provided. The laminated body is plate-shaped, and the upper and lower main surfaces are rectangular, and in the longitudinal direction of the laminated body, the laminated body has a pair of side surfaces from which the internal electrode layers 32 are alternately drawn. An external electrode 33b is provided.

6層の内部電極層32と2層の表面電極層33aは交互に電極層とされており、一対の外部電極33bには、積層体の側面において3層ずつの内部電極層32及び1層ずつの表面電極層33aが電気的に接続されている。   The six internal electrode layers 32 and the two surface electrode layers 33a are alternately formed as electrode layers. The pair of external electrodes 33b includes three layers of internal electrode layers 32 and one layer on the side surface of the laminate. The surface electrode layer 33a is electrically connected.

通常、支持板34に接着剤を塗布し、この接着剤に積層型圧電素子30、36を押し当て、接合されるが、図7(b)に示すように、外部電極33bが積層体の支持板側の主面よりも支持板34側に突出していたため、支持板34上に接着剤を積層型圧電素子30、36の主面の面積よりも広い面積で塗布し、この接着剤に積層型圧電素子30、36を押し当てた状態で乾燥させて接合していた。   Usually, an adhesive is applied to the support plate 34, and the laminated piezoelectric elements 30 and 36 are pressed against the adhesive to be joined. As shown in FIG. 7B, the external electrode 33b supports the laminated body. Since it protruded to the support plate 34 side from the main surface on the plate side, an adhesive was applied on the support plate 34 in an area larger than the area of the main surface of the multilayer piezoelectric elements 30, 36, and this adhesive was laminated. The piezoelectric elements 30 and 36 were dried and joined in a pressed state.

特開2007−329431号公報JP 2007-329431 A

しかしながら、従来のバイモルフ型振動体では、平坦な支持板34に積層型圧電素子30、36を接着剤で接合していたため、積層型圧電素子30、36を支持板34を介して対称に接合することが困難であり、積層型圧電素子30、36の接合位置がずれやすいという問題があった。積層型圧電素子30、36を支持板34を介して対称に接合できない場合には、積層型圧電素子30、36のそれぞれの振動が打ち消しあい、振動体の変位量が低下するという問題があった。   However, in the conventional bimorph type vibrator, the laminated piezoelectric elements 30 and 36 are joined to the flat support plate 34 with an adhesive, and therefore the laminated piezoelectric elements 30 and 36 are joined symmetrically via the support plate 34. There is a problem that the joining position of the multilayer piezoelectric elements 30 and 36 is easily shifted. When the laminated piezoelectric elements 30 and 36 cannot be joined symmetrically via the support plate 34, there is a problem in that the vibrations of the laminated piezoelectric elements 30 and 36 cancel each other and the displacement of the vibrating body decreases. .

また、従来のユニモルフ型振動体では、平坦な支持板34に積層型圧電素子30を接合していたため、支持板34上の積層型圧電素子30の接合位置が、作製したユニモルフ型振動体毎に異なるおそれがあり、この場合には、ユニモルフ型振動体毎に振動特性が異なるという問題があった。   Further, in the conventional unimorph type vibrator, the laminated piezoelectric element 30 is joined to the flat support plate 34. Therefore, the joining position of the laminated piezoelectric element 30 on the support plate 34 is different for each produced unimorph vibrator. In this case, there is a problem that the vibration characteristics are different for each unimorph type vibrator.

さらに、従来の振動体では、外部電極33bが、積層体の主面よりも支持板34側に突出していたため、外部電極33bと支持板34との接触を防止するため、接着剤層35の厚みを厚くせざるを得ず、この厚い接着剤層35が積層型圧電素子30、36の振動を吸収し、振動体の変位が低下し易いという問題があった。   Furthermore, in the conventional vibrator, the external electrode 33b protrudes from the main surface of the laminate to the support plate 34 side. Therefore, the thickness of the adhesive layer 35 is prevented in order to prevent contact between the external electrode 33b and the support plate 34. In other words, the thick adhesive layer 35 absorbs the vibrations of the multilayer piezoelectric elements 30 and 36, and the displacement of the vibrating body tends to be reduced.

さらに、積層体の支持板側の主面には、積層型圧電素子30、36を有効に振動すべく、表面電極層33aが形成されており、この表面電極層33aと支持板34との電気的導通を阻止するためにも、接着剤層35の厚みを厚くせざるを得ず、これにより振動体の変位が低下し易いという問題があった。   Further, a surface electrode layer 33a is formed on the main surface of the multilayer body on the support plate side in order to effectively vibrate the multilayer piezoelectric elements 30 and 36. The electrical connection between the surface electrode layer 33a and the support plate 34 is performed. In order to prevent the electrical conduction, the thickness of the adhesive layer 35 must be increased, which causes a problem that the displacement of the vibrating body tends to decrease.

本発明は、支持板に積層型圧電素子を位置精度よく接合できる振動体を提供することを目的とし、さらには、変位量を向上できる振動体を提供することを目的とする。   An object of the present invention is to provide a vibrating body capable of bonding a laminated piezoelectric element to a support plate with high positional accuracy, and further to provide a vibrating body capable of improving the amount of displacement.

本発明の振動体は、圧電体層と内部電極層とを交互に積層してなり、一対の長方形状の主面と該主面の長手方向の両端側に設けられた一対の側面とを有する板状の積層体と、該積層体の前記一対の側面にそれぞれ設けられ前記内部電極層と交互に電気的に接続された一対の外部電極とを具備する積層型圧電素子と、該積層型圧電素子が接着剤層により接合された支持板とを具備する振動体であって、前記支持板に収容凹部が形成されており、該収容凹部に前記積層型圧電素子の前記主面側が収容され、前記収容凹部を構成する凹部底面および凹部側面と前記積層型圧電素子との間に前記接着剤層が介在していることを特徴とする。   The vibrating body of the present invention is formed by alternately laminating piezoelectric layers and internal electrode layers, and has a pair of rectangular main surfaces and a pair of side surfaces provided at both ends in the longitudinal direction of the main surfaces. A laminated piezoelectric element comprising: a plate-like laminated body; and a pair of external electrodes provided on the pair of side surfaces of the laminated body and electrically connected alternately to the internal electrode layers; and the laminated piezoelectric element A vibrating body comprising a support plate bonded to the element by an adhesive layer, wherein a housing recess is formed in the support plate, and the main surface side of the multilayer piezoelectric element is housed in the housing recess, The adhesive layer is interposed between the bottom surface of the concave portion and the side surface of the concave portion constituting the housing concave portion and the laminated piezoelectric element.

本発明では、支持体に形成された収容凹部に積層型圧電素子の主面側を収容するだけで、積層型圧電素子を支持板の所望位置に位置決めできるため、所望の振動が得られ、また、多数の振動体を作製した場合でも、振動特性のばらつきを抑制できる。   In the present invention, the multilayered piezoelectric element can be positioned at a desired position on the support plate simply by accommodating the main surface side of the multilayered piezoelectric element in the housing recess formed in the support body, so that a desired vibration is obtained. Even when a large number of vibrating bodies are manufactured, variation in vibration characteristics can be suppressed.

また、収容凹部に積層型圧電素子を収容し、収容凹部を構成する凹部底面および凹部側面と積層型圧電素子との間に接着剤層が介在し、積層型圧電素子が収容凹部に接合されているため、積層型圧電素子の振動方向が収容凹部を構成する凹部側面で拘束されることになり、積層型圧電素子の広がり振動を効果的に支持板に伝達することができ、従来よりも変位量を向上できる。   In addition, the multilayer piezoelectric element is accommodated in the accommodating recess, and an adhesive layer is interposed between the bottom surface and the side surface of the recess constituting the accommodating recess and the multilayer piezoelectric element, and the multilayer piezoelectric element is bonded to the accommodating recess. Therefore, the vibration direction of the multilayer piezoelectric element is constrained by the side surface of the concave portion that constitutes the housing concave portion, and the spreading vibration of the multilayer piezoelectric element can be effectively transmitted to the support plate, which is more displaced than before. The amount can be improved.

また、本発明の振動体は、前記積層体の前記支持板側の主面を、前記積層体の前記支持板側の最も外側に形成された絶縁セラミックスからなる不活性層の前記支持板側の面で構成し、前記不活性層が前記収容凹部に収容されているとともに、前記外部電極は、前記積層体の前記支持板側の主面には形成されていないことを特徴とする。   Further, the vibrator of the present invention has a main surface on the support plate side of the laminated body on the support plate side of an inert layer made of insulating ceramics formed on the outermost side of the laminate on the support plate side. It is comprised by the surface, The said inactive layer is accommodated in the said accommodating recessed part, The said external electrode is not formed in the main surface by the side of the said support plate of the said laminated body, It is characterized by the above-mentioned.

本発明の振動体では、積層体の支持板側に形成された主面を、積層体の支持板側の最外側に形成された絶縁セラミックスからなる不活性層の面により構成し、外部電極は、積層体の支持板側の主面には形成されていないため、外部電極と支持板の凹部底面や凹部側面との接触や、支持板側の表面電極層と支持板の凹部底面との導通を考慮する必要がないので、不活性層と支持板との間の間隔、言い換えると、不活性層と支持板の凹部底面および凹部側面とを接合するための接着剤層の厚みを十分に薄くできるため、接着剤層による積層型圧電素子の変位吸収が少なくなり、変位量を向上できる。   In the vibrating body of the present invention, the main surface formed on the support plate side of the laminate is constituted by the surface of an inactive layer made of insulating ceramics formed on the outermost side of the laminate on the support plate side, and the external electrode is Since it is not formed on the main surface on the support plate side of the laminate, contact between the external electrode and the bottom surface of the recess or the side surface of the recess, or conduction between the surface electrode layer on the support plate side and the bottom surface of the recess of the support plate Therefore, the distance between the inert layer and the support plate, in other words, the thickness of the adhesive layer for joining the inert layer to the bottom surface of the concave portion and the side surface of the concave portion is sufficiently thin. Therefore, the displacement absorption of the multilayer piezoelectric element by the adhesive layer is reduced, and the amount of displacement can be improved.

本発明の振動体は、前記積層体の前記支持板と反対側の主面には表面電極層が形成されていることを特徴とする。このような振動体では、最外側の圧電体層の表面には表面電極層が形成されているため、積層体の最外側の圧電体層も変位に寄与することができ、振動体の変位量を向上できる。   The vibrator according to the present invention is characterized in that a surface electrode layer is formed on a main surface of the laminate opposite to the support plate. In such a vibrator, since the surface electrode layer is formed on the surface of the outermost piezoelectric layer, the outermost piezoelectric layer of the laminated body can also contribute to the displacement, and the amount of displacement of the vibrator Can be improved.

本発明の振動体では、支持体に形成された収容凹部に積層型圧電素子を収容するだけで、積層型圧電素子を支持板の所望位置に位置決めできるため、所望の振動が得られ、また、多数の振動体を作製した場合でも、振動特性のばらつきを抑制できる。さらに、積層型圧電素子の振動方向が収容凹部を構成する凹部側面で拘束されることになり、積層型圧電素子の広がり振動を効果的に支持板に伝達することができ、従来よりも変位量を向上できる。   In the vibrating body of the present invention, since the laminated piezoelectric element can be positioned at a desired position of the support plate simply by housing the laminated piezoelectric element in the housing recess formed in the support body, a desired vibration can be obtained. Even when a large number of vibrators are manufactured, variation in vibration characteristics can be suppressed. Furthermore, the vibration direction of the multilayer piezoelectric element is constrained by the side surface of the concave portion constituting the housing concave portion, so that the spread vibration of the multilayer piezoelectric element can be effectively transmitted to the support plate, and the amount of displacement is larger than the conventional amount. Can be improved.

(a)は本発明のバイモルフ型の振動体の断面図であり、(b)は支持板の収容凹部にテーパ部を形成した状態を説明するための断面図である。(A) is sectional drawing of the bimorph type vibrating body of this invention, (b) is sectional drawing for demonstrating the state which formed the taper part in the accommodation recessed part of the support plate. 本発明のバイモルフ型の振動体の平面図である。It is a top view of the bimorph type oscillating body of the present invention. 支持板の収容凹部と積層型圧電素子との間の接着剤層で積層型圧電素子を支持板に接合した状態を示す断面図である。It is sectional drawing which shows the state which bonded the lamination type piezoelectric element to the support plate with the adhesive bond layer between the accommodation recessed part of a support plate, and a lamination type piezoelectric element. 導体層を有する本発明のバイモルフ型振動体を示すもので、(a)は断面図、(b)は平面図である。The bimorph type | mold vibrating body of this invention which has a conductor layer is shown, (a) is sectional drawing, (b) is a top view. (a)は、積層体の長手方向側面が焼き肌面とされている積層型圧電素子を用いた振動体の断面図であり、(b)は(a)の一部を拡大して示す断面図である。(A) is sectional drawing of the vibrating body using the lamination type piezoelectric element by which the longitudinal direction side surface of a laminated body is a burnt surface, (b) is a cross section which expands and shows a part of (a) FIG. シミュレーションに使用したユニモルフ型の振動体を示すもので、(a)は従来の振動体、(b)は支持板に収容凹部を形成し、この収容凹部に積層型圧電素子の主面を収容した場合の断面図である。The unimorph type vibration body used for the simulation is shown. (A) is a conventional vibration body, (b) is formed with a housing recess in the support plate, and the main surface of the multilayer piezoelectric element is housed in the housing recess. It is sectional drawing in the case. 従来の振動体を示すもので、(a)は断面図、(b)は接着剤層を広く形成し、この接着剤層に積層型圧電素子を押し当てて接合した場合の断面図である。1A and 1B show a conventional vibrating body, in which FIG. 1A is a cross-sectional view, and FIG. 1B is a cross-sectional view when an adhesive layer is widely formed and a laminated piezoelectric element is pressed against and bonded to the adhesive layer.

(第1形態)
以下、本発明の実施形態を図1、図2に基づいて説明する。図1は本発明のバイモルフ型の振動体の断面図を、図2は平面図を示す。
(First form)
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of a bimorph type vibrator of the present invention, and FIG. 2 is a plan view.

本発明のバイモルフ型の振動体は、図1、2に示すように、積層型圧電素子1、3を支持板5の上下面に接着剤層6によりそれぞれ接合して構成されている。尚、本発明は、バイモルフ型の振動体に限定されるものではなく、支持板5の片側に積層型圧電素子が接合されたユニモルフ型の振動体であっても本発明の効果は得られる。   As shown in FIGS. 1 and 2, the bimorph type vibrating body of the present invention is configured by bonding laminated piezoelectric elements 1 and 3 to the upper and lower surfaces of a support plate 5 with an adhesive layer 6. The present invention is not limited to the bimorph type vibrator, and the effect of the present invention can be obtained even with a unimorph type vibrator in which a laminated piezoelectric element is joined to one side of the support plate 5.

積層型圧電素子1、3は、6層のセラミックスからなる圧電体層7と6層の内部電極層9とを交互に積層してなり、支持板5側の最外側に絶縁セラミックからなる不活性層11を有する積層体13と、この積層体13の支持板5と反対側に形成された表面電極層15と、積層体13の長手方向xの両端部にそれぞれ設けられた一対の外部電極17、19とを具備している。尚、図1(a)は理解を容易にするため、積層型圧電素子1、3の厚みを拡大して記載し、(b)は、積層型圧電素子1、3の支持板5への接合状態を説明するための説明図である。   The laminated piezoelectric elements 1 and 3 are formed by alternately laminating piezoelectric layers 7 made of 6 layers of ceramics and 6 internal electrode layers 9, and are made of an insulating ceramic on the outermost side on the support plate 5 side. The laminated body 13 having the layer 11, the surface electrode layer 15 formed on the opposite side of the laminated body 13 from the support plate 5, and a pair of external electrodes 17 provided at both ends in the longitudinal direction x of the laminated body 13. , 19. FIG. 1 (a) shows an enlarged thickness of the multilayer piezoelectric elements 1 and 3 for easy understanding, and FIG. 1 (b) shows the bonding of the multilayer piezoelectric elements 1 and 3 to the support plate 5. It is explanatory drawing for demonstrating a state.

積層体15は板状であり、上下の主面が長方形状とされ、積層体15の主面の長手方向xには、内部電極層9が交互に引き出された一対の側面を有している。   The laminated body 15 is plate-shaped, the upper and lower main surfaces are rectangular, and the longitudinal direction x of the main surface of the laminated body 15 has a pair of side surfaces from which the internal electrode layers 9 are alternately drawn. .

図1の積層型圧電素子1で説明すると、積層体15の上側の主面は圧電体層7の上面で構成され、積層体13の下側の主面は不活性層11の下面で構成されており、積層体15の上側の主面には、表面電極層15が形成されている。   Referring to the multilayer piezoelectric element 1 in FIG. 1, the upper main surface of the multilayer body 15 is composed of the upper surface of the piezoelectric layer 7, and the lower main surface of the multilayer body 13 is composed of the lower surface of the inactive layer 11. A surface electrode layer 15 is formed on the upper main surface of the laminate 15.

この積層型圧電素子1、3の層構成を、図1の積層型圧電素子1で詳細に説明すると、絶縁セラミックからなる不活性層11と、この不活性層11の上面に形成された内部電極層9と、この内部電極層9上に形成された圧電体層7と、この圧電体層7の上面に交互に積層された前記内部電極層9、前記圧電体層7と、さらに積層体13の最上層の圧電体層7上に形成された表面電極層15とを具備している。   The layer structure of the multilayer piezoelectric elements 1 and 3 will be described in detail with reference to the multilayer piezoelectric element 1 in FIG. 1. An inactive layer 11 made of an insulating ceramic and an internal electrode formed on the upper surface of the inactive layer 11 A layer 9, piezoelectric layers 7 formed on the internal electrode layer 9, the internal electrode layers 9 and the piezoelectric layers 7 that are alternately stacked on the upper surface of the piezoelectric layer 7, and a stacked body 13. And the surface electrode layer 15 formed on the uppermost piezoelectric layer 7.

1層の不活性層11と、6層の圧電体層7と、6層の内部電極層9とは積層された状態で同時焼成されて構成されている。表面電極層15は、後述するように、積層体13を作製した後、ペーストを塗布し焼き付けて形成されている。   One inactive layer 11, six piezoelectric layers 7, and six internal electrode layers 9 are laminated and fired at the same time. As will be described later, the surface electrode layer 15 is formed by applying a paste and baking it after producing the laminate 13.

不活性層11は絶縁セラミックスからなるもので、上記した圧電体層7と同一成分を含有することが望ましく、特には、同一材料からなることが望ましい。また、不活性層11の厚みは任意に設定できるが、不活性層11の厚みが厚くなると絶縁性を向上できるものの、不活性層11による振動抑制が大きくなるため、良好な振動を得るという点からは薄い方が望ましい。   The inactive layer 11 is made of insulating ceramics, and preferably contains the same components as the piezoelectric layer 7 described above, and particularly preferably made of the same material. Moreover, although the thickness of the inactive layer 11 can be set arbitrarily, although the insulation can be improved when the thickness of the inactive layer 11 is increased, the vibration suppression by the inactive layer 11 is increased, and therefore, good vibration is obtained. It is desirable to be thinner.

また、製造上容易という点からは、圧電体層7と同一材料で同一厚みを有することが望ましい。これは、積層成形体を作成する際には、圧電体層7と同じグリーンシートを用いて作製することができるからである。   Further, from the viewpoint of easy manufacturing, it is desirable that the piezoelectric layer 7 has the same material and the same thickness. This is because the same green sheet as that of the piezoelectric layer 7 can be used to produce the laminated molded body.

尚、不活性層11は、圧電体層材料と同一にする必要はなく、絶縁性のセラミックスであれば、多少工程上複雑になるが、本発明の効果を得ることができる。   The inactive layer 11 does not need to be the same as the piezoelectric layer material, and if it is an insulating ceramic, the effect of the present invention can be obtained although it is somewhat complicated in process.

積層体13の長方形状の主面は、幅が5mm以下で、長さが10mm以上であることが望ましい。このような積層型圧電素子では、特に、主面の長手方向xの変位が大きくなり、支持板5に伝達される変位量が大きくなるため、後述するように、接着材層6による変位吸収を抑制する本発明を好適に用いることができる。積層体13の長方形状の主面は、特に幅が5mm以下で、長さが17mm以上の場合に、本発明を好適に用いることができる。   The rectangular main surface of the laminated body 13 desirably has a width of 5 mm or less and a length of 10 mm or more. In such a laminated piezoelectric element, in particular, the displacement in the longitudinal direction x of the main surface is increased, and the amount of displacement transmitted to the support plate 5 is increased. Therefore, as will be described later, the displacement absorption by the adhesive layer 6 is absorbed. The present invention to suppress can be used suitably. The present invention can be suitably used when the rectangular main surface of the laminate 13 has a width of 5 mm or less and a length of 17 mm or more.

また、積層体13の圧電体層7の積層数が30層以下である場合には、積層型圧電素子の変位が小さいため、積層型圧電素子の変位を効率よく支持板に伝達する必要があるため、本発明をより好適に用いることができる。   Further, when the number of stacked piezoelectric layers 7 of the multilayer body 13 is 30 or less, the displacement of the multilayer piezoelectric element is small, and therefore it is necessary to efficiently transmit the displacement of the multilayer piezoelectric element to the support plate. Therefore, the present invention can be used more suitably.

圧電体層7としては、PZ、PZT、Bi層状化合物、ニオブ酸の1−5酸化物、タングステンブロンズ構造化合物等の非鉛系圧電体材料等、従来用いられている圧電セラミックスを用いることができる。圧電体層7の厚みは、低電圧駆動という観点から、10〜100μmとされている。   As the piezoelectric layer 7, conventionally used piezoelectric ceramics such as PZ, PZT, Bi layered compounds, lead-free piezoelectric materials such as 1-5 oxide of niobic acid and tungsten bronze structure compounds can be used. . The thickness of the piezoelectric layer 7 is set to 10 to 100 μm from the viewpoint of low voltage driving.

内部電極層9としては、銀とパラジウムからなる金属成分と圧電体層7を構成する材料成分を含有することが望ましい。内部電極層9に圧電体層7を構成する材料成分を含有することにより、圧電体層7と内部電極層9との熱膨張差による応力を低減することができ、積層不良のない積層型圧電素子1、3を得ることができる。内部電極層9は、特に、銀とパラジウムからなる金属成分に限定されるものではなく、また、セラミック成分として、圧電体層7を構成する材料成分に限定されるものではなく、他のセラミック成分であっても良い。   The internal electrode layer 9 preferably contains a metal component composed of silver and palladium and a material component constituting the piezoelectric layer 7. By including the material component constituting the piezoelectric layer 7 in the internal electrode layer 9, it is possible to reduce the stress due to the difference in thermal expansion between the piezoelectric layer 7 and the internal electrode layer 9, and to provide a stacked piezoelectric element without stacking faults. Elements 1 and 3 can be obtained. The internal electrode layer 9 is not particularly limited to a metal component composed of silver and palladium, and is not limited to a material component constituting the piezoelectric layer 7 as a ceramic component. It may be.

表面電極層15と外部電極17、19は、銀からなる金属成分にガラス成分を含有することが望ましい。ガラス成分を含有することにより、圧電体層7や内部電極層9と、表面電極層15または外部電極17、19との間に強固な密着力を得ることができる。   The surface electrode layer 15 and the external electrodes 17 and 19 preferably contain a glass component in the metal component made of silver. By containing the glass component, it is possible to obtain a strong adhesion between the piezoelectric layer 7 and the internal electrode layer 9 and the surface electrode layer 15 or the external electrodes 17 and 19.

外部電極17、19は積層体13の側面に形成され、この積層体13の側面から、支持板5と反対側の積層体13の主面の長手方向xの両端部まで、外部電極17、19が延設されており、支持板5と反対側の積層体13の主面の長手方向xの一方端部では、外部電極19が表面電極層15に接続され、他方端部では、外部電極17は、圧電体層7上に接合している。   The external electrodes 17 and 19 are formed on the side surface of the multilayer body 13, and the external electrodes 17 and 19 extend from the side surface of the multilayer body 13 to both ends in the longitudinal direction x of the main surface of the multilayer body 13 on the side opposite to the support plate 5. The external electrode 19 is connected to the surface electrode layer 15 at one end in the longitudinal direction x of the main surface of the laminate 13 opposite to the support plate 5, and the external electrode 17 at the other end. Are bonded on the piezoelectric layer 7.

積層型圧電素子1、3は、6層の内部電極層9と1層の表面電極層15が交互に電極層とされており、一方(左側)の外部電極17には、積層体13の左側の側面において3層の内部電極層9が電気的に接続され、他方(右側)の外部電極19には、積層体13の右側の側面において3層の内部電極層9及び表面電極層15が電気的に接続されている。   In the multilayer piezoelectric elements 1 and 3, six internal electrode layers 9 and one surface electrode layer 15 are alternately formed as electrode layers, and one (left side) external electrode 17 has a left side of the multilayer body 13. The three internal electrode layers 9 are electrically connected to each other on the side surface, and the three internal electrode layers 9 and the surface electrode layer 15 are electrically connected to the other (right side) external electrode 19 on the right side surface of the laminate 13. Connected.

外部電極17、19は、不活性層11の支持板5側の主面までは延設されておらず、不活性層11の側面の一部を被覆している。言い換えると、外部電極17、19の支持板5側は、不活性層11の支持板5側の主面には形成されておらず、不活性層11の支持板5側の主面から、支持板5側には突出していない。   The external electrodes 17 and 19 do not extend to the main surface of the inactive layer 11 on the support plate 5 side, and cover a part of the side surface of the inactive layer 11. In other words, the support plate 5 side of the external electrodes 17, 19 is not formed on the main surface of the inert layer 11 on the support plate 5 side, and is supported from the main surface of the inert layer 11 on the support plate 5 side. It does not protrude to the plate 5 side.

そして、本発明の振動体では、支持板5の所定位置に収容凹部23が形成されており、該収容凹部23に積層型圧電素子1、3の不活性層側が収容され、収容凹部23を構成する凹部底面23aおよび凹部側面23bと積層型圧電素子1、3との間に接着剤層6が介在しており、この接着剤層6により凹部底面23aおよび凹部側面23bと積層型圧電素子1、3とが接合されている。   In the vibrating body of the present invention, the housing recess 23 is formed at a predetermined position of the support plate 5, and the inactive layer side of the laminated piezoelectric elements 1 and 3 is housed in the housing recess 23, thereby forming the housing recess 23. The adhesive layer 6 is interposed between the concave bottom surface 23a and the concave side surface 23b and the laminated piezoelectric elements 1 and 3, and the adhesive layer 6 causes the concave bottom surface 23a and the concave side surface 23b to adhere to the multilayer piezoelectric element 1, 3 is joined.

言い換えると、不活性層11が収容凹部23に収容されており、不活性層11の支持板5側と凹部底面23aとが接着剤層6により接合され、不活性層11の側面と凹部側面23bとが接着剤層6により接合されている。不活性層11の側面およびこの側面に形成された外部電極17、19と凹部側面23bとが接着剤層6により接合される場合もあるが、収容凹部23には、外部電極17、19が収容されていない、言い換えれば、支持板5の表面よりも外側に形成されていることが望ましい。   In other words, the inert layer 11 is accommodated in the accommodating recess 23, the support plate 5 side of the inert layer 11 and the recess bottom surface 23a are joined by the adhesive layer 6, and the side surface of the inert layer 11 and the recess side surface 23b are joined. Are bonded by the adhesive layer 6. Although the side surface of the inert layer 11 and the external electrodes 17 and 19 formed on the side surface and the concave side surface 23b may be joined by the adhesive layer 6, the external electrodes 17 and 19 are accommodated in the accommodating concave portion 23. In other words, it is preferably formed outside the surface of the support plate 5.

積層型圧電素子1、3の長さ方向における支持板5の凹部寸法は、積層型圧電素子1、3が収容凹部23内に収容できる大きさとされていれば良く、積層型圧電素子1、3と収容凹部23の凹部側面23bとの隙間はなるべく狭いことが、変位を大きくするという点から望ましい。積層型圧電素子1、3の長さ方向の側面と収容凹部23の凹部側面23bとの隙間L1は、100μm以下、特には50μm以下であることが望ましい。   The concave dimension of the support plate 5 in the length direction of the multilayer piezoelectric elements 1 and 3 is not limited as long as the multilayer piezoelectric elements 1 and 3 can be accommodated in the accommodating recess 23. And the recess side surface 23b of the housing recess 23 are preferably as narrow as possible from the viewpoint of increasing displacement. The gap L1 between the side surface in the length direction of the multilayer piezoelectric elements 1 and 3 and the recess side surface 23b of the housing recess 23 is desirably 100 μm or less, particularly 50 μm or less.

さらに、積層型圧電素子1、3の長さ方向の側面と収容凹部23の凹部側面23bとの間の接着剤層6は、なるべくヤング率が大きい方が望ましい。これにより、接着剤層6が硬いため、積層型圧電素子1、3の長さ方向の変位を支持板に伝達し易くなる。従って、積層型圧電素子1、3の長さ方向の側面と収容凹部23の凹部側面23bとの間の接着剤層6と、積層型圧電素子1、3の支持板側の主面と凹部底面23aとの間の接着剤層6とは異なる材料から形成されていても良い。   Furthermore, the adhesive layer 6 between the side surface in the length direction of the multilayer piezoelectric elements 1 and 3 and the recess side surface 23b of the housing recess 23 desirably has a Young's modulus as large as possible. Thereby, since the adhesive layer 6 is hard, it becomes easy to transmit the displacement of the laminated piezoelectric elements 1 and 3 in the length direction to the support plate. Therefore, the adhesive layer 6 between the side surface in the length direction of the multilayer piezoelectric elements 1 and 3 and the concave side surface 23b of the housing recess 23, the main surface on the support plate side of the multilayer piezoelectric elements 1 and 3, and the bottom surface of the recess. It may be formed of a material different from that of the adhesive layer 6 between 23a.

また、収容凹部23の凹部側面23bは、図1(a)に示すように、支持板5の主面に対してほぼ垂直であっても良いが、図1(b)に示すように外側に向けて広がるテーパ部とされていることが望ましい。これにより、収容凹部23を作製することが容易となり、また、収容凹部23内に積層型圧電素子1、3を収容する作業が容易となる。   Further, the recess side surface 23b of the housing recess 23 may be substantially perpendicular to the main surface of the support plate 5 as shown in FIG. 1 (a), but it is outward as shown in FIG. 1 (b). It is desirable that the tapered portion is widened toward the surface. As a result, it is easy to produce the housing recess 23, and the work of housing the stacked piezoelectric elements 1 and 3 in the housing recess 23 is facilitated.

一般に、支持板5への積層型圧電素子1、3の接合位置が設計位置と異なり、位置ずれしてしまうと、積層型圧電素子1、3の振動が打ち消しあい、所望の振動が得られず、また、振動体毎に振動特性がばらつく原因となっていたが、本発明では、支持体5に形成された収容凹部23に積層型圧電素子1、3を収容するだけで、積層型圧電素子1、3を支持板5の所望位置に位置決めできるため、所望の振動が得られ、また、多数の振動体を作製した場合でも、振動特性のばらつきを抑制できる。   In general, when the position of joining the multilayer piezoelectric elements 1 and 3 to the support plate 5 is different from the design position, the vibrations of the multilayer piezoelectric elements 1 and 3 cancel each other and a desired vibration cannot be obtained. In addition, although the vibration characteristics vary among the vibrators, in the present invention, the multilayer piezoelectric elements 1 and 3 are simply accommodated in the accommodating recesses 23 formed in the support 5. Since 1 and 3 can be positioned at a desired position of the support plate 5, desired vibration can be obtained, and even when a large number of vibrating bodies are produced, variation in vibration characteristics can be suppressed.

また、収容凹部23に積層型圧電素子1、3を収容し、収容凹部23を構成する凹部底面23aおよび凹部側面23bと積層型圧電素子1、3との間に接着剤層6が介在し、積層型圧電素子1、3が収容凹部23に接合されているため、積層型圧電素子1、3の振動方向が収容凹部23を構成する凹部側面23bで拘束されることになり、積層型圧電素子1、3の広がり振動を効果的に支持板5に伝達することができ、従来よりも変位量を向上できる。また、収容凹部23内に積層型圧電素子1、3の一部が入り込んで接着されるため、支持板5と積層型圧電素子1、3の接着がより強固となり、積層型圧電素子1、3の伸縮を支持板5に効果的に伝達することができる。   Further, the multilayer piezoelectric elements 1 and 3 are accommodated in the accommodating recess 23, and the adhesive layer 6 is interposed between the concave bottom surface 23a and the concave side surface 23b constituting the accommodating concave 23 and the multilayer piezoelectric elements 1 and 3, Since the stacked piezoelectric elements 1 and 3 are joined to the housing recess 23, the vibration direction of the stacked piezoelectric elements 1 and 3 is constrained by the recess side surface 23b constituting the housing recess 23, and thus the stacked piezoelectric element. The spreading vibrations 1 and 3 can be effectively transmitted to the support plate 5, and the amount of displacement can be improved as compared with the prior art. In addition, since part of the multilayer piezoelectric elements 1 and 3 enters and is accommodated in the housing recess 23, the adhesion between the support plate 5 and the multilayer piezoelectric elements 1 and 3 becomes stronger, and the multilayer piezoelectric elements 1 and 3. Can be effectively transmitted to the support plate 5.

従来、広がり振動モードで振動する積層型圧電素子1、3では広がり振動を抑制しないように、積層型圧電素子1、3の両主面には表面電極層を形成し、振動に寄与する活性層としていた。従って、積層型圧電素子1、3を支持板5に接合する際には、積層型圧電素子1、3の表面電極層側を接着剤で支持板に接合する必要があり、積層型圧電素子1、3の表面電極層と支持板5との間の絶縁性を確保するため、接着剤層6の厚みを厚くせざるを得なかった。このため、接着剤層6により積層型圧電素子1、3の振動が吸収され、変位を支持板5に十分に伝達できなかった。   Conventionally, surface electrode layers are formed on both principal surfaces of the multilayer piezoelectric elements 1 and 3 so as not to suppress the spread vibration in the multilayer piezoelectric elements 1 and 3 that vibrate in the spread vibration mode, and an active layer that contributes to vibration. I was trying. Therefore, when the multilayer piezoelectric elements 1 and 3 are bonded to the support plate 5, it is necessary to bond the surface electrode layer side of the multilayer piezoelectric elements 1 and 3 to the support plate with an adhesive. In order to ensure insulation between the surface electrode layer 3 and the support plate 5, the thickness of the adhesive layer 6 had to be increased. For this reason, the vibration of the multilayer piezoelectric elements 1 and 3 is absorbed by the adhesive layer 6, and the displacement cannot be sufficiently transmitted to the support plate 5.

本発明の振動体では、積層体13の支持板側に形成された主面を、積層体13の支持板側の最外側に形成された絶縁セラミックスからなる不活性層11の支持板側の面で構成し、外部電極17、19は、積層体13の支持板側の主面には形成されていないため、外部電極17、19と支持板5との接触や、支持板側の積層体13と支持板5との導通を考慮する必要がないので、不活性層11と支持板5との間の間隔、言い換えると、不活性層11と支持板5の凹部底面23aおよび凹部側面23bとを接合するための接着剤層6の厚みを十分に薄くできるため、接着剤層6による積層型圧電素子1、3の変位吸収が少なくなり、変位量を向上できる。   In the vibrating body of the present invention, the main surface formed on the support plate side of the laminate 13 is the surface on the support plate side of the inactive layer 11 made of insulating ceramics formed on the outermost side of the laminate 13 on the support plate side. The external electrodes 17 and 19 are not formed on the main surface of the laminated body 13 on the support plate side. Therefore, contact between the external electrodes 17 and 19 and the support plate 5, or the laminated body 13 on the support plate side. Since there is no need to consider conduction between the active layer 11 and the support plate 5, the gap between the inactive layer 11 and the support plate 5, in other words, the recess bottom surface 23 a and the recess side surface 23 b of the inert layer 11 and the support plate 5 is provided. Since the thickness of the adhesive layer 6 for bonding can be made sufficiently thin, the displacement absorption of the stacked piezoelectric elements 1 and 3 by the adhesive layer 6 is reduced, and the amount of displacement can be improved.

積層型圧電素子1、3と支持板5の凹部底面23aとの間の接着剤層6の厚みhは20μm以下とされている。特には、厚みhは10μm以下であることが望ましい。このように、厚みhが20μm以下である場合には、積層体13の振動を支持板5に伝えやすくなるため、本発明をより好適に用いることができる。一方、厚みhを薄くしても、絶縁性セラミックスからなる不活性層11が、積層体13の最外層であるため、また、外部電極17、19は、不活性層11の支持板側の面から突出していないため、積層体13と支持板5との間の絶縁性を確保できる。 The thickness h 1 of the adhesive layer 6 between the laminated piezoelectric elements 1 and 3 and the concave bottom surface 23a of the support plate 5 is 20 μm or less. In particular, the thickness h 1 is desirably 10 μm or less. Thus, when the thickness h 1 is 20μm or less, it becomes easier to convey the vibrations of the laminate 13 to the support plate 5, the present invention can be used more suitably. On the other hand, even if the thickness h 1 is reduced, the inactive layer 11 made of insulating ceramic is the outermost layer of the laminate 13, and the external electrodes 17 and 19 are disposed on the support plate side of the inactive layer 11. Since it does not protrude from the surface, insulation between the laminate 13 and the support plate 5 can be ensured.

積層型圧電素子1、3と支持板5との収容凹部23との間の接着剤層6を形成するための接着剤としては、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂等公知のものを使用することができる。接着剤に使用する樹脂の硬化方法としては、熱硬化性、光硬化性、嫌気性硬化等いずれを用いても振動体を作製することができる。   As an adhesive for forming the adhesive layer 6 between the multilayer piezoelectric elements 1, 3 and the housing recess 23 of the support plate 5, known ones such as epoxy resins, silicon resins, polyester resins, etc. Can be used. As a method for curing the resin used for the adhesive, the vibrating body can be produced by using any of thermosetting, photocuring, anaerobic curing, and the like.

尚、図3に示すように、積層型圧電素子1、3と支持板5の収容凹部23との間の接着剤層6だけでなく、接着剤層21により、外部電極17、19と収容凹部23の外側に位置する支持板5の表面とを接合することにより、落下時等の衝撃による積層型圧電素子1、3の支持板5からの剥離を抑制できる。   As shown in FIG. 3, not only the adhesive layer 6 between the laminated piezoelectric elements 1 and 3 and the housing recess 23 of the support plate 5, but also the external electrodes 17 and 19 and the housing recesses are formed by the adhesive layer 21. By bonding to the surface of the support plate 5 located outside the 23, it is possible to suppress peeling of the multilayer piezoelectric elements 1 and 3 from the support plate 5 due to an impact such as dropping.

本発明の振動体は、外部電極17、19を絶縁性の支持板5に形成された電極パターン、または導電性の支持板5そのものに導通せしめ、外部電極17、19間に電圧を印加し、積層型圧電素子が駆動することになる。また、積層型圧電素子1と積層型圧電素子3とは、一方が縮み他方が延びるように電圧が印加される。これにより、図1、3に示すようなバイモルフ型の振動体は、大きく振動することになる。   In the vibrating body of the present invention, the external electrodes 17 and 19 are electrically connected to the electrode pattern formed on the insulating support plate 5 or the conductive support plate 5 itself, and a voltage is applied between the external electrodes 17 and 19. The stacked piezoelectric element is driven. A voltage is applied so that one of the multilayer piezoelectric element 1 and the multilayer piezoelectric element 3 is contracted and the other is extended. Thereby, the bimorph type vibrator as shown in FIGS. 1 and 3 vibrates greatly.

尚、図4に、支持板5が金属または合金からなり、一方の外部電極17と支持板5とを導通するための導体層25を形成した振動体を示す。この振動体では、他方の外部電極19は導電部材で引き出され、外部電極17、19間に電圧が印加されることになる。   FIG. 4 shows a vibrating body in which the support plate 5 is made of a metal or an alloy, and a conductor layer 25 is formed to electrically connect one external electrode 17 and the support plate 5. In this vibrating body, the other external electrode 19 is drawn out by the conductive member, and a voltage is applied between the external electrodes 17 and 19.

次に、本発明の振動体の製造方法について説明する。まず、圧電材料の粉末にバインダー、分散剤、可塑剤、溶剤を混練し、スラリーを作製する。圧電材料としては、鉛系、非鉛系のうちいずれでも使用することができる。   Next, the manufacturing method of the vibrating body of this invention is demonstrated. First, a binder, a dispersant, a plasticizer, and a solvent are kneaded with the piezoelectric material powder to prepare a slurry. As the piezoelectric material, any of lead-based and non-lead-based materials can be used.

次に、得られたスラリーをシート状に成形し、グリーンシートを得ることができ、グリーンシートに内部電極ペーストを印刷して内部電極パターンを形成し、この電極パターンが形成されたグリーンシートを所望の枚数積層し、最上層にはグリーンシートのみ積層して、積層成形体を作製する。   Next, the obtained slurry can be formed into a sheet shape to obtain a green sheet, and an internal electrode pattern is formed by printing an internal electrode paste on the green sheet, and a green sheet on which this electrode pattern is formed is desired Are laminated, and only the green sheet is laminated on the uppermost layer to produce a laminated molded body.

次に、この積層成形体を脱脂、焼成し、所定寸法にカットすることにより積層体13を得ることができる。積層体13は、必要に応じて外周部を加工し、積層体13の圧電体層7の積層方向の片側主面に表面電極層15のペーストを印刷し、引き続き、積層体13の長手方向xの両側面に外部電極17、19のペーストを印刷し、所定の温度で電極の焼付けを行うことにより、図1に示す積層型圧電素子1、3を得ることができる。   Next, the laminate 13 can be obtained by degreasing, firing, and cutting the laminate compact to a predetermined size. The laminated body 13 processes the outer peripheral portion as necessary, prints the paste of the surface electrode layer 15 on one principal surface in the lamination direction of the piezoelectric layer 7 of the laminated body 13, and then continues to the longitudinal direction x of the laminated body 13 The multilayer piezoelectric elements 1 and 3 shown in FIG. 1 can be obtained by printing pastes of the external electrodes 17 and 19 on both side surfaces of the substrate and baking the electrodes at a predetermined temperature.

次に、積層型圧電素子1、3に圧電性を付与するために表面電極層15又は外部電極17、19を通じて直流電圧を印加して、積層型圧電素子1、3の分極を行う。   Next, in order to impart piezoelectricity to the multilayer piezoelectric elements 1 and 3, a DC voltage is applied through the surface electrode layer 15 or the external electrodes 17 and 19 to polarize the multilayer piezoelectric elements 1 and 3.

次に、支持板5に、例えば金型を用いて積層体13が入る大きさの収容凹部23を形成する。その後その収容凹部23内に接着剤を塗布して、収容凹部23内に積層型圧電素子1、3を収容し、凹部底面23a側に押し当て、接着剤を凹部側面23bと積層型圧電素子1、3の側面との間に回り込ませ、この後、接着剤を熱や紫外線を照射することにより硬化させ、本発明の振動体を得ることができる。
(第2形態)
図1に示したように、積層体13の主面の長さが長くなればなるほど、言い換えれば、積層体13の長さが長くなればなるほど、内部電極層9の主面の長手方向xの収縮量が大きくなり、積層体13の側面から内部電極層9の先端の凹み量が大きくなるため、通常は、焼成した後、カットして内部電極層9を積層体13の側面に露出させ、この側面に外部電極17、19を形成し、接続信頼性を図ることが行われているが、この形態では、焼成後にカットすることなく、外部電極17、19の積層体13側面からの接合強度を向上するため、積層体13の側面が焼き肌面とされている。
Next, the accommodation recessed part 23 of the magnitude | size in which the laminated body 13 enters is formed in the support plate 5 using a metal mold | die, for example. Thereafter, an adhesive is applied in the housing recess 23, the stacked piezoelectric elements 1 and 3 are stored in the housing recess 23, pressed against the bottom surface 23a of the recess, and the adhesive is pressed against the recess side surface 23b and the stacked piezoelectric element 1. Then, the adhesive is cured by irradiating with heat or ultraviolet rays to obtain the vibrating body of the present invention.
(Second form)
As shown in FIG. 1, the longer the length of the main surface of the multilayer body 13, in other words, the longer the length of the multilayer body 13, the longer the main surface of the internal electrode layer 9 in the longitudinal direction x. Since the amount of shrinkage increases and the amount of dent at the tip of the internal electrode layer 9 increases from the side surface of the multilayer body 13, it is usually cut after baking to expose the internal electrode layer 9 to the side surface of the multilayer body 13, External electrodes 17 and 19 are formed on the side surfaces to improve connection reliability. In this embodiment, the bonding strength from the side surfaces of the laminated body 13 of the external electrodes 17 and 19 is not cut after firing. In order to improve this, the side surface of the laminated body 13 is a burnt skin surface.

この形態について、説明する。この形態の振動体では、図5に示すように、積層型圧電素子1、3と支持板5の収容凹部23との間が接着剤層6で接合され、かつ外部電極17、19の露出面の一部と支持板5とが側面側の接着剤層21で接合されている。言い換えれば、側面側の接着剤層21は、外部電極17、19の露出面の一部に付着し、裾が広がるようにして支持板5の表面にも付着している。   This form will be described. In the vibrating body of this form, as shown in FIG. 5, the laminated piezoelectric elements 1, 3 and the housing recess 23 of the support plate 5 are joined by the adhesive layer 6, and the exposed surfaces of the external electrodes 17, 19. And a support plate 5 are joined together by an adhesive layer 21 on the side surface side. In other words, the adhesive layer 21 on the side surface side adheres to a part of the exposed surface of the external electrodes 17 and 19 and also adheres to the surface of the support plate 5 so that the skirt is widened.

側面側の接着剤層21は、接着剤層6と連続しており、本発明では、収容凹部23と積層型圧電素子1、3との間の接着剤層を接着剤層6とし、それよりも外側に位置する接着剤層を側面側の接着剤層21と定義した。   The side-side adhesive layer 21 is continuous with the adhesive layer 6. In the present invention, the adhesive layer between the housing recess 23 and the laminated piezoelectric elements 1 and 3 is defined as an adhesive layer 6. Also, the adhesive layer located outside was defined as the side-side adhesive layer 21.

そして、この形態では、積層体13の一対の側面が焼き肌面とされている。従って、積層体13の主面の長手方向xの側面は圧電体層7を構成するセラミック粒子による形状が反映され、図5(b)に示すように、セラミック粒子により凹凸が形成されており、また、内部電極層9の焼成収縮により、積層体13の側面には開口部が形成されており、セラミック粒子による凹凸が形成されている。また、内部電極層9の焼成収縮による開口部を有する側面に、外部電極17、19の電極ペーストを塗布して外部電極17、19を形成することにより、セラミック粒子による凹凸に外部電極材料が噛み込み、また開口部に外部電極材料が入り込み、この状態で焼き付き、積層体13の側面への外部電極17、19の接合強度を向上することができる。   And in this form, a pair of side surface of the laminated body 13 is made into a baking surface. Therefore, the side surface in the longitudinal direction x of the main surface of the multilayer body 13 reflects the shape of the ceramic particles constituting the piezoelectric layer 7, and as shown in FIG. 5B, the unevenness is formed by the ceramic particles. Further, due to the firing shrinkage of the internal electrode layer 9, an opening is formed on the side surface of the multilayer body 13, and irregularities due to ceramic particles are formed. In addition, by applying the electrode paste of the external electrodes 17 and 19 to the side surface of the internal electrode layer 9 that has openings due to firing shrinkage to form the external electrodes 17 and 19, the external electrode material bites into the irregularities of the ceramic particles. In addition, the external electrode material enters the opening, and is seized in this state, so that the bonding strength of the external electrodes 17 and 19 to the side surface of the laminate 13 can be improved.

特に、外部電極17、19の支持板5側は、積層体13の支持板5側の主面には形成されておらず、積層体13への外部電極17、19の接合強度が低下し易いため、この形態を好適に用いることができる。また、焼結後、積層体13の側面を平坦にする等の加工をしないため、加工費用を削減でき、作製コストを削減できる。   In particular, the support plate 5 side of the external electrodes 17 and 19 is not formed on the main surface of the laminate 13 on the support plate 5 side, and the bonding strength of the external electrodes 17 and 19 to the laminate 13 is likely to decrease. Therefore, this form can be used suitably. Further, since the processing such as flattening the side surface of the laminated body 13 is not performed after sintering, the processing cost can be reduced and the production cost can be reduced.

ここで、焼き肌面とは、焼結後、ダイシングやバレルなどで積層体13の側面を平坦にする等の加工をせず、焼結後そのままの磁器表面を有することをいう。   Here, the burned surface means having a porcelain surface as it is after sintering without performing processing such as flattening the side surface of the laminate 13 by dicing or barreling after sintering.

次に、上記振動体の製造方法について説明する。第1形態のようにして積層成形体を作製する。この積層成形体を所望の形状に切断し、個片状の素子用積層成形体を作製する。切断する際は、内部電極パターンが素子用積層成形体の側面に、交互に露出するように切断する。   Next, a method for manufacturing the vibrating body will be described. A laminated molded body is produced as in the first embodiment. This laminated molded body is cut into a desired shape to produce a piece-shaped laminated molded body for an element. When cutting, the internal electrode pattern is cut so as to be alternately exposed on the side surface of the element laminated molded body.

次に、この素子用積層成形体を脱脂、焼成することにより積層体13を得ることができる。焼成後、積層体13の外部電極17、19が形成される側面は、何ら加工されないため、圧電体層7の側面は、圧電体層7を構成するセラミック粒子により凹凸が形成されている。また、内部電極層9は圧電体層7に比べ焼結収縮が大きいため、外部電極17、19と接続されるはずの内部電極層9の先端は、積層体13の側面から少々凹んで存在しており、言い換えると、積層体13の側面には、内部電極層9の収縮による開口部が形成されている。   Next, the laminated body 13 can be obtained by degreasing and firing the laminated molded body for an element. After firing, the side surface on which the external electrodes 17 and 19 of the multilayer body 13 are formed is not processed at all, and therefore the side surface of the piezoelectric layer 7 is uneven by the ceramic particles constituting the piezoelectric layer 7. Further, since the internal electrode layer 9 has a larger sintering shrinkage than the piezoelectric layer 7, the tip of the internal electrode layer 9 that should be connected to the external electrodes 17 and 19 is slightly recessed from the side surface of the laminate 13. In other words, an opening due to contraction of the internal electrode layer 9 is formed on the side surface of the multilayer body 13.

この後、積層体13の圧電体層7の積層方向の両主面に表面電極層15のペーストを印刷し、引き続き、積層体13の長手方向xの両側面に外部電極17、19のペーストを印刷し、所定の温度で電極の焼付けを行うことにより、図5に示す積層型圧電素子1、3を得ることができる。外部電極17、19のペーストを印刷、焼き付けすることにより、上記積層体13の側面に形成された開口部には外部電極17、19のペーストが入り込み、内部電極層9に外部電極17、19が接続されることになる。尚、積層体13の長さが長く、内部電極層9の焼成収縮量が大きく、開口部が長い場合には、真空引きすることにより、開口部に外部電極17、19のペーストを入り易くし、内部電極層9と外部電極17、19との接続を確実に行うことができる。   Thereafter, the paste of the surface electrode layer 15 is printed on both main surfaces in the stacking direction of the piezoelectric layer 7 of the stacked body 13, and subsequently, the paste of the external electrodes 17 and 19 is applied to both side surfaces in the longitudinal direction x of the stacked body 13. The multilayer piezoelectric elements 1 and 3 shown in FIG. 5 can be obtained by printing and baking the electrodes at a predetermined temperature. By printing and baking the paste of the external electrodes 17 and 19, the paste of the external electrodes 17 and 19 enters the opening formed on the side surface of the laminated body 13, and the external electrodes 17 and 19 enter the internal electrode layer 9. Will be connected. When the length of the laminate 13 is long, the amount of firing shrinkage of the internal electrode layer 9 is large, and the opening is long, vacuuming is performed to make it easier to put the paste of the external electrodes 17 and 19 into the opening. The internal electrode layer 9 and the external electrodes 17 and 19 can be reliably connected.

このような積層型圧電素子1、3では、積層体13の側面への外部電極17、19の接合強度を向上することができるため、支持板5の収容凹部23内に外部電極17、19を収容する必要がなくなり、支持板5への積層型圧電素子1、3の接合強度をさらに向上でき、積層型圧電素子1、3の変位を支持板5に効率良く伝達できる。   In such multilayer piezoelectric elements 1 and 3, the bonding strength of the external electrodes 17 and 19 to the side surface of the multilayer body 13 can be improved. Therefore, the external electrodes 17 and 19 are placed in the housing recesses 23 of the support plate 5. This eliminates the need for housing, can further improve the bonding strength of the multilayer piezoelectric elements 1 and 3 to the support plate 5, and can efficiently transmit the displacement of the multilayer piezoelectric elements 1 and 3 to the support plate 5.

図6(a)に示すように、支持板の片側を固定し、この支持板の上面に積層型圧電素子を接着剤層で接合した比較例のモデルを作製し、ユニモルフの変位量を、有限要素法を用いたシミュレーション(ANSYS)により算出した。積層体41は50μmの圧電体層42を10層積層し、外寸法は長さ26mm、幅3.5mmとした。またシミュレーションにはe31=−17C/m、e33=20C/mを積層体41の物性値として用いた。また支持板43は長さ30mm、厚さ0.3mmとし、物性値にはヤング率130GPa、密度8150kg/m、ポアソン比0.35を用いた。また接着剤層44の物性値としてヤング率0.8GPa、密度1200kg/m、ポアソン比0.30を用いた。 As shown in FIG. 6 (a), a model of a comparative example in which one side of a support plate is fixed and a laminated piezoelectric element is bonded to the upper surface of the support plate with an adhesive layer is produced, and the amount of unimorph displacement is limited. It calculated by the simulation (ANSYS) using the element method. The laminated body 41 was formed by laminating 10 layers of 50 μm piezoelectric layers 42, and the outer dimensions were 26 mm long and 3.5 mm wide. In the simulation, e 31 = −17 C / m 2 and e 33 = 20 C / m 2 were used as physical properties of the laminate 41. The support plate 43 had a length of 30 mm and a thickness of 0.3 mm, and physical properties were Young's modulus 130 GPa, density 8150 kg / m 3 , and Poisson's ratio 0.35. The physical properties of the adhesive layer 44 were Young's modulus 0.8 GPa, density 1200 kg / m 3 , and Poisson's ratio 0.30.

200V/mmの電界強度を印加して駆動させた際のユニモルフの変位量は接着剤層44の厚みにより変化し、接着剤層44の厚みhとユニモルフの変位量は、厚みhが50μmで41.2μm、厚みhが30μmで42.2μm、厚みhが10μmで43.2μmであった。   The amount of unimorph displacement when driven by applying an electric field strength of 200 V / mm varies depending on the thickness of the adhesive layer 44. The thickness h of the adhesive layer 44 and the amount of displacement of the unimorph are 41 when the thickness h is 50 μm. The thickness h was 42.2 μm at 30 μm and the thickness h was 43.2 μm at 10 μm.

これに対して、図6(b)に示すように、支持版の上面に収容凹部を形成し、この収容凹部内に積層型圧電素子の一部を収容した本発明のモデルを作製し、ユニモルフの変位量を、有限要素法を用いたシミュレーションにより算出した。シミュレーションに用いた物性値は上記比較例の場合と同様である。なお支持板43の中央部に深さh2、長さ(26+2L1)mmの収容凹部を形成した。   On the other hand, as shown in FIG. 6B, an accommodation recess is formed on the upper surface of the support plate, and a model of the present invention in which a part of the laminated piezoelectric element is accommodated in the accommodation recess is produced. The amount of displacement was calculated by simulation using the finite element method. The physical property values used in the simulation are the same as in the case of the comparative example. An accommodation recess having a depth h2 and a length (26 + 2L1) mm was formed at the center of the support plate 43.

200V/mmの電界強度を印加して駆動させた際のユニモルフの変位量を算出した。接着剤層44の厚みh1を10μmに、L1を50μmに固定すると、収容凹部の深さh2が150μmで変位量が45.3μm、h2が100μmで45.9μm、h2が50μmで45.0μm、h2が20μmで44.0μmとなった。   The amount of displacement of the unimorph was calculated when driven by applying an electric field strength of 200 V / mm. When the thickness h1 of the adhesive layer 44 is fixed to 10 μm and L1 is fixed to 50 μm, the depth h2 of the housing recess is 150 μm, the displacement is 45.3 μm, h2 is 100 μm, 45.9 μm, h2 is 50 μm, 45.0 μm, h2 was 44.0 μm at 20 μm.

また同様に接着剤層44の厚みh1を10μmに、収容凹部の深さh2を100μmにそれぞれ固定すると、L1が100μmで変位量が45.6μm、L1が50μmで45.9μm、L1が10μmで46.9μmとなった。   Similarly, when the thickness h1 of the adhesive layer 44 is fixed to 10 μm and the depth h2 of the housing recess is fixed to 100 μm, L1 is 100 μm, the displacement is 45.6 μm, L1 is 50 μm, 45.9 μm, and L1 is 10 μm. It was 46.9 μm.

これらの結果から、支持板の収容凹部に積層型圧電素子の主面側を収容し、収容凹部を構成する凹部底面および凹部側面と積層型圧電素子との間に接着剤層が介在し、積層型圧電素子が収容凹部に接合されているため、積層型圧電素子が支持板に強固に接合され、また、積層型圧電素子の振動が収容凹部を構成する凹部側面で拘束されることになり、積層型圧電素子の広がり振動を効果的に支持板に伝達することができ、従来よりも変位量を向上できることがわかる。   From these results, the main surface side of the multilayer piezoelectric element is accommodated in the accommodating recess of the support plate, and an adhesive layer is interposed between the bottom surface of the concave portion and the side surface of the concave portion constituting the accommodating concave portion and the multilayer piezoelectric element. Since the piezoelectric element is bonded to the housing recess, the stacked piezoelectric element is firmly bonded to the support plate, and the vibration of the stacked piezoelectric element is restrained by the side surface of the recess that forms the housing recess. It can be seen that the spread vibration of the multilayer piezoelectric element can be effectively transmitted to the support plate, and the amount of displacement can be improved as compared with the prior art.

1、3・・・積層型圧電素子
5・・・支持板
6・・・接着剤層
7・・・圧電体層
9・・・内部電極層
11・・・不活性層
13・・・積層体
15・・・表面電極層
17、19・・・外部電極
23・・・収容凹部
23a・・・凹部底面
23b・・・凹部側面
x・・・主面の長手方向
DESCRIPTION OF SYMBOLS 1, 3 ... Laminated piezoelectric element 5 ... Support plate 6 ... Adhesive layer 7 ... Piezoelectric layer 9 ... Internal electrode layer 11 ... Inactive layer 13 ... Laminated body 15 ... surface electrode layers 17, 19 ... external electrode 23 ... receiving recess 23a ... concave bottom 23b ... concave side x ... longitudinal direction of main surface

Claims (3)

圧電体層と内部電極層とを交互に積層してなり、一対の長方形状の主面と該主面の長手方向の両端側に設けられた一対の側面とを有する板状の積層体と、該積層体の前記一対の側面にそれぞれ設けられ前記内部電極層と交互に電気的に接続された一対の外部電極とを具備する積層型圧電素子と、該積層型圧電素子の前記主面側が接着剤層により接合された支持板とを具備する振動体であって、前記支持板に収容凹部が形成されており、該収容凹部に前記積層型圧電素子の前記主面側が収容され、前記収容凹部を構成する凹部底面および凹部側面と前記積層型圧電素子との間に前記接着剤層が介在していることを特徴とする振動体。   Piezoelectric layers and internal electrode layers are alternately laminated, and a plate-like laminate having a pair of rectangular main surfaces and a pair of side surfaces provided at both ends in the longitudinal direction of the main surfaces; A laminated piezoelectric element comprising a pair of external electrodes provided on the pair of side surfaces of the laminated body and alternately electrically connected to the internal electrode layers, and the main surface side of the laminated piezoelectric element are bonded to each other A vibrating plate comprising a support plate joined by an agent layer, wherein a housing recess is formed in the support plate, the main surface side of the multilayer piezoelectric element is housed in the housing recess, and the housing recess A vibrating body, wherein the adhesive layer is interposed between the bottom surface of the recess and the side surface of the recess and the laminated piezoelectric element. 前記積層体の前記支持板側の主面を、前記積層体の前記支持板側の最も外側に形成された絶縁セラミックスからなる不活性層の面により構成し、前記不活性層が前記収容凹部に収容されているとともに、前記外部電極は、前記積層体の前記支持板側の主面には形成されていないことを特徴とする請求項1に記載の振動体。   The main surface of the laminate on the support plate side is constituted by a surface of an inert layer made of insulating ceramics formed on the outermost side of the laminate on the support plate side, and the inert layer is formed in the housing recess. The vibrating body according to claim 1, wherein the vibrating body is housed and is not formed on a main surface of the laminated body on the support plate side. 前記積層体の前記支持板と反対側の主面には表面電極層が形成されていることを特徴とする請求項1または2に記載の振動体。   The vibrating body according to claim 1, wherein a surface electrode layer is formed on a main surface opposite to the support plate of the laminate.
JP2009196327A 2009-08-27 2009-08-27 Vibrator Active JP5754879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196327A JP5754879B2 (en) 2009-08-27 2009-08-27 Vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196327A JP5754879B2 (en) 2009-08-27 2009-08-27 Vibrator

Publications (2)

Publication Number Publication Date
JP2011049352A true JP2011049352A (en) 2011-03-10
JP5754879B2 JP5754879B2 (en) 2015-07-29

Family

ID=43835403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196327A Active JP5754879B2 (en) 2009-08-27 2009-08-27 Vibrator

Country Status (1)

Country Link
JP (1) JP5754879B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106565B2 (en) * 2006-12-29 2012-01-31 Siemens Aktiengesellschaft Piezoceramic multilayer actuator with stress relief sections and insulation layers in sections without relief zones
WO2019172064A1 (en) * 2018-03-08 2019-09-12 株式会社村田製作所 Piezoelectric actuator and piezoelectric actuator drive method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763287U (en) * 1980-09-30 1982-04-15
JPS61206281A (en) * 1985-03-08 1986-09-12 Toshiba Corp Piezoelectric displacement element
JP2003218250A (en) * 2002-01-25 2003-07-31 Kyocera Corp Electronic component device
JP2007329431A (en) * 2006-06-09 2007-12-20 Citizen Electronics Co Ltd Piezoelectric exciter
JP2008153689A (en) * 1999-10-01 2008-07-03 Ngk Insulators Ltd Piezoelectric/electrostrictive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763287U (en) * 1980-09-30 1982-04-15
JPS61206281A (en) * 1985-03-08 1986-09-12 Toshiba Corp Piezoelectric displacement element
JP2008153689A (en) * 1999-10-01 2008-07-03 Ngk Insulators Ltd Piezoelectric/electrostrictive device
JP2003218250A (en) * 2002-01-25 2003-07-31 Kyocera Corp Electronic component device
JP2007329431A (en) * 2006-06-09 2007-12-20 Citizen Electronics Co Ltd Piezoelectric exciter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106565B2 (en) * 2006-12-29 2012-01-31 Siemens Aktiengesellschaft Piezoceramic multilayer actuator with stress relief sections and insulation layers in sections without relief zones
WO2019172064A1 (en) * 2018-03-08 2019-09-12 株式会社村田製作所 Piezoelectric actuator and piezoelectric actuator drive method
JPWO2019172064A1 (en) * 2018-03-08 2021-01-07 株式会社村田製作所 Piezoelectric actuator and how to drive the piezoelectric actuator
JP7156362B2 (en) 2018-03-08 2022-10-19 株式会社村田製作所 Piezoelectric actuator and driving method of piezoelectric actuator
US11730060B2 (en) 2018-03-08 2023-08-15 Murata Manufacturing Co., Ltd. Piezoelectric actuator and drive method therefor

Also Published As

Publication number Publication date
JP5754879B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5669443B2 (en) Vibrating body, manufacturing method thereof, and vibration wave actuator
JP5665522B2 (en) Vibrating body and vibration type driving device
JP5669452B2 (en) Manufacturing method of vibrator
JP2007281362A (en) Laminated piezoelectric element, its manufacturing method, and vibration wave driving device
JP2009124791A (en) Vibrator and vibration wave actuator
JP5298999B2 (en) Multilayer piezoelectric element
JP2014018057A (en) Vibrator, process of manufacturing the same, and vibration type driving apparatus
JP5403170B2 (en) Multilayer piezoelectric actuator and piezoelectric vibration device
JP2009268182A (en) Stacked piezoelectric element and ultrasonic motor
JP2007335664A (en) Stacked piezoelectric element, and piezoelectric device
JP6483400B2 (en) Multilayer capacitor and mounting structure
JP5754879B2 (en) Vibrator
JP5319195B2 (en) Vibrator
JP5969863B2 (en) Piezoelectric element, sound generator, sound generator, and electronic device
JP5717975B2 (en) Vibration body and vibration wave actuator
JP5429141B2 (en) Piezoelectric actuator and method for manufacturing piezoelectric actuator
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JP2007019420A (en) Stacked piezoelectric element
JP2011172465A (en) Piezoelectric actuator
JP2014170926A (en) Vibration body, manufacturing method thereof, and vibration type drive device
JP2010171360A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrator
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JP5586248B2 (en) Piezoelectric laminated parts
US20150102708A1 (en) Piezoelectric device and method of fabricating the same
JP7293898B2 (en) Piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140811

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5754879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150