JP6273877B2 - Driving circuit for semiconductor switch element parallel connection circuit - Google Patents

Driving circuit for semiconductor switch element parallel connection circuit Download PDF

Info

Publication number
JP6273877B2
JP6273877B2 JP2014021280A JP2014021280A JP6273877B2 JP 6273877 B2 JP6273877 B2 JP 6273877B2 JP 2014021280 A JP2014021280 A JP 2014021280A JP 2014021280 A JP2014021280 A JP 2014021280A JP 6273877 B2 JP6273877 B2 JP 6273877B2
Authority
JP
Japan
Prior art keywords
semiconductor switch
current
switch element
terminal
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014021280A
Other languages
Japanese (ja)
Other versions
JP2015149828A (en
Inventor
義彦 山方
義彦 山方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014021280A priority Critical patent/JP6273877B2/en
Publication of JP2015149828A publication Critical patent/JP2015149828A/en
Application granted granted Critical
Publication of JP6273877B2 publication Critical patent/JP6273877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体スイッチ素子を複数個並列接続した回路の駆動回路に関し、特に並列接続された何れかの半導体スイッチ素子に過電流が流れた時の過電流検出回路と保護の方式に関する。   The present invention relates to a drive circuit for a circuit in which a plurality of semiconductor switch elements are connected in parallel, and more particularly to an overcurrent detection circuit and a protection method when an overcurrent flows through any of the semiconductor switch elements connected in parallel.

図10に、特許文献1に記載された従来例を示す。上下の各アームに半導体スイッチ素子を2個並列接続したスイッチ回路を用い、直流電源の正極Pと負極Nとの間に接続した回路における過電流検出の従来例である。インバータ回路やコンバータ回路では、この上下アームを複数回路並列接続して構成し、上下アームの接続点が交流端子となる。半導体スイッチ素子としてはIGBTを用いた例で、上アームがIGBT2と3が、下アームがIGBT6と7が、各々並列接続されている。4はIGBT2のエミッタに接続された負極導体のインダクタンス、5はIGBT3のエミッタに接続された負極導体のインダクタンス、8はIGBT6のエミッタに接続された負極導体のインダクタンス、9はIGBT7のエミッタに接続された負極導体のインダクタンスである。IGBTの正極同士を接続する導体も存在するが、本発明では影響されないので、省略されている。また、過電流検出回路は、上アーム、下アーム共に同じ回路構成であるので、上アームについて説明する。   FIG. 10 shows a conventional example described in Patent Document 1. This is a conventional example of overcurrent detection in a circuit connected between a positive electrode P and a negative electrode N of a DC power source using a switch circuit in which two semiconductor switch elements are connected in parallel to upper and lower arms. In the inverter circuit and the converter circuit, a plurality of upper and lower arms are connected in parallel, and the connection point of the upper and lower arms is an AC terminal. In the example using an IGBT as the semiconductor switch element, the upper arm is connected to IGBTs 2 and 3, and the lower arm is connected to IGBTs 6 and 7 in parallel. 4 is the inductance of the negative conductor connected to the emitter of IGBT 2, 5 is the inductance of the negative conductor connected to the emitter of IGBT 3, 8 is the inductance of the negative conductor connected to the emitter of IGBT 6, and 9 is connected to the emitter of IGBT 7. The inductance of the negative conductor. There are conductors that connect the positive electrodes of the IGBTs, but they are omitted because they are not affected by the present invention. Since the overcurrent detection circuit has the same circuit configuration for both the upper arm and the lower arm, only the upper arm will be described.

11がゲート駆動回路で、ゲート駆動回路のg端子からゲート抵抗Rg1を介してIGBT2のゲート(制御極端子)に、ゲート抵抗Rg2を介してIGBT3のゲート(制御極端子)に、e端子から各々IGBT2のエミッタ(負極端子と同電位の制御端子)とIGBT3のエミッタ(負極端子と同電位の制御端子)に、各々個別に配線されている。e端子とIGBT2のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器12の一次巻線が、e端子とIGBT3のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器13の一次巻線が、各々接続される。また、電流検出器12の検出巻線には極性検出器21と過電流検出器31が、電流検出器13の検出巻線には極性検出器22と過電流検出器32が、各々接続される。極性検出器21と22の出力は各々排他的論理和素子23の入力に、過電流検出器31と32の出力は各々論理和素子33の入力に、排他的論理和素子23の出力と論理和素子33の出力は各々論理積素子34の入力に、各々接続され、論理積素子34の出力が過電流検出信号となる。   Reference numeral 11 denotes a gate drive circuit, from the g terminal of the gate drive circuit to the gate (control pole terminal) of the IGBT 2 via the gate resistance Rg1, to the gate (control pole terminal) of the IGBT 3 via the gate resistance Rg2, and from the e terminal. Wired individually to the emitter of IGBT 2 (control terminal having the same potential as the negative terminal) and the emitter of IGBT 3 (control terminal having the same potential as the negative terminal). The primary winding of the current detector 12 is connected to the wiring connecting the e terminal and the IGBT 2 emitter (control terminal having the same potential as the negative terminal), and the e terminal and the emitter of IGBT 3 (control terminal having the same potential as the negative terminal). The primary winding of the current detector 13 is connected to the wiring to be connected. The polarity detector 21 and the overcurrent detector 31 are connected to the detection winding of the current detector 12, and the polarity detector 22 and the overcurrent detector 32 are connected to the detection winding of the current detector 13, respectively. . The outputs of the polarity detectors 21 and 22 are respectively input to the exclusive OR element 23, the outputs of the overcurrent detectors 31 and 32 are respectively input to the OR element 33, and the output of the exclusive OR element 23 and the OR. The output of the element 33 is connected to the input of the AND element 34, respectively, and the output of the AND element 34 becomes an overcurrent detection signal.

このような構成において、上下アームのIGBTに何らかの原因で同時にオン信号が入力されると上下アーム短絡電流が流れ、IGBTが過電流破壊されることになる。本回路構成において、上アームのIGBT3に過電流が流れた場合の過電流検出動作を図10及び図11に基づいて説明する。上アームのIGBT3に過電流が流れると、配線インダクタンス5に電圧Eoが誘起される。この電圧Eoは配線のインダクタンスをL、電流の時間的変化をdi/dtとすると、Eo=L×di/dtとなる。この電圧が誘起されると、配線インダクタンス5の誘起電圧が電源となり、配線インダクタンス5→電流検出器13→電流検出器12→配線インダクタンス4→配線インダクタンス5の経路で電流が流れる。   In such a configuration, when ON signals are simultaneously input to the IGBTs of the upper and lower arms for some reason, the upper and lower arm short-circuit current flows, and the IGBT is destroyed by overcurrent. In the present circuit configuration, an overcurrent detection operation when an overcurrent flows through the IGBT 3 of the upper arm will be described with reference to FIGS. When an overcurrent flows through the upper arm IGBT 3, a voltage Eo is induced in the wiring inductance 5. The voltage Eo is Eo = L × di / dt, where L is the inductance of the wiring and di / dt is the temporal change in current. When this voltage is induced, the induced voltage of the wiring inductance 5 becomes a power source, and a current flows through the path of the wiring inductance 5 → the current detector 13 → the current detector 12 → the wiring inductance 4 → the wiring inductance 5.

過電流が流れていない定常状態では、図12に示すように、オン信号指令でゲート電圧を立ち上げる時に、電流検出器12の電流方向はIGBT2のエミッタからゲート駆動回路のe端子に向かう方向で、電流検出器13の電流方向はIGBT3のエミッタからゲート駆動回路のe端子に向かう方向となり、電流の極性は同じ方向となる。また、オフ信号指令でゲート電圧を立ち下げる時に、電流検出器12の電流方向はゲート駆動回路のe端子からIGBT2のエミッタに向かう方向で、電流検出器13の電流方向はゲート駆動回路のe端子からIGBT3のエミッタに向かう方向となり、電流の極性は同じ方向となる。   In a steady state where no overcurrent flows, as shown in FIG. 12, when the gate voltage is raised by an ON signal command, the current direction of the current detector 12 is the direction from the emitter of the IGBT 2 to the e terminal of the gate drive circuit. The current direction of the current detector 13 is the direction from the emitter of the IGBT 3 to the e terminal of the gate drive circuit, and the polarity of the current is the same direction. Further, when the gate voltage is lowered by the off signal command, the current direction of the current detector 12 is the direction from the e terminal of the gate drive circuit to the emitter of the IGBT 2, and the current direction of the current detector 13 is the e terminal of the gate drive circuit. To the emitter of the IGBT 3 and the polarity of the current is the same direction.

過電流が流れた場合は、図11に示すように、配線インダクタンス5の誘起電圧Eoが電源となり、電流検出器12の電流方向はゲート駆動回路のe端子からIGBT2のエミッタに向かう方向で、電流検出器13の電流方向はIGBT3のエミッタからゲート駆動回路のe端子に向かう方向である。図11に過電流発生時の電流検出器の検出電流を示す。電流検出器12と13の定常状態の電流方向を同一方向とすると、過電流が流れた時は互いに反対方向となるので、これを排他的論理和素子23で検出することができる。また、過電流の大きさを過電流検出器31又は32で検出することにより、定常時の電流との電流の大きさの違いを判定し、誤判定を防止している。   When an overcurrent flows, as shown in FIG. 11, the induced voltage Eo of the wiring inductance 5 becomes a power source, and the current direction of the current detector 12 is the direction from the e terminal of the gate drive circuit toward the emitter of the IGBT 2. The current direction of the detector 13 is a direction from the emitter of the IGBT 3 toward the e terminal of the gate drive circuit. FIG. 11 shows the detection current of the current detector when an overcurrent occurs. Assuming that the current directions in the steady state of the current detectors 12 and 13 are the same direction, when the overcurrent flows, the directions are opposite to each other. Therefore, this can be detected by the exclusive OR element 23. Further, by detecting the magnitude of the overcurrent with the overcurrent detector 31 or 32, a difference in the magnitude of the current from the steady-state current is determined, and erroneous determination is prevented.

上アームのIGBT2に過電流が流れた場合も同様の原理で検出することができる。上アームのIGBT2に過電流が流れると、配線インダクタンス4に電圧が誘起される。この電圧が誘起されると、配線インダクタンス4の誘起電圧が電源となり、配線インダクタンス4→電流検出器12→電流検出器13→配線インダクタンス5→配線インダクタンス4の経路で電流が流れる。過電流が流れていない定常状態では、電流検出器13の電流方向はIGBT3のエミッタからゲート駆動回路のe端子に向かう方向で、電流検出器12の電流方向はIGBT2のエミッタからゲート駆動回路のe端子に向かう方向である。過電流が流れた場合は、電流検出器12の電流方向はIGBT2のエミッタからゲート駆動回路のe端子に向かう方向で、電流検出器13の電流方向はゲート駆動回路のe端子からIGBT3のエミッタに向かう方向である。従って、定常状態の電流方向を同一方向とすると、過電流が流れた時は互いに反対方向となるので、これを排他的論理和素子23で検出することができる。また、過電流の大きさを過電流検出器31又は32で検出することにより、定常時の電流との電流の大きさの違いを判定し、誤判定を防止している。   Even when an overcurrent flows through the IGBT 2 of the upper arm, it can be detected by the same principle. When an overcurrent flows through the upper arm IGBT 2, a voltage is induced in the wiring inductance 4. When this voltage is induced, the induced voltage of the wiring inductance 4 becomes a power source, and a current flows through the path of the wiring inductance 4 → the current detector 12 → the current detector 13 → the wiring inductance 5 → the wiring inductance 4. In a steady state in which no overcurrent flows, the current direction of the current detector 13 is a direction from the emitter of the IGBT 3 to the e terminal of the gate drive circuit, and the current direction of the current detector 12 is the e of the gate drive circuit from the emitter of the IGBT 2. The direction is toward the terminal. When an overcurrent flows, the current direction of the current detector 12 is from the emitter of the IGBT 2 to the e terminal of the gate drive circuit, and the current direction of the current detector 13 is from the e terminal of the gate drive circuit to the emitter of the IGBT 3. It is the direction to go. Therefore, assuming that the current direction in the steady state is the same direction, when the overcurrent flows, the directions are opposite to each other, and this can be detected by the exclusive OR element 23. Further, by detecting the magnitude of the overcurrent with the overcurrent detector 31 or 32, a difference in the magnitude of the current from the steady-state current is determined, and erroneous determination is prevented.

特開平10−42546号公報Japanese Patent Laid-Open No. 10-42546

上述のように、IGBTに過電流が流れていない定常状態時は電流検出器12と13に流れる電流は、オン信号指令時はIGBTのエミッタからゲート駆動回路11のe端子に向かう方向に、またオフ信号指令時はゲート駆動回路11のe端子からIGBTのエミッタに向かう方向に電流が流れる。従って、電流検出器として磁気コアを用いた変流器(CT)を用いる場合、オン信号の立ち上がり時と立ち下がり時に磁気コアを励磁することになる。この結果、高周波スイッチング動作においては、磁気コアに大きな励磁損失が発生し、磁気コアの温度上昇を考慮した大型の磁気コアを用いる必要があり、電流検出器が大型になると共に、ゲート駆動回路の電源容量が大きくなり、装置が大型で、高価となる。また、ゲート駆動回路の電源容量が大きくなり電力変換装置の電力変換効率が低下する要因となる。   As described above, the current flowing through the current detectors 12 and 13 during the steady state where no overcurrent flows through the IGBT is directed in the direction from the emitter of the IGBT toward the e terminal of the gate drive circuit 11 during the ON signal command. When an OFF signal is commanded, a current flows in a direction from the e terminal of the gate drive circuit 11 toward the emitter of the IGBT. Therefore, when a current transformer (CT) using a magnetic core is used as the current detector, the magnetic core is excited at the rise and fall of the ON signal. As a result, in the high-frequency switching operation, a large excitation loss occurs in the magnetic core, and it is necessary to use a large magnetic core that takes into account the temperature rise of the magnetic core. The power supply capacity is increased, and the apparatus is large and expensive. In addition, the power supply capacity of the gate drive circuit is increased, which causes a reduction in power conversion efficiency of the power conversion device.

従って、本発明の課題は、高周波スイッチング動作における定常状態での電力損失が小さく、過電流が発生した時には並列接続されたスイッチング素子の過電流を確実に検出し、過電流保護が可能な駆動装置を提供することである。   Therefore, an object of the present invention is to reduce the power loss in the steady state in the high-frequency switching operation, and to reliably detect the overcurrent of the switching elements connected in parallel when the overcurrent occurs, and capable of overcurrent protection Is to provide.

上述の課題を解決するために、第1の発明においては、N(Nは2以上の整数)個の電圧駆動型半導体スイッチ素子を並列接続した回路の駆動回路であって、前記各々の半導体スイッチ素子の駆動端子に共通の駆動信号を出力する駆動回路と、前記各々の半導体スイッチ素子の各正極端子同士を接続する正極導体と、前記各々の半導体スイッチ素子の各負極端子同士を接続する負極導体と、前記駆動回路から前記各々の半導体スイッチ素子の各制御極端子へ個別に接続するN個の第1の配線と、前記駆動回路から前記各々の半導体スイッチ素子の負極端子と同電位の各制御端子へ個別に接続するN個の第2の配線と、を備えた半導体スイッチ素子並列接続回路の駆動回路において、前記N個の中の何れか2個の第2の配線は定常動作時に互いの電流方向が逆方向となるように接続する二つの一次巻線と電流検出用の1個の二次巻線とを備えた(N−1)個の電流検出用変流器を介して各々接続し、前記並列接続した各々の半導体スイッチ素子の過電流を検出する。   In order to solve the above-mentioned problem, in the first invention, there is provided a drive circuit for a circuit in which N (N is an integer of 2 or more) voltage-driven semiconductor switch elements connected in parallel, each of the semiconductor switches A drive circuit for outputting a common drive signal to the drive terminals of the elements, a positive conductor connecting the positive terminals of the semiconductor switch elements, and a negative conductor connecting the negative terminals of the semiconductor switch elements And N first wirings individually connected from the drive circuit to the respective control electrode terminals of the respective semiconductor switch elements, and respective controls having the same potential as the negative electrode terminals of the respective semiconductor switch elements from the drive circuit. In the drive circuit of the semiconductor switch element parallel connection circuit comprising N second wirings individually connected to the terminals, any two of the N second wirings are mutually connected during steady operation. Electric Each is connected via (N-1) current detection current transformers, each of which has two primary windings connected so that the directions are opposite to each other and one secondary winding for current detection. The overcurrent of each semiconductor switch element connected in parallel is detected.

第2の発明においては、第1の発明における半導体スイッチ素子並列接続回路の駆動回路において、前記二つの一次巻線は前記何れか2個の第2の配線を磁性コアに1回又は複数回貫通させる構造とする。   According to a second aspect of the invention, in the drive circuit of the semiconductor switch element parallel connection circuit according to the first aspect of the invention, the two primary windings penetrate one of the two second wires through the magnetic core one or more times. The structure to be made.

第3の発明においては、第1又は第2の発明における半導体スイッチ素子並列接続回路の駆動回路において、前記電流検出用変流器の二次巻線の電流を整流して電圧信号に変換し、この電圧信号の電圧値が所定値を超えた時過電流と判定し、前記全ての半導体スイッチ素子へのオン信号をオフ信号へと変化させる。   In the third invention, in the drive circuit of the semiconductor switch element parallel connection circuit in the first or second invention, the current of the secondary winding of the current detection current transformer is rectified and converted into a voltage signal, When the voltage value of the voltage signal exceeds a predetermined value, it is determined as an overcurrent, and the on signal to all the semiconductor switch elements is changed to the off signal.

第4の発明においては、第3の発明における半導体スイッチ素子並列接続回路の駆動回路において、前記オフ信号は前記半導体スイッチ素子の制御極端子と制御端子との間の電圧を零とする信号とする。   According to a fourth aspect of the invention, in the drive circuit of the semiconductor switch element parallel connection circuit according to the third aspect of the invention, the off signal is a signal that makes the voltage between the control pole terminal and the control terminal of the semiconductor switch element zero. .

第5の発明においては、N(Nは2以上の整数)個の電圧駆動型半導体スイッチ素子を並列接続した回路の駆動回路であって、前記各々の半導体スイッチ素子の駆動端子に共通の駆動信号を出力する駆動回路と、前記各々の半導体スイッチ素子の各正極端子同士を接続する正極導体と、前記各々の半導体スイッチ素子の各負極端子同士を接続する負極導体と、前記駆動回路から前記各々の半導体スイッチ素子の各制御極端子へ個別に接続するN個の第1の配線と、前記駆動回路から前記各々の半導体スイッチ素子の負極端子と同電位の各制御端子へ個別に接続するN個の第2の配線と、を備えた半導体スイッチ素子並列接続回路の駆動回路において、前記各々の半導体スイッチ素子に接続される前記第1の配線と前記第2の配線は定常動作時に互いの電流方向が逆方向となるように接続する二つの一次巻線と電流検出用の1個の二次巻線とを備えた電流検出用変流器を介して各々接続し、前記並列接続した各々の半導体スイッチ素子の過電流を検出する。   In a fifth aspect of the present invention, there is provided a drive circuit for a circuit in which N (N is an integer of 2 or more) voltage-driven semiconductor switch elements are connected in parallel, and a drive signal common to the drive terminals of the respective semiconductor switch elements. A drive circuit that outputs each of the semiconductor switch elements, a positive conductor that connects the positive terminals of the semiconductor switch elements, a negative conductor that connects the negative terminals of the semiconductor switch elements, and N first wirings individually connected to each control electrode terminal of the semiconductor switch element, and N pieces of individually connected from the drive circuit to each control terminal having the same potential as the negative electrode terminal of each semiconductor switch element And a second wiring, wherein the first wiring and the second wiring connected to each of the semiconductor switching elements are in a steady operation. Each of which is connected via a current detection current transformer having two primary windings and one secondary winding for current detection that are connected so that their current directions are opposite to each other. The overcurrent of each semiconductor switch element is detected.

第6の発明においては、第5の発明における半導体スイッチ素子並列接続回路の駆動回路において、前記二つの一次巻線は前記第1の配線と前記第2の配線を磁性コアに1回又は複数回貫通させる構造とする。   According to a sixth aspect of the invention, in the drive circuit of the semiconductor switch element parallel connection circuit according to the fifth aspect of the invention, the two primary windings are connected to the magnetic core one or more times with the first wiring and the second wiring. Use a structure that penetrates.

第7の発明においては、第5又は第6の発明における半導体スイッチ素子並列接続回路の駆動回路において、前記電流検出用変流器の二次巻線の電流を整流して電圧信号に変換し、この電圧信号の電圧値が所定値を超えた時過電流と判定し、前記全ての半導体スイッチ素子へのオン信号をオフ信号へと変化させる。   In the seventh invention, in the drive circuit of the semiconductor switch element parallel connection circuit in the fifth or sixth invention, the current of the secondary winding of the current detection current transformer is rectified and converted into a voltage signal, When the voltage value of the voltage signal exceeds a predetermined value, it is determined as an overcurrent, and the on signal to all the semiconductor switch elements is changed to the off signal.

第8の発明においては、第7の発明における半導体スイッチ素子並列接続回路の駆動回路において、前記オフ信号は前記半導体スイッチ素子の制御極端子と制御端子との間の電圧を零とする信号とする。   According to an eighth aspect of the invention, in the drive circuit of the semiconductor switch element parallel connection circuit according to the seventh aspect of the invention, the off signal is a signal that makes the voltage between the control pole terminal and the control terminal of the semiconductor switch element zero. .

本発明では、並列接続されたスイッチング素子の負極端子と同電位の制御端子とゲート駆動回路とを接続する配線2個を電流検出用の磁気コアの一次巻線として定常時の電流方向が逆方向となるように配線し、過電流が発生した時には電流検出用の磁気コアの検出巻線で過電流を検出するようにしている。また、並列接続されたスイッチング素子の制御極端子とゲート駆動回路との接続線及び並列接続されたスイッチング素子の負極端子と同電位の制御端子とゲート駆動回路との接続線を磁気コアの一次巻線として配線し、過電流が発生した時には電流検出用の磁気コアの検出巻線で過電流を検出するようにしている。
この結果、定常時の磁気コアの励磁動作がなく、高周波スイッチング動作においても励磁による損失がなくなり、過電流発生時は検出巻線で確実に過電流を検出することが可能となる。
In the present invention, the current direction at the time of steady state is reversed with the two wires connecting the control terminal having the same potential as the negative terminal of the switching elements connected in parallel and the gate drive circuit as the primary winding of the magnetic core for current detection When an overcurrent occurs, the overcurrent is detected by the detection winding of the current detection magnetic core. Also, the connection line between the control pole terminal of the switching element connected in parallel and the gate drive circuit and the connection line between the control terminal and the gate drive circuit having the same potential as the negative terminal of the parallel connected switching element are connected to the primary winding of the magnetic core. It is wired as a line, and when an overcurrent occurs, the overcurrent is detected by a detection winding of a magnetic core for current detection.
As a result, there is no exciting operation of the magnetic core in a steady state, and there is no loss due to the excitation even in the high-frequency switching operation, and it is possible to detect the overcurrent with the detection winding when the overcurrent is generated.

本発明の(N−1)個の電流検出器を用いた2並列接続時の実施例を示す回路図である。It is a circuit diagram which shows the Example at the time of 2 parallel connection using the (N-1) current detector of this invention. 図1の実施例の定常動作時の動作波形例である。It is an example of an operation waveform at the time of steady operation of the example of FIG. 図1の実施例の過電流時の動作説明図である。It is operation | movement explanatory drawing at the time of the overcurrent of the Example of FIG. 図1の実施例の変形回路図である。It is a modified circuit diagram of the embodiment of FIG. 本発明の(N−1)個の電流検出器を用いた3並列接続時の実施例を示す回路図である。It is a circuit diagram which shows the Example at the time of 3 parallel connection using the (N-1) current detector of this invention. 本発明のN個の電流検出器を用いた2並列接続時の実施例を示す回路図である。It is a circuit diagram which shows the Example at the time of 2 parallel connection using N electric current detectors of this invention. 図6の実施例の定常状態時の動作波形例である。It is an example of an operation waveform at the time of the steady state of the Example of FIG. 図6の実施例の過電流時の動作説明図である。It is operation | movement explanatory drawing at the time of the overcurrent of the Example of FIG. 本発明のN個の電流検出器を用いた3並列接続時の実施例を示す回路図である。It is a circuit diagram which shows the Example at the time of 3 parallel connection using N electric current detectors of this invention. 従来の実施例を示す回路図である。It is a circuit diagram which shows the conventional Example. 図10の過電流検出時の各部の波形例を示す。The example of a waveform of each part at the time of the overcurrent detection of FIG. 10 is shown. 図10の定常状態時の動作波形例を示す。FIG. 11 shows an example of operation waveforms in the steady state of FIG.

本発明の要点は、N(Nは2以上の整数)個の電圧駆動型半導体スイッチ素子を並列接続した回路の駆動回路において、ゲート駆動回路と各々の半導体スイッチ素子の駆動端子とを接続する配線に磁気コアを用いた電流検出器を接続し、定常状態では磁気コアを励磁しないように構成し、過電流発生時は電流検出巻線で過電流を検出できるようにしている点である。基本的な構成は、2個の一次巻線と1個の検出巻線を備えた(N−1)個の電流検出器を用い、定常時はゲート駆動回路と半導体スイッチング素子2個の各々の負極端子と同電位の制御端子と接続する配線を、電流検出器の2個の一次巻線に逆方向の駆動電流を流すように配線する構成と、2個の一次巻線と1個の検出巻線を備えたN個の電流検出器を用い、ゲート駆動回路と各スイッチング素子の制御極端子及び負極端子と同電位の制御端子とを各々接続する配線を電流検出器の2個の一次巻線に逆方向の駆動電流を流すように配線する構成と、の二つの提案である。   The gist of the present invention is a wiring for connecting a gate driving circuit and a driving terminal of each semiconductor switching element in a driving circuit of a circuit in which N (N is an integer of 2 or more) voltage-driven semiconductor switching elements are connected in parallel. This is because a current detector using a magnetic core is connected to the magnetic core so that the magnetic core is not excited in a steady state, and an overcurrent can be detected by a current detection winding when an overcurrent occurs. The basic configuration uses (N-1) current detectors having two primary windings and one detection winding, and each of the gate drive circuit and the two semiconductor switching elements in a steady state. A configuration in which the wiring connected to the negative terminal and the control terminal having the same potential is wired so that the driving current in the reverse direction flows through the two primary windings of the current detector, and the two primary windings and one detection Two primary windings of the current detector are connected to the gate driving circuit and the control terminal of each switching element and the control terminal having the same potential as the negative terminal using N current detectors having windings. There are two proposals: a configuration in which a driving current in the opposite direction flows through the line.

図1に、本発明の第1の実施例を示す。スイッチング素子の並列接続数Nを2とし、電流検出器として1個((N−1)個)の変流器を用いた例である。スイッチング素子としてIGBTT1、T2を並列接続した上アームにおける実施例である。下アームにおいても同様に構成可能であるため、上アームについて説明する。請求項の記載では、スイッチング素子としてのIGBTのコレクタは正極端子、エミッタは負極端子、ゲートは制御極端子、ゲート駆動回路と接続するエミッタと同電位の端子を制御端子と呼ぶ。IGBTT1のエミッタに接続された配線インダクタンスL1とIGBTT2のエミッタに接続された配線インダクタンスL2は、エミッタ同士を接続する導体のインダクタンスである。IGBTの正極同士を接続する導体も存在するが、本発明では動作に影響されないので、省略する。   FIG. 1 shows a first embodiment of the present invention. This is an example in which the number N of parallel connections of switching elements is 2, and one ((N−1)) current transformers are used as current detectors. This is an embodiment in an upper arm in which IGBTTT1 and T2 are connected in parallel as switching elements. Since the lower arm can be similarly configured, the upper arm will be described. In the claims, the collector of the IGBT as the switching element is called a positive terminal, the emitter is a negative terminal, the gate is a control electrode terminal, and a terminal having the same potential as the emitter connected to the gate drive circuit is called a control terminal. The wiring inductance L1 connected to the emitter of the IGBTTT1 and the wiring inductance L2 connected to the emitter of the IGBTTT2 are inductances of conductors connecting the emitters. There are conductors that connect the positive electrodes of the IGBTs, but in the present invention, they are not affected by the operation, and are omitted.

GDUがゲート駆動回路で、記載のない制御回路からのオンオフ信号をIGBTのゲート・エミッタ間をオンオフ制御するための信号に変換する機能を備える。正極PG、負極GN及び零極Mを備えたゲート駆動用電源GPSから抵抗R1、R2、トランジスタQf、Qrを介してg端子にe端子の電圧零を基準にしてオンオフ信号に応じた正負の電圧を出力する。ゲート駆動回路GDUの出力端子gは、ゲート抵抗Rg1を介してIGBTT1のゲート(制御極端子)に、ゲート抵抗Rg2を介してIGBTT3のゲート(制御極端子)に、e端子は各々IGBTT1のエミッタ(負極端子と同電位の制御端子)とIGBTT2のエミッタ(負極端子と同電位の制御端子)に、各々個別に配線される。e端子とIGBTT1のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CTの第1の一次巻線の端子L1、K1がこの順序で、e端子とIGBTT2のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CTの第2の一次巻線の端子K2、L2がこの順序で、各々接続される。ここで、電流検出器CTの第1の一次巻線(K1、L1)を通過する電流方向と第2の一次巻線(K2、L2)を通過する電流方向とは各IGBTに電流が平衡して流れる定常状態では逆方向となるように接続する。   The GDU is a gate drive circuit, and has a function of converting an on / off signal from a control circuit not described into a signal for on / off control between the gate and emitter of the IGBT. A positive / negative voltage according to an on / off signal from the gate driving power supply GPS having the positive electrode PG, the negative electrode GN and the zero electrode M to the g terminal via the resistors R1, R2 and transistors Qf, Qr with reference to the zero voltage of the e terminal. Is output. The output terminal g of the gate drive circuit GDU is connected to the gate (control pole terminal) of the IGBTTT1 via the gate resistance Rg1, to the gate (control pole terminal) of the IGBTTT3 via the gate resistance Rg2, and the e terminal is the emitter of the IGBTTT1 (control terminal). A control terminal having the same potential as the negative terminal and an emitter of the IGBTTT 2 (control terminal having the same potential as the negative terminal) are individually wired. In the wiring connecting the e terminal and the IGBTTT1 emitter (control terminal having the same potential as the negative electrode terminal), the terminals L1 and K1 of the first primary winding of the current detector CT are in this order, and the e terminal and the emitter of the IGBTTT2 ( The terminals K2 and L2 of the second primary winding of the current detector CT are connected in this order to the wiring connecting the control terminal having the same potential as the negative terminal. Here, the current direction that passes through the first primary windings (K1, L1) of the current detector CT and the current direction that passes through the second primary windings (K2, L2) are balanced with each IGBT. In a steady state that flows, the connection is made in the opposite direction.

また、電流検出器CTの検出巻線(端子a、b)には整流回路と抵抗からなる電流検出回路Idtが、電流検出回路Idtの出力には電圧比較器CPのプラス端子(+)が、電圧比較器CPの出力にはDフリップフロップDFのクロック端子が、DフリップフロップDFのQ出力端子には増幅器AMが、各々接続される。また、電圧比較器CPのマイナス端子(−)には基準電圧Vrefが、DフリップフロップDFのD端子には、制御回路の正極電源Vc(Hレベルの電圧)が、各々接続される。   In addition, a current detection circuit Idt including a rectifier circuit and a resistor is provided in the detection windings (terminals a and b) of the current detector CT, and a plus terminal (+) of the voltage comparator CP is provided in the output of the current detection circuit Idt. The clock terminal of the D flip-flop DF is connected to the output of the voltage comparator CP, and the amplifier AM is connected to the Q output terminal of the D flip-flop DF. The reference voltage Vref is connected to the negative terminal (−) of the voltage comparator CP, and the positive power supply Vc (H level voltage) of the control circuit is connected to the D terminal of the D flip-flop DF.

このような構成において、上下アームのIGBTに何らかの原因で同時にオン信号が入力されると上下アーム短絡電流が流れ、IGBTが過電流破壊されることになる。本回路構成において、上アームのIGBTT1に過電流が流れた場合の過電流検出動作を図3に基づいて説明する。上アームのIGBTT1に過電流が流れると、配線インダクタンスL1に電圧VL1が誘起される。この電圧VL1は配線のインダクタンスをL11、電流の時間的変化をdi/dtとすると、VL1=L11×di/dtとなる。この電圧が誘起されると、配線インダクタンスL1の電圧が電源となり、配線インダクタンスL1→電流検出器CTの第1の一次巻線(端子K1、L1)→電流検出器CTの第2の一次巻線(端子K2、L2)→配線インダクタンスL2→配線インダクタンスL1の経路で電流が流れる。この結果、電流検出器CTの第1の一次巻線(K1、L1)と第2の一次巻線(K2、L2)には同じ方向に電流が流れ、電流検出器CTの磁気コアを励磁し、検出巻線(端子a、b)には、一次巻線と検出巻線の巻数比で決まる電流が流れる。   In such a configuration, when ON signals are simultaneously input to the IGBTs of the upper and lower arms for some reason, the upper and lower arm short-circuit current flows, and the IGBT is destroyed by overcurrent. In the present circuit configuration, an overcurrent detection operation when an overcurrent flows through the IGBTTT1 of the upper arm will be described with reference to FIG. When overcurrent flows through the IGBTTT1 of the upper arm, a voltage VL1 is induced in the wiring inductance L1. The voltage VL1 is VL1 = L11 × di / dt, where L11 is the inductance of the wiring and di / dt is the temporal change in current. When this voltage is induced, the voltage of the wiring inductance L1 becomes a power source, and the wiring inductance L1 → the first primary winding (terminals K1, L1) of the current detector CT → the second primary winding of the current detector CT. Current flows through a path of (terminals K2, L2) → wiring inductance L2 → wiring inductance L1. As a result, a current flows in the same direction in the first primary winding (K1, L1) and the second primary winding (K2, L2) of the current detector CT, exciting the magnetic core of the current detector CT. In the detection windings (terminals a and b), a current determined by the turn ratio of the primary winding and the detection winding flows.

この電流を電流検出回路Idtで整流後抵抗を介して電流値に応じた電圧に変換する。この電圧を電圧比較器CPで基準値Vrefと比較することにより過電流が流れたことを判定する。過電流が流れると電圧比較器CPの出力はハイ(H)信号となり、Dフリップフロップのクロック端子に入力される。DフリップフロップではD端子に制御電源電圧のHレベルの電圧が接続されており、クロック端子への入力信号によりQ出力端子はハイ(H)レベルとなる。この信号を増幅回路AMで増幅して、ゲート駆動回路のトランジスタQ1を動作させ、ゲート駆動回路の出力端子gの電圧を零(M点の電圧)に降下させて、IGBTT1、T2をオフさせる。この時IGBTT1は過電流を遮断することになるので、オフ時のゲート電圧は通常動作時の負電圧ではなく、零電圧に降下させることにより、遮断時のサージ電圧を抑制することが可能となる。   This current is converted by the current detection circuit Idt into a voltage corresponding to the current value via a rectified resistor. This voltage is compared with the reference value Vref by the voltage comparator CP to determine that an overcurrent has flowed. When an overcurrent flows, the output of the voltage comparator CP becomes a high (H) signal and is input to the clock terminal of the D flip-flop. In the D flip-flop, the H level voltage of the control power supply voltage is connected to the D terminal, and the Q output terminal becomes a high (H) level by the input signal to the clock terminal. This signal is amplified by the amplifier circuit AM, the transistor Q1 of the gate drive circuit is operated, the voltage of the output terminal g of the gate drive circuit is lowered to zero (the voltage at the M point), and the IGBTs T1 and T2 are turned off. At this time, since the IGBTTT1 cuts off the overcurrent, the gate voltage at the off time is not a negative voltage at the time of normal operation, but can be reduced to zero voltage, thereby suppressing a surge voltage at the time of the cut off. .

上アームのIGBTT2に過電流が流れた場合も同様の原理で検出することができる。上アームのIGBTT2に過電流が流れると、配線インダクタンスL2に電圧が誘起される。この電圧が誘起されると、配線インダクタンスL2の誘起電圧が電源となり、配線インダクタンスL2→電流検出器CTの第2の一次巻線(端子L2、K2)→電流検出器CTの第1の一次巻線(端子L1、K1)→配線インダクタンスL1→配線インダクタンスL2の経路で電流が流れる。この結果、電流検出器CTの二つの一次巻線の電流方向は同じとなり、IGBTT1に過電流が流れた場合と同様に過電流を検出することができる。電流検出器CTの二つの一次巻線の流れる電流方向は同じであるが、IGBTT1に過電流が流れた場合とは逆の方向となる。このため、電流検出回路Idtでは電流方向が違っても同じように検出するために、整流回路と抵抗を用いた回路構成としている。   Even when an overcurrent flows through the IGBTTT2 of the upper arm, it can be detected by the same principle. When an overcurrent flows through the upper arm IGBTTT2, a voltage is induced in the wiring inductance L2. When this voltage is induced, the induced voltage of the wiring inductance L2 becomes a power source, and the wiring inductance L2 → the second primary winding (terminals L2, K2) of the current detector CT → the first primary winding of the current detector CT. A current flows through a path of lines (terminals L1, K1) → wiring inductance L1 → wiring inductance L2. As a result, the current directions of the two primary windings of the current detector CT are the same, and the overcurrent can be detected in the same manner as when an overcurrent flows through the IGBTTT1. The direction of the current flowing through the two primary windings of the current detector CT is the same, but the direction is opposite to that when an overcurrent flows through the IGBTTT1. For this reason, the current detection circuit Idt has a circuit configuration using a rectifier circuit and a resistor in order to detect in the same way even if the current direction is different.

尚、電流検出器CTの一次巻線は端子K1、L1を備えた第1の巻線と端子K2、L2を備えた第2の巻線とを備えた形態で記述したが、ゲート駆動回路のe端子とIGBTT1のエミッタと接続する配線及びゲート駆動回路のe端子とIGBTT2のエミッタと接続する配線を電流検出器の一次巻線として、磁気コアに1回又は複数回貫通させることにより実現できることは言うまでもない。   Although the primary winding of the current detector CT is described as having a first winding having terminals K1 and L1 and a second winding having terminals K2 and L2, the primary winding of the gate drive circuit is described. What can be realized by passing the wiring connecting the e terminal and the emitter of the IGBTTT1 and the wiring connecting the e terminal of the gate drive circuit and the emitter of the IGBTTT2 as a primary winding of the current detector one or more times through the magnetic core. Needless to say.

過電流が流れていない定常状態では、図2に示すように、オン信号指令でゲート電圧を立ち上げる時に、電流検出器CTの第1の巻線(端子K1、L1)の電流方向はIGBTT1のエミッタからゲート駆動回路のe端子に向かう方向で、電流検出器CTの第2の一次巻線(端子K2、L2)の電流方向はIGBTT2のエミッタからゲート駆動回路のe端子に向かう方向で、電流検出器CTの二つの一次巻線の電流の極性は逆の方向となり、電流検出器CTの磁気コアは励磁されない。また、オフ信号指令でゲート電圧を立ち下げる時に、電流検出器CTの第1の一次巻線(端子K1、L1)の電流方向はゲート駆動回路のe端子からIGBTT1のエミッタに向かう方向で、電流検出器CT第2の一次巻線の電流方向はゲート駆動回路のe端子からIGBTT2のエミッタに向かう方向となり、電流検出器CTの二つの一次巻線の電流の極性は逆の方向で、電流検出器CTの磁気コアは励磁されない。従って、この構成においては、定常状態では、電流検出器の磁気コアは励磁されずに、励磁損失の低減とゲート駆動用電源容量の低減を図ることが可能となる。   In a steady state in which no overcurrent flows, as shown in FIG. 2, when the gate voltage is raised by the ON signal command, the current direction of the first winding (terminals K1, L1) of the current detector CT is the IGBTTT1. In the direction from the emitter toward the e terminal of the gate drive circuit, the current direction of the second primary winding (terminals K2, L2) of the current detector CT is from the emitter of the IGBTTT2 toward the e terminal of the gate drive circuit. The polarities of the currents in the two primary windings of the detector CT are in opposite directions, and the magnetic core of the current detector CT is not excited. Further, when the gate voltage is lowered by the off signal command, the current direction of the first primary winding (terminals K1, L1) of the current detector CT is the direction from the e terminal of the gate drive circuit toward the emitter of the IGBTTT1, The current direction of the second primary winding of the detector CT is the direction from the e terminal of the gate drive circuit to the emitter of the IGBTTT2, and the current polarity of the two primary windings of the current detector CT is in the opposite direction. The magnetic core of the CT is not excited. Therefore, in this configuration, in a steady state, the magnetic core of the current detector is not excited, and it is possible to reduce the excitation loss and the gate drive power supply capacity.

図4に、本発明の第2の実施例を示す。実施例1との違いは、ゲート駆動回路GDUのe端子とIGBTT1、T2の制御端子(エミッタと同電位の端子)との間に挿入する電流検出器CTの接続方法の違いである。実施例1では、e端子とIGBTT1のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CTの第1の一次巻線(端子L1、K1)が、e端子とIGBTT2のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CTの第2の一次巻線(端子K2、L2)が、各々接続されているが、第2の実施例では、e端子とIGBTT1のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CTの第1の一次巻線(端子K1、L1)がこの順序で、e端子とIGBTT2のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CTの第2の一次巻線(端子L2、K2)がこの順序で、各々接続される。   FIG. 4 shows a second embodiment of the present invention. The difference from the first embodiment is the connection method of the current detector CT inserted between the e terminal of the gate drive circuit GDU and the control terminals (terminals having the same potential as the emitter) of the IGBTs T1 and T2. In the first embodiment, the first primary winding (terminals L1 and K1) of the current detector CT is connected to the wiring connecting the e terminal and the emitter of IGBTTT1 (control terminal having the same potential as the negative electrode terminal), the e terminal and IGBTTT2. The second primary windings (terminals K2 and L2) of the current detector CT are connected to the wiring connecting the emitters (control terminals having the same potential as the negative terminal), but in the second embodiment, The first primary windings (terminals K1, L1) of the current detector CT are connected in this order to the wiring connecting the e terminal and the emitter of the IGBTTT1 (control terminal having the same potential as the negative terminal) in this order. The second primary windings (terminals L2, K2) of the current detector CT are connected in this order to the wiring connecting the emitter (control terminal having the same potential as the negative terminal).

第1の実施例とは過電流時の一次巻線の電流方向が逆方向となるが、検出巻線(端子a、b)の出力に整流回路と抵抗からなる電流検出回路Idtを用いているため、実施例1と同様に過電流を検出し、半導体スイッチング素子をオフさせることができる。また、定常状態では、電流検出器の磁気コアは励磁されることがなく、励磁損失の低減とゲート駆動用電源容量の低減を図ることが可能となる。   The current direction of the primary winding at the time of overcurrent is opposite to that of the first embodiment, but a current detection circuit Idt comprising a rectifier circuit and a resistor is used for the output of the detection winding (terminals a and b). Therefore, the overcurrent can be detected and the semiconductor switching element can be turned off as in the first embodiment. In a steady state, the magnetic core of the current detector is not excited, and it is possible to reduce excitation loss and gate drive power supply capacity.

図5に、本発明の第3の実施例を示す。スイッチング素子の並列接続数Nを3とし、電流検出器として2個((N−1)個)の変流器を用いた例である。IGBTT1のエミッタに接続された配線インダクタンスL1、IGBTT2のエミッタに接続された配線インダクタンスL2及びIGBTT3のエミッタに接続された配線インダクタンスL3は、エミッタ同士を接続する導体のインダクタンスである。IGBTの正極同士を接続する導体も存在するが、本発明では動作に影響されないので、省略する。   FIG. 5 shows a third embodiment of the present invention. This is an example in which the number N of parallel connections of switching elements is 3, and two ((N-1)) current transformers are used as current detectors. The wiring inductance L1 connected to the emitter of the IGBTTT1, the wiring inductance L2 connected to the emitter of the IGBTTT2, and the wiring inductance L3 connected to the emitter of the IGBTTT3 are inductances of conductors connecting the emitters to each other. There are conductors that connect the positive electrodes of the IGBTs, but in the present invention, they are not affected by the operation, and are omitted.

実施例1、2との違いは、スイッチング素子数の違いに伴うゲート駆動回路とスイッチング素子との間に挿入する電流検出器の配線方法である。ゲート駆動回路GDUの出力端子gは、ゲート抵抗Rg1を介してIGBTT1のゲート(制御極端子)に、ゲート抵抗Rg2を介してIGBTT3のゲート(制御極端子)に、ゲート抵抗Rg3を介してIGBTT3のゲート(制御極端子)に、各々配線される。また、e端子は各々IGBTT1のエミッタ(負極端子と同電位の制御端子)、IGBTT2のエミッタ(負極端子と同電位の制御端子)及びIGBTT3のエミッタ(負極端子と同電位の制御端子)に、各々個別に配線される。   The difference from the first and second embodiments is the wiring method of the current detector inserted between the gate drive circuit and the switching element due to the difference in the number of switching elements. The output terminal g of the gate drive circuit GDU is connected to the gate (control pole terminal) of the IGBTTT1 via the gate resistance Rg1, to the gate (control pole terminal) of the IGBTTT3 via the gate resistance Rg2, and to the gate (control pole terminal) of the IGBTTT3 via the gate resistance Rg3. Each gate is wired to a gate (control electrode terminal). Further, the e terminal is respectively connected to the emitter of IGBTTT1 (control terminal having the same potential as the negative electrode terminal), the emitter of IGBTTT2 (control terminal having the same potential as the negative electrode terminal), and the emitter of IGBTTT3 (control terminal having the same potential as the negative electrode terminal). Wired individually.

e端子とIGBTT1のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CT1の第1の一次巻線の端子L1、K1がこの順序で、e端子とIGBTT2のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CT1の第2の一次巻線の端子K2、L2と電流検出器CT2の第1の一次巻線の端子L1、K1とがこの順序で、e端子とIGBTT3のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CT2の第2の一次巻線の端子K2、L2が、各々接続される。   The wiring connecting the e terminal and the IGBTTT1 emitter (the control terminal having the same potential as the negative electrode terminal) has the terminals L1 and K1 of the first primary winding of the current detector CT1 in this order, and the eterminal and the IGBTTT2 emitter ( The wiring connecting the negative electrode terminal and the control terminal having the same potential) has terminals K2, L2 of the second primary winding of the current detector CT1 and terminals L1, K1 of the first primary winding of the current detector CT2. In this order, the terminals K2 and L2 of the second primary winding of the current detector CT2 are connected to the wiring connecting the e terminal and the emitter of the IGBT TT3 (control terminal having the same potential as the negative terminal).

ここで、電流検出器CT1の第1の一次巻線(K1、L1)を通過する電流方向と第2の一次巻線(K2、L2)を通過する電流方向と、電流検出器CT2の第1の一次巻線(K1、L1)を通過する電流方向と第2の一次巻線(K2、L2)を通過する電流方向とは、各IGBTに電流が平衡して流れる定常状態では逆方向となるように接続する。また、電流検出器CT1の検出巻線(端子a、b)には整流回路と抵抗からなる電流検出回路Idt1が、電流検出器CT2の検出巻線(端子a、b)には整流回路と抵抗からなる電流検出回路Idt2が接続される。電流検出回路Idt1の出力と電流検出回路Idt2の出力とは各々ダイオードD1とD2を介して電圧比較器CPのプラス端子(+)に、電圧比較器CPの出力にはDフリップフロップDFのクロック端子が、DフリップフロップDFのQ出力端子には増幅器AMが、各々接続される。また、電圧比較器CPのマイナス端子(−)には基準電圧Vrefが、DフリップフロップDFのD端子には、制御回路の正極電源Vc(Hレベルの電圧)が、各々接続される。   Here, the current direction passing through the first primary winding (K1, L1) of the current detector CT1, the current direction passing through the second primary winding (K2, L2), and the first direction of the current detector CT2. The direction of current passing through the primary windings (K1, L1) and the direction of current passing through the second primary windings (K2, L2) are opposite in a steady state in which current flows through each IGBT in a balanced manner. Connect as follows. In addition, a current detection circuit Idt1 including a rectifier circuit and a resistor is provided in the detection winding (terminals a and b) of the current detector CT1, and a rectification circuit and a resistor are provided in the detection winding (terminals a and b) of the current detector CT2. Is connected to a current detection circuit Idt2. The output of the current detection circuit Idt1 and the output of the current detection circuit Idt2 are respectively connected to the plus terminal (+) of the voltage comparator CP via the diodes D1 and D2, and the output of the voltage comparator CP is the clock terminal of the D flip-flop DF. However, the amplifier AM is connected to each Q output terminal of the D flip-flop DF. The reference voltage Vref is connected to the negative terminal (−) of the voltage comparator CP, and the positive power supply Vc (H level voltage) of the control circuit is connected to the D terminal of the D flip-flop DF.

このような構成において、上下アームのIGBTに何らかの原因で同時にオン信号が入力されると上下アーム短絡電流が流れ、IGBTが過電流破壊されることになる。本回路構成において、上アームのIGBTT1に過電流が流れた場合の過電流検出動作を説明する。上アームのIGBTT1に過電流が流れると、配線インダクタンスL1に電圧VL1が誘起される。この電圧VL1は配線のインダクタンスをL11、電流の時間的変化をdi/dtとすると、VL1=L11×di/dtとなる。   In such a configuration, when ON signals are simultaneously input to the IGBTs of the upper and lower arms for some reason, the upper and lower arm short-circuit current flows, and the IGBT is destroyed by overcurrent. In the present circuit configuration, an overcurrent detection operation when an overcurrent flows through the IGBTTT1 of the upper arm will be described. When overcurrent flows through the IGBTTT1 of the upper arm, a voltage VL1 is induced in the wiring inductance L1. The voltage VL1 is VL1 = L11 × di / dt, where L11 is the inductance of the wiring and di / dt is the temporal change in current.

この電圧が誘起されると、配線インダクタンスL1の電圧が電源となり、配線インダクタンスL1→電流検出器CT1の第1の一次巻線(端子K1、L1)→電流検出器CT1の第2の一次巻線(端子K2、L2)→電流検出器CT2の第1の一次巻線(端子L1、K1)→配線インダクタンスL2→配線インダクタンスL1の経路と、配線インダクタンスL1→電流検出器CT1の第1の一次巻線(端子K1、L1)→電流検出器CT2の第2の一次巻線(端子K2、L2)→配線インダクタンスL3→配線インダクタンスL1の経路と、で電流が流れる。この結果、電流検出器CT1の第1の一次巻線(K1、L1)と第2の一次巻線(K2、L2)には同じ方向に電流が流れ、電流検出器CT1の磁気コアを励磁し、検出巻線(端子a、b)には、一次巻線と検出巻線の巻数比で決まる電流が流れる。   When this voltage is induced, the voltage of the wiring inductance L1 becomes a power source, and the wiring inductance L1 → the first primary winding (terminals K1, L1) of the current detector CT1 → the second primary winding of the current detector CT1. (Terminals K2, L2) → first primary winding of current detector CT2 (terminals L1, K1) → wiring inductance L2 → path of wiring inductance L1 and wiring inductance L1 → first primary winding of current detector CT1 A current flows in the path of the line (terminals K1, L1) → the second primary winding (terminals K2, L2) of the current detector CT2 → the wiring inductance L3 → the wiring inductance L1. As a result, current flows in the same direction in the first primary windings (K1, L1) and the second primary windings (K2, L2) of the current detector CT1, thereby exciting the magnetic core of the current detector CT1. In the detection windings (terminals a and b), a current determined by the turn ratio of the primary winding and the detection winding flows.

また、IGBTT2に過電流が流れた場合には、配線インダクタンスL2に電圧VL2が誘起される。この電圧VL2は配線のインダクタンスをL12、電流の時間的変化をdi/dtとすると、VL2=L12×di/dtとなる。この電圧が誘起されると、配線インダクタンスL2の誘起電圧が電源となり、配線インダクタンスL2→電流検出器CT2の第1の一次巻線(端子K1、L1)→電流検出器CT1の第2の一次巻線(端子L2、K2)→電流検出器CT1の第1の一次巻線(端子L1、K1)→配線インダクタンスL1→配線インダクタンスL2の経路と、配線インダクタンスL2→電流検出器CT2の第1の一次巻線(端子K1、L1)→電流検出器CT1の第2の一次巻線(端子L2、K2)→電流検出器CT2の第2の一次巻線(端子K2、L2)→配線インダクタンスL3→配線インダクタンスL2の経路で電流が流れる。   Further, when an overcurrent flows through the IGBTTT2, a voltage VL2 is induced in the wiring inductance L2. The voltage VL2 is VL2 = L12 × di / dt, where L12 is the inductance of the wiring and di / dt is the temporal change in current. When this voltage is induced, the induced voltage of the wiring inductance L2 becomes the power source, and the wiring inductance L2 → the first primary winding (terminals K1, L1) of the current detector CT2 → the second primary winding of the current detector CT1. Line (terminals L2, K2) → first primary winding of current detector CT1 (terminals L1, K1) → wiring inductance L1 → path of wiring inductance L2 and wiring inductance L2 → first primary of current detector CT2 Winding (terminals K1, L1) → second primary winding (terminals L2, K2) of current detector CT1 → second primary winding (terminals K2, L2) of current detector CT2 → wiring inductance L3 → wiring A current flows through the path of the inductance L2.

この結果、電流検出器CT1の第2の一次巻線(L2、K2)と第1の一次巻線(L1、K1)及び電流検出器CT2の第1の一次巻線(K1、L1)と第2の一次巻線(K2、L2)には同じ方向に電流が流れ、電流検出器CT1及びCT2の磁気コアを励磁し、検出巻線(端子a、b)には、一次巻線と検出巻線の巻数比で決まる電流が流れる。   As a result, the second primary windings (L2, K2) and the first primary windings (L1, K1) of the current detector CT1 and the first primary windings (K1, L1) of the current detector CT2 and the first primary windings (L1, K1). Current flows in the same direction in the primary windings (K2, L2) of 2 to excite the magnetic cores of the current detectors CT1 and CT2, and the primary winding and the detection winding are connected to the detection windings (terminals a, b). A current determined by the turn ratio of the wire flows.

また、IGBTT3に過電流が流れると、配線インダクタンスL3に電圧VL3が誘起される。この電圧VL3は配線のインダクタンスをL13、電流の時間的変化をdi/dtとすると、VL3=L13×di/dtとなる。この電圧が誘起されると、配線インダクタンスL3の電圧が電源となり、配線インダクタンスL3→電流検出器CT2の第2の一次巻線(端子L2、K2)→電流検出器CT1の第1の一次巻線(端子L1、K1)→配線インダクタンスL1→配線インダクタンスL3の経路と、配線インダクタンスL3→電流検出器CT2の第2の一次巻線(端子L2、K2)→電流検出器CT1の第2の一次巻線(端子K2、L2)→電流検出器CT2の第1の一次巻線(端子L1、K1)→配線インダクタンスL2→配線インダクタンスL3の経路と、で電流が流れる。この結果、電流検出器CT2の第1の一次巻線(L1、K1)と第2の一次巻線(L2、K2)には同じ方向に電流が流れ、電流検出器CT2の磁気コアを励磁し、検出巻線(端子a、b)には、一次巻線と検出巻線の巻数比で決まる電流が流れる。   Further, when an overcurrent flows through the IGBTTT3, a voltage VL3 is induced in the wiring inductance L3. The voltage VL3 is VL3 = L13 × di / dt, where L13 is the inductance of the wiring and di / dt is the temporal change in current. When this voltage is induced, the voltage of the wiring inductance L3 becomes the power source, and the wiring inductance L3 → the second primary winding (terminals L2, K2) of the current detector CT2 → the first primary winding of the current detector CT1. (Terminals L1, K1) → wiring inductance L1 → wiring inductance L3 path and wiring inductance L3 → second primary winding of current detector CT2 (terminals L2, K2) → second primary winding of current detector CT1 A current flows through the path of the line (terminals K2, L2) → the first primary winding (terminals L1, K1) of the current detector CT2 → the wiring inductance L2 → the wiring inductance L3. As a result, current flows in the same direction in the first primary windings (L1, K1) and the second primary windings (L2, K2) of the current detector CT2, thereby exciting the magnetic core of the current detector CT2. In the detection windings (terminals a and b), a current determined by the turn ratio of the primary winding and the detection winding flows.

これらの電流を電流検出回路Idt1とIdt2で整流後抵抗を介して電流値に応じた電圧に変換する。この電圧をダイオードD1とD2を介して電圧比較器CPの+端子に入力し基準値Vrefと比較することにより過電流が流れたことを判定する。過電流が流れると電圧比較器CPの出力はハイ(H)信号となり、Dフリップフロップのクロック端子に入力される。DフリップフロップではD端子に制御電源電圧のHレベルの電圧が接続されており、クロック端子への入力信号によりQ出力端子はハイ(H)レベルとなる。この信号を増幅回路AMで増幅して、ゲート駆動回路のトランジスタQ1を動作させ、ゲート駆動回路の出力端子gの電圧を零(M点の電圧)に降下させて、IGBTT1、T2をオフさせる。この時IGBTT1は過電流を遮断することになるので、オフ時のゲート電圧は通常動作時の負電圧ではなく、零電圧に降下させることにより、遮断時のサージ電圧を抑制することが可能となる。尚、電流検出器の接続方法はスイッチング素子(IGBT)の何れか2素子のエミッタ(制御端子)とゲート駆動回路のe端子とを接続する接続線が電流検出器の二つの一次巻線それぞれを介して接続されれば良い。   These currents are converted into a voltage corresponding to the current value via the resistance after rectification by the current detection circuits Idt1 and Idt2. This voltage is input to the positive terminal of the voltage comparator CP through the diodes D1 and D2, and is compared with the reference value Vref to determine that an overcurrent has flowed. When an overcurrent flows, the output of the voltage comparator CP becomes a high (H) signal and is input to the clock terminal of the D flip-flop. In the D flip-flop, the H level voltage of the control power supply voltage is connected to the D terminal, and the Q output terminal becomes a high (H) level by the input signal to the clock terminal. This signal is amplified by the amplifier circuit AM, the transistor Q1 of the gate drive circuit is operated, the voltage of the output terminal g of the gate drive circuit is lowered to zero (the voltage at the M point), and the IGBTs T1 and T2 are turned off. At this time, since the IGBTTT1 cuts off the overcurrent, the gate voltage at the off time is not a negative voltage at the time of normal operation, but can be reduced to zero voltage, thereby suppressing a surge voltage at the time of the cut off. . The connection method of the current detector is that the connection line connecting the emitter (control terminal) of any two elements of the switching element (IGBT) and the e terminal of the gate drive circuit is respectively connected to the two primary windings of the current detector. It may be connected via

過電流が流れていない定常状態では、実施例1、2と同様に、オン信号指令でゲート電圧を立ち上げる時及びオフ信号指令でゲート電圧を立ち下げる時共に電流検出器CT1及びCT2の第1の一次巻線の電流方向と第2の一次巻線の電流方向とは逆方向となり、電流検出器CT1及びCT2の磁気コアは励磁されない。従って、この構成においては、定常状態では、電流検出器の磁気コアは励磁されずに、励磁損失の低減とゲート駆動用電源容量の低減を図ることが可能となる。   In a steady state in which no overcurrent flows, the first current detectors CT1 and CT2 are both used when the gate voltage is raised by an on signal command and when the gate voltage is lowered by an off signal command, as in the first and second embodiments. The current direction of the primary winding is opposite to the current direction of the second primary winding, and the magnetic cores of the current detectors CT1 and CT2 are not excited. Therefore, in this configuration, in a steady state, the magnetic core of the current detector is not excited, and it is possible to reduce the excitation loss and the gate drive power supply capacity.

図6に、本発明の第4の実施例を示す。スイッチング素子(IGBT)を2個並列接続した時の構成で、電流検出器の使用数とスイッチング素子の使用数は同じである。
IGBTT1のエミッタに接続された配線インダクタンスL1とIGBTT2のエミッタに接続された配線インダクタンスL2は、エミッタ同士を接続する導体のインダクタンスである。IGBTの正極同士を接続する導体も存在するが、本発明では動作に影響されないので、省略する。
FIG. 6 shows a fourth embodiment of the present invention. In the configuration when two switching elements (IGBTs) are connected in parallel, the number of current detectors used and the number of switching elements used are the same.
The wiring inductance L1 connected to the emitter of the IGBTTT1 and the wiring inductance L2 connected to the emitter of the IGBTTT2 are inductances of conductors connecting the emitters. There are conductors that connect the positive electrodes of the IGBTs, but in the present invention, they are not affected by the operation, and are omitted.

GDUがゲート駆動回路で、記載のない制御回路からのオンオフ信号をIGBTのゲート・エミッタ間をオンオフ制御するための信号に変換する機能を備える。正極PG、負極GN及び零極Mを備えたゲート駆動用電源GPSから抵抗R1、R2、トランジスタQf、Qrを介してg端子にe端子電圧を零としたオンオフ信号に応じた正負の電圧を出力する。ゲート駆動回路GDUの出力端子gは、ゲート抵抗Rg1を介してIGBTT1のゲート(制御極端子)に、ゲート抵抗Rg2を介してIGBTT2のゲート(制御極端子)に、e端子は各々IGBTT1のエミッタ(負極端子と同電位の制御端子)とIGBTT2のエミッタ(負極端子と同電位の制御端子)に、各々個別に配線される。   The GDU is a gate drive circuit, and has a function of converting an on / off signal from a control circuit not described into a signal for on / off control between the gate and emitter of the IGBT. A positive / negative voltage corresponding to an on / off signal with zero e terminal voltage is output to the g terminal via the resistors R1 and R2 and the transistors Qf and Qr from the gate driving power supply GPS having the positive electrode PG, the negative electrode GN, and the zero electrode M. To do. The output terminal g of the gate drive circuit GDU is connected to the gate (control pole terminal) of the IGBTTT1 via the gate resistance Rg1, to the gate (control pole terminal) of the IGBTTT2 via the gate resistance Rg2, and the e terminal is the emitter of the IGBTTT1 (control pole terminal). A control terminal having the same potential as the negative terminal and an emitter of the IGBTTT 2 (control terminal having the same potential as the negative terminal) are individually wired.

g端子とIGBTT1のゲートを接続する配線は電流検出器CT1の第1の一次巻線端子(L1、K1)を介して、e端子とIGBTT1のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CT1の第2の一次巻線の端子L2、K2を介して、各々接続される。また、g端子とIGBTT2のゲートを接続する配線は電流検出器CT2の第1の一次巻線端子(L1、K1)を介して、e端子とIGBTT1のエミッタ(負極端子と同電位の制御端子)を接続する配線には電流検出器CT2の第2の一次巻線の端子L2、K2を介して、各々接続される。   The wiring connecting the g terminal and the gate of IGBTTT1 connects the e terminal and the emitter of IGBTTT1 (control terminal having the same potential as the negative electrode terminal) via the first primary winding terminal (L1, K1) of the current detector CT1. The wiring to be connected is connected via terminals L2 and K2 of the second primary winding of the current detector CT1. Further, the wiring connecting the g terminal and the gate of the IGBTTT2 is connected to the e terminal and the emitter of the IGBTTT1 (control terminal having the same potential as the negative electrode terminal) via the first primary winding terminals (L1, K1) of the current detector CT2. Are connected via the terminals L2 and K2 of the second primary winding of the current detector CT2, respectively.

ここで、電流検出器CT1、CT2の第1の一次巻線(K1、L1)を通過する電流方向と第2の一次巻線(K2、L2)を通過する電流方向とは各IGBTに電流が平衡して流れる定常状態では逆方向となるように接続する。また、電流検出器CT1、CT2の検出巻線(端子a、b)には整流回路と抵抗からなる電流検出回路Idt1、Idt2が、電流検出回路Idt1、Idt2の出力にはダイオードD1、D2を介して電圧比較器CPのプラス端子(+)が、電圧比較器CPの出力にはDフリップフロップDFのクロック端子が、DフリップフロップDFのQ出力端子には増幅器AMが、各々接続される。また、電圧比較器CPのマイナス端子(−)には基準電圧Vrefが、DフリップフロップDFのD端子には、制御回路の正極電源Vc(Hレベルの電圧)が、各々接続される。   Here, the current direction passing through the first primary windings (K1, L1) of the current detectors CT1, CT2 and the current direction passing through the second primary windings (K2, L2) are determined as follows. In a steady state that flows in equilibrium, the connections are made in the opposite direction. In addition, current detection circuits Idt1 and Idt2 including a rectifier circuit and a resistor are connected to the detection windings (terminals a and b) of the current detectors CT1 and CT2, and outputs of the current detection circuits Idt1 and Idt2 are connected via diodes D1 and D2. The positive terminal (+) of the voltage comparator CP is connected, the clock terminal of the D flip-flop DF is connected to the output of the voltage comparator CP, and the amplifier AM is connected to the Q output terminal of the D flip-flop DF. The reference voltage Vref is connected to the negative terminal (−) of the voltage comparator CP, and the positive power supply Vc (H level voltage) of the control circuit is connected to the D terminal of the D flip-flop DF.

このような構成において、上下アームのIGBTに何らかの原因で同時にオン信号が入力されると上下アーム短絡電流が流れ、IGBTが過電流破壊されることになる。   In such a configuration, when ON signals are simultaneously input to the IGBTs of the upper and lower arms for some reason, the upper and lower arm short-circuit current flows, and the IGBT is destroyed by overcurrent.

本回路構成において、上アームのIGBTT1に過電流が流れた場合の過電流検出動作を図8に基づいて説明する。上アームのIGBTT1に過電流が流れると、配線インダクタンスL1に電圧VL1が誘起される。この電圧VL1は配線のインダクタンスをL11、電流の時間的変化をdi/dtとすると、VL1=L11×di/dtとなる。この電圧が誘起されると、配線インダクタンスL1の電圧が電源となり、配線インダクタンスL1→電流検出器CT1の第2の一次巻線(端子K2、L2)→電流検出器CT2の第2の一次巻線(端子L2、K2)→配線インダクタンスL2→配線インダクタンスL1の経路で電流が流れる。   In the present circuit configuration, an overcurrent detection operation when an overcurrent flows through the IGBTTT1 of the upper arm will be described with reference to FIG. When overcurrent flows through the IGBTTT1 of the upper arm, a voltage VL1 is induced in the wiring inductance L1. The voltage VL1 is VL1 = L11 × di / dt, where L11 is the inductance of the wiring and di / dt is the temporal change in current. When this voltage is induced, the voltage of the wiring inductance L1 becomes the power source, and the wiring inductance L1 → the second primary winding (terminals K2, L2) of the current detector CT1 → the second primary winding of the current detector CT2. Current flows through a path of (terminals L2, K2) → wiring inductance L2 → wiring inductance L1.

この結果、電流検出器CT1とCT2の磁気コアを励磁し、検出巻線(端子a、b)には、一次巻線と検出巻線の巻数比で決まる電流が流れる。この電流を電流検出回路Idt1、Idt2で整流後抵抗を介して電流値に応じた電圧に変換する。この電圧を電圧比較器CPで基準値Vrefと比較することにより過電流が流れたことを判定する。過電流が流れると電圧比較器CPの出力はハイ(H)信号となり、Dフリップフロップのクロック端子に入力される。DフリップフロップではD端子に制御電源電圧のHレベルの電圧が接続されており、クロック端子への入力信号によりQ出力端子はハイ(H)レベルとなる。この信号を増幅回路AMで増幅して、ゲート駆動回路のトランジスタQ1を動作させ、ゲート駆動回路の出力端子gの電圧を零(M点の電圧)に降下させて、IGBTT1、T2をオフさせる。この時IGBTT1は過電流を遮断することになるので、オフ時のゲート電圧は通常動作時の負電圧ではなく、零電圧に降下させることにより、遮断時のサージ電圧を抑制することが可能となる。   As a result, the magnetic cores of the current detectors CT1 and CT2 are excited, and a current determined by the turn ratio of the primary winding and the detection winding flows through the detection windings (terminals a and b). This current is converted into a voltage according to the current value via the resistance after rectification by the current detection circuits Idt1 and Idt2. This voltage is compared with the reference value Vref by the voltage comparator CP to determine that an overcurrent has flowed. When an overcurrent flows, the output of the voltage comparator CP becomes a high (H) signal and is input to the clock terminal of the D flip-flop. In the D flip-flop, the H level voltage of the control power supply voltage is connected to the D terminal, and the Q output terminal becomes a high (H) level by the input signal to the clock terminal. This signal is amplified by the amplifier circuit AM, the transistor Q1 of the gate drive circuit is operated, the voltage of the output terminal g of the gate drive circuit is lowered to zero (the voltage at the M point), and the IGBTs T1 and T2 are turned off. At this time, since the IGBTTT1 cuts off the overcurrent, the gate voltage at the off time is not a negative voltage at the time of normal operation, but can be reduced to zero voltage, thereby suppressing a surge voltage at the time of the cut off. .

IGBTT2に過電流が流れると、配線インダクタンスL2に電圧VL2が誘起される。この電圧VL2は配線のインダクタンスをL12、電流の時間的変化をdi/dtとすると、VL1=L12×di/dtとなる。この電圧が誘起されると、配線インダクタンスL2の電圧が電源となり、配線インダクタンスL2→電流検出器CT2の第2の一次巻線(端子K2、L2)→電流検出器CT1の第2の一次巻線(端子L2、K2)→配線インダクタンスL1→配線インダクタンスL2の経路で電流が流れる。この結果、電流検出器CT1とCT2の磁気コアを励磁し、検出巻線(端子a、b)には、一次巻線と検出巻線の巻数比で決まる電流が流れる。これ以降の動作は、IGBTT1に過電流が流れた時と同様である。   When an overcurrent flows through the IGBTTT2, a voltage VL2 is induced in the wiring inductance L2. The voltage VL2 is VL1 = L12 × di / dt, where L12 is the inductance of the wiring and di / dt is the temporal change in current. When this voltage is induced, the voltage of the wiring inductance L2 becomes a power source, and the wiring inductance L2 → the second primary winding of the current detector CT2 (terminals K2, L2) → the second primary winding of the current detector CT1. Current flows through a path of (terminals L2, K2) → wiring inductance L1 → wiring inductance L2. As a result, the magnetic cores of the current detectors CT1 and CT2 are excited, and a current determined by the turn ratio of the primary winding and the detection winding flows through the detection windings (terminals a and b). The subsequent operation is the same as when an overcurrent flows through the IGBTTT1.

過電流が流れていない定常状態では、図7に示すように、オン信号指令でゲート電圧を立ち上げる時及びオフ信号指令でゲート電圧を立ち下げる時共に電流検出器CT1及びCT2の第1の一次巻線の電流方向と第2の一次巻線の電流方向とは逆方向となり、電流検出器CT1及びCT2の磁気コアは励磁されない。従って、この構成においては、定常状態では、電流検出器の磁気コアは励磁されずに、励磁損失の低減とゲート駆動用電源容量の低減を図ることが可能となる。   In a steady state in which no overcurrent flows, as shown in FIG. 7, the first primary of the current detectors CT1 and CT2 is used both when the gate voltage is raised by an on signal command and when the gate voltage is lowered by an off signal command. The current direction of the winding and the current direction of the second primary winding are opposite, and the magnetic cores of the current detectors CT1 and CT2 are not excited. Therefore, in this configuration, in a steady state, the magnetic core of the current detector is not excited, and it is possible to reduce the excitation loss and the gate drive power supply capacity.

図9に、本発明の第5の実施例を示す。第4の実施例において、スイッチング素子(IGBT)を3個並列接続した時の構成で、電流検出器の使用数とスイッチング素子の使用数は同じである。
IGBTT1のエミッタに接続された配線インダクタンスL1、IGBTT2のエミッタに接続された配線インダクタンスL2及びIGBTT3のエミッタに接続された配線インダクタンスL3は、エミッタ同士を接続する導体のインダクタンスである。IGBTの正極同士を接続する導体も存在するが、本発明では動作に影響されないので、省略する。
FIG. 9 shows a fifth embodiment of the present invention. In the fourth embodiment, when three switching elements (IGBTs) are connected in parallel, the number of current detectors used and the number of switching elements used are the same.
The wiring inductance L1 connected to the emitter of the IGBTTT1, the wiring inductance L2 connected to the emitter of the IGBTTT2, and the wiring inductance L3 connected to the emitter of the IGBTTT3 are inductances of conductors connecting the emitters. There are conductors that connect the positive electrodes of the IGBTs, but in the present invention, they are not affected by the operation, and are omitted.

スイッチング素子(IGBT)を3個並列接続した構成では、第4の実施例に対して、ゲート抵抗Rg3、電流検出器CT3、電流検出回路Idt3及びダイオードD3が追加される。この他の構成は実施例4と同じである。動作は第4の実施例と同様で、何れかのIGBTに過電流が流れると、これを検出してゲート駆動回路でオン信号をオフ信号に切替えて全てのIGBTをオフさせる。また、過電流が流れていない定常状態では各電流検出器は励磁されないので、励磁損失の低減とゲート駆動用電源容量の低減を図ることが可能となる。
尚、上記実施例では、過電流を検出してゲート駆動回路内でオン信号をオフ信号に切替えているが、過電流検出信号を外部の制御回路に送出し、制御回路からシステム全体を停止させるようにすることも可能である。
In the configuration in which three switching elements (IGBTs) are connected in parallel, a gate resistor Rg3, a current detector CT3, a current detection circuit Idt3, and a diode D3 are added to the fourth embodiment. Other configurations are the same as those in the fourth embodiment. The operation is the same as in the fourth embodiment. When an overcurrent flows through any of the IGBTs, this is detected, and the gate drive circuit switches the on signal to the off signal to turn off all the IGBTs. Further, since each current detector is not excited in a steady state in which no overcurrent flows, it is possible to reduce excitation loss and gate drive power supply capacity.
In the above embodiment, the overcurrent is detected and the on signal is switched to the off signal in the gate drive circuit. However, the overcurrent detection signal is sent to the external control circuit, and the entire system is stopped from the control circuit. It is also possible to do so.

本発明は、半導体スイッチング素子を並列接続して用いる場合の過電流保護に関するものであり、直流電源装置、交流電源装置、インバータ、無停電電源装置(UPS)などへの適用が可能である。   The present invention relates to overcurrent protection when semiconductor switching elements are connected in parallel, and can be applied to a DC power supply, an AC power supply, an inverter, an uninterruptible power supply (UPS), and the like.

T1〜T3、2,3、6,7・・・IGBT(スイッチング素子)
L1〜L3、4、5、8、9・・・配線インダクタンス
GDU、11・・・ゲート駆動回路 21、22・・・極性検出器
31、32・・・過電流検出器 23・・・排他的論理和素子
12、13、CT、CT1〜CT3・・・電流検出器
33・・・論理和素子 34・・・論理積素子
Rg1〜Rg3・・・ゲート抵抗 R1〜R3・・・抵抗
Idt、Idt1〜Idt3・・・電流検出回路
D1〜D3・・・ダイオード CP・・・電圧比較器
DF・・・Dフリップフロップ AM・・・増幅器
GPS・・・ゲート駆動電源 Qf,Qr、Q1・・・トランジスタ
T1 to T3, 2, 3, 6, 7 ... IGBT (switching element)
L1 to L3, 4, 5, 8, 9 ... wiring inductance GDU, 11 ... gate drive circuit 21, 22 ... polarity detector 31, 32 ... overcurrent detector 23 ... exclusive OR element 12, 13, CT, CT1 to CT3 ... current detector 33 ... OR element 34 ... AND element Rg1-Rg3 ... gate resistance R1-R3 ... resistance Idt, Idt1 ~ Idt3 ... Current detection circuit D1 ~ D3 ... Diode CP ... Voltage comparator DF ... D flip-flop AM ... Amplifier GPS ... Gate drive power supply Qf, Qr, Q1 ... Transistor

Claims (8)

N(Nは2以上の整数)個の電圧駆動型半導体スイッチ素子を並列接続した回路の駆動回路であって、前記各々の半導体スイッチ素子の駆動端子に共通の駆動信号を出力する駆動回路と、前記各々の半導体スイッチ素子の各正極端子同士を接続する正極導体と、前記各々の半導体スイッチ素子の各負極端子同士を接続する負極導体と、前記駆動回路から前記各々の半導体スイッチ素子の各制御極端子へ個別に接続するN個の第1の配線と、前記駆動回路から前記各々の半導体スイッチ素子の負極端子と同電位の各制御端子へ個別に接続するN個の第2の配線と、を備えた半導体スイッチ素子並列接続回路の駆動回路において、
前記N個の中の何れか2個の第2の配線は定常動作時に互いの電流方向が逆方向となるように接続する二つの一次巻線と電流検出用の1個の二次巻線とを備えた(N−1)個の電流検出用変流器を介して各々接続することを特徴とする半導体スイッチ素子並列接続回路の駆動回路。
A drive circuit of a circuit in which N (N is an integer of 2 or more) voltage-driven semiconductor switch elements are connected in parallel, and outputs a common drive signal to the drive terminals of each of the semiconductor switch elements; A positive electrode conductor connecting each positive electrode terminal of each semiconductor switch element; a negative electrode conductor connecting each negative electrode terminal of each semiconductor switch element; and each control extreme of each semiconductor switch element from the drive circuit N first wirings individually connected to the child, and N second wirings individually connected from the driving circuit to each control terminal having the same potential as the negative terminal of each of the semiconductor switch elements, In the drive circuit of the semiconductor switch element parallel connection circuit provided,
Any two of the N second wirings are connected to each other so that their current directions are opposite to each other during normal operation, and one secondary winding for current detection. A drive circuit for a semiconductor switch element parallel connection circuit, wherein each of the current detection current transformers is connected via (N-1) current detection current transformers.
請求項1に記載の半導体スイッチ素子並列接続回路の駆動回路において、前記二つの一次巻線は前記何れか2個の第2の配線を磁性コアに1回又は複数回貫通させる構造とすることを特徴とする半導体スイッチ素子並列接続回路の駆動回路。   2. The drive circuit of the semiconductor switch element parallel connection circuit according to claim 1, wherein the two primary windings have a structure in which one of the two second wirings penetrates the magnetic core one or more times. A drive circuit for a semiconductor switch element parallel connection circuit. 請求項1又は2に記載の半導体スイッチ素子並列接続回路の駆動回路において、前記電流検出用変流器の二次巻線の電流を整流して電圧信号に変換し、この電圧信号の電圧値が所定値を超えた時過電流と判定し、前記全ての半導体スイッチ素子へのオン信号をオフ信号へと変化させることを特徴とする半導体スイッチ素子並列接続回路の駆動回路。   The drive circuit of the semiconductor switch element parallel connection circuit according to claim 1 or 2, wherein the current of the secondary winding of the current detection current transformer is rectified and converted into a voltage signal, and the voltage value of the voltage signal is A drive circuit for a semiconductor switch element parallel connection circuit, wherein an overcurrent is determined when a predetermined value is exceeded, and an on signal to all the semiconductor switch elements is changed to an off signal. 請求項3に記載の半導体スイッチ素子並列接続回路の駆動回路において、前記オフ信号は前記半導体スイッチ素子の制御極端子と制御端子との間の電圧を零とする信号とすることを特徴とする半導体スイッチ素子並列接続回路の駆動回路。   4. The drive circuit of the semiconductor switch element parallel connection circuit according to claim 3, wherein the off signal is a signal that makes a voltage between a control pole terminal and a control terminal of the semiconductor switch element zero. Drive circuit for switch element parallel connection circuit. N(Nは2以上の整数)個の電圧駆動型半導体スイッチ素子を並列接続した回路の駆動回路であって、前記各々の半導体スイッチ素子の駆動端子に共通の駆動信号を出力する駆動回路と、前記各々の半導体スイッチ素子の各正極端子同士を接続する正極導体と、前記各々の半導体スイッチ素子の各負極端子同士を接続する負極導体と、前記駆動回路から前記各々の半導体スイッチ素子の各制御極端子へ個別に接続するN個の第1の配線と、前記駆動回路から前記各々の半導体スイッチ素子の負極端子と同電位の各制御端子へ個別に接続するN個の第2の配線と、を備えた半導体スイッチ素子並列接続回路の駆動回路において、
前記各々の半導体スイッチ素子に接続される前記第1の配線と前記第2の配線は定常動作時に互いの電流方向が逆方向となるように接続する二つの一次巻線と電流検出用の1個の二次巻線とを備えた電流検出用変流器を介して各々接続することを特徴とする半導体スイッチ素子並列接続回路の駆動回路。
A drive circuit of a circuit in which N (N is an integer of 2 or more) voltage-driven semiconductor switch elements are connected in parallel, and outputs a common drive signal to the drive terminals of each of the semiconductor switch elements; A positive electrode conductor connecting each positive electrode terminal of each semiconductor switch element; a negative electrode conductor connecting each negative electrode terminal of each semiconductor switch element; and each control extreme of each semiconductor switch element from the drive circuit N first wirings individually connected to the child, and N second wirings individually connected from the driving circuit to each control terminal having the same potential as the negative terminal of each of the semiconductor switch elements, In the drive circuit of the semiconductor switch element parallel connection circuit provided,
The first wiring and the second wiring connected to each of the semiconductor switching elements are two primary windings that are connected so that their current directions are opposite to each other during steady operation, and one current detection A drive circuit for a semiconductor switch element parallel connection circuit, wherein each of the drive circuits is connected via a current detection current transformer having a secondary winding.
請求項5に記載の半導体スイッチ素子並列接続回路の駆動回路において、前記二つの一次巻線は前記第1の配線と前記第2の配線を磁性コアに1回又は複数回貫通させる構造とすることを特徴とする半導体スイッチ素子並列接続回路の駆動回路。   6. The drive circuit of the semiconductor switch element parallel connection circuit according to claim 5, wherein the two primary windings have a structure in which the first wiring and the second wiring are passed through the magnetic core one or more times. A drive circuit for a semiconductor switch element parallel connection circuit. 請求項5又は6に記載の半導体スイッチ素子並列接続回路の駆動回路において、前記電流検出用変流器の二次巻線の電流を整流して電圧信号に変換し、この電圧信号の電圧値が所定値を超えた時過電流と判定し、前記全ての半導体スイッチ素子へのオン信号をオフ信号へと変化させることを特徴とする半導体スイッチ素子並列接続回路の駆動回路。 The drive circuit of the semiconductor switch element parallel connection circuit according to claim 5 or 6, wherein the current of the secondary winding of the current detection current transformer is rectified and converted into a voltage signal, and the voltage value of the voltage signal is A drive circuit for a semiconductor switch element parallel connection circuit, wherein an overcurrent is determined when a predetermined value is exceeded, and an on signal to all the semiconductor switch elements is changed to an off signal. 請求項7に記載の半導体スイッチ素子並列接続回路の駆動回路において、前記オフ信号は前記半導体スイッチ素子の制御極端子と制御端子との間の電圧を零とする信号とすることを特徴とする半導体スイッチ素子並列接続回路の駆動回路。
8. The drive circuit of a semiconductor switch element parallel connection circuit according to claim 7, wherein the off signal is a signal that makes a voltage between a control pole terminal and a control terminal of the semiconductor switch element zero. Drive circuit for switch element parallel connection circuit.
JP2014021280A 2014-02-06 2014-02-06 Driving circuit for semiconductor switch element parallel connection circuit Active JP6273877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014021280A JP6273877B2 (en) 2014-02-06 2014-02-06 Driving circuit for semiconductor switch element parallel connection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014021280A JP6273877B2 (en) 2014-02-06 2014-02-06 Driving circuit for semiconductor switch element parallel connection circuit

Publications (2)

Publication Number Publication Date
JP2015149828A JP2015149828A (en) 2015-08-20
JP6273877B2 true JP6273877B2 (en) 2018-02-07

Family

ID=53892791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014021280A Active JP6273877B2 (en) 2014-02-06 2014-02-06 Driving circuit for semiconductor switch element parallel connection circuit

Country Status (1)

Country Link
JP (1) JP6273877B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223494B2 (en) * 2016-03-31 2017-11-01 三菱電機株式会社 Semiconductor device
US20220294440A1 (en) * 2019-08-07 2022-09-15 Omron Corporation Unbalanced failure detector circuit for detecting unbalanced failure of electronic device apparatus including electronic devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351230A (en) * 1993-06-03 1994-12-22 Toshiba Corp Power converter
JPH0819246A (en) * 1994-07-04 1996-01-19 Fuji Electric Co Ltd Parallel connection circuit of semiconductor switching devices
JPH1042546A (en) * 1996-07-18 1998-02-13 Fuji Electric Co Ltd Overcurrent detector for parallel semiconductor switching devices
JP5440113B2 (en) * 2009-11-18 2014-03-12 富士電機株式会社 AC-DC converter

Also Published As

Publication number Publication date
JP2015149828A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
CN101043138B (en) Protection circuit for semiconductor element
US8963515B2 (en) Current sensing circuit and control circuit thereof and power converter circuit
JP2011135758A (en) Rectifier circuit
US9712044B2 (en) Power converter
US20120275202A1 (en) Series multiplex power conversion apparatus
JP2015032984A (en) Device for driving semiconductor element, and power conversion device using the same
JP2017146154A (en) Current detection device and semiconductor device
JP4835930B2 (en) Inverter device provided with ground fault detection means
JP6273877B2 (en) Driving circuit for semiconductor switch element parallel connection circuit
WO2015064206A1 (en) Semiconductor device
US11362654B2 (en) Auxiliary circuit
JP5446851B2 (en) Power converter
EP4040656A1 (en) Interleaved power converter
JP6819302B2 (en) State detector
JP2008017650A (en) Power converter
JP2019216540A (en) Controller of power inverter circuit
JP6239024B2 (en) Power converter
JP6661002B2 (en) Power converter
JP2008005636A (en) Power transforming device
JP5407744B2 (en) AC-DC converter
JP2022129346A (en) Short-cut failure detection device and power conversion device
JP4665561B2 (en) Series connection of voltage-driven semiconductor elements
JP2005102443A (en) Output voltage detecting method of power converter
US11835594B2 (en) Short circuit detector and power converter
WO2021192359A1 (en) Bidirectional dc-dc converter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6273877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250