JP6273797B2 - OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD - Google Patents

OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD Download PDF

Info

Publication number
JP6273797B2
JP6273797B2 JP2013245879A JP2013245879A JP6273797B2 JP 6273797 B2 JP6273797 B2 JP 6273797B2 JP 2013245879 A JP2013245879 A JP 2013245879A JP 2013245879 A JP2013245879 A JP 2013245879A JP 6273797 B2 JP6273797 B2 JP 6273797B2
Authority
JP
Japan
Prior art keywords
lens
optical system
diffractive
optical element
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013245879A
Other languages
Japanese (ja)
Other versions
JP2015102852A (en
Inventor
誠 藤本
誠 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013245879A priority Critical patent/JP6273797B2/en
Publication of JP2015102852A publication Critical patent/JP2015102852A/en
Application granted granted Critical
Publication of JP6273797B2 publication Critical patent/JP6273797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Description

本発明は、回折光学素子を備えた光学系、光学機器、および光学系の製造方法に関する。   The present invention relates to an optical system including a diffractive optical element, an optical apparatus, and a method for manufacturing the optical system.

従来、長焦点距離の撮影光学系に好適なレンズタイプとして、物体側から順に正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、を有する光学系である、いわゆる望遠レンズが知られている。   Conventionally, an optical system having a first lens group having a positive refractive power and a second lens group having a negative refractive power in order from the object side as a lens type suitable for a photographing optical system having a long focal length. A so-called telephoto lens is known.

焦点距離の長い望遠レンズでは、焦点距離が延びるにしたがって、諸収差のうち、特に軸上色収差及び倍率色収差等の色収差が悪化する傾向にある。これらの色収差を良好に補正する為に、低分散の硝材を用いた正レンズと高分散の硝材を用いた負レンズを組み合わせて色消しを行った望遠レンズが種々提案されている。一方、光学系の色収差を補正する方法として、分散の異なる2つの材質の硝材(レンズ)を組み合わせる方法に対して、レンズ面あるいは光学系の一部に回折作用を有する回折格子を設けた回折光学素子を用いて、色収差を減じる方法が開示されている(例えば、特許文献1参照)。   In a telephoto lens having a long focal length, chromatic aberrations such as longitudinal chromatic aberration and lateral chromatic aberration tend to deteriorate as aberrations increase as the focal length increases. In order to satisfactorily correct these chromatic aberrations, various telephoto lenses have been proposed which are achromatic by combining a positive lens using a low dispersion glass material and a negative lens using a high dispersion glass material. On the other hand, as a method for correcting chromatic aberration of an optical system, a diffractive optical system in which a diffraction grating having a diffractive action is provided on a lens surface or a part of an optical system as compared with a method of combining two glass materials (lenses) having different dispersion A method of reducing chromatic aberration using an element is disclosed (see, for example, Patent Document 1).

回折光学素子は、微小間隔(1mm)当たり数本程度の細い等間隔のスリット状もしくは溝状の格子構造を備えて作られた光学素子であり、光が入射されると、スリットや溝のピッチ(間隔)と光の波長とで定まる方向に回折光束を生じさせる性質を有している。このような回折光学素子は種々の光学系に用いられており、例えば、最近では、特定次数の回折光を一点に集めてレンズとして使用するものなどが知られている。   A diffractive optical element is an optical element having a slit-like or groove-like lattice structure with a few evenly spaced per minute interval (1 mm). It has the property of producing a diffracted light beam in a direction determined by (interval) and the wavelength of light. Such a diffractive optical element is used in various optical systems. For example, recently, a diffractive optical element that collects diffracted light of a specific order at one point and uses it as a lens is known.

このような回折光学素子を用いることにより、色収差等の諸収差を良好に補正しつつ、テレ比の小さい(レンズ全長の短い)、高い光学性能を有した望遠型の光学系(望遠レンズ)を実現することができる。   By using such a diffractive optical element, a telephoto optical system (telephoto lens) having high optical performance with a small tele-ratio (short lens overall length) while satisfactorily correcting various aberrations such as chromatic aberration. Can be realized.

特開2009−271345号公報JP 2009-271345 A

しかしながら、回折光学素子を用いた従来の光学系では、回折面での光の拡散によるフレアが比較的多く発生する。   However, in a conventional optical system using a diffractive optical element, a relatively large amount of flare occurs due to light diffusion on the diffractive surface.

本発明は、このような問題に鑑みてなされたものであり、フレアの発生を抑えて高い光学性能を有した光学系、光学機器、および光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an optical system, an optical apparatus, and a method for manufacturing the optical system that have high optical performance while suppressing the occurrence of flare.

このような目的達成のため、第1の発明に係る光学系は、物体に対してフォーカシングを行うための合焦レンズと、前記合焦レンズよりも物体側に配設された複数枚のレンズと、前記複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに配設された回折光学素子とを有し、以下の条件式を満足している。
0.075<Ldoe/f<0.125
0.50<L/f<0.75
但し、
Ldoe:前記光学系における最も物体側のレンズ面から前記回折光学素子における回折面までの距離、
f:前記光学系の無限遠合焦時における焦点距離、
L:前記光学系における最も物体側のレンズ面から像面までの距離。
In order to achieve such an object, an optical system according to the first invention includes a focusing lens for performing focusing on an object, and a plurality of lenses disposed on the object side of the focusing lens. And a diffractive optical element disposed on any lens on the image side with respect to the most object side lens among the plurality of lenses, and satisfies the following conditional expression.
0.075 <Ldoe / f <0.125
0.50 <L / f <0.75
However,
Ldoe: the distance from the most object side lens surface in the optical system to the diffractive surface in the diffractive optical element,
f: the focal length at the time of infinity focusing of the optical system,
L: Distance from the lens surface closest to the object side to the image plane in the optical system.

第2の発明に係る光学系は、物体に対してフォーカシングを行うための合焦レンズと、前記合焦レンズよりも物体側に配設された複数枚のレンズと、前記複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに配設された回折光学素子とを有し、以下の条件式を満足している。An optical system according to a second invention includes a focusing lens for performing focusing on an object, a plurality of lenses disposed closer to the object than the focusing lens, and the plurality of lenses A diffractive optical element disposed on any lens on the image side of the lens closest to the object side, and satisfies the following conditional expression.
0.075<Ldoe/f<0.1250.075 <Ldoe / f <0.125
1.02<Rdoe/Ddoe<1.351.02 <Rdoe / Ddoe <1.35
但し、However,
Ldoe:前記光学系における最も物体側のレンズ面から前記回折光学素子における回折面までの距離、Ldoe: the distance from the most object side lens surface in the optical system to the diffractive surface in the diffractive optical element,
f:前記光学系の無限遠合焦時における焦点距離、f: focal length of the optical system when focused at infinity,
Rdoe:前記回折光学素子における回折面の曲率半径、Rdoe: radius of curvature of the diffractive surface of the diffractive optical element,
Ddoe:前記複数枚のレンズのうち最も物体側のレンズから前記回折光学素子が配設されたレンズまでのレンズ群の後側の焦点の位置から、前記回折光学素子における回折面までの距離。Ddoe: A distance from the position of the focal point on the rear side of the lens group from the lens closest to the object side to the lens on which the diffractive optical element is disposed, among the plurality of lenses, to the diffractive surface of the diffractive optical element.

また、本発明に係る光学機器は、物体の像を所定の面上に結像させる光学系を備えた光学機器であって、前記光学系として本発明に係る光学系を用いている。   An optical apparatus according to the present invention is an optical apparatus including an optical system that forms an image of an object on a predetermined surface, and uses the optical system according to the present invention as the optical system.

また、本発明に係る光学系の製造方法は、物体に対してフォーカシングを行うための合焦レンズを配置し、前記合焦レンズよりも物体側に複数枚のレンズを配置し、前記複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに回折光学素子を配置し、以下の条件式を満足するようにしている。
0.075<Ldoe/f<0.125
0.50<L/f<0.75
但し、
Ldoe:前記光学系における最も物体側のレンズ面から前記回折光学素子における回折面までの距離、
f:前記光学系の無限遠合焦時における焦点距離、
L:前記光学系における最も物体側のレンズ面から像面までの距離。
Further, in the method of manufacturing an optical system according to the present invention, a focusing lens for performing focusing on an object is disposed, a plurality of lenses are disposed closer to the object than the focusing lens, and the plurality of lenses A diffractive optical element is arranged in any one of the lenses on the image side of the lens closest to the object side so that the following conditional expression is satisfied.
0.075 <Ldoe / f <0.125
0.50 <L / f <0.75
However,
Ldoe: the distance from the most object side lens surface in the optical system to the diffractive surface in the diffractive optical element,
f: the focal length at the time of infinity focusing of the optical system,
L: Distance from the lens surface closest to the object side to the image plane in the optical system.

本発明によれば、フレアの発生を抑えて高い光学性能を有した光学系および、これを備えた光学機器を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of a flare can be suppressed and the optical system which had high optical performance, and an optical apparatus provided with the same can be obtained.

第1実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 1st Example. 第1実施例に係る光学系の諸収差図である。FIG. 7 is a diagram illustrating various aberrations of the optical system according to the first example. 第1実施例に係る光学系の軸上色収差の波長特性を示すグラフであって、(a)は光学系単独の状態を示し、(b)はテレコンバータを取り付けたときの状態を示す。It is a graph which shows the wavelength characteristic of the axial chromatic aberration of the optical system which concerns on 1st Example, Comprising: (a) shows the state of an optical system independent, (b) shows a state when a teleconverter is attached. 第2実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の諸収差図である。It is an aberration diagram of the optical system according to the second example. 第2実施例に係る光学系の軸上色収差の波長特性を示すグラフであって、(a)は光学系単独の状態を示し、(b)はテレコンバータを取り付けたときの状態を示す。It is a graph which shows the wavelength characteristic of the axial chromatic aberration of the optical system which concerns on 2nd Example, Comprising: (a) shows the state of an optical system independent, (b) shows a state when a teleconverter is attached. 第3実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の諸収差図である。It is an aberration diagram of the optical system according to the third example. 第3実施例に係る光学系の軸上色収差の波長特性を示すグラフであって、(a)は光学系単独の状態を示し、(b)はテレコンバータを取り付けたときの状態を示す。It is a graph which shows the wavelength characteristic of the axial chromatic aberration of the optical system which concerns on 3rd Example, (a) shows the state of an optical system independent, (b) shows the state when a teleconverter is attached. デジタル一眼レフカメラの断面図である。It is sectional drawing of a digital single-lens reflex camera. 光学系の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an optical system. 回折光学素子の一例を示す断面図である。It is sectional drawing which shows an example of a diffractive optical element. (a)は従来の光学系に斜め方向から光が入射する状態を示す断面図であり、(b)は本実施形態の光学系に斜め方向から光が入射する状態を示す断面図である。(A) is sectional drawing which shows the state in which light injects into the conventional optical system from the diagonal direction, (b) is sectional drawing which shows the state in which light injects into the optical system of this embodiment from the diagonal direction.

以下、本願の好ましい実施形態について図を参照しながら説明する。本願に係る光学系TLを備えたデジタル一眼レフカメラCAMが図10に示されている。図10に示すデジタル一眼レフカメラCAMにおいて、不図示の物体(被写体)からの光は、撮影レンズとしての光学系(望遠レンズ)TLで集光されて、クイックリターンミラーMを介して焦点板F上に結像される。焦点板F上に結像された光は、ペンタプリズムP中で複数回反射されて接眼レンズEへと導かれる。これにより、撮影者は、接眼レンズEを介して物体(被写体)の像を正立像として観察することができる。   Hereinafter, preferred embodiments of the present application will be described with reference to the drawings. A digital single-lens reflex camera CAM provided with the optical system TL according to the present application is shown in FIG. In the digital single-lens reflex camera CAM shown in FIG. 10, light from an object (subject) (not shown) is collected by an optical system (telephoto lens) TL as a photographic lens, and is focused on a focusing screen F via a quick return mirror M. Imaged on top. The light imaged on the focusing screen F is reflected a plurality of times in the pentaprism P and guided to the eyepiece lens E. Thus, the photographer can observe the image of the object (subject) as an erect image through the eyepiece lens E.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラーMが光路外へ退避し、光学系TLで集光された物体(被写体)からの光は、撮像素子C上に結像されて被写体の像を形成する。これにより、物体(被写体)からの光は、撮像素子C上に結像されて当該撮像素子Cにより撮像され、物体(被写体)の画像として不図示のメモリーに記録される。このようにして、撮影者はデジタル一眼レフカメラCAMによる物体(被写体)の撮影を行うことができる。なお、クイックリターンミラーMを有しないカメラであっても、上記カメラCAMと同様の効果を得ることができる。また、図10に示すデジタル一眼レフカメラCAMは、光学系TLを着脱可能に保持する構成であってもよく、光学系TLと一体に構成されるものであってもよい。   When a release button (not shown) is pressed by the photographer, the quick return mirror M is retracted out of the optical path, and the light from the object (subject) collected by the optical system TL forms an image on the image sensor C. To form an image of the subject. As a result, light from the object (subject) is imaged on the image sensor C, picked up by the image sensor C, and recorded in a memory (not shown) as an image of the object (subject). In this way, the photographer can photograph an object (subject) with the digital single-lens reflex camera CAM. Even if the camera does not have the quick return mirror M, the same effect as the camera CAM can be obtained. Further, the digital single-lens reflex camera CAM shown in FIG. 10 may be configured to hold the optical system TL in a removable manner, or may be configured integrally with the optical system TL.

光学系TLは、例えば図1に示すように、物体に対してフォーカシングを行うための合焦レンズLFと、合焦レンズLFよりも物体側に配設された複数枚のレンズと、複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに配設された回折光学素子DOEとを有し、次の条件式(1)を満足している。   For example, as shown in FIG. 1, the optical system TL includes a focusing lens LF for performing focusing on an object, a plurality of lenses disposed on the object side of the focusing lens LF, and a plurality of lenses. The lens has a diffractive optical element DOE disposed on any lens on the image side of the lens closest to the object side, and satisfies the following conditional expression (1).

0.075<Ldoe/f<0.125 …(1)
但し、
Ldoe:光学系TLにおける最も物体側のレンズ面から回折光学素子DOEにおける回折面までの距離、
f:光学系TLの無限遠合焦時における焦点距離。
0.075 <Ldoe / f <0.125 (1)
However,
Ldoe: distance from the most object-side lens surface in the optical system TL to the diffractive surface in the diffractive optical element DOE,
f: Focal length when the optical system TL is focused at infinity.

本実施形態における回折光学素子DOEは、例えば図12に示すように、鋸歯状の回折格子溝が形成された面を持つ回折素子要素を積み重ねてなるものであり、所望の広波長領域(例えば、可視光領域)のほぼ全域で高い回折効率が保たれる、すなわち波長特性が良好であるという特徴を有している。一般に、複層型の回折光学素子として、例えば、互いに異なる材料からなる2種類の回折素子要素から構成され、同一の回折格子溝で密着している、いわゆる密着複層型の回折光学素子が知られている。   The diffractive optical element DOE in the present embodiment is formed by stacking diffractive element elements having a surface on which sawtooth-shaped diffraction grating grooves are formed, as shown in FIG. 12, for example, and a desired wide wavelength region (for example, It has a feature that high diffraction efficiency is maintained in almost the entire visible light region, that is, the wavelength characteristic is good. In general, as a multi-layer type diffractive optical element, for example, a so-called close-contact multi-layer type diffractive optical element which is composed of two types of diffractive element elements made of different materials and is in close contact with the same diffraction grating groove is known. It has been.

図12に示すように、回折光学素子DOEにはエッジ面PEが形成されており、回折光学素子DOEに斜め方向から(例えば45度の入射角で)強い光が入射すると、このエッジ面PEで生じた高次回折光や拡散光によってフレアが発生する。図13(a)に示すように、回折光学素子DOEを用いた従来の光学系TLAでは、回折光学素子DOEが物体側に近い位置に設けられているため、回折光学素子DOEの広い範囲に斜め方向からの光が届いてしまう。図13(a)に例示した光学系TLAの半画角は4.2°程度であり、この光学系TLAに45度の入射角で入射する光は、原則として像面IAに届くことはない。ところが、回折光学素子DOEの広い範囲に斜め方向(入射角が45°の方向)からの光が入射して、エッジ面PEで生じた高次回折光や拡散光がフレアとして像面IAに到達し、画質の低下を招く。   As shown in FIG. 12, an edge surface PE is formed on the diffractive optical element DOE. When strong light is incident on the diffractive optical element DOE from an oblique direction (for example, at an incident angle of 45 degrees), the edge surface PE Flares are generated by the generated higher-order diffracted light and diffused light. As shown in FIG. 13A, in the conventional optical system TLA using the diffractive optical element DOE, the diffractive optical element DOE is provided at a position close to the object side. Light from the direction arrives. The half angle of view of the optical system TLA illustrated in FIG. 13A is about 4.2 °. In principle, light incident on the optical system TLA at an incident angle of 45 degrees does not reach the image plane IA. . However, light from an oblique direction (incident angle of 45 °) enters a wide range of the diffractive optical element DOE, and higher-order diffracted light and diffused light generated on the edge surface PE reach the image plane IA as flare. , Resulting in degradation of image quality.

これに対し、条件式(1)は、回折光学素子DOEの適切な位置を規定する条件式である。条件式(1)を満足することにより、図13(b)に示すように、回折光学素子DOEが従来よりも像面I側に位置して、半画角よりも大きい入射角で光学系TLに入射する斜め方向からの光が回折光学素子DOEに届きにくくなるため、フレアの発生を抑えることが可能になる。このように、本実施形態によれば、フレアの発生を抑えて、色収差等の諸収差を良好に補正しつつ、テレ比の小さい、高い光学性能を有した望遠型の光学系TLおよび、これを備えた光学機器(デジタル一眼レフカメラCAM)を得ることができる。   On the other hand, the conditional expression (1) is a conditional expression that defines an appropriate position of the diffractive optical element DOE. By satisfying conditional expression (1), as shown in FIG. 13B, the diffractive optical element DOE is positioned on the image plane I side as compared with the conventional case, and the optical system TL has an incident angle larger than the half field angle. Since light from an oblique direction incident on the diffractive optical element does not easily reach the diffractive optical element DOE, the occurrence of flare can be suppressed. As described above, according to the present embodiment, the telephoto optical system TL having a small tele ratio and high optical performance while suppressing the occurrence of flare and correcting various aberrations such as chromatic aberration, and the like, and this The optical apparatus (digital single-lens reflex camera CAM) provided with can be obtained.

なお、条件式(1)の下限値を下回る条件である場合、回折光学素子DOEの位置が物体側に寄り過ぎるため、太陽等からの強い直接光が回折光学素子DOEにおける回折面で拡散し、フレアの原因となる。なお、レンズフードはフレアを防ぐ効果が期待できるが、条件式(1)の下限値を下回る条件である場合、レンズフードの効果も限定的となる。一方、条件式(1)の上限値を上回る条件である場合、回折光学素子DOEの位置が像面I側に寄り過ぎるため、回折光学素子DOEの光学的な効果が限定的となり、光学性能の低下を招く。   When the condition is lower than the lower limit value of the conditional expression (1), the position of the diffractive optical element DOE is too close to the object side, so that strong direct light from the sun or the like diffuses on the diffractive surface in the diffractive optical element DOE, Causes flare. Note that the lens hood can be expected to prevent flare, but if the condition is below the lower limit of conditional expression (1), the effect of the lens hood is also limited. On the other hand, when the condition exceeds the upper limit value of the conditional expression (1), the position of the diffractive optical element DOE is too close to the image plane I side, so that the optical effect of the diffractive optical element DOE is limited, and the optical performance is reduced. Incurs a decline.

なお、本願の効果をより確実にするために、条件式(1)の上限値を0.120に設定することが望ましい。一方、本願の効果をより確実にするために、条件式(1)の下限値を0.080に設定することが望ましい。   In order to secure the effect of the present application, it is desirable to set the upper limit of conditional expression (1) to 0.120. On the other hand, in order to ensure the effect of the present application, it is desirable to set the lower limit value of conditional expression (1) to 0.080.

また、密着複層型の回折光学素子を配置する場合、2枚のガラスレンズの接合面に配置する構成があるが、2枚のガラスレンズの接合面に回折光学素子を配置すると、応力により回折光学素子の屈折率が変化し、回折効率の低下を招きやすいという問題がある。そのため、密着複層型の回折光学素子を配置する場合、レンズの片側の面上に回折光学素子を配置する方法が適している。また、回折光学素子DOEは、光軸に対して回転対称形状であることが好ましい。   In addition, when a close-contact multilayer diffractive optical element is disposed, there is a configuration in which it is disposed on the joint surface of two glass lenses. However, if a diffractive optical element is disposed on the joint surface of two glass lenses, diffraction occurs due to stress. There is a problem in that the refractive index of the optical element changes and the diffraction efficiency tends to decrease. Therefore, in the case of disposing a contact multilayer diffractive optical element, a method of disposing the diffractive optical element on one surface of the lens is suitable. The diffractive optical element DOE preferably has a rotationally symmetric shape with respect to the optical axis.

また、このような光学系TLにおいて、次の条件式(2)を満足することが好ましい。   In such an optical system TL, it is preferable that the following conditional expression (2) is satisfied.

0.30<f1a/f<0.40 …(2)
但し、
f1a:複数枚のレンズのうち最も物体側のレンズから回折光学素子DOEが配設されたレンズまでのレンズ群の焦点距離。
0.30 <f1a / f <0.40 (2)
However,
f1a: The focal length of the lens group from the lens closest to the object side to the lens on which the diffractive optical element DOE is disposed among the plurality of lenses.

条件式(2)は、最も物体側のレンズから回折光学素子DOEが配設されたレンズまでのレンズ群のパワーを規定する条件式である。以降、このレンズ群を便宜的に前群G1aと称することがある。テレ比が0.65程度の望遠型の光学系(望遠レンズ)において、正のパワーを有する前群G1aの焦点距離は、光学系全系の焦点距離の35%程度が適正である。条件式(2)は、回折光学素子DOEが正のパワーを有する前群G1aの最終面近傍に配置されることを示している。条件式(2)の下限値を下回る条件である場合、前群G1aの焦点距離が短くなりすぎるため、収差の悪化を招く。一方、条件式(2)の上限値を上回る条件である場合、前群G1aの焦点距離が長くなりすぎるため、回折光学素子DOEよりも像側に配置されるレンズのパワーを強くする必要があり、収差の悪化を招く。   Conditional expression (2) defines the power of the lens group from the lens closest to the object side to the lens on which the diffractive optical element DOE is disposed. Hereinafter, this lens group may be referred to as a front group G1a for convenience. In a telephoto optical system (telephoto lens) with a tele ratio of about 0.65, the focal length of the front group G1a having positive power is appropriate to be about 35% of the focal length of the entire optical system. Conditional expression (2) indicates that the diffractive optical element DOE is disposed in the vicinity of the final surface of the front group G1a having a positive power. When the condition is less than the lower limit value of the conditional expression (2), the focal length of the front group G1a becomes too short, which causes aberration deterioration. On the other hand, when the condition exceeds the upper limit value of the conditional expression (2), the focal length of the front group G1a becomes too long, and therefore it is necessary to increase the power of the lens arranged on the image side relative to the diffractive optical element DOE. As a result, aberrations are deteriorated.

なお、本願の効果をより確実にするために、条件式(2)の上限値を0.39に設定することが望ましい。一方、本願の効果をより確実にするために、条件式(2)の下限値を0.31に設定することが望ましい。   In order to secure the effect of the present application, it is desirable to set the upper limit of conditional expression (2) to 0.39. On the other hand, in order to ensure the effect of the present application, it is desirable to set the lower limit value of conditional expression (2) to 0.31.

また、このような光学系TLにおいて、次の条件式(3)を満足することが好ましい。   In such an optical system TL, it is preferable that the following conditional expression (3) is satisfied.

1.02<Rdoe/Ddoe<1.35 …(3)
但し、
Rdoe:回折光学素子DOEにおける回折面の曲率半径、
Ddoe:複数枚のレンズのうち最も物体側のレンズから回折光学素子DOEが配設されたレンズまでのレンズ群の後側の焦点の位置から、回折光学素子DOEにおける回折面までの距離。
1.02 <Rdoe / Ddoe <1.35 (3)
However,
Rdoe: radius of curvature of the diffractive surface in the diffractive optical element DOE,
Ddoe: A distance from the position of the focal point on the rear side of the lens group from the lens closest to the object side to the lens on which the diffractive optical element DOE is disposed among the plurality of lenses to the diffractive surface of the diffractive optical element DOE.

条件式(3)は、回折光学素子DOEへ入射する光を回折面に対して略垂直に保ちながら、当該回折面で発生するゴーストを回避するための条件式である。なお、条件式(3)において、Rdoe/Ddoe=1の状態が、回折光学素子DOEの回折面に対して軸上光束が垂直に入射する状態である。条件式(3)を満足することにより、Rdoe/Ddoe=1の状態から外れるので、容易にゴーストを回避することができる。また、回折光学素子DOEにおける回折面の全面に対して光束を略垂直に入射させることができるため、回折光学素子DOEの格子高さを一定にできる等、回折光学素子DOEの形状を単純化することが可能となる。なお、条件式(3)の下限値を下回る条件である場合、Rdoe/Ddoe=1の状態に近くなるので、ゴーストを回避することが困難となる。一方、条件式(3)の上限値を上回る条件である場合、回折光学素子DOEへ入射する光の入射角に応じて格子高さ等を変える必要があり、回折光学素子DOEの形状が複雑となる。   Conditional expression (3) is a conditional expression for avoiding a ghost generated on the diffractive surface while keeping the light incident on the diffractive optical element DOE substantially perpendicular to the diffractive surface. In conditional expression (3), the state of Rdoe / Ddoe = 1 is a state in which the axial light beam is perpendicularly incident on the diffractive surface of the diffractive optical element DOE. By satisfying the conditional expression (3), it is out of the state of Rdoe / Ddoe = 1, so that the ghost can be easily avoided. Further, since the light beam can be incident substantially perpendicularly on the entire diffractive surface of the diffractive optical element DOE, the shape of the diffractive optical element DOE is simplified, for example, the grating height of the diffractive optical element DOE can be made constant. It becomes possible. If the condition is lower than the lower limit value of the conditional expression (3), it becomes close to the state of Rdoe / Ddoe = 1, and it is difficult to avoid ghost. On the other hand, when the condition exceeds the upper limit value of the conditional expression (3), it is necessary to change the grating height or the like according to the incident angle of light incident on the diffractive optical element DOE, and the shape of the diffractive optical element DOE is complicated. Become.

なお、本願の効果をより確実にするために、条件式(3)の上限値を1.30に設定することが望ましい。一方、本願の効果をより確実にするために、条件式(3)の下限値を1.03に設定することが望ましい。   In order to secure the effect of the present application, it is desirable to set the upper limit value of conditional expression (3) to 1.30. On the other hand, in order to ensure the effect of the present application, it is desirable to set the lower limit value of conditional expression (3) to 1.03.

また、このような光学系TLにおいて、次の条件式(4)を満足することが好ましい。   In such an optical system TL, it is preferable that the following conditional expression (4) is satisfied.

0.50<L/f<0.80 …(4)
但し、
L:光学系TLにおける最も物体側のレンズ面から像面までの距離。
0.50 <L / f <0.80 (4)
However,
L: Distance from the lens surface closest to the object side to the image plane in the optical system TL.

条件式(4)は、光学系TL全系での光学全長を焦点距離で割ったテレ比を規定するための条件式である。条件式(4)の上限値を上回る条件である場合、回折光学素子DOEの焦点距離が長くなりすぎ、回折光学素子DOEを入れる意味がなくなる。一方、条件式(4)の下限値を下回る条件である場合、光学系TL全系での発生収差が大きくなりすぎ、性能が悪化する。   Conditional expression (4) is a conditional expression for defining a tele ratio obtained by dividing the total optical length of the entire optical system TL by the focal length. When the condition exceeds the upper limit value of the conditional expression (4), the focal length of the diffractive optical element DOE becomes too long, and the meaning of inserting the diffractive optical element DOE is lost. On the other hand, when the condition is lower than the lower limit value of the conditional expression (4), the aberration generated in the entire optical system TL becomes too large, and the performance deteriorates.

なお、本願の効果をより確実にするために、条件式(4)の上限値を0.75に設定することが望ましい。   In order to secure the effect of the present application, it is desirable to set the upper limit value of conditional expression (4) to 0.75.

ここで、上述のような構成の光学系TLの製造方法について、図11を参照しながら説明する。まず、円筒状の鏡筒内に、合焦レンズLFを配置し、合焦レンズLFよりも物体側に複数枚のレンズを配置し、複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに回折光学素子DOEを配置する(ステップST10)。そして、合焦レンズLFを光軸に沿って移動させることにより、無限遠物体から有限距離物体へのフォーカシングが行われるように、合焦レンズLFを駆動可能に構成する(ステップST20)。   Here, a method for manufacturing the optical system TL having the above-described configuration will be described with reference to FIG. First, a focusing lens LF is arranged in a cylindrical barrel, a plurality of lenses are arranged on the object side of the focusing lens LF, and the image side of the lens closest to the object side among the plurality of lenses is arranged. The diffractive optical element DOE is disposed on any of the lenses (step ST10). Then, by moving the focusing lens LF along the optical axis, the focusing lens LF is configured to be drivable so that focusing from an infinite object to a finite distance object is performed (step ST20).

レンズの組み込みを行うステップST10において、前述の条件式(1)等を満足するように回折光学素子DOE等を配置する。このような製造方法によれば、フレアの発生を抑えて、色収差等の諸収差を良好に補正しつつ、テレ比の小さい(レンズ全長の短い)、高い光学性能を有した望遠型の光学系TLを得ることができる。   In step ST10 in which the lens is incorporated, the diffractive optical element DOE and the like are arranged so as to satisfy the conditional expression (1) and the like. According to such a manufacturing method, a telephoto optical system having a small tele ratio (short lens overall length) and high optical performance while suppressing the occurrence of flare and correcting various aberrations such as chromatic aberration. TL can be obtained.

(第1実施例)
以下、本願の各実施例を添付図面に基づいて説明する。まず、本願の第1実施例について図1〜図3および表1を用いて説明する。図1は、第1実施例に係る光学系TL(TL1)の断面図である。第1実施例に係る光学系TL1は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2とを備えて構成される。
(First embodiment)
Embodiments of the present application will be described below with reference to the accompanying drawings. First, a first embodiment of the present application will be described with reference to FIGS. FIG. 1 is a cross-sectional view of an optical system TL (TL1) according to the first example. The optical system TL1 according to the first example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in order from the object side along the optical axis. Configured.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1aと、この前群G1aに対し第1レンズ群G1の中で最も長い空気間隔を隔てた後群G1bとから構成される。第1レンズ群G1の前群G1aは、物体側から順に、単レンズである第1正レンズL11と、第2正レンズL12と第1負レンズL13とが貼り合わされた接合レンズと、回折光学素子DOEが配置される第3正レンズL14とから構成される。なお、第3正レンズL14における像面I側のレンズ面に、回折光学素子DOEが配置される。回折光学素子DOEは、互いに異なる材質の2種類の回折素子要素が同一の回折格子溝で接する密着複層型の回折光学素子であり、2種類の紫外線硬化樹脂によって格子高さが約20μmの1次の回折格子(光軸に対して回転対称形状の回折格子)が形成される。第1レンズ群G1の後群G1bは、物体側から順に、第2負レンズL15と第4正レンズL16とが貼り合わされた接合レンズから構成される。   The first lens group G1 includes a front group G1a that is arranged in order from the object side along the optical axis, and a rear group G1b that is separated from the front group G1a by the longest air interval in the first lens group G1. Composed. The front group G1a of the first lens group G1 includes, in order from the object side, a cemented lens in which a first positive lens L11 that is a single lens, a second positive lens L12, and a first negative lens L13 are bonded together, and a diffractive optical element. And a third positive lens L14 on which the DOE is disposed. A diffractive optical element DOE is disposed on the lens surface on the image plane I side of the third positive lens L14. The diffractive optical element DOE is a close-contact multi-layer diffractive optical element in which two types of diffractive element elements made of different materials are in contact with each other through the same diffraction grating groove. The next diffraction grating (diffraction grating having a rotationally symmetric shape with respect to the optical axis) is formed. The rear group G1b of the first lens group G1 includes a cemented lens in which a second negative lens L15 and a fourth positive lens L16 are bonded in order from the object side.

第2レンズ群G2は、物体側から順に、第5正レンズL21と第3負レンズL22とが貼り合わされた合焦レンズLFと、第4負レンズL23と第6正レンズL24とが貼り合わされた第1色消しレンズLC1と、第7正レンズL25と第5負レンズL26とが貼り合わされた接合レンズと、単レンズである第6負レンズL27と、第8正レンズL28と第7負レンズL29とが貼り合わされた第2色消しレンズLC2と、単レンズである第9正レンズL30とから構成される。そして、無限遠物体から近距離(有限距離)物体への合焦(フォーカシング)の際、合焦レンズLFが光軸に沿って像面I側に移動するようになっている。また、第2レンズ群G2における合焦レンズLFと第1色消しレンズLC1との間に、絞りSが配設される。   In the second lens group G2, a focusing lens LF in which a fifth positive lens L21 and a third negative lens L22 are bonded together, a fourth negative lens L23, and a sixth positive lens L24 are bonded in order from the object side. The first achromatic lens LC1, the cemented lens in which the seventh positive lens L25 and the fifth negative lens L26 are bonded together, the sixth negative lens L27 that is a single lens, the eighth positive lens L28, and the seventh negative lens L29 Are affixed to a second achromatic lens LC2 and a ninth positive lens L30 that is a single lens. When focusing from an object at infinity to an object at a short distance (finite distance), the focusing lens LF moves toward the image plane I along the optical axis. In addition, a stop S is disposed between the focusing lens LF and the first achromatic lens LC1 in the second lens group G2.

以下に、表1〜表3を示すが、これらは第1〜第3実施例に係る光学系(望遠レンズ)の諸元の値をそれぞれ掲げた表である。各表の[全体諸元]において、fは焦点距離を、FNOはFナンバーを、ωは半画角(最大入射角:単位は「°」)を、Yは像高を、Bfはバックフォーカス(空気換算長)をそれぞれ示す。また、[全体諸元]において、Lは光学系の全長(1番目のレンズ面から像面Iまでの距離)を、Ldoeは1番目のレンズ面から回折面までの距離を、f1aは前群の焦点距離を、Ddoeは前群の後側の焦点の位置から回折面までの距離をそれぞれ示す。また、[レンズデータ]において、面番号は物体側から数えたレンズ面の番号を、Riは物体側からi番目のレンズ面の曲率半径を、Diは物体側からi番目のレンズ面とi+1番目のレンズ面との間のレンズ厚または空気間隔を、ndはd線(波長λ=587.6nm)に対する屈折率を、νdはd線(波長λ=587.6nm)に対するアッベ数を、θgFは部分分散比をそれぞれ示す。   Tables 1 to 3 are shown below, and these are tables showing values of specifications of the optical systems (telephoto lenses) according to the first to third examples. In [Overall specifications] in each table, f is the focal length, FNO is the F number, ω is the half angle of view (maximum incident angle: unit is “°”), Y is the image height, and Bf is the back focus. (Air equivalent length) is shown respectively. In [Overall specifications], L is the total length of the optical system (distance from the first lens surface to the image plane I), Ldoe is the distance from the first lens surface to the diffraction surface, and f1a is the front group. Ddoe indicates the distance from the rear focal point position of the front group to the diffraction surface. In [Lens Data], the surface number is the lens surface number counted from the object side, Ri is the radius of curvature of the i-th lens surface from the object side, Di is the i-th lens surface and i + 1-th lens surface from the object side. Nd is the refractive index for the d-line (wavelength λ = 587.6 nm), νd is the Abbe number for the d-line (wavelength λ = 587.6 nm), and θgF is Each partial dispersion ratio is shown.

なお、曲率半径「∞」は平面を示し、空気の屈折率nd=1.0000はその記載を省略している。また、各レンズのg線(波長λ=435.8nm)に対する屈折率をngとし、各レンズのd線(波長λ=587.6nm)に対する屈折率をndとし、各レンズのF線(波長λ=486.1nm)に対する屈折率をnFとし、各レンズのC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、各レンズの部分分散比θgFは次式(A)で定義される。   Note that the radius of curvature “∞” indicates a plane, and the refractive index of air nd = 1.0000 is omitted. Further, the refractive index of each lens with respect to g-line (wavelength λ = 435.8 nm) is ng, the refractive index of each lens with respect to d-line (wavelength λ = 587.6 nm) is nd, and the F-line (wavelength λ) of each lens. = 486.1 nm) is nF, and the refractive index of each lens for the C-line (wavelength λ = 656.3 nm) is nC. At this time, the partial dispersion ratio θgF of each lens is defined by the following equation (A).

θgF=(ng−nF)/(nF−nC) …(A)   θgF = (ng−nF) / (nF−nC) (A)

また、[回折面データ]において示す回折面の位相形状ψは、次式(B)によって表わされる。   Further, the phase shape ψ of the diffractive surface shown in [Diffraction surface data] is expressed by the following equation (B).

ψ(h,m)={2π/(m×λ0)}×(C2×h2+C4×h4+C6×h6…) …(B)
但し、
h:光軸に対して垂直な方向の高さ、
m:回折光の回折次数、
λ0:設計波長、
Ci:位相係数(i=1,2,3,…)。
ψ (h, m) = {2π / (m × λ0)} × (C 2 × h 2 + C 4 × h 4 + C 6 × h 6 ...) (B)
However,
h: height in a direction perpendicular to the optical axis,
m: diffraction order of diffracted light,
λ0: Design wavelength,
Ci: Phase coefficient (i = 1, 2, 3,...).

また、任意の波長λおよび任意の回折次数mにおける回折面の屈折力φDは、最も低次の位相係数C1を用いて、次式(C)のように表わすことができる。   Further, the refractive power φD of the diffractive surface at an arbitrary wavelength λ and an arbitrary diffraction order m can be expressed by the following equation (C) using the lowest-order phase coefficient C1.

φD(h,m)=−2×C1×m×λ/λ0 …(C)   φD (h, m) = − 2 × C1 × m × λ / λ0 (C)

[回折面データ]において位相係数を示すが、「E-n」は「×10-n」を示す。また、[条件式対応値]には、各条件式の対応値をそれぞれ示す。なお、以下の全ての諸元値において掲載されている焦点距離f、曲率半径Ri、面間隔Di、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、後述の第2〜第3実施例の諸元値においても、本実施例と同様の符号を用いる。 The phase coefficient is shown in [Diffraction plane data], and “En” represents “× 10 −n ”. [Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression. The focal length f, the radius of curvature Ri, the surface interval Di, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally expanded or contracted. However, the same optical performance can be obtained, and the present invention is not limited to this. In addition, the same reference numerals as those in the present embodiment are used in the specification values of the second to third embodiments described later.

下の表1に、第1実施例における各諸元を示す。なお、表1における第1面〜第29面の曲率半径Riは、図1における第1面〜第29面に付した符号R1〜R29に対応している。また、第1実施例において、第8面が回折面となっている。   Table 1 below shows specifications in the first embodiment. In addition, the curvature radius Ri of the 1st surface-the 29th surface in Table 1 respond | corresponds to code | symbol R1-R29 attached | subjected to the 1st surface-the 29th surface in FIG. In the first embodiment, the eighth surface is a diffractive surface.

(表1)
[全体諸元]
f=294
FNO=4.08
2ω=8.4
Y=21.63
Bf=54.00
L=190.5
Ldoe=28.73
f1a=106.69
Ddoe=87.77
[レンズ諸元]
面番号 Ri Di nd νd θgF
1 112.614 7.31 1.4875 70.3 0.5291
2 1198.911 0.27
3 80.591 11.45 1.4978 82.6 0.5386
4 -504.430 2.50 1.5750 41.5 0.5764
5 215.439 2.00
6 77.236 5.00 1.5168 63.9 0.5359
7 106.549 0.20 1.5278 33.4 ―
8 106.549 0.30 1.5572 50.0 ― (回折面)
9 106.549 26.05
10 40.477 1.50 1.9108 35.2 0.5822
11 26.124 7.51 1.4875 70.3 0.5291
12 71.781 6.54
13 124.603 2.59 1.6200 36.4 0.5877
14 -321.404 1.20 1.6968 55.5 0.5430
15 42.442 23.41
16 ∞ 2.99 (絞り)
17 53.509 1.78 1.9108 35.2 0.5822
18 23.591 2.77 1.5750 41.5 0.5764
19 222.119 2.69
20 64.088 2.37 1.7283 28.4 0.6069
21 -67.244 0.85 1.7292 54.6 0.5442
22 29.850 2.27
23 -66.093 0.80 1.7292 54.6 0.5442
24 107.388 2.17
25 69.491 3.09 1.5481 45.5 0.5684
26 -55.525 1.00 1.7880 47.4 0.5559
27 -315.000 10.29
28 68.665 5.55 1.4875 70.3 0.5291
29 -68.665 54.00
[回折面データ]
m=1
C1=-4.058E-05
C2=-3.974E-09
[条件式対応値]
条件式(1) Ldoe/f=0.10
条件式(2) f1a/f=0.36
条件式(3) Rdoe/Ddoe=1.21
条件式(4) L/f=0.65
(Table 1)
[Overall specifications]
f = 294
FNO = 4.08
2ω = 8.4
Y = 21.63
Bf = 54.00
L = 190.5
Ldoe = 28.73
f1a = 106.69
Ddoe = 87.77
[Lens specifications]
Surface number Ri Di nd νd θgF
1 112.614 7.31 1.4875 70.3 0.5291
2 1198.911 0.27
3 80.591 11.45 1.4978 82.6 0.5386
4 -504.430 2.50 1.5750 41.5 0.5764
5 215.439 2.00
6 77.236 5.00 1.5168 63.9 0.5359
7 106.549 0.20 1.5278 33.4 ―
8 106.549 0.30 1.5572 50.0 ― (Diffraction surface)
9 106.549 26.05
10 40.477 1.50 1.9108 35.2 0.5822
11 26.124 7.51 1.4875 70.3 0.5291
12 71.781 6.54
13 124.603 2.59 1.6200 36.4 0.5877
14 -321.404 1.20 1.6968 55.5 0.5430
15 42.442 23.41
16 ∞ 2.99 (Aperture)
17 53.509 1.78 1.9108 35.2 0.5822
18 23.591 2.77 1.5750 41.5 0.5764
19 222.119 2.69
20 64.088 2.37 1.7283 28.4 0.6069
21 -67.244 0.85 1.7292 54.6 0.5442
22 29.850 2.27
23 -66.093 0.80 1.7292 54.6 0.5442
24 107.388 2.17
25 69.491 3.09 1.5481 45.5 0.5684
26 -55.525 1.00 1.7880 47.4 0.5559
27 -315.000 10.29
28 68.665 5.55 1.4875 70.3 0.5291
29 -68.665 54.00
[Diffraction surface data]
m = 1
C1 = -4.058E-05
C2 = -3.974E-09
[Conditional expression values]
Conditional expression (1) Ldoe / f = 0.10
Conditional expression (2) f1a / f = 0.36
Conditional expression (3) Rdoe / Ddoe = 1.21
Conditional expression (4) L / f = 0.65

このように本実施例では、上記条件式(1)〜(4)が全て満たされていることが分かる。   Thus, in this embodiment, it can be seen that all the conditional expressions (1) to (4) are satisfied.

図2は、第1実施例に係る光学系TL1の諸収差図である。諸収差図において、FNOはFナンバーを、Yは像高をそれぞれ示す。また、諸収差図において、dはd線(λ=587.6nm)、gはg線(λ=435.8nm)における収差をそれぞれ示す。また、非点収差を示す収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示している。以上、諸収差図の説明は他の実施例においても同様である。図2より、第1実施例では、諸収差が良好に補正され、優れた光学性能を有していることがわかる。その結果、第1実施例の光学系TL1を搭載することにより、デジタル一眼レフカメラCAMにおいても、優れた光学性能を確保することができる。   FIG. 2 is a diagram illustrating various aberrations of the optical system TL1 according to the first example. In the various aberration diagrams, FNO represents the F number, and Y represents the image height. Also, in the various aberration diagrams, d indicates the aberration at the d-line (λ = 587.6 nm), and g indicates the aberration at the g-line (λ = 435.8 nm). In the aberration diagrams showing astigmatism, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane. The description of the various aberration diagrams is the same in the other examples. As can be seen from FIG. 2, in the first example, various aberrations are corrected favorably and the optical performance is excellent. As a result, by mounting the optical system TL1 of the first embodiment, excellent optical performance can be secured even in the digital single-lens reflex camera CAM.

図3(a)は、第1実施例に係る光学系TL1の軸上色収差の波長特性を示すグラフである。図3(a)より、第1実施例では、使用波長域全体において軸上色収差が良好に補正されていることがわかる。図3(b)は、第1実施例に係る光学系TL1にテレコンバータを取り付けたときの軸上色収差の波長特性を示すグラフである。図3(b)より、第1実施例では、テレコンバータを取り付けた場合でも軸上色収差が良好に補正されていることがわかる。   FIG. 3A is a graph showing the wavelength characteristic of longitudinal chromatic aberration of the optical system TL1 according to the first example. FIG. 3A shows that in the first example, the axial chromatic aberration is corrected well in the entire used wavelength range. FIG. 3B is a graph showing the wavelength characteristics of longitudinal chromatic aberration when a teleconverter is attached to the optical system TL1 according to the first example. FIG. 3B shows that the axial chromatic aberration is corrected well in the first embodiment even when the teleconverter is attached.

(第2実施例)
以下、本願の第2実施例について図4〜図6および表2を用いて説明する。図4は、第2実施例に係る光学系TL(TL2)の断面図である。第2実施例に係る光学系TL2は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2とを備えて構成される。
(Second embodiment)
Hereinafter, the second embodiment of the present application will be described with reference to FIGS. 4 to 6 and Table 2. FIG. FIG. 4 is a cross-sectional view of the optical system TL (TL2) according to the second embodiment. The optical system TL2 according to the second example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in order from the object side along the optical axis. Configured.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1aと、この前群G1aに対し第1レンズ群G1の中で最も長い空気間隔を隔てた後群G1bとから構成される。第1レンズ群G1の前群G1aは、物体側から順に、単レンズである第1正レンズL11と、第2正レンズL12と第1負レンズL13とが貼り合わされた接合レンズと、回折光学素子DOEが配置される第3正レンズL14とから構成される。なお、第3正レンズL14における像面I側のレンズ面に、回折光学素子DOEが配置される。回折光学素子DOEは、第1実施例の回折光学素子と同様であり、詳細な説明を省略する。第1レンズ群G1の後群G1bは、物体側から順に、第2負レンズL15と第4正レンズL16とが貼り合わされた接合レンズから構成される。   The first lens group G1 includes a front group G1a that is arranged in order from the object side along the optical axis, and a rear group G1b that is separated from the front group G1a by the longest air interval in the first lens group G1. Composed. The front group G1a of the first lens group G1 includes, in order from the object side, a cemented lens in which a first positive lens L11 that is a single lens, a second positive lens L12, and a first negative lens L13 are bonded together, and a diffractive optical element. And a third positive lens L14 on which the DOE is disposed. A diffractive optical element DOE is disposed on the lens surface on the image plane I side of the third positive lens L14. The diffractive optical element DOE is the same as the diffractive optical element of the first embodiment, and a detailed description thereof will be omitted. The rear group G1b of the first lens group G1 includes a cemented lens in which a second negative lens L15 and a fourth positive lens L16 are bonded in order from the object side.

第2レンズ群G2は、物体側から順に、第5正レンズL21と第3負レンズL22とが貼り合わされた合焦レンズLFと、第4負レンズL23と第6正レンズL24とが貼り合わされた第1色消しレンズLC1と、第7正レンズL25と第5負レンズL26とが貼り合わされた接合レンズと、単レンズである第6負レンズL27と、第8正レンズL28と第7負レンズL29とが貼り合わされた第2色消しレンズLC2と、単レンズである第9正レンズL30とから構成される。そして、無限遠物体から近距離(有限距離)物体への合焦(フォーカシング)の際、合焦レンズLFが光軸に沿って像面I側に移動するようになっている。また、第2レンズ群G2における合焦レンズLFと第1色消しレンズLC1との間に、絞りSが設けられる。   In the second lens group G2, a focusing lens LF in which a fifth positive lens L21 and a third negative lens L22 are bonded together, a fourth negative lens L23, and a sixth positive lens L24 are bonded in order from the object side. The first achromatic lens LC1, the cemented lens in which the seventh positive lens L25 and the fifth negative lens L26 are bonded together, the sixth negative lens L27 that is a single lens, the eighth positive lens L28, and the seventh negative lens L29 Are affixed to a second achromatic lens LC2 and a ninth positive lens L30 that is a single lens. When focusing from an object at infinity to an object at a short distance (finite distance), the focusing lens LF moves toward the image plane I along the optical axis. In addition, a diaphragm S is provided between the focusing lens LF and the first achromatic lens LC1 in the second lens group G2.

下の表2に、第2実施例における各諸元を示す。なお、表2における第1面〜第29面の曲率半径Riは、図4における第1面〜第29面に付した符号R1〜R29に対応している。また、第2実施例において、第8面が回折面となっている。   Table 2 below shows specifications in the second embodiment. In addition, the curvature radius Ri of the 1st surface-29th surface in Table 2 respond | corresponds to code | symbol R1-R29 attached | subjected to the 1st surface-29th surface in FIG. In the second embodiment, the eighth surface is a diffractive surface.

(表2)
[全体諸元]
f=294
FNO=4.08
2ω=8.4
Y=21.63
Bf=54.00
L=191.2
Ldoe=28.51
f1a=104.65
Ddoe=85.88
[レンズ諸元]
面番号 Ri Di nd νd θgF
1 115.035 7.27 1.4875 70.3 0.5291
2 1569.495 0.25
3 81.363 11.29 1.4978 82.6 0.5386
4 -504.430 2.50 1.5750 41.5 0.5764
5 237.414 2.00
6 69.392 5.00 1.5168 63.9 0.5359
7 91.430 0.20 1.5278 33.4 ―
8 91.430 0.30 1.5572 50.0 ― (回折面)
9 91.430 25.64
10 41.929 1.50 1.9108 35.2 0.5822
11 26.360 7.48 1.4875 70.3 0.5291
12 75.456 6.47
13 132.140 2.50 1.6200 36.4 0.5877
14 -380.902 1.20 1.6968 55.5 0.5430
15 43.133 23.98
16 ∞ 2.81 (絞り)
17 53.404 2.10 1.9108 35.2 0.5822
18 23.876 2.91 1.5750 41.5 0.5764
19 211.100 2.48
20 65.496 2.33 1.7283 28.4 0.6069
21 -64.938 0.85 1.7292 54.6 0.5442
22 29.867 2.33
23 -65.880 0.80 1.7292 54.6 0.5442
24 112.996 2.13
25 70.766 3.08 1.5481 45.5 0.5684
26 -54.825 1.00 1.7880 47.4 0.5559
27 -274.728 10.60
28 69.243 5.50 1.4875 70.3 0.5291
29 -69.243 54.00
[回折面データ]
m=1
C1=-4.106E-05
C2=-4.838E-09
[条件式対応値]
条件式(1) Ldoe/f=0.10
条件式(2) f1a/f=0.36
条件式(3) Rdoe/Ddoe=1.06
条件式(4) L/f=0.65
(Table 2)
[Overall specifications]
f = 294
FNO = 4.08
2ω = 8.4
Y = 21.63
Bf = 54.00
L = 191.2
Ldoe = 28.51
f1a = 104.65
Ddoe = 85.88
[Lens specifications]
Surface number Ri Di nd νd θgF
1 115.035 7.27 1.4875 70.3 0.5291
2 1569.495 0.25
3 81.363 11.29 1.4978 82.6 0.5386
4 -504.430 2.50 1.5750 41.5 0.5764
5 237.414 2.00
6 69.392 5.00 1.5168 63.9 0.5359
7 91.430 0.20 1.5278 33.4 ―
8 91.430 0.30 1.5572 50.0 ― (Diffraction surface)
9 91.430 25.64
10 41.929 1.50 1.9108 35.2 0.5822
11 26.360 7.48 1.4875 70.3 0.5291
12 75.456 6.47
13 132.140 2.50 1.6200 36.4 0.5877
14 -380.902 1.20 1.6968 55.5 0.5430
15 43.133 23.98
16 ∞ 2.81 (Aperture)
17 53.404 2.10 1.9108 35.2 0.5822
18 23.876 2.91 1.5750 41.5 0.5764
19 211.100 2.48
20 65.496 2.33 1.7283 28.4 0.6069
21 -64.938 0.85 1.7292 54.6 0.5442
22 29.867 2.33
23 -65.880 0.80 1.7292 54.6 0.5442
24 112.996 2.13
25 70.766 3.08 1.5481 45.5 0.5684
26 -54.825 1.00 1.7880 47.4 0.5559
27 -274.728 10.60
28 69.243 5.50 1.4875 70.3 0.5291
29 -69.243 54.00
[Diffraction surface data]
m = 1
C1 = -4.106E-05
C2 = -4.838E-09
[Conditional expression values]
Conditional expression (1) Ldoe / f = 0.10
Conditional expression (2) f1a / f = 0.36
Conditional expression (3) Rdoe / Ddoe = 1.06
Conditional expression (4) L / f = 0.65

このように本実施例では、上記条件式(1)〜(4)が全て満たされていることが分かる。   Thus, in this embodiment, it can be seen that all the conditional expressions (1) to (4) are satisfied.

図5は、第2実施例に係る光学系TL2の諸収差図である。図5より、第2実施例では、諸収差が良好に補正され、優れた光学性能を有していることがわかる。その結果、第2実施例の光学系TL2を搭載することにより、デジタル一眼レフカメラCAMにおいても、優れた光学性能を確保することができる。   FIG. 5 is a diagram illustrating various aberrations of the optical system TL2 according to the second example. From FIG. 5, it can be seen that in the second example, various aberrations are satisfactorily corrected and the optical performance is excellent. As a result, by mounting the optical system TL2 of the second embodiment, excellent optical performance can be secured even in the digital single-lens reflex camera CAM.

図6(a)は、第2実施例に係る光学系TL2の軸上色収差の波長特性を示すグラフである。図6(a)より、第2実施例では、使用波長域全体において軸上色収差が良好に補正されていることがわかる。図6(b)は、第2実施例に係る光学系TL2にテレコンバータを取り付けたときの軸上色収差の波長特性を示すグラフである。図6(b)より、第2実施例では、テレコンバータを取り付けた場合でも軸上色収差が良好に補正されていることがわかる。   FIG. 6A is a graph showing the wavelength characteristic of axial chromatic aberration of the optical system TL2 according to the second example. From FIG. 6A, it can be seen that in the second example, the longitudinal chromatic aberration is well corrected in the entire used wavelength range. FIG. 6B is a graph showing the wavelength characteristics of longitudinal chromatic aberration when a teleconverter is attached to the optical system TL2 according to the second example. FIG. 6B shows that in the second example, the longitudinal chromatic aberration is corrected well even when the teleconverter is attached.

(第3実施例)
以下、本願の第3実施例について図7〜図9および表3を用いて説明する。図7は、第3実施例に係る光学系TL(TL3)の断面図である。第3実施例に係る光学系TL3は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2とを備えて構成される。
(Third embodiment)
Hereinafter, a third embodiment of the present application will be described with reference to FIGS. FIG. 7 is a cross-sectional view of the optical system TL (TL3) according to the third embodiment. The optical system TL3 according to the third example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in order from the object side along the optical axis. Configured.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1aと、この前群G1aに対し第1レンズ群G1の中で最も長い空気間隔を隔てた後群G1bとから構成される。第1レンズ群G1の前群G1aは、物体側から順に、単レンズである第1正レンズL11と、第2正レンズL12と第1負レンズL13とが貼り合わされた接合レンズと、回折光学素子DOEが配置される第3正レンズL14とから構成される。なお、第3正レンズL14における像面I側のレンズ面に、回折光学素子DOEが配置される。回折光学素子DOEは、第1実施例の回折光学素子と同様であり、詳細な説明を省略する。第1レンズ群G1の後群G1bは、物体側から順に、第2負レンズL15と第4正レンズL16とが貼り合わされた接合レンズから構成される。   The first lens group G1 includes a front group G1a that is arranged in order from the object side along the optical axis, and a rear group G1b that is separated from the front group G1a by the longest air interval in the first lens group G1. Composed. The front group G1a of the first lens group G1 includes, in order from the object side, a cemented lens in which a first positive lens L11 that is a single lens, a second positive lens L12, and a first negative lens L13 are bonded together, and a diffractive optical element. And a third positive lens L14 on which the DOE is disposed. A diffractive optical element DOE is disposed on the lens surface on the image plane I side of the third positive lens L14. The diffractive optical element DOE is the same as the diffractive optical element of the first embodiment, and a detailed description thereof will be omitted. The rear group G1b of the first lens group G1 includes a cemented lens in which a second negative lens L15 and a fourth positive lens L16 are bonded in order from the object side.

第2レンズ群G2は、物体側から順に、第5正レンズL21と第3負レンズL22とが貼り合わされた合焦レンズLFと、第4負レンズL23と第6正レンズL24とが貼り合わされた第1色消しレンズLC1と、第7正レンズL25と第5負レンズL26とが貼り合わされた接合レンズと、単レンズである第6負レンズL27と、第8正レンズL28と第7負レンズL29とが貼り合わされた第2色消しレンズLC2と、単レンズである第9正レンズL30とから構成される。そして、無限遠物体から近距離(有限距離)物体への合焦(フォーカシング)の際、合焦レンズLFが光軸に沿って像面I側に移動するようになっている。また、第2レンズ群G2における合焦レンズLFと第1色消しレンズLC1との間に、絞りSが設けられる。   In the second lens group G2, a focusing lens LF in which a fifth positive lens L21 and a third negative lens L22 are bonded together, a fourth negative lens L23, and a sixth positive lens L24 are bonded in order from the object side. The first achromatic lens LC1, the cemented lens in which the seventh positive lens L25 and the fifth negative lens L26 are bonded together, the sixth negative lens L27 that is a single lens, the eighth positive lens L28, and the seventh negative lens L29 Are affixed to a second achromatic lens LC2 and a ninth positive lens L30 that is a single lens. When focusing from an object at infinity to an object at a short distance (finite distance), the focusing lens LF moves toward the image plane I along the optical axis. In addition, a diaphragm S is provided between the focusing lens LF and the first achromatic lens LC1 in the second lens group G2.

下の表3に、第3実施例における各諸元を示す。なお、表3における第1面〜第29面の曲率半径Riは、図7における第1面〜第29面に付した符号R1〜R29に対応している。また、第3実施例において、第8面が回折面となっている。   Table 3 below shows specifications in the third embodiment. In addition, the curvature radius Ri of the 1st surface-29th surface in Table 3 respond | corresponds to code | symbol R1-R29 attached | subjected to the 1st surface-29th surface in FIG. In the third embodiment, the eighth surface is a diffractive surface.

(表3)
[全体諸元]
f=294
FNO=4.08
2ω=8.4
Y=21.63
Bf=54.00
L=190.5
Ldoe=30.26
f1a=106.81
Ddoe=85.88
[レンズ諸元]
面番号 Ri Di nd νd θgF
1 112.614 7.47 1.4875 70.3 0.5291
2 1198.911 0.25
3 80.591 12.82 1.4978 82.6 0.5386
4 -504.430 2.50 1.5317 48.8 0.5621
5 215.439 2.02
6 77.236 5.00 1.5168 63.9 0.5359
7 106.549 0.20 1.5278 33.4 ―
8 106.549 0.20 1.5572 50.0 ― (回折面)
9 106.549 24.12
10 40.477 1.50 1.9027 35.7 0.5804
11 26.124 7.68 1.4875 70.3 0.5291
12 71.781 7.27
13 124.603 2.88 1.6034 38.0 0.5829
14 -321.404 1.20 1.7130 54.0 0.5451
15 42.442 23.52
16 ∞ 2.69 (絞り)
17 53.509 2.90 1.9027 35.7 0.5804
18 23.591 2.31 1.5186 69.9 0.5318
19 222.119 2.85
20 64.088 2.49 1.7283 28.4 0.6069
21 -67.244 0.85 1.7130 54.0 0.5451
22 29.850 2.04
23 -66.093 0.80 1.7410 52.8 0.5471
24 107.388 1.87
25 69.491 3.77 1.5814 41.0 0.5763
26 -55.525 1.00 1.7292 54.6 0.5442
27 -315.000 10.00
28 68.665 4.31 1.4875 70.3 0.5291
29 -68.665 54.00
[回折面データ]
m=1
C1=-3.635E-05
C2=-4.806E-09
[条件式対応値]
条件式(1) Ldoe/f=0.10
条件式(2) f1a/f=0.36
条件式(3) Rdoe/Ddoe=1.13
条件式(4) L/f=0.65
(Table 3)
[Overall specifications]
f = 294
FNO = 4.08
2ω = 8.4
Y = 21.63
Bf = 54.00
L = 190.5
Ldoe = 30.26
f1a = 106.81
Ddoe = 85.88
[Lens specifications]
Surface number Ri Di nd νd θgF
1 112.614 7.47 1.4875 70.3 0.5291
2 1198.911 0.25
3 80.591 12.82 1.4978 82.6 0.5386
4 -504.430 2.50 1.5317 48.8 0.5621
5 215.439 2.02
6 77.236 5.00 1.5168 63.9 0.5359
7 106.549 0.20 1.5278 33.4 ―
8 106.549 0.20 1.5572 50.0 ― (Diffraction surface)
9 106.549 24.12
10 40.477 1.50 1.9027 35.7 0.5804
11 26.124 7.68 1.4875 70.3 0.5291
12 71.781 7.27
13 124.603 2.88 1.6034 38.0 0.5829
14 -321.404 1.20 1.7130 54.0 0.5451
15 42.442 23.52
16 ∞ 2.69 (Aperture)
17 53.509 2.90 1.9027 35.7 0.5804
18 23.591 2.31 1.5186 69.9 0.5318
19 222.119 2.85
20 64.088 2.49 1.7283 28.4 0.6069
21 -67.244 0.85 1.7130 54.0 0.5451
22 29.850 2.04
23 -66.093 0.80 1.7410 52.8 0.5471
24 107.388 1.87
25 69.491 3.77 1.5814 41.0 0.5763
26 -55.525 1.00 1.7292 54.6 0.5442
27 -315.000 10.00
28 68.665 4.31 1.4875 70.3 0.5291
29 -68.665 54.00
[Diffraction surface data]
m = 1
C1 = -3.635E-05
C2 = -4.806E-09
[Conditional expression values]
Conditional expression (1) Ldoe / f = 0.10
Conditional expression (2) f1a / f = 0.36
Conditional expression (3) Rdoe / Ddoe = 1.13
Conditional expression (4) L / f = 0.65

このように本実施例では、上記条件式(1)〜(4)が全て満たされていることが分かる。   Thus, in this embodiment, it can be seen that all the conditional expressions (1) to (4) are satisfied.

図8は、第3実施例に係る光学系TL3の諸収差図である。図8より、第3実施例では、諸収差が良好に補正され、優れた光学性能を有していることがわかる。その結果、第3実施例の光学系TL3を搭載することにより、デジタル一眼レフカメラCAMにおいても、優れた光学性能を確保することができる。   FIG. 8 is a diagram illustrating various aberrations of the optical system TL3 according to the third example. From FIG. 8, it can be seen that in the third example, various aberrations are satisfactorily corrected and the optical performance is excellent. As a result, by mounting the optical system TL3 of the third embodiment, excellent optical performance can be secured even in the digital single-lens reflex camera CAM.

図9(a)は、第3実施例に係る光学系TL3の軸上色収差の波長特性を示すグラフである。図9(a)より、第3実施例では、使用波長域全体において軸上色収差が良好に補正されていることがわかる。図9(b)は、第3実施例に係る光学系TL3にテレコンバータを取り付けたときの軸上色収差の波長特性を示すグラフである。図9(b)より、第3実施例では、テレコンバータを取り付けた場合でも軸上色収差が良好に補正されていることがわかる。   FIG. 9A is a graph showing the wavelength characteristics of longitudinal chromatic aberration of the optical system TL3 according to the third example. From FIG. 9A, it can be seen that in the third example, the axial chromatic aberration is corrected well over the entire wavelength range used. FIG. 9B is a graph showing the wavelength characteristics of longitudinal chromatic aberration when a teleconverter is attached to the optical system TL3 according to the third example. From FIG. 9B, it can be seen that in the third example, the axial chromatic aberration is well corrected even when the teleconverter is attached.

なお、上述の実施形態において、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   In the above-described embodiment, the following description can be appropriately adopted as long as the optical performance is not impaired.

上述の各実施例において、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。例えば、絞りSよりも像側に配置されるレンズのうち少なくとも一部を防振レンズ群とすることができ、特に、第7正レンズL25、第5負レンズL26、第6負レンズL27を防振レンズ群とすることが好ましい。また、第7正レンズL25、第5負レンズL26、第6負レンズL27の物体側および像側に、正レンズと負レンズとからなる色消しレンズLC1,LC2を配置することがより好ましい。   In each of the above-described embodiments, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (oscillated) in the in-plane direction including the optical axis, thereby causing camera shake. An image stabilizing lens group that corrects image blur caused by the image blur may be used. For example, at least a part of the lenses arranged on the image side of the stop S can be an anti-vibration lens group, and in particular, the seventh positive lens L25, the fifth negative lens L26, and the sixth negative lens L27 are prevented. A vibrating lens group is preferable. Further, it is more preferable to dispose achromatic lenses LC1 and LC2 including a positive lens and a negative lens on the object side and the image side of the seventh positive lens L25, the fifth negative lens L26, and the sixth negative lens L27.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、開口絞りは合焦レンズLFよりも像側に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。   The aperture stop is preferably disposed on the image side of the focusing lens LF. However, the role of the aperture stop may be substituted by a lens frame without providing a member as the aperture stop.

また、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   Each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態では、光学系の一例として望遠レンズを例に説明したが、これに限られるものではなく、例えば、ズームレンズ等の光学系であってもよい。   In the present embodiment, the telephoto lens is described as an example of the optical system. However, the present invention is not limited to this. For example, an optical system such as a zoom lens may be used.

また、本実施形態の光学系をデジタル一眼レフカメラに使用しているが、これに限られるものではなく、例えば、デジタルスチルカメラやデジタルビデオカメラ等の光学機器にも使用することができる。   In addition, the optical system of the present embodiment is used in a digital single-lens reflex camera, but the present invention is not limited to this. For example, the optical system can be used in an optical device such as a digital still camera or a digital video camera.

CAM デジタル一眼レフカメラ(光学機器)
TL 光学系
G1 第1レンズ群 G2 第2レンズ群
G1a 前群 G1b 後群
LF 合焦レンズ
DOE 回折光学素子
S 絞り I 像面
CAM digital SLR camera (optical equipment)
TL optical system G1 first lens group G2 second lens group G1a front group G1b rear group LF focusing lens DOE diffractive optical element S aperture I image plane

Claims (7)

物体に対してフォーカシングを行うための合焦レンズと、
前記合焦レンズよりも物体側に配設された複数枚のレンズと、
前記複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに配設された回折光学素子とを有し、
以下の条件式を満足することを特徴とする光学系。
0.075<Ldoe/f<0.125
0.50<L/f<0.75
但し、
Ldoe:前記光学系における最も物体側のレンズ面から前記回折光学素子における回折面までの距離、
f:前記光学系の無限遠合焦時における焦点距離、
L:前記光学系における最も物体側のレンズ面から像面までの距離。
A focusing lens for focusing on an object;
A plurality of lenses disposed on the object side of the focusing lens;
A diffractive optical element disposed on any lens on the image side of the lens on the most object side among the plurality of lenses,
An optical system satisfying the following conditional expression:
0.075 <Ldoe / f <0.125
0.50 <L / f <0.75
However,
Ldoe: the distance from the most object side lens surface in the optical system to the diffractive surface in the diffractive optical element,
f: the focal length at the time of infinity focusing of the optical system,
L: Distance from the lens surface closest to the object side to the image plane in the optical system.
物体に対してフォーカシングを行うための合焦レンズと、A focusing lens for focusing on an object;
前記合焦レンズよりも物体側に配設された複数枚のレンズと、A plurality of lenses disposed on the object side of the focusing lens;
前記複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに配設された回折光学素子とを有し、A diffractive optical element disposed on any lens on the image side of the lens on the most object side among the plurality of lenses,
以下の条件式を満足することを特徴とする光学系。An optical system satisfying the following conditional expression:
0.075<Ldoe/f<0.1250.075 <Ldoe / f <0.125
1.02<Rdoe/Ddoe<1.351.02 <Rdoe / Ddoe <1.35
但し、However,
Ldoe:前記光学系における最も物体側のレンズ面から前記回折光学素子における回折面までの距離、Ldoe: the distance from the most object side lens surface in the optical system to the diffractive surface in the diffractive optical element,
f:前記光学系の無限遠合焦時における焦点距離、f: focal length of the optical system when focused at infinity,
Rdoe:前記回折光学素子における回折面の曲率半径、Rdoe: radius of curvature of the diffractive surface of the diffractive optical element,
Ddoe:前記複数枚のレンズのうち最も物体側のレンズから前記回折光学素子が配設されたレンズまでのレンズ群の後側の焦点の位置から、前記回折光学素子における回折面までの距離。Ddoe: A distance from the position of the focal point on the rear side of the lens group from the lens closest to the object side to the lens on which the diffractive optical element is disposed, among the plurality of lenses, to the diffractive surface of the diffractive optical element.
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
1.02<Rdoe/Ddoe<1.35
但し、
Rdoe:前記回折光学素子における回折面の曲率半径、
Ddoe:前記複数枚のレンズのうち最も物体側のレンズから前記回折光学素子が配設されたレンズまでのレンズ群の後側の焦点の位置から、前記回折光学素子における回折面までの距離。
The optical system according to claim 1 , wherein the following conditional expression is satisfied.
1.02 <Rdoe / Ddoe <1.35
However,
Rdoe: radius of curvature of the diffractive surface of the diffractive optical element,
Ddoe: A distance from the position of the focal point on the rear side of the lens group from the lens closest to the object side to the lens on which the diffractive optical element is disposed, among the plurality of lenses, to the diffractive surface of the diffractive optical element.
以下の条件式を満足することを特徴とする請求項2に記載の光学系。
0.50<L/f<0.80
但し、
L:前記光学系における最も物体側のレンズ面から像面までの距離。
The optical system according to claim 2 , wherein the following conditional expression is satisfied.
0.50 <L / f <0.80
However,
L: Distance from the lens surface closest to the object side to the image plane in the optical system.
以下の条件式を満足することを特徴とする請求項1から4のいずれか一項に記載の光学系。The optical system according to claim 1, wherein the following conditional expression is satisfied.
0.30<f1a/f<0.400.30 <f1a / f <0.40
但し、However,
f1a:前記複数枚のレンズのうち最も物体側のレンズから前記回折光学素子が配設されたレンズまでのレンズ群の焦点距離。f1a: The focal length of the lens group from the lens closest to the object side to the lens provided with the diffractive optical element among the plurality of lenses.
物体の像を所定の面上に結像させる光学系を備えた光学機器であって、
前記光学系が請求項1から5のいずれか一項に記載の光学系であることを特徴とする光学機器。
An optical apparatus including an optical system that forms an image of an object on a predetermined surface,
An optical apparatus, wherein the optical system is the optical system according to any one of claims 1 to 5 .
物体に対してフォーカシングを行うための合焦レンズを配置し、
前記合焦レンズよりも物体側に複数枚のレンズを配置し、
前記複数枚のレンズのうち最も物体側のレンズよりも像側のいずれかのレンズに回折光学素子を配置し、
以下の条件式を満足するようにしたことを特徴とする光学系の製造方法。
0.075<Ldoe/f<0.125
0.50<L/f<0.75
但し、
Ldoe:前記光学系における最も物体側のレンズ面から前記回折光学素子における回折面までの距離、
f:前記光学系の無限遠合焦時における焦点距離、
L:前記光学系における最も物体側のレンズ面から像面までの距離。
Place a focusing lens to focus on the object,
Arranging a plurality of lenses closer to the object side than the focusing lens,
A diffractive optical element is disposed on any lens on the image side of the lens on the most object side among the plurality of lenses,
An optical system manufacturing method characterized by satisfying the following conditional expression:
0.075 <Ldoe / f <0.125
0.50 <L / f <0.75
However,
Ldoe: the distance from the most object side lens surface in the optical system to the diffractive surface in the diffractive optical element,
f: the focal length at the time of infinity focusing of the optical system,
L: Distance from the lens surface closest to the object side to the image plane in the optical system.
JP2013245879A 2013-11-28 2013-11-28 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD Active JP6273797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245879A JP6273797B2 (en) 2013-11-28 2013-11-28 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245879A JP6273797B2 (en) 2013-11-28 2013-11-28 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2015102852A JP2015102852A (en) 2015-06-04
JP6273797B2 true JP6273797B2 (en) 2018-02-07

Family

ID=53378546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245879A Active JP6273797B2 (en) 2013-11-28 2013-11-28 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP6273797B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870230B2 (en) * 2016-07-27 2021-05-12 株式会社ニコン Optical system and optical equipment
CN114089511B (en) * 2021-11-26 2024-01-16 湖北久之洋红外系统股份有限公司 Very wide band transmission type telescopic optical system
CN114815169B (en) * 2022-05-31 2024-02-23 舜宇光学(中山)有限公司 Imaging lens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121821A (en) * 1998-10-20 2000-04-28 Canon Inc Rear focusing zoom lens having diffraction optical elements
US6606200B1 (en) * 1996-09-19 2003-08-12 Canon Kabushiki Kaisha Zoom lens device and optical apparatus provided with the same
JP3314021B2 (en) * 1997-10-31 2002-08-12 キヤノン株式会社 Zoom lens
JP2004126397A (en) * 2002-10-04 2004-04-22 Nikon Corp Telephotographic lens
JP5355697B2 (en) * 2009-08-25 2013-11-27 キヤノン株式会社 Optical system and optical apparatus having the same
JP2011090099A (en) * 2009-10-21 2011-05-06 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system

Also Published As

Publication number Publication date
JP2015102852A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
CN107621690B (en) Zoom optical system
US11668899B2 (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
JP5760965B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5601586B2 (en) Optical system and optical equipment
JP5904014B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS
JP6331673B2 (en) Optical system, optical device
JP5904011B2 (en) Rear converter lens, optical device, and manufacturing method of rear converter lens
JP6273797B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP6354257B2 (en) Variable magnification optical system and imaging apparatus
JP6387631B2 (en) Optical system and optical equipment
JP5958018B2 (en) Zoom lens, imaging device
JP2016156941A (en) Lens system, optical device, and method for manufacturing lens system
JP5760964B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN111480103B (en) Optical system and optical apparatus
JP6361088B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS
JP6387630B2 (en) Optical system and optical equipment
JP5904012B2 (en) Rear converter lens, optical device, and manufacturing method of rear converter lens
JPWO2020157801A1 (en) Magnification optical system, optical equipment, and manufacturing method of variable magnification optics
JP5904015B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS
JP5867294B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD
JP5974719B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
CN111512203B (en) Optical system and optical apparatus
JP6897733B2 (en) Variable magnification optical system, optical device
CN112166360A (en) Optical system, optical apparatus, and method of manufacturing optical system
JP6354137B2 (en) Zoom lens and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6273797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250