JP6331673B2 - Optical system, optical device - Google Patents

Optical system, optical device Download PDF

Info

Publication number
JP6331673B2
JP6331673B2 JP2014099626A JP2014099626A JP6331673B2 JP 6331673 B2 JP6331673 B2 JP 6331673B2 JP 2014099626 A JP2014099626 A JP 2014099626A JP 2014099626 A JP2014099626 A JP 2014099626A JP 6331673 B2 JP6331673 B2 JP 6331673B2
Authority
JP
Japan
Prior art keywords
lens
optical system
lens group
refractive power
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014099626A
Other languages
Japanese (ja)
Other versions
JP2015215561A (en
Inventor
充晃 和田
充晃 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014099626A priority Critical patent/JP6331673B2/en
Publication of JP2015215561A publication Critical patent/JP2015215561A/en
Application granted granted Critical
Publication of JP6331673B2 publication Critical patent/JP6331673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、光学系、光学装置、光学系の製造方法に関する。   The present invention relates to an optical system, an optical device, and a method for manufacturing the optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, an optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2011−81064号公報JP 2011-81064 A

しかしながら、上述のような従来の光学系は、軽量化を図り、合焦時の収差変動を抑えつつ高い光学性能を維持することが困難であるという問題があった。   However, the conventional optical system as described above has a problem that it is difficult to maintain high optical performance while reducing the weight and suppressing aberration fluctuation at the time of focusing.

そこで本発明は上記問題点に鑑みてなされたものであり、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有する光学系、光学装置及び光学系の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and provides an optical system, an optical device, and a method for manufacturing the optical system that are light in weight, suppress aberration fluctuations during focusing, and have excellent optical performance. For the purpose.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とにより、実質的に3個のレンズ群からなり
前記第1レンズ群が、物体側から順に、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを有し、
無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、隣り合うレンズ群同士の間隔が変化し、
以下の条件式を満足することを特徴とする光学系を提供する。
0.380<f1/f<0.526
0.800<β23<0.960
0.80<fL1/f<1.50
ただし、
f1:前記第1レンズ群の焦点距離
f:前記光学系の焦点距離
β23:無限遠物体合焦時の前記第2レンズと前記第3レンズの合成横倍率
fL1:前記第1レンズの焦点距離
また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とにより、実質的に3個のレンズ群からなり、
前記第1レンズ群が、物体側から順に、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを有し、
無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、隣り合うレンズ群同士の間隔が変化し、
以下の条件式を満足することを特徴とする光学系を提供する。
0.450<f1/f<0.526
0.600<β23<0.960
8.00<|fL23|/f
ただし、
f1:前記第1レンズ群の焦点距離
f:前記光学系の焦点距離
β23:無限遠物体合焦時の前記第2レンズと前記第3レンズの合成横倍率
fL23:前記第2レンズと前記第3レンズの合成焦点距離
In order to solve the above problems, the present invention
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the third lens group having a positive refractive power are substantially three lens groups. Consists of
The first lens group includes, in order from the object side, a first lens having a positive refractive power, a second lens having a positive refractive power, and a third lens having a negative refractive power,
When focusing from an infinite object to a close object, the second lens group moves along the optical axis, and the interval between adjacent lens groups changes,
An optical system characterized by satisfying the following conditional expression is provided.
0.380 <f1 / f <0.526
0.800 <β23 <0.960
0.80 <fL1 / f <1.50
However,
f1: Focal length of the first lens group f: Focal length of the optical system β23: Composite lateral magnification of the second lens and the third lens when an object at infinity is in focus
fL1: Focal length of the first lens
The present invention also provides
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the third lens group having a positive refractive power are substantially three lens groups. Consists of
The first lens group includes, in order from the object side, a first lens having a positive refractive power, a second lens having a positive refractive power, and a third lens having a negative refractive power,
When focusing from an infinite object to a close object, the second lens group moves along the optical axis, and the interval between adjacent lens groups changes,
An optical system characterized by satisfying the following conditional expression is provided.
0.450 <f1 / f <0.526
0.600 <β23 <0.960
8.00 <| fL23 | / f
However,
f1: Focal length of the first lens group
f: Focal length of the optical system
β23: combined lateral magnification of the second lens and the third lens when focusing on an object at infinity
fL23: Composite focal length of the second lens and the third lens

また本発明は、
前記光学系を有することを特徴とする光学装置を提供する。
The present invention also provides
An optical apparatus comprising the optical system is provided.

本発明によれば、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有する光学系、光学装置及び光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide an optical system, an optical device, and an optical system manufacturing method that achieve weight reduction, suppress aberration fluctuations during focusing, and have excellent optical performance.

図1は、本願の第1実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 1 is a cross-sectional view showing the lens arrangement when focusing on an object at infinity in the optical system according to the first example of the present application. 図2(a)、及び図2(b)はそれぞれ、本願の第1実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。FIGS. 2A and 2B are graphs showing various aberrations when the optical system according to Example 1 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図3は、本願の第2実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。FIG. 3 is a cross-sectional view showing the lens arrangement at the time of focusing on an object at infinity of the optical system according to the second example of the present application. 図4(a)、及び図4(b)はそれぞれ、本願の第2実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。FIGS. 4A and 4B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively. 図5は、本願の光学系を備えたカメラの構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a camera including the optical system of the present application. 図6は、本願の光学系の製造方法の概略を示す図である。FIG. 6 is a diagram showing an outline of the manufacturing method of the optical system of the present application.

以下、本願の光学系、光学装置及び光学系の製造方法について説明する。
本願の光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第1レンズ群が、物体側から順に、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを有し、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、以下の条件式(1)、(2)を満足することを特徴とする。
(1) 0.380<f1/f<0.526
(2) 0.600<β23<0.960
ただし、
f1:前記第1レンズ群の焦点距離
f:前記光学系の焦点距離
β23:無限遠物体合焦時の前記第2レンズと前記第3レンズの合成横倍率
Hereinafter, the optical system, the optical device, and the method for manufacturing the optical system of the present application will be described.
The optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, The first lens group includes a first lens having a positive refractive power, a second lens having a positive refractive power, and a third lens having a negative refractive power in order from the object side. At the time of focusing from an object to a short distance object, the second lens group moves along the optical axis and satisfies the following conditional expressions (1) and (2).
(1) 0.380 <f1 / f <0.526
(2) 0.600 <β23 <0.960
However,
f1: Focal length of the first lens group f: Focal length of the optical system β23: Composite lateral magnification of the second lens and the third lens when an object at infinity is in focus

条件式(1)は、第1レンズ群の焦点距離と、本願の光学系全体の焦点距離との比の適切な範囲を規定するものである。本願の光学系は、条件式(1)を満足することにより、全長が大きくなることを防ぎながら、重量を抑え、近距離物体合焦時の収差変動を抑えることができる。   Conditional expression (1) defines an appropriate range of the ratio between the focal length of the first lens group and the focal length of the entire optical system of the present application. By satisfying conditional expression (1), the optical system of the present application can suppress weight variation and suppress aberration fluctuations when focusing on a short-distance object while preventing an increase in total length.

本願の光学系の条件式(1)の対応値が上限値を上回ると、第1レンズ群の屈折力が小さくなり、本願の光学系の全長が大きくなってしまうので好ましくない。また、本願の光学系において手ぶれ等に起因する像ぶれの補正、即ち防振を行うために、第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動する構成とした場合に、第3レンズ群の屈折力が大きくなり、防振時の光学性能が低下してしまう。なお、本願の効果をより確実にするために、条件式(1)の上限値を0.523とすることがより好ましい。   If the corresponding value of the conditional expression (1) of the optical system of the present application exceeds the upper limit value, the refractive power of the first lens group decreases, and the total length of the optical system of the present application increases, which is not preferable. A configuration in which at least a part of the third lens group moves so as to include a component in a direction perpendicular to the optical axis in order to correct image blur caused by camera shake or the like in the optical system of the present application, that is, to prevent vibration; In this case, the refractive power of the third lens group becomes large, and the optical performance at the time of image stabilization is deteriorated. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 0.523.

一方、本願の光学系の条件式(1)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、近距離物体合焦時の基準収差及び色収差の変動が大きくなってしまうので好ましくない。また、第1レンズ群における第1〜第3レンズのそれぞれの屈折力が大きくなり、レンズの重量が大きくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を0.450とすることがより好ましい。   On the other hand, when the corresponding value of the conditional expression (1) of the optical system of the present application is below the lower limit value, the refractive power of the first lens group becomes large, and the fluctuations of the reference aberration and the chromatic aberration at the time of focusing on a short distance object become large. This is not preferable. Further, the refractive power of each of the first to third lenses in the first lens group increases, and the weight of the lens increases. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to 0.450.

条件式(2)は、無限遠物体合焦時の前記第2レンズと前記第3レンズの合成横倍率の適切な範囲を規定するものである。本願の光学系は、条件式(2)を満足することにより、球面収差、コマ収差、像面湾曲及び色収差を良好に補正することができる。   Conditional expression (2) defines an appropriate range of the combined lateral magnification of the second lens and the third lens when an object at infinity is in focus. The optical system of the present application can satisfactorily correct spherical aberration, coma, field curvature, and chromatic aberration by satisfying conditional expression (2).

本願の光学系の条件式(2)の対応値が上限値を上回ると、第2レンズに入射した軸上光線の輪帯光線が光軸となす偏角が、第3レンズ射出後の光線が光軸となす偏角よりも小さくなり発散光線となる。このため、第2レンズと第3レンズの屈折力が大きくなり、光線の偏角の変動が収斂、発散、収斂と無駄な経路を辿り、球面収差、コマ収差、像面湾曲等の基準収差が悪化してしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(2)の上限値を0.950とすることがより好ましい。   When the corresponding value of the conditional expression (2) of the optical system of the present application exceeds the upper limit value, the declination angle between the zonal ray of the axial ray incident on the second lens and the optical axis is the ray after the third lens exits. It becomes smaller than the declination made by the optical axis and becomes a divergent ray. For this reason, the refractive power of the second lens and the third lens is increased, the fluctuation of the deflection angle of the light ray follows a convergent, divergent, and convergent path, and a reference aberration such as spherical aberration, coma aberration, curvature of field, etc. Since it will deteriorate, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 0.950.

一方、本願の光学系の条件式(2)の対応値が下限値を下回ると、第2レンズに入射した軸上光線の輪帯光線が光軸となす偏角が、第1レンズ射出後の光線が光軸となす偏角よりも大きく収斂される。したがって、合成された焦点距離は正となり、各々屈折力は小さくなり、色収差の補正能力が小さくなるため、第1レンズを極力物体側に配置せざるを得なくなる。この結果、第1レンズの径と重量が大きくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を0.700とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を0.800とすることがより好ましい。   On the other hand, when the corresponding value of the conditional expression (2) of the optical system of the present application is lower than the lower limit value, the declination angle between the zonal ray of the axial ray incident on the second lens and the optical axis is The light beam is converged to be larger than the declination angle formed by the optical axis. Accordingly, the combined focal length is positive, the refractive power is reduced, and the ability to correct chromatic aberration is reduced. Therefore, the first lens must be arranged on the object side as much as possible. As a result, the diameter and weight of the first lens are increased. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2) to 0.700. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (2) to 0.800.

以上の構成により、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有する光学系を実現することができる。   With the above configuration, it is possible to realize an optical system that achieves weight reduction, suppresses fluctuations in aberrations during focusing, and has excellent optical performance.

また、本願の光学系は、以下の条件式(3)を満足することが望ましい。
(3) 1.00<|fL23|/f
ただし、
fL23:前記第2レンズと前記第3レンズの合成焦点距離
f:前記光学系の焦点距離
Moreover, it is desirable that the optical system of the present application satisfies the following conditional expression (3).
(3) 1.00 <| fL23 | / f
However,
fL23: Composite focal length of the second lens and the third lens f: Focal length of the optical system

条件式(3)は、第2レンズと第3レンズの合成焦点距離の絶対値と、本願の光学系全体の焦点距離との比の適切な範囲を規定するものである。本願の光学系は、条件式(3)を満足することにより、球面収差、コマ収差、像面湾曲及び色収差を良好に補正することができる。   Conditional expression (3) defines an appropriate range of the ratio between the absolute value of the combined focal length of the second lens and the third lens and the focal length of the entire optical system of the present application. The optical system of the present application can satisfactorily correct spherical aberration, coma aberration, field curvature, and chromatic aberration by satisfying conditional expression (3).

本願の光学系の条件式(3)の対応値が下限値を下回ると、第2レンズと第3レンズの合成焦点距離の絶対値が小さくなり、球面収差、コマ収差、像面湾曲等の基準収差が悪化してしまうので好ましくない。また、「fL23」が負の値で、かつ条件式(3)の対応値が下限値を下回る場合、色収差は合成された負レンズ成分としてのものとなり補正過剰であって正レンズ成分の色収差を他のレンズから補う必要がある。また、「fL23」が正の値で、かつ条件式(3)の対応値が下限値を下回る場合、色収差は合成された正レンズ成分としてのものとなり補正過剰であって負レンズ成分の色収差を他のレンズから補う必要がある。なお、本願の効果をより確実にするために、条件式(3)の下限値を4.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の下限値を8.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を「<10000.00」とすることがより好ましい。   When the corresponding value of the conditional expression (3) of the optical system of the present application is below the lower limit value, the absolute value of the combined focal length of the second lens and the third lens becomes small, and standards for spherical aberration, coma aberration, field curvature, etc. Since aberrations are deteriorated, it is not preferable. Further, when “fL23” is a negative value and the corresponding value of the conditional expression (3) is lower than the lower limit value, the chromatic aberration is a combined negative lens component, which is overcorrected and the chromatic aberration of the positive lens component is reduced. It is necessary to supplement from other lenses. Further, when “fL23” is a positive value and the corresponding value of the conditional expression (3) is lower than the lower limit value, the chromatic aberration is as a combined positive lens component and is overcorrected, and the chromatic aberration of the negative lens component is reduced. It is necessary to supplement from other lenses. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 4.00. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 8.00. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to “<10000.00”.

また、本願の光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.70<fL1/f<1.50
ただし、
fL1:前記第1レンズの焦点距離
f:前記光学系の焦点距離
Moreover, it is desirable that the optical system of the present application satisfies the following conditional expression (4).
(4) 0.70 <fL1 / f <1.50
However,
fL1: Focal length of the first lens f: Focal length of the optical system

条件式(4)は、第1レンズの焦点距離と、本願の光学系全体の焦点距離との比の適切な範囲を規定するものである。本願の光学系は、条件式(4)を満足することにより、全長が大きくなることを防ぎながら諸収差を良好に補正し、かつ合焦時の光学性能の低下を抑えることができる。   Conditional expression (4) defines an appropriate range of the ratio between the focal length of the first lens and the focal length of the entire optical system of the present application. By satisfying conditional expression (4), the optical system of the present application can satisfactorily correct various aberrations while preventing an increase in the overall length, and suppress a decrease in optical performance during focusing.

本願の光学系の条件式(4)の対応値が上限値を上回ると、第1レンズの後に続く第2レンズと第3レンズの屈折力が大きくなり、合成して負の屈折力になって光学性能が低下してしまうので好ましくない。また、本願の光学系の全長が大きくなるので好ましくない。なお、本願の効果をより確実にするために、条件式(4)の上限値を1.30とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の上限値を1.10とすることがより好ましい。   When the corresponding value of the conditional expression (4) of the optical system of the present application exceeds the upper limit value, the refractive power of the second lens and the third lens following the first lens is increased, and the combined refractive power becomes negative refractive power. Since optical performance will fall, it is not preferable. In addition, the entire length of the optical system of the present application is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 1.30. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 1.10.

一方、本願の光学系の条件式(4)の対応値が下限値を下回ると、色収差の補正に一番効果的な第1レンズを有効に使えず、第1レンズ以外のレンズで色収差を補正しなければならないので好ましくない。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.80とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の下限値を0.90とすることがより好ましい。   On the other hand, if the corresponding value of conditional expression (4) of the optical system of the present application is below the lower limit, the first lens that is most effective for correcting chromatic aberration cannot be used effectively, and chromatic aberration is corrected by a lens other than the first lens. This is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.80. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.90.

なお、本願の光学系は、前記第1レンズ群が、前記第3レンズよりも像側に正レンズと負レンズとを1枚ずつ有し、合計で5枚又は6枚のレンズからなることが望ましい。
また、本願の光学系は、前記第1レンズ群中の前記第2レンズと前記第3レンズとを貼り合わせて接合レンズとしてもよい。また、前記第2レンズと前記第3レンズとを貼り合わせずに、これらの間に空気を介在させてもよい。
また、本願の光学系は、前記第3レンズ群の少なくとも一部が防振レンズ群として光軸と直交する方向の成分を含むように移動する構成とすることが望ましい。
In the optical system of the present application, the first lens group has one positive lens and one negative lens closer to the image side than the third lens, and is composed of a total of 5 or 6 lenses. desirable.
In the optical system of the present application, the second lens and the third lens in the first lens group may be bonded to form a cemented lens. Further, air may be interposed between the second lens and the third lens without bonding them.
Further, it is desirable that the optical system of the present application is configured to move so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis as a vibration-proof lens group.

また、本願の光学系は、前記第1レンズ群が、最も物体側に保護フィルタガラスを有する構成としてもよい。この場合、保護フィルタガラスは、実質的に屈折力を有しないレンズであって、その焦点距離が500mm以上であることが好ましい。特に、本願の光学系は、保護フィルタガラスが物体側に凸面を向けた負メニスカス形状であることが好ましい。この構成により、ゴーストを良好にカットすることができる。
また、本願の光学系は、35mm換算での焦点距離が380〜420mmの撮影レンズに用いることが好ましいが、この限りでない。
In the optical system of the present application, the first lens group may have a protective filter glass on the most object side. In this case, the protective filter glass is a lens having substantially no refractive power, and preferably has a focal length of 500 mm or more. In particular, the optical system of the present application preferably has a negative meniscus shape in which the protective filter glass has a convex surface facing the object side. With this configuration, the ghost can be cut well.
The optical system of the present application is preferably used for a photographing lens having a focal length in terms of 35 mm of 380 to 420 mm, but this is not restrictive.

本願の光学装置は、上述した構成の光学系を有することを特徴とする。これにより、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有する光学性能を有する光学装置を実現することができる。   The optical apparatus according to the present application includes the optical system having the above-described configuration. Thereby, it is possible to realize an optical device having an optical performance that is light in weight, suppresses aberration fluctuations during focusing, and has excellent optical performance.

本願の光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、前記第1レンズ群が、物体側から順に、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを有するようにし、無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動するようにし、以下の条件式(1)、(2)を満足するようにすることを特徴とする。これにより、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有する光学性能を有する光学系を製造することができる。
(1) 0.380<f1/f<0.526
(2) 0.600<β23<0.960
ただし、
f1:前記第1レンズ群の焦点距離
f:前記光学系の焦点距離
β23:無限遠物体合焦時の前記第2レンズと前記第3レンズの合成横倍率
The optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. The first lens group has a first lens having a positive refractive power, a second lens having a positive refractive power, and a negative refractive power in order from the object side. The second lens group is moved along the optical axis at the time of focusing from an object at infinity to a near object, and the following conditional expressions (1) and (2) It is characterized by satisfying. As a result, it is possible to manufacture an optical system having an optical performance that is light in weight, suppresses aberration fluctuations during focusing, and has excellent optical performance.
(1) 0.380 <f1 / f <0.526
(2) 0.600 <β23 <0.960
However,
f1: Focal length of the first lens group f: Focal length of the optical system β23: Composite lateral magnification of the second lens and the third lens when an object at infinity is in focus

以下、本願の数値実施例に係る光学系を添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第3レンズ群G3の物体側近傍には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
Hereinafter, optical systems according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a cross-sectional view showing the lens arrangement when focusing on an object at infinity in the optical system according to the first example of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided near the object side of the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.

第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、物体側に凸面を向けた負メニスカスレンズL15とからなる。   The first lens group G1 includes, in order from the object side, a biconvex positive lens L11, a biconvex positive lens L12, a biconcave negative lens L13, and a positive meniscus lens L14 having a convex surface facing the object side. And a negative meniscus lens L15 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と両凹形状の負レンズL22との接合レンズからなる。   The second lens group G2 includes, in order from the object side, a cemented lens of a biconvex positive lens L21 and a biconcave negative lens L22.

第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と像側に凸面を向けた負メニスカスレンズL32との接合レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズと、両凹形状の負レンズL35と、両凸形状の正レンズL36と、両凸形状の正レンズL37と両凹形状の負レンズL38との接合レンズとからなる。   The third lens group G3 includes, in order from the object side, a cemented lens of a biconvex positive lens L31 and a negative meniscus lens L32 having a convex surface facing the image side, a biconvex positive lens L33, and a biconcave negative lens. The lens includes a cemented lens with the lens L34, a biconcave negative lens L35, a biconvex positive lens L36, and a cemented lens with a biconvex positive lens L37 and a biconcave negative lens L38.

以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なおこのとき、開口絞りSの位置は固定である。   Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. At this time, the position of the aperture stop S is fixed.

以下の表1に、本実施例に係る光学系の諸元の値を掲げる。
表1において、fは焦点距離、Bfはバックフォーカス(フィルタFLと像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。また、空気の屈折率nd=1.000000の記載は省略している。
Table 1 below lists values of specifications of the optical system according to the present example.
In Table 1, f represents the focal length, and Bf represents the back focus (distance on the optical axis between the filter FL and the image plane I).
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface), and nd is The refractive index for d-line (wavelength 587.6 nm) and νd indicate the Abbe number for d-line (wavelength 587.6 nm), respectively. Further, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. Further, the description of the refractive index nd of air = 1.000000 is omitted.

[各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは本実施例に係る光学系の全長(第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、d0は物体から第1面までの距離を示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る光学系の各条件式の対応値を示す。
In [various data], FNO is the F number, 2ω is the angle of view (unit is “°”), Y is the image height, TL is the total length of the optical system according to the present embodiment (light from the first surface to the image surface I). (Distance on the axis), dn indicates a variable distance between the nth surface and the (n + 1) th surface, respectively. D0 represents the distance from the object to the first surface.
[Lens Group Data] indicates the start surface and focal length of each lens group.
[Conditional Expression Corresponding Value] indicates the corresponding value of each conditional expression of the optical system according to the present example.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する第2実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
It should be noted that the symbols in Table 1 described above are similarly used in the table of the second embodiment described later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞ ∞

1 302.14500 16.85 1.487490 70.23
2 -439.42600 22.74
3 133.92100 23.10 1.433852 95.25
4 -348.06100 0.13
5 -339.36700 4.30 1.654115 39.68
6 236.14600 29.16
7 86.12631 15.28 1.433852 95.25
8 453.19705 1.00
9 64.22992 6.00 1.487490 70.23
10 49.79096 可変

11 34715.64768 6.72 1.808095 22.76
12 -144.21954 2.60 1.806100 40.73
13 113.05265 可変

14(絞りS) ∞ 2.04

15 189.75235 8.07 1.772499 49.60
16 -52.45473 2.05 1.805181 25.42
17 -187.07175 7.19493
18 99.24296 4.48 1.846660 23.78
19 -66.09200 1.71 1.729157 54.68
20 52.13050 4.41
21 -85.48867 1.63 1.834807 42.71
22 98.25325 3.16912
23 239.50429 4.56 1.772499 49.60
24 -101.28666 10.16
25 57.14434 8.29 1.654115 39.68
26 -80.45881 1.91 1.808095 22.76
27 128.05547 5.29

28 ∞ 2.20 1.516330 61.14
29 ∞ Bf

像面 ∞

[各種データ]
f 392.03583
FNO 2.90849
2ω 6.31
Y 21.63
TL 371.860
Bf 64.31159

無限遠物体合焦時 近距離物体合焦時
d0 ∞ 11833.2398
d10 27.542 31.61252
d13 84.94299 80.87247

[レンズ群データ]
群 始面 f
1 1 204.000
2 11 -141.000
3 15 384.031

[条件式対応値]
(1) f1/f = 0.520
(2) β23 = 0.943
(3) |fL23|/f = 259.629
(4) fL1/f = 0.944
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞ ∞

1 302.14500 16.85 1.487490 70.23
2 -439.42600 22.74
3 133.92100 23.10 1.433852 95.25
4 -348.06 100 0.13
5 -339.36700 4.30 1.654115 39.68
6 236.14600 29.16
7 86.12631 15.28 1.433852 95.25
8 453.19705 1.00
9 64.22992 6.00 1.487490 70.23
10 49.79096 Variable

11 34715.64768 6.72 1.808095 22.76
12 -144.21954 2.60 1.806100 40.73
13 113.05265 Variable

14 (Aperture S) ∞ 2.04

15 189.75235 8.07 1.772499 49.60
16 -52.45473 2.05 1.805181 25.42
17 -187.07175 7.19493
18 99.24296 4.48 1.846660 23.78
19 -66.09200 1.71 1.729157 54.68
20 52.13050 4.41
21 -85.48867 1.63 1.834807 42.71
22 98.25325 3.16912
23 239.50429 4.56 1.772499 49.60
24 -101.28666 10.16
25 57.14434 8.29 1.654115 39.68
26 -80.45881 1.91 1.808095 22.76
27 128.05547 5.29

28 ∞ 2.20 1.516330 61.14
29 ∞ Bf

Image plane ∞

[Various data]
f 392.03583
FNO 2.90849
2ω 6.31
Y 21.63
TL 371.860
Bf 64.31159

When focusing on an object at infinity When focusing on a near object d0 ∞ 11833.2398
d10 27.542 31.61252
d13 84.94299 80.87247

[Lens group data]
Group start surface f
1 1 204.000
2 11 -141.000
3 15 384.031

[Conditional expression values]
(1) f1 / f = 0.520
(2) β23 = 0.943
(3) | fL23 | /f=259.629
(4) fL1 / f = 0.944

図2(a)、及び図2(b)はそれぞれ、本願の第1実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
各収差図において、FNOはFナンバー、NAは開口数、Yは像高、Aは半画角(単位は「°」)、H0は物体高(単位は「mm」)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)、FはF線(波長486.1nm)、CはC線(波長656.3nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する第2実施例の収差図においても、本実施例と同様の符号を用いる。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時及び近距離物体合焦時に諸収差を良好に補正し、優れた結像性能を有していることがわかる。
FIGS. 2A and 2B are graphs showing various aberrations when the optical system according to Example 1 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
In each aberration diagram, FNO is the F number, NA is the numerical aperture, Y is the image height, A is the half field angle (unit is “°”), and H0 is the object height (unit is “mm”). d represents the d-line (wavelength 587.6 nm), g represents the g-line (wavelength 435.8 nm), F represents the F-line (wavelength 486.1 nm), and C represents the C-line (wavelength 656.3 nm) aberration. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the aberration diagrams of the second embodiment described later, the same reference numerals as in this embodiment are used.
From each aberration diagram, it can be seen that the optical system according to the present example has excellent imaging performance by properly correcting various aberrations when focusing on an object at infinity and focusing on a short distance object.

(第2実施例)
図3は、本願の第2実施例に係る光学系の無限遠物体合焦時のレンズ配置を示す断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。なお、第3レンズ群G3の物体側近傍には開口絞りSが備えられており、第3レンズ群G3と像面Iとの間にはフィルタFLが備えられている。
(Second embodiment)
FIG. 3 is a cross-sectional view showing the lens arrangement at the time of focusing on an object at infinity of the optical system according to the second example of the present application.
The optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. And G3. An aperture stop S is provided near the object side of the third lens group G3, and a filter FL is provided between the third lens group G3 and the image plane I.

第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14と、物体側に凸面を向けた正メニスカスレンズL15とからなる。   The first lens group G1 includes, in order from the object side, a biconvex positive lens L11, a biconvex positive lens L12, a biconcave negative lens L13, and a negative meniscus lens L14 having a convex surface facing the object side. And a positive meniscus lens L15 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、像側に凸面を向けた正メニスカスレンズL22と両凹形状の負レンズL23との接合レンズとからなる。   The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, and a cemented lens of a positive meniscus lens L22 having a convex surface facing the image side and a biconcave negative lens L23.

第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、像側に凸面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズと、両凸形状の正レンズL35とからなる。   The third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 having a convex surface directed toward the image side, a biconvex positive lens L33, and a biconcave negative lens L34. And a biconvex positive lens L35.

以上の構成の下、本実施例に係る光学系では、第2レンズ群G2を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。なおこのとき、開口絞りSの位置は固定である。
以下の表2に、本実施例に係る光学系の諸元の値を掲げる。
Under the above configuration, in the optical system according to the present embodiment, the second lens group G2 is moved to the image side along the optical axis, thereby focusing from an object at infinity to a near object. At this time, the position of the aperture stop S is fixed.
Table 2 below lists values of specifications of the optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞ ∞

1 209.14115 17.50 1.433843 95.27
2 -1073.44852 44.90
3 174.31781 18.00 1.433843 95.27
4 -405.00000 3.07
5 -363.67644 6.00 1.612660 44.46
6 360.68580 92.00
7 64.20083 4.00 1.794997 45.32
8 44.77971 16.00 1.497820 82.54
9 1030.28230 可変

10 -701.18723 2.50 1.772499 49.68
11 90.06629 3.35
12 -272.30521 3.50 1.846679 23.83
13 -76.50824 2.40 1.518229 58.84
14 65.07236 可変

15(絞りS) ∞ 1.50

16 8886.02258 6.00 1.487490 70.44
17 -57.39587 1.20
18 -67.18402 1.90 1.846679 23.83
19 -142.88620 2.00
20 4533.20909 3.50 1.846679 23.83
21 -297.57132 1.90 1.593190 67.94
22 174.48827 2.00
23 130.81019 3.50 1.772499 49.68
24 -385.74895 3.00
25 ∞ 1.50 1.516800 63.88
26 ∞ Bf

像面 ∞

[各種データ]
f 385.4708
FNO 2.84547
2ω 6.42
Y 21.63
TL 392.979
Bf 95.07718

無限遠物体合焦時 近距離物体合焦時
d0 ∞ 11705.085
d9 18.50291 21.34351
d14 38.17937 35.33878

[レンズ群データ]
群 始面 f
1 1 175.073
2 10 -59.179
3 16 135.150

[条件式対応値]
(1) f1/f = 0.454
(2) β23 = 0.872
(3) |fL23|/f = 8.712
(4) fL1/f = 1.051
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞ ∞

1 209.14115 17.50 1.433843 95.27
2 -1073.44852 44.90
3 174.31781 18.00 1.433843 95.27
4 -405.00000 3.07
5 -363.67644 6.00 1.612660 44.46
6 360.68580 92.00
7 64.20083 4.00 1.794997 45.32
8 44.77971 16.00 1.497820 82.54
9 1030.28230 Variable

10 -701.18723 2.50 1.772499 49.68
11 90.06629 3.35
12 -272.30521 3.50 1.846679 23.83
13 -76.50824 2.40 1.518229 58.84
14 65.07236 Variable

15 (Aperture S) ∞ 1.50

16 8886.02258 6.00 1.487490 70.44
17 -57.39587 1.20
18 -67.18402 1.90 1.846679 23.83
19 -142.88620 2.00
20 4533.20909 3.50 1.846679 23.83
21 -297.57132 1.90 1.593190 67.94
22 174.48827 2.00
23 130.81019 3.50 1.772499 49.68
24 -385.74895 3.00
25 ∞ 1.50 1.516800 63.88
26 ∞ Bf

Image plane ∞

[Various data]
f 385.4708
FNO 2.84547
2ω 6.42
Y 21.63
TL 392.979
Bf 95.07718

When focusing on an object at infinity When focusing on a near object d0 ∞ 11705.085
d9 18.50291 21.34351
d14 38.17937 35.33878

[Lens group data]
Group start surface f
1 1 175.073
2 10 -59.179
3 16 135.150

[Conditional expression values]
(1) f1 / f = 0.454
(2) β23 = 0.872
(3) | fL23 | /f=8.712
(4) fL1 / f = 1.051

図4(a)、及び図4(b)はそれぞれ、本願の第2実施例に係る光学系の無限遠物体合焦時、及び近距離物体合焦時の諸収差図である。
各収差図より、本実施例に係る光学系は、無限遠物体合焦時及び近距離物体合焦時に諸収差を良好に補正し、優れた結像性能を有していることがわかる。
FIGS. 4A and 4B are graphs showing various aberrations when the optical system according to Example 2 of the present application is focused on an object at infinity and focused on a short distance object, respectively.
From each aberration diagram, it can be seen that the optical system according to the present example has excellent imaging performance by properly correcting various aberrations when focusing on an object at infinity and focusing on a short distance object.

上記各実施例によれば、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有する光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の光学系の光学性能を損なわない範囲で適宜採用することが可能である。   According to each of the above embodiments, it is possible to realize an optical system that achieves weight reduction, suppresses aberration fluctuations during focusing, and has excellent optical performance. In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be appropriately adopted as long as the optical performance of the optical system of the present application is not impaired.

本願の光学系の数値実施例として3群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、4群や5群等)の光学系を構成することもできる。具体的には、本願の光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。   Although a three-group configuration is shown as a numerical example of the optical system of the present application, the present application is not limited to this, and an optical system of another group configuration (for example, the fourth group or the fifth group) can also be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the optical system of the present application may be used.

また、本願の光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   Further, the optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group in order to perform focusing from an object at infinity to a near object in the optical axis direction. It is good also as a structure moved to. In particular, it is preferable that at least a part of the second lens group is a focusing lens group. Such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor such as an ultrasonic motor.

また、本願の光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。特に、本願の光学系では第3レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the optical system of the present application, either the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component in a direction perpendicular to the optical axis, or an in-plane direction including the optical axis It can also be set as the structure which carries out anti-vibration by carrying out rotational movement (oscillation) to (F). In particular, in the optical system of the present application, it is preferable that at least a part of the third lens group is an anti-vibration lens group.

また、本願の光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の光学系において開口絞りは第3レンズ群の物体側の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。   In the optical system of the present application, the aperture stop is preferably arranged in the vicinity of the object side of the third lens group, and the role may be substituted by a lens frame without providing a member as the aperture stop.

また、本願の光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。   Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の光学系を備えたカメラを図5に基づいて説明する。
図5は、本願の光学系を備えたカメラの構成を示す図である。
本カメラ1は、撮影レンズ2として上記第1実施例に係る光学系を備えたレンズ交換式のデジタル一眼レフカメラである。
本カメラ1において、被写体である不図示の物体からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera equipped with the optical system of the present application will be described with reference to FIG.
FIG. 5 is a diagram illustrating a configuration of a camera including the optical system of the present application.
The camera 1 is a lens-interchangeable digital single-lens reflex camera provided with the optical system according to the first embodiment as the photographing lens 2.
In the present camera 1, light from an object (not shown) that is a subject is collected by the photographing lens 2 and imaged on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る光学系は、上述のように、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有している。即ち本カメラ1は、合焦時の収差変動を抑え、高性能化と軽量化を実現することができる。なお、上記第2実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, as described above, the optical system according to the first example mounted on the camera 1 as the photographing lens 2 is light in weight, suppresses aberration fluctuation at the time of focusing, and has excellent optical performance. ing. That is, this camera 1 can suppress aberration fluctuations during focusing, and can realize high performance and light weight. Even if the camera having the optical system according to the second embodiment mounted as the taking lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effect as the camera 1 can be obtained.

最後に、本願の光学系の製造方法の概略を図6に基づいて説明する。
図6は、本願の光学系の製造方法の概略を示す図である。
図6に示す本願の光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する光学系の製造方法であって、以下のステップS1〜S3を含むものである。
Finally, the outline of the manufacturing method of the optical system of this application is demonstrated based on FIG.
FIG. 6 is a diagram showing an outline of the manufacturing method of the optical system of the present application.
The optical system manufacturing method shown in FIG. 6 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. A manufacturing method of an optical system having a lens group, which includes the following steps S1 to S3.

ステップS1:第1〜第3レンズ群を準備し、第1レンズ群が、物体側から順に、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを有するようにする。そして、各レンズ群を鏡筒内に物体側から順に配置する。   Step S1: First to third lens groups are prepared, and the first lens group includes, in order from the object side, a first lens having a positive refractive power, a second lens having a positive refractive power, and negative refraction. A third lens having power. Then, each lens group is arranged in the lens barrel in order from the object side.

ステップS2:公知の移動機構を鏡筒に設けることにより、無限遠物体から近距離物体への合焦時に、第2レンズ群が光軸に沿って移動するようにする。   Step S2: A known moving mechanism is provided on the lens barrel so that the second lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance.

ステップS3:光学系が以下の条件式(1)、(2)を満足するようにする。
(1) 0.380<f1/f<0.526
(2) 0.600<β23<0.960
ただし、
f1:第1レンズ群の焦点距離
f:光学系の焦点距離
β23:無限遠物体合焦時の第2レンズと第3レンズの合成横倍率
Step S3: The optical system is made to satisfy the following conditional expressions (1) and (2).
(1) 0.380 <f1 / f <0.526
(2) 0.600 <β23 <0.960
However,
f1: focal length of the first lens group f: focal length of the optical system β23: combined lateral magnification of the second lens and the third lens when an object at infinity is in focus

斯かる本願の光学系の製造方法によれば、軽量化を図り、合焦時の収差変動を抑え、優れた光学性能を有する光学系を製造することができる。   According to such an optical system manufacturing method of the present application, it is possible to reduce the weight, suppress aberration fluctuations during focusing, and manufacture an optical system having excellent optical performance.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
FL フィルタ
S 開口絞り
I 像面
G1 First lens group G2 Second lens group G3 Third lens group FL Filter S Aperture stop I Image surface

Claims (5)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とにより、実質的に3個のレンズ群からなり
前記第1レンズ群が、物体側から順に、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを有し、
無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、隣り合うレンズ群同士の間隔が変化し、
以下の条件式を満足することを特徴とする光学系。
0.380<f1/f<0.526
0.800<β23<0.960
0.80<fL1/f<1.50
ただし、
f1:前記第1レンズ群の焦点距離
f:前記光学系の焦点距離
β23:無限遠物体合焦時の前記第2レンズと前記第3レンズの合成横倍率
fL1:前記第1レンズの焦点距離
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the third lens group having a positive refractive power are substantially three lens groups. Consists of
The first lens group includes, in order from the object side, a first lens having a positive refractive power, a second lens having a positive refractive power, and a third lens having a negative refractive power,
When focusing from an infinite object to a close object, the second lens group moves along the optical axis, and the interval between adjacent lens groups changes,
An optical system satisfying the following conditional expression:
0.380 <f1 / f <0.526
0.800 <β23 <0.960
0.80 <fL1 / f <1.50
However,
f1: Focal length of the first lens group f: Focal length of the optical system β23: Composite lateral magnification of the second lens and the third lens when an object at infinity is in focus
fL1: Focal length of the first lens
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とにより、実質的に3個のレンズ群からなり
前記第1レンズ群が、物体側から順に、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを有し、
無限遠物体から近距離物体への合焦時に、前記第2レンズ群が光軸に沿って移動し、隣り合うレンズ群同士の間隔が変化し、
以下の条件式を満足することを特徴とする光学系。
0.450<f1/f<0.526
0.600<β23<0.960
8.00<|fL23|/f
ただし、
f1:前記第1レンズ群の焦点距離
f:前記光学系の焦点距離
β23:無限遠物体合焦時の前記第2レンズと前記第3レンズの合成横倍率
fL23:前記第2レンズと前記第3レンズの合成焦点距離
In order from the object side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the third lens group having a positive refractive power are substantially three lens groups. Consists of
The first lens group includes, in order from the object side, a first lens having a positive refractive power, a second lens having a positive refractive power, and a third lens having a negative refractive power,
When focusing from an infinite object to a close object, the second lens group moves along the optical axis, and the interval between adjacent lens groups changes,
An optical system satisfying the following conditional expression:
0.450 <f1 / f <0.526
0.600 <β23 <0.960
8.00 <| fL23 | / f
However,
f1: Focal length of the first lens group f: Focal length of the optical system β23: Composite lateral magnification of the second lens and the third lens when an object at infinity is in focus
fL23: Composite focal length of the second lens and the third lens
以下の条件式を満足することを特徴とする請求項1に記載の光学系。
1.00<|fL23|/f
ただし、
fL23:前記第2レンズと前記第3レンズの合成焦点距離
f:前記光学系の焦点距離
The optical system according to claim 1, wherein the following conditional expression is satisfied.
1.00 <| fL23 | / f
However,
fL23: Composite focal length of the second lens and the third lens f: Focal length of the optical system
以下の条件式を満足することを特徴とする請求項2に記載の光学系。
0.70<fL1/f<1.50
ただし、
fL1:前記第1レンズの焦点距離
f:前記光学系の焦点距離
The optical system according to claim 2 , wherein the following conditional expression is satisfied.
0.70 <fL1 / f <1.50
However,
fL1: Focal length of the first lens f: Focal length of the optical system
請求項1から請求項のいずれか一項に記載の光学系を有することを特徴とする光学装置。 An optical apparatus comprising the optical system according to any one of claims 1 to 4 .
JP2014099626A 2014-05-13 2014-05-13 Optical system, optical device Active JP6331673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099626A JP6331673B2 (en) 2014-05-13 2014-05-13 Optical system, optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099626A JP6331673B2 (en) 2014-05-13 2014-05-13 Optical system, optical device

Publications (2)

Publication Number Publication Date
JP2015215561A JP2015215561A (en) 2015-12-03
JP6331673B2 true JP6331673B2 (en) 2018-05-30

Family

ID=54752481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099626A Active JP6331673B2 (en) 2014-05-13 2014-05-13 Optical system, optical device

Country Status (1)

Country Link
JP (1) JP6331673B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452645B2 (en) 2016-06-01 2019-01-16 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6381582B2 (en) 2016-06-01 2018-08-29 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6452646B2 (en) 2016-06-01 2019-01-16 キヤノン株式会社 Optical system and imaging apparatus having the same
JP7005312B2 (en) 2017-11-20 2022-01-21 キヤノン株式会社 Optical system and an image pickup device having it
JP7000138B2 (en) 2017-11-30 2022-01-19 キヤノン株式会社 Optical system and an image pickup device having it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858305B2 (en) * 1996-06-03 2006-12-13 株式会社ニコン Image position correction optical system
JP5768522B2 (en) * 2011-06-16 2015-08-26 株式会社ニコン Telephoto lens, optical apparatus, and telephoto lens manufacturing method
JP5912788B2 (en) * 2012-04-09 2016-04-27 株式会社シグマ Imaging optics

Also Published As

Publication number Publication date
JP2015215561A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5126668B2 (en) Photographic lens, optical device including the same, and image blur correction method
JP6539939B2 (en) Shooting lens and optical device
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5246226B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP6331673B2 (en) Optical system, optical device
JP6331286B2 (en) Photography lens and optical device
JP6344044B2 (en) Optical system, optical device
JP2015215557A (en) Optical system, optical device, and method for manufacturing the optical system
JP2017107067A (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP5958018B2 (en) Zoom lens, imaging device
JP5768522B2 (en) Telephoto lens, optical apparatus, and telephoto lens manufacturing method
JP6361088B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS
JP2016156941A (en) Lens system, optical device, and method for manufacturing lens system
JP5904015B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD FOR PHOTOGRAPHIC LENS
JP5867294B2 (en) PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD
JP6264916B2 (en) Optical system, optical device
JP6264914B2 (en) Optical system, optical device
JP6264915B2 (en) Optical system, optical device
WO2016104793A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP6492416B2 (en) Optical system, optical device
JP6364778B2 (en) Optical system, optical device
JP6405629B2 (en) Optical system, optical device
JP6405630B2 (en) Optical system, optical device
JP6543883B2 (en) Optical system, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250