JP6272267B2 - 電動アクチュエータにおけるトルク検出装置 - Google Patents

電動アクチュエータにおけるトルク検出装置 Download PDF

Info

Publication number
JP6272267B2
JP6272267B2 JP2015084356A JP2015084356A JP6272267B2 JP 6272267 B2 JP6272267 B2 JP 6272267B2 JP 2015084356 A JP2015084356 A JP 2015084356A JP 2015084356 A JP2015084356 A JP 2015084356A JP 6272267 B2 JP6272267 B2 JP 6272267B2
Authority
JP
Japan
Prior art keywords
strain
torque
value
circuit
worm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015084356A
Other languages
English (en)
Other versions
JP2016205861A (ja
Inventor
角田 智明
智明 角田
絵里香 橋本
絵里香 橋本
Original Assignee
日本ギア工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ギア工業株式会社 filed Critical 日本ギア工業株式会社
Priority to JP2015084356A priority Critical patent/JP6272267B2/ja
Publication of JP2016205861A publication Critical patent/JP2016205861A/ja
Application granted granted Critical
Publication of JP6272267B2 publication Critical patent/JP6272267B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indication Of The Valve Opening Or Closing Status (AREA)

Description

本発明は、被駆動体の駆動操作時に、要求された駆動操作を確実に実行して終了するようにした、冗長性の高い電動アクチュエータを提供するためのトルク検出装置に関する。
化学プラントや発電所、特に原子力発電所に使用される電動アクチュエータには、駆動操作を要する被駆動体に応じて、駆動出力の制御を要するものがあり、その駆動出力を検出するには、動力伝達系の途中に、駆動力を検出するセンサが設けられており、このセンサには、冗長性の高い運用信頼性が要求され、弁装置を特化して駆動するバルブアクチュエータは、その最たるものである。
例えば、弁装置を被駆動体として電動駆動するには、弁装置を電気的に駆動する電動アクチュエータの電気的かつ機械的な健全性の確保が不可欠であり、その為に保守点検によって信頼性を高めておく必要がある。
しかし、化学プラント等においては、弁装置の取付位置が高所や、配管の陰であって、アクセスが困難であったり、原子力発電所においては、弁装置が原子炉格納容器内に設置されるものについては、放射線が人体に及ぼす影響のために、被爆線量が制限され、分解点検や作業時間に制限を生じたりして、人手による定期的な高信頼度の保守点検は事実上困難な状況にある。
そのために、弁装置やアクチュエータを分解することなく、機能等の健全性を診断することが試みられ、また一部のものについては、分解点検を省略したり、点検間隔を延長可能とするなどして、一定の成果を挙げている。
特許文献1は、上述の弁や弁駆動装置の機能診断を行うには、数多くのセンサを取り付ける必要があり、その課題を解決するためになされたものである。
特許文献2は、特許文献1による検査装置に代わり、プラントや発電所の運転を停止することなく、弁や弁駆動装置の定常運転において機能診断を行うための
データを採取する負荷連続検出装置である。
特許文献3及び特許文献4は、特許文献2に示すようなトルクセンサによって、弁の開閉状態の負荷トルクを常時検出してそれを記録し、その記録データに基づき、特許文献1と同様な検査を、プラントや発電施設の運転を停止することなく行うものである。
特許文献5には、歪みゲージをセンサとする複数のブリッジ回路の出力特性を揃える手段が開示されている。
特開平09−015099号公報 特開2003−194671号公報 特開2003−161661号公報 特開2012−180936号公報 特開2012−247335号公報
電動モータを使用して被駆動体、例えば弁装置を開閉駆動する従来の装置(以下電動バルブアクチュエータと略称する)は、特許文献1〜4に示す如く、弁体を駆動する機構と連動したウォームホイールに噛合させたウォームの負荷トルクを、ウォームの軸線方向への移動量に変換し、その移動量を、メカニカルなリミットスイッチによって、ウォームの軸線に加わるトルク量を弁別し、弁の全閉時点のシート圧、及び弁全開時のステム抵抗を検出すると共に、弁の全開から全閉までのウォーム軸の回転量を、歯車式回転計数機構を用いて計測し、その計測した回転量を弁の開閉度合として、弁開度表示手段に表示している。
また、特許文献2〜4には、電子式トルクセンサ付きバルブアクチュエータが開示され、上記従来のバルブアクチュエータにおいては、電動動力源(電動モータ)と弁体が、歯車機構により直結的に連結した状態で、ウォームに加わる反力を、ばね機構を介してウォームの軸線方向への移動と釣り合わせて、その移動量をトルクに換算して、歯車機構と直結的に連結したリミットスイッチ(以下トルクスイッチと略称する)をもって、弁体の駆動機構に加わる負荷を検出して、弁の全閉位置及び全開位置の力加減を、メカニカルリミットスイッチを使用したシーケンス制御によって、電動駆動弁の開閉制御を行っている。
このメカニカルリミットスイッチを用いたトルク制御は、弁の開度とメカニカルに機構的直結結合していることをもって、高信頼性とするため、特許文献2〜4においても、電子的トルク制御と併用されている。
しかし、機械的スイッチ構造によるメカニカルリミットスイッチは、制御機構の構造が複雑で、可動部品や可動接点の数も多く、メカニカルリミット動作を行わせるための接点機構の調整値や動作点の長期維持も困難であり、特に部品に不都合を生じた際には、保安作業員による直接的保守作業によらなければ、故障の復旧作業と長期間の安定動作を望めない課題がある。
さらに、このメカニカルリミットスイッチによるトルクスイッチを採用すると、ウォームの動きを検出するための機械伝達機構の部品点数が増大して、トルク値に応じて軸線方向に可動するウォーム軸周りの構造が繁雑となり、かつそれらの機構部品を収納するために、本体を構成するケーシングの容積が大きくなり、かつ各部品の保守点検を容易にして各部品を収納し、しかも防爆基準を満たしたケーシングの構造が複雑化する。
機械的連結を主とする可動部品の増大は、経時変化に伴う磨耗や腐食により、経時的に故障率を増大して、長期間安定した動作を要求する化学プラントや原子力発電所などの電動バルブアクチュエータには、保守点検を長期間不要とする要求に対して、多くの課題を生じる。
一方、特許文献3、4に示すように、電子制御式バルブアクチュエータにおいても、機械的リミットスイッチによるメカニカルトルクスイッチをそのまま採用し、かつトルク値に応動するウォームの軸線方向に加わる反力を、ウォーム軸の移動によってロードセル(以下トルクセンサと称する)で測定し、その測定値をデジタルに変換して、データロガーもしくはデジタルコントローラーのメモリーに保存して、電動駆動弁の弁開閉時の挙動データを収集し、そのデータを用いて弁開閉の最適制御を行ったり、確実な弁開閉の予測診断や保守点検の必要時期を予測したりしている。
しかしながら、従来のウォーム軸を多数の板ばねに抗させて移動させる方式のトルクセンサに依存する電子制御は、部品点数が多くなると共に、各可動部品間の摩擦による磨耗や損傷を生じやすく、電子的検出値の再現性や安定性に課題があり、全面的に信頼を寄せ難く、その為め、弁の開閉と直結したメカニカルトルクスイッチと併用して、信頼性を見かけ上高めているが、メカニカルトルクスイッチを、信頼度を得るためだけに使用するには、前述の如く、煩雑さや部品点数の多さに、多くの課題を残している。
また、従来のウォーム軸を軸線方向に大きく移動させるトルクセンサは、板ばねを挟んで起歪体を歪ませているため、力伝達部分に部品点数が多くなり、そのため不規則で不安定な力伝達点も多数介在し、それらの部分の磨耗や変質、錆や油ぎれによる摩擦抵抗の変化、板ばねのばね常数の経時変化、並びにウォーム軸の板ばね部分を分解保守点検後に再組み立てした後の、前記摩擦抵抗やばね定数の再現性に課題があり、長期間安定した信頼性を得ることができなく、将来の確実な動作を保証する根據を得ることもできない課題がある。
さらに弁装置の特徴として、弁装置の開閉動作のインターバルが非常に長いことが上げられ、その間隔が1年〜2年は希ではなく、前回は支障のない弁開閉動作を行ったとしても、これを根據にして、1〜2年後に前回と同様に確実な動作を行なう保障はない。このように、稼働間隔の長い場合には、特許文献2、4のように、稼働中のデータから次の稼働状況を予測するには、電気的部品やセンサの健全性が不確定であり、前回の動作データに基づいて、動作保証を行うには、電気回路やセンサの健全性に課題がある。
一方、上述のバルブアクチュエータと動力伝達構造を同じくするスクリュージャッキにトルクセンサを設けた電動アクチュエータは、被駆動体を特定しない汎用仕様の多目的タイプとして使用され、この場合には、被駆動体として、門扉、堰、ゲート、床、天井等、動作頻度も様々な対象物を電動駆動する。
上記、弁装置に特化したバルブアクチュエータ、スクリュージャッキ型の汎用アクチュエータにおいて、電子的に負荷トルクを検出するトルクセンサには、薄膜状の歪みゲージが使用され、この歪みゲージの腐食や変質は、長時間かけて進行するため、前回の健全動作が、長時間経過後の次回の健全動作を保証しない。
このことから、弁装置においては、本来は電子式のトルクセンサのみで、電動弁の開閉制御を高精度に制御することは可能であるが、現在の化学プラントや原子力発電所に適用される電動弁は、開閉動作の要求があった場合には、絶対に故障してはならないとする、冗長度の高い信頼性が要求されるので、弁装置を動作させることについては冗長性の勝るメカニカルリミットスイッチを省くことができないのが現状である。
メカニカルリミットスイッチを省いた、全電動式バルブアクチュエータは、可動機構部品が少ないので、機械部分の故障率が低く、油差しや部品交換等の人為的保守点検を要しない為、今後の化学プラントなどの遠隔操作に適用される。
すなわち、今後、各種プラントに設置される電動アクチュエータ付きの弁装置についても、その作動状態等を集中的に検査したり、監視したりしうるようにした制御システムが考えられる。これは、弁装置を開閉駆動する電動アクチュエータの制御を、通信回線により行うようになるからである。
この通信回線は、電動アクチュエータに設けた弁開閉検出手段における弁開閉度検出部で検出した弁開閉度信号を含む各種制御信号を、所用のネットワークトポロジーを適用して、外部の集中監視制御装置に送信して、集中監視制御装置との間の信号のやり取りを行うネットワーク型の通信システムのことであり、この通信回線によって、複数の電動アクチュエータを外部から集中的に監視・制御したり、複数の動力駆動バルブの作動状況を集中的に管理したり、また複数のバルブの開閉を同期制御したりすることができる。
このような集中監視制御装置を介して、個々のアクチュエータを集中管理制御する際、特に複数のバルブの開閉状態を同期制御する場合に、各アクチュエータの作動の冗長性が低いと、何れかのアクチュエータが故障して動作しない場合に、その故障しているアクチュエータと同期して作動する他のアクチュエータは、その時点で同期動作が不可能になるとともに、1台の不具合が連鎖的に波及して、制御系全体が制御不能に陥る課題がある。
また、上記したように、電動アクチュエータには、弁装置の他、門扉や仕切りゲート、水路の堰等を駆動体とする多目的のスクリュージャッキ型のアクチュエータがあり、これらにも、電気的に駆動力を検出するセンサにより、駆動中の出力トルク(入力回転軸側)を計測して、全開、全閉のタイミングを検出したり、駆動終了時の保持力、加圧力を計測する。
この際にも、電動アクチュエータの駆動に係る冗長性を高く保つことが望まれる。
本発明は、上記問題点に鑑みてなされたもので、トルク制御に係る機構部品を極力少なくして故障率の改善を図り、電気制御に係るセンサ周辺の信頼性を高めると共に、電子計測部位の稼働の冗長性を高めて、全電子式の電動アクチュエータの完動動作確率の向上を図り、もって通信回線を介して繋がる多数の被駆動体を、それぞれを個々に、又は被駆動体同士の駆動タイミングや開閉状態の同期を取りながら、安全にかつ確実に被駆動体の動作を制御して、保守点検作業を低減しながら信頼性の高い被駆動体の駆動制御ネットワークを構築することを可能にする。
本発明によると、上記課題は、次のようにして解決される。
(1)モータにより回転させられ、かつケーシングに対して軸方向に摺動可能として支持したウォームをもって被駆動体を駆動させるようにし、かつ前記ウォームの軸線方向と直交するとともに、前記ウォームの軸線方向の送りに基づく推力を受けるようにして前記ケーシングに設けた起歪体に歪みゲージを取付け、この起歪体の変形に伴う歪みゲージの抵抗変化によって、前記被駆動体の駆動トルクを検出するようにした電動アクチュエータにおけるトルク検出装置において、
前記起歪体の中心に対して、互いに同一構造の歪みゲージ群を、円周方向に複数組配設し、各組の歪みゲージ群を、それぞれ専用の抵抗値検出回路に接続し、前記各抵抗値検出回路の出力値を、健全性検出処理手段において健全性を保つと見なせる値と比較して、許容値を超えて異なる値を出力する抵抗値検出回路を不健全回路として検出し、その不健全回路を除く残りの抵抗値検出回路の出力値を用いて、前記駆動体の駆動トルクを検出する。
このような構成とすると、起歪体に設けた複数の歪みゲージ群の健全性を、トルク検出用のブリッジ回路を構成している複数のハーフブリッジからなる複数の抵抗値検出回路をもって、健全性検出処理手段が検出し、それらの検出は、互いに健全性検出処理手段において、起歪体に加わる力の大きさに関わりなく、いつでも、いかなる状況においても、瞬時に比較され、その際に、許容値を超える不健全な回路が検出されると、健全性検出処理手段は、その検出された不健全回路を含まないトルク検出用のブリッジ回路を選択又は構成することができ、これにより、トルク検出ブリッジ回路の稼働の冗長性を高めて、いついかなる状況下においても、制御を継続する確率を高めた、電動バルブアクチュエータを提供することができる。
(2)上記(1)項において、複数組の互いに同一構造の歪みゲージ群が、起歪体における円型起歪溝の外周と内周に沿った1対の歪みゲージを、互いに直列接続してハーフブリッジを形成した複数組の歪みゲージである。
このような構成とすると、円型起歪溝の外周と内周に沿った1対の歪みゲージが、円型起歪溝内に生じる歪みの影響を、互いに逆相に受けて、ブリッジ回路もしくは疑似ブリッジ回路を構成したときに、出力感度を増大するとともに、外周と内周に沿ってそれぞれに列べた歪みゲージ同士は、軸線方向にのみ移動可能なシリンダを介して押圧される起歪体の円型起歪溝内で歪みを受けるため、円周方向に列ぶ各歪みゲージは、均等に押圧力の歪みの影響を受け、それらは互いに互換性の高い歪みゲージを形成しているため、複数のハーフブリッジの組み合わせの自在性が高くなり、もって冗長性の高いトルクセンサを容易に構成することができる。
(3)上記(1)項又は(2)項いずれかにおいて、抵抗値検出回路が、円型起歪溝の外周と内周に沿った1対の歪みゲージを直列接続してなるハーフブリッジと、そのハーフブリッジの直列接続点の電圧を検出する電圧フォロア回路である。
このような構成とすると、同一構造のハーフブリッジ回路1対を、互いに電源極性を異なえた1対のハーフブリッジ回路として組み合わせることにより、互いの直列接続点の電圧を検出する電圧フォロア回路出力信号から、他の電気回路に影響を与えることなく、容易に高感度のトルク信号を得ることができる。
本発明によると、電動アクチュエータにおけるトルク検出装置は、被駆動装置を稼働する前、及び稼働中において、被駆動装置の駆動操作力を検出するトルクセンサの健全性を調べて、電子制御部の経時変化による不具合や、突発的な電気ショック等による故障により、被駆動装置の駆動動作が実行不能にならないように、また、不健全なトルクセンサを使用することによる、検出トルク値の不正確な値により、被駆動装置に過大な操作加重を加えないように、電子制御部の信頼性と冗長性を高めた制御を可能とした、全電子式の電動アクチュエータを提供することができる。
本発明の一実施要領を示すバルブアクチュエータのケーシングの一部を切り取って示す一部切欠正面図である。 図1に示すウォーム軸部の拡大正面図である。 図1に示すウォーム軸端部のIII−III線拡大右側面図である。 歪みセンサのフイルムシートの正面図である。 歪みセンサの電気回路図である。 図4に示す歪みセンサを起歪体に添着した状態におけるVI−VI線断面の模式図である。 本発明に係るトルク検出装置によるバルブアクチュエータの制御に係るブロック図である。 本発明に係る他の実施例のトルク検出装置による電動アクチュエータの制御に係るブロック図である。
以下、本発明に係る電動アクチュエータを、弁装置に特化したバルブアクチュエータとした場合における、トルク検出装置の一実施形態を、図1〜図7に基づいて説明する。
図1は、電動バルブアクチュエータのケーシングの一部を切り取って示す一部切欠正面図である。
電動バルブアクチュエータ1は、中央上方の手動ハンドル2の軸線方向下方において、弁装置3の弁体(図示略)に繋がるステム4を挿通したグランド5と連結している。
電動バルブアクチュエータ1の本体構造をなすケーシング6は、手動ハンドル2の下方に、中空室7を備えている。
中空室7の左方には、当該中空室7に、出力軸8の先端を突出して、その先端に歯車9を備えた電動モータ10を取り付けてある。
電動モータ10の歯車9は、その電動モータ10の出力軸8の軸線と同じくして、水平に右方に延びた、ウォーム12のウォーム軸13の左端に設けた、歯車14に噛合している。
ウォーム12は、ステム4の上下を向くの軸線に対して、ウォーム軸13の軸線を、左右水平方向にして直交し、かつステム4の軸線と同芯に設けたウォームホイール15と、互いの軸線を交叉して噛合している。
ウォーム12と一体に形成されたウォーム軸13は、電動モータ10の歯車9と噛合する歯車14と、ウォーム12の中央との間における、ほぼ中間点において、下方のケーシング6から上方に向けて突出した軸受突起16に、ラジアルベアリング17により、回転自在に支承されている。
図2に示すように、ウォーム12の左方において、ウォーム12の左端から延出した左方ウォーム軸13aの軸端部を、ラジアルベアリング17のインナー17aの右端において縮径し、その縮径軸13bをインナー17aに挿通してある。
左方ウォーム軸13aの先端には、雄ねじ13cが設けられており、雄ねじ13cの部分に歯車14をキー止めし、その歯車14とインナー17aとの間に、カラー18を挾んで、歯車14の左側から雄ねじ13cにナット19を螺合して、縮径軸13bに嵌挿した歯車14とカラー18とインナー17aを締め付け固定している。
これにより、左方ウォーム軸13aは、インナー17aとともに、ラジアルベアリング17に回転自在に枢支されている。
ラジアルベアリング17のアウター17bは、ケーシング6をなす軸受突起16の内腔に比較的緩く勘合するか、もしくは、インナー17aのベアリングがスラスト方向に緩く動ける構造のものをラジアルベアリング17として採用して、ウォーム12を軸線方向に、若干揺動できるような構造にしてある。
ウォーム軸13の右方ウォーム軸13dは、中空室7を上下に仕切るケーシング6の仕切り壁6aの下方において枢支されている。
前記伝達機構を納める中央の中空室7と、後述する電気制御基板などを納める中空室20との間には、両中空室7、20を左右に仕切る仕切り壁6aが設けてあり、その仕切り壁6aの下方に、中空室7から中空室20にかけて軸線を水平にして両室に突出する円筒壁21を設けてある。
その円筒壁21の中に、中空室7から中空室20にかけて貫通する通孔22が設けられている。
通孔22の軸線は、ウォーム軸13の軸線に合致しており、この通孔22の中に、軸線方向に摺動可能に嵌合したシリンダ23を設けてあり、そのシリンダ23は、開口部24をウォーム軸13側に向け、閉じた遊端23a側を中空室20に向けてある。
開口部24をウォーム軸13側に向けたシリンダ23は、ウォーム軸13の右方ウォーム軸13dの軸端を、回転方向には回転自在に、軸線方向には移動不能に、ラジアルスラスト軸受25を介して、開口部24に枢支されている。
シリンダ23の開口部24に設けたラジアルスラスト軸受25は、インナー25aの軸孔を通る右方ウォーム軸13dの軸端側の縮径部13eを、インナー25aの内径に合致させてインナー25aを貫通させ、そのインナー25aを貫通して反対側に突出した軸端部に雄ねじ13fを螺設し、その雄ねじ13fにナット13gを螺合して、インナー25aに軸端側の縮径部13eを締付け固定してある。
ラジアルスラスト軸受25のアウター25bは、シリンダ23の開口部24に、アウター25bの幅より若干大きい奥行きの拡径段部24aを設けて、その拡径段部24aにアウター25bを嵌合し、かつ拡径段部24aの入り口側を、スナップリング24cで抜止めして、軸線方向に移動不可に固定してある。
このシリンダ23は、ケーシング6に設けた通孔22に対して、ウォーム軸13と軸線を同じくして、軸線方向へ移動自在になっており、かつ通孔22とシリンダ23の外周嵌合部は、比較的長い摺動部をなしているため、ウォーム軸13の移動に係わる力は、正確にシリンダ23の軸心の軸線方向に加わっている。
シリンダ23における遊端23aには、3段に縮径した第1縮径段部26、第2縮径段部27、第3縮径段部28が設けられ、各縮径段部26、27、28は、中空室20側に当接固定される起歪体29との連結に関して、それぞれの各縮径段部26、27、28が必要不可欠な構造をなしている。
起歪体29は、前記通孔22の中空室20側において、通孔22の端部22aを塞ぐように当接され、外形周辺は、通孔22より十分に大きな外径をなす円盤状をなしている(図3参照)。
円盤状の起歪体29の外周周辺には、複数個(実施例では8個)の取付け孔30が、円周上に等間隔で設けられている。
円盤状をなす起歪体29の円型の中心には、前記シリンダ23の遊端23a側に設けた第1から第3の縮径段部26、27、28における中央の第2縮径段部27に、緩みなく勘合する係合孔29aが設けられている。
起歪体29は、過大な負荷トルクを受けることを考慮して、ばね特性と靭性に優れた錆びにくい金属が用いられ、起歪体29に成形する前の原型は、比較的に肉厚の厚い板構造にしてある。
起歪体29には、前記シリンダ23に設けた第1縮径段部26と、先端の第3縮径段部28に設けた雄ねじ31に螺合したナット32をもって、シリンダ23と起歪体29を強固に固定するためのボス部33を中央に残してある。
このナット32を回転して起歪体29のボス部33を締め付けるに際して、シリンダ23が供回りするのを防止するために、第1の縮径段部26の断面形を、円型の一部または複数箇所を切り欠いた非円形軸にしておき、起歪体29を固設する際に、起歪体29の裏側に、前記第1の縮径段部26の非円形軸に回転不能に嵌合する孔34を中央に備えた供回り防止板35を挾んで、起歪体29を固定する。
起歪体29の円盤の周辺には、前記取付け孔30を介して複数の固定ねじ36で締め付けられるフランジ部37を残してある。
しかして、そのボス部33とフランジ部37の間には、表裏を均等に切削して、中央部の板厚を、所要の測定負荷トルクの大きさに合うように、厚さを均一に調整して切削した円型起歪溝38を、表と裏に設けてある。
起歪体29において、中空室20を向く面を表面とし、通孔22側を向く面を裏面とし、表面側の円型起歪溝38の表側面38aに、図4に示すフィルム状歪みゲージ39を添着してある。
起歪体29における円型起歪溝38の加工は、図6に示すような円盤の外周と中心部の間に生じる曲げ歪みを、円周方向に均等に生じるべく切削するので、加工形状は、部分的に応力の集中が起きないように、鋭角部や凹凸部は少なく加工し、表面38aは、サンドブラストによる磨き加工を施すのが好ましい。なお歪みゲージ39自体の基本構造に関しては、詳細な説明は省略する。
図3に示す如く、フィルム状歪みゲージ39は、起歪体29における表側の円型起歪溝38の表側の表面38aに、熱硬化性の接着材をもって、強固に添着されるとともに、その上面には、シリコンゴムなどの柔軟性と密閉性が高く表面保護を兼ねて酸化を防止する保護膜40が設られている。
図4に示す如く、フィルム状歪みゲージ39には、円型起歪溝38に歪みを生じたとき、その歪み量を検出する歪み検出パターン41が描かれている。
同じく、図4に示す如く、歪み検出パターン41は、図5に示す電気回路を形成しており、この歪み検出パターン41には、軸線をなす中心点から放射方向に伸びる抵抗線を折り返して繰り返す、等幅弧状の密な抵抗線で描かれる感知抵抗部42が8カ所設けられている。
感知抵抗部42は、歪みを受けて抵抗値が変化する歪み検知部で、円型起歪溝38の外周に沿って4個の感知抵抗42aが設けられ、同じく中心半径を小さくして、内周に沿って4個の感知抵抗42bが設けられている。
各感知抵抗部42a、42bは、図5に示す第1と第2の2個のブリッジ回路43a、43bを形成しており、前記等幅弧状の密な線で示される各感知抵抗部42の両端部から電気的接続を保って延出し、幅広に区画された面で示される接続部分は、歪みの変化をあまり受けないで、電気回路を形成する通電部分44を形成し、当該通電部分44の中に示す○印は、外部接続するラウンドを示している(なお、このラウンドには、符号を省略して端子番号のみを付設する)。
図4における符号と、図5、7の回路図に付設した符号とは、互いに対応させてある。
図4〜7において、電気回路に付した符号は、円型起歪溝38の外周に沿って配置した感知抵抗部42aに、アルファベッドの大文字R記号を付設し、内周に沿って配置した感知抵抗部42bに、アルファベッドの小文字r記号を付設し、その各記号の後の最初の番号に、図4において中央から左側に示す第1のブリッジ回路43aの回路番号1番と、右側に示す第2のブリッジ回路43bの回路番号2番と、その回路番号の次の番号に、両ブリッジ回路内43a、43b内の各ブリッジ辺に付した抵抗配置番号を付して示してある。
図5において、1番と4番の接続端子に接続されている補正抵抗X11、X21、Y11、Y21は、円型起歪溝38内に、歪みゲージ39を添着した後、添着時に生じる歪み成分を補正するとともに、無負荷時のブリッジ回路の平衡を調整するのに使用する。
端子番号3番の接続端子の出力信号a1(a11、a21)と、補正抵抗X11、Y11の接続部P、及びX21、Y21の接続部Pの出力信号b1(b11、b21)は、第1と第2のブリッジ回路43a、43bの出力信号として、図7に示す電子制御回路に送られる。
図3に示すように、電子制御回路を構成する電子回路基板45は、起歪体29の正面上部に取り付けるられている、基板取付け板46に止着されて、起歪体29の近傍に設けられている。
電子回路基板45と歪みゲージ39は、ブリッジ回路43a、43b毎に別個の接続ケーブル47、47を介して、電子回路基板45側は、接続コネクタ48で接続され、歪みゲージ39側は、各ブリッジ回路43a、43b毎に、○印のラウンドで示す接続端子に接続ケーブル47、47の先端を半田付けし、その上に、前記シリコンゴムなどの柔軟性と密閉性が高く表面保護を兼ねて酸化を防止する保護膜40が設られている。
図6は、起歪体29の円型起歪溝38の中に、円型起歪溝38の外周に沿って設けた感知抵抗42aと、内周に沿って設けた感知抵抗42bとが、歪みを検出する際の相互作用を説明するもので、図4におけるVI−VI線において切り開いた状態を示す模式図である。
図6の(a)は、起歪体29の中心に繋がるウォーム軸13に、軸線方向左右いずれの方向にも力が加わらない、無負荷状態を示している。なお、同図において各抵抗に付した記号、及び説明に使用する補正抵抗などは、第1と第2のブリッジ回路43a、43bに共通する説明なので、それぞれの回路番号を省いて説明する。
無負荷の状態においては、起歪体29の円型起歪溝38の中は、曲がりのない真直ぐの状態を保っており、その中の感知抵抗42aと感知抵抗42bそれぞれの抵抗値R1、r2、r4、R3は、加圧力零(無負荷状態)の初期値を保っている。
初期値とは、歪みゲージ39を円型起歪溝38の中に添着後、接着剤の硬化安定を待つと共に、必要に応じて所要のエージングを施した後、補正抵抗X1、Y1を介してブリッジ回路43を校正して、出力電圧aとbの差の電圧を零に調整し、ブリッジ回路43を平衡状態にした時点の値である。
なお、温度係数に関しては、ブリッジ回路43自体が同相弁別比の高い回路であるから、考慮しないものとする。
また、起歪体29は、熱容量の大きな鋼材の固まりで、しかも歪みゲージ39自体の熱容量は極小さく、計測電流も少なくて発熱もないため、歪みゲージ39の温度環境は、均一であると見なすものとする。
なお、起歪体29の温度環境に関しては、起歪体29に温度センサを設けて、初期値に対して温度補償することもできるとともに、補正抵抗はX1、Y1は、温度係数の低いものを使用し、かつ、各補正抵抗X1、Y1の値は、感知抵抗42a、42bの実効的抵抗値を3〜5百Ωとした場合、1Ω以下であるため、この補正抵抗値の健全時の外乱による変動分は、無視できるものとする。
ブリッジ回路43を校正時に平衡状態に調整した場合の平衡条件は以下のようになる。
R3/r2=(r4+X1)/(R1+Y1)
変形すると、
R3(R1+Y1)=r2(r4+X1)
上記平衡条件は、設計時において外側の抵抗R1、R3及び内側の抵抗r2、r4を、同じ値、もしくは、それぞれに特定な値に定めても、起歪体29に添着後に変動してしまうので、各抵抗R3、R1、r2、r4は、それぞれに異なる値になることを前提にして、回路設計してある。
これを考慮して、校正により補正後における初期値は、外側の抵抗R3とR1+Y1との関係をR3×(R1+Y1)とし、内側の抵抗r2とr4+X1との関係をr2×(r4+X1)とし、それらが互いに等しいとした平衡状態における補正抵抗X1とY1の値を求めて、実際の電子回路基板45又は、フィルム状歪みゲージ39の端子ラウンド部に、固定抵抗により接続してある。
なお、補正抵抗X1、Y1は、通常何れか一方を可変抵抗として平衡点を正確に零調整するのが通常であるが、可変抵抗器は、長期安定性が悪く、不健全性の要因になるため、固定抵抗で平衡点を求めている。
そのために、校正時の零調整点には、若干のオフセット電圧を残すことがあるが、このオフセット電圧は、後述するように、初期値メモリ80に予め記録してある。
また、歪みゲージ39の添着後の抵抗変動を見込み、前記抵抗値の範囲で、適正な値の固定抵抗を選択して補正抵抗X1、Y1を加減し、無負荷時において、ブリッジ回路43a、43bの各辺部が平衡条件を満して校正できるように、各抵抗R1、R3、r2、r4の添着前の設計値は定めてある。
このような設定によって、後述するブリッジ回路43a、43bの健全性を検証することができるのは、起歪体29の構造と、起歪体29へのウォーム軸13からの力の伝わり方が、シリンダ23を介して、円型起歪溝38に対して、ウォーム軸13の軸芯から放射方向に均等に伝わるようになり、結果的に、円型起歪溝38の溝壁の歪みは、円周方向に均一になっているからである。
シリンダ23は、ケーシング6に設けた通孔22に対してウォーム軸13の軸線と同じ方向に案内されて移動でき、そのため、通孔22を塞ぐように通孔22の前面に固着した起歪体29には、起歪体29の中心に加わる力の方向を変えることなく、円型起歪溝38にボス部33を介して、軸線方向の力が加わっている。
シリンダ23を介して起歪体29の中心に加わる力は、円型起歪溝38における溝底起歪部38aを、図6(b)に示す如く歪ませる。
図6(b)において示すように、起歪体29の中心軸線を通る縦断面形は、円型起歪溝38における溝幅の中央に変曲点を持つS字曲線に、溝底の表面38aを歪ませてている。
起歪体29は、シリンダ23を介してウォーム軸13に連結しているため、ボス部33に加わる力の方向は、シリンダ23が移動できる軸線方向の押し引きのみのとなって、溝底の表面38aには、軸線回りに均等な歪みを発生して、S字曲線の曲率は、等幅弧状の密な抵抗線で描かれる感知抵抗部42の外側内側いずれの感知抵抗42a、42bの幅中央を通る同一半径において、円周周りどこの部分においても等しくなっている。
そのため、同一半径上に中心を揃えて弧状に配置された、複数の感知抵抗部42は、同一割合の歪みの影響を受けて、抵抗値を変化させる。
これにより、ウォーム12に加わる反力によって、ウォーム12がウォームホイール15から外側に逃げて、ウォーム軸13の軸線を曲げるような力が働いても、また、ウォーム12の回転位相に応じた軸線の捩じれに対しても、それらの軸線の曲がりは、シリンダ23によって、吸収され、起歪体29の中心には伝わらない。
図6(b)は、シリンダ23から起歪体29の中心に、矢印の向きに力が伝わり、起歪体29のボス部33部分を、正面側に押しつけて、円型起歪溝38を歪ませた状態を示す模式図である。
同(b)に図示のように、起歪体29の円型起歪溝38が、ボス部33を右方向に向けて突出して歪む時、円弧の半径を大きくした外側の抵抗R1、R3は、放射方向に伸びる抵抗被膜部が、圧縮方向に曲げられて抵抗値を減少して、図(a)に示す状態の初期値のR3、R1+Y1よりも小さくなる。
同じく、円弧の半径を小さくした内側の抵抗r2、r4は、放射方向に伸びる抵抗被膜部が伸張方向に曲げられることにより抵抗値を増加して、図(a)の初期値のr2、r4+X1よりも大きくなる。
この際に、外側の抵抗R1、R3の抵抗の減少の割合と、内側の抵抗r2、r4の抵抗の増加の割合とが、歪み量(トルク値)に応じて増減し、このウォーム軸13の押圧力によって増減する各抵抗値の差分は、出力端子3番の信号a1と、補正抵抗X1、Y1の接続点Pの信号b1との差分として、それぞれのブリッジ回路43a、43b毎に、図7において示す別個に設けた2つのトルク値検出回路50a、50bによって、トルク値として検出される。
上記トルク値検出回路50a、50bは、従来から電動バルブアクチュエータにおいてはトルクセンサと称されるものと同じである。
図4に示すフィルム状歪みゲージ39は、歪み検出パターン41として設けられた、感知抵抗部42の各抵抗R11、R13、R21、R23及び抵抗r12、r14、r22、r24を備えている。
このフィルム状歪みゲージ39の故障の原因は、接続ケーブル47をなすリード線の断線を含め、検出パターン41の腐食やフイルム部分の絶縁劣化、接着部の剥離、接着剤の膨潤、雷の誘導電圧等の過大電圧の引加による電圧破壊、及びそれらが複合して生じる電気的な原因、及び起歪体29の弾性歪領域を超える過負荷による直接的損傷、並びに繰り返し加重の蓄積疲労による損傷等があり、故障の症状が直ぐに現れるものから、時間をかけて徐々に進行するものを含む。
図7は、上記電動バルブアクチュエータ1を、歪みゲージ39を用いて、冗長性の高い制御を行うようにした、電子制御システムの一実施要領を示すものである。
先述のブリッジ回路43a、43bの出力信号a1、b1は、ブリッジ回路43a、43b毎に専用の差動増幅器51a、51bにより検出して、その各出力はA/D変換器52a、52bを介して、それぞれに、第1コントローラ53aと第2コントローラ53bとに送られている。
コントローラ53(制御内容が同一なので、共通の符号を付して説明する)は、デジタル制御するためのCPU、ROM、RAMを備えたデジタル制御部54と、前記トルク値検出回路50の入力データを記憶する初期値メモリー55、設定値メモリー56、履歴メモリー57を備えている。なお、動作プログラムは、デジタル制御部54のメモリに記録されている。
両コントローラ53(第1コントローラ53a、第2コントローラ53b)は、互いに非同期で、それぞれが独自に、トルク値検出回路50a、50bの出力を受けて、トルク制御しうる状態になっている。
電動バルブアクチュエータ1における電動モータ10は、モータ駆動電源58と電源投入遮断スイッチ59を介して接続されている。
電源投入遮断スイッチ59は、小さな信号で大きな電力の投入遮断の制御ができるスイッチで、第1コントローラ53aと第2コントローラ53bが出力するそれぞれの弁開閉信号60a、60bで制御される。
電動バルブアクチュエータ1は、通信ユニット61、又はローカル操作部62から送出される、バルブ開閉信号63を、第1コントローラ53aと第2コントローラ53bが同時に受けて、両コントローラ53は、弁開閉動作を同時に起動する。
第1コントローラ53aと第2コントローラ53bがそれぞれに出力する弁開閉信号60a、60bは、切換スイッチ64を介して、いずれか一方が選択されて、電源投入遮断スイッチ59に送られるようになっている。
切換スイッチ64は、健全性検出処理手段65の出力する切換信号65aによって切り換る。
健全性検出処理手段65は、トルク値検出回路50a、50bにおけるブリッジ回路43a、43bの歪みゲージ39が健全であるか否かを判定し、不健全な回路を含むブリッジ回路43a、43bの出力を遮断し、健全なブリッジ回路43a、43bが出力する弁開閉信号60a、60b信号のいずれかを選択するように、切換信号65aを送り出す。
各ブリッジ回路43a、43bの平衡電圧出力端、即ち端子番号3と補正抵抗X1、Y1の接続点Pとの出力信号a1、b1は、それぞれに、電圧フォロアーアンプ66、67、68、69を入力部とする各抵抗値検出回路71、72、73、74により、トルク値検出回路50a、50bとは別に検出される。
抵抗値検出回路71、72、73、74は、電圧フォロアーアンプ66、67、68、69により、前記出力信号a1、b1に影響を与えることなく、各ブリッジ回路43a、43bの電圧分岐点の出力信号a11、b11、a21、b21(電圧)を取出し、その各電圧を後段のA/D変換器75、76、77、78によりデジタル値に変換して、健全性検出処理手段65へ送っている。
健全性検出処理手段65は、前記コントローラ53と同様の、デジタル制御部78、初期値メモリー79、設定値メモリー80、履歴メモリー81を備え、第1コントローラ53aと第2コントローラ53bをスタートするバルブ開閉信号63を受けて起動する。
上記健全性検出処理手段65の初期値メモリー79には、前記第1コントローラ53aと第2コントローラ53bの初期値メモリー55に記録するデータとして、ブリッジ回路43a、43bをアクチュエータに組み込む前(組立て前に)に校正した際に取得した零点値(圧力零時の各電圧分岐点の電圧)が記録されている。
設定値メモリー80には、各電圧分岐点の電圧を比較するとき、各ブリッジ回路としての抵抗辺の値が健全で有るか否かを判断する際に要する、予め定める許容値としての閾を記録してある。
履歴メモリー81には、電動バルブアクチュエータ1が開閉動作を行ったときの健全性を保つと見なせる値と比較して、許容値を超えて異なる値を出力するか否かを判別するデータが記録されている。
履歴メモリー81に記録されるデータは、各ブリッジ回路43a、43bの電圧分岐点をなす出力信号a1、b1のデータを、弁装置3が備えている全開から全閉に至る開度値を測定するアブソリュートカウンタの開度計測信号g1に応じ、適宜の開度ステップ間隔で記録した、開閉動作履歴値をもって記録される。
上記健全性検出処理手段65は、各抵抗値検出回路71、72、73、74の出力値を、電圧比較判定手段83において互いに比較し、出力値が他の複数の出力値に対して、設定値メモリー81に記録した健全性を保つと見なせる値と比較する。
この際に、健全性を保つと見なせる値は、現在のトルク値(その時点のブリッジ回路の出力値)と同じ校正時のトルク値において、ブリッジ回路43a、43bの初期値として予め計測して初期値メモリ78に記録してある値、同じく上記校正時のトルク値において、抵抗値検出回路71、72、73、74の出力を、A/D変換器74、75、76、77を介してデジタル変換した後の出力値を、初期値として予め計測して初期値メモリ78に記録してある値を採用することができる。
一方、トルク値がどの様な値であっても、健全性を保つと見なせる値として採用しうる値は、前記抵抗値検出回路71、72の出力値、及び抵抗値検出回路7
3、74の出力値を、それぞれA/D変換器75、76、77、78を介してデジタル変換した後の出力値をもって、それぞれ算術的に加算した値として採用することができる。
初期値メモリー78には、前述のように、組立て前に採取した歪みゲージ39(トルクセンサ)が無負荷状態における抵抗値検出回路71、72、73、74を後段のA/D変換器75、76、77、78でA/D変換した値が初期値(零点値)として格納されている。
歪みゲージ39(トルクセンサ)に力が加わると、抵抗値検出回路71と72、抵抗値検出回路73と74は夫々の初期値(零点値)を基準にして互いに逆相にではあるが同じ値だけ変動する。
よって、抵抗値検出回路71と72、抵抗値検出回路73と74それぞれに現在値から初期値(零点値)を引いた変動分を単純に加算すると常に零になる。
このことは、図6において説明した如く、外側の抵抗R1、R3と内側の抵抗r2、r4の設計値としては、共にR1=R3、r2=r4に揃えてあるが、前述の如く、歪みゲージ39を円型起歪溝38の中に添着後、接着剤の硬化安定を待つと共に、必要に応じて所要のエージングを施した後、補正抵抗X1、Y1を介してブリッジ回路43を校正して、平衡状態となしている。しかし、それぞれの抵抗R1、R3、r2、r4は、若干の相違を持って、等しくはなっていない。
その値の実際の相違値は、各抵抗R1、R3、r2、r4の実効的抵抗値を3〜5百Ωとした場合、補正抵抗X1、Y1の値が1Ω以下の固定抵抗で平衡を設定できるため、平衡状態における各ブリッジ辺の相違値は、極僅か1%以下でほぼ等しいとすることができる。
その結果として、抵抗値検出回路71と72、抵抗値検出回路73と74それぞれの加算値は、ほぼ零もしくは零に近い値になっている。
この関係は、トルクセンサに劣化や故障が生じない限りトルク値全域に亘って成立するので、加わっているトルクや開度、温度及びタイミングに無関係に、上記演算によりいつでも歪みゲージ39におけるそれぞれの感知抵抗部42の健全性を個別に確認することが出来る。なお、歪みゲージ39における温度に係る変動分は、従来の同相弁別比の概念で温度補償されている。
但し、現実には製造上の微細な誤差等により加算結果は完全なゼロにはならないため、一定の閾値を設けてその値を設定値メモリ81に保存しておき、抵抗値検出回路71と72あるいは抵抗値検出回路73と74の初期値からの変動量の加算結果が閾値を超えたブリッジ回路43a、もしくはブリッジ回路43bの何れかに関しては故障や劣化が発生していると判定して使用を止め、健全な方のブリッジ回路43a、43bの何れかの出力信号50c又は出力信号50dの差動演算結果を用いてアクチュエータの制御を継続する。
更にブリッジ回路43a、43bの何れか又は両方が不健全な状態であることを表示や通信手段により示し、修理を促すこともできる。
いずれも健全な場合には、プライマリーに指定されている第1コントローラ53aのブリッジ回路43aに優先順位を与えておき、切換スイッチ64から、第1コントローラ53aの弁開閉信号60aを、電源投入遮断スイッチ59に送るように、デジタル制御部78の制御プログラムに予め設定してある。
電圧比較判定手段83は、初期値メモリー81の記録情報を基に、入力された現在の各電圧値から、該当する押圧力(現在のトルク値で本来真の値は1つ)に対応した各電圧(現在値)の初期値(メモリ上の値)を求め、その求められた各押圧力の初期値同士を互いに比較し(現在値に異常があれば、求められた初期値は本来の初期値と異なる)、その比較に際して、設定値メモリー80に予め定めて記録した基準値を超えて最も異なるものを特定して、不健全回路を選び出す。
その結果、健全性検出処理手段65は、電圧比較判定手段83によって判定された不健全なブリッジ回路43a、43bいずれか一方を含んで、トルクを検出している第1コントローラ53a、第2コントローラ53bいずれかの弁開閉信号60a、60bを切り離すように、当該健全性検出処理手段65から切換スイッチ64へ切換信号65aを送り出す。
ブリッジ回路43aを有するトルク値検出回路50aと、ブリッジ回路43bを有するトルク値検出回路50bの各出力信号50c、50dは、それぞれに切換スイッチ84、85を介して、第1コントローラ53aと第2コントローラ53bに送られている。
切換スイッチ84、85は、トルク値検出回路50a、50bのいずれか一方又は両方に、不健全な回路素子を含むものと、電圧比較判定手段83が判定し、かつ健全なトルク値検出回路50a、50bのいずれかと認められる方のコントローラ53a又は53bに、不具合が生じた場合に、健全性検出処理手段65において、不健全な値を出力するトルク値検出回路50a、50bいずれか一方又は両方の出力信号50c、50dに代えて、各電圧フォロアーアンプ66、67、68、69から取り込んだ各出力値を用いて、擬似的トルク信号86a、86bを生成して、それらを選択的に切り換えて、不具合を生じていなコントローラ53a又は53bのいずれかに、送るようになっている。
図8は、擬似的トルク信号86a、86bの生成手段を、積極的に利用する別な実施態様を示すものである。
図8においては、図7に示すトルク値検出回路50a、50bの差動増幅器51a、51bとA/D変換器52a、52bを省略して、ブリッジ回路43a、43bのハーフブリッジ回路を多数個とした実施態様を示す。
なお、図7と共通する部分は、同一の符号を付して詳細な説明は省略する。
一方、起歪体29を取付ける力伝達機構の基本構造は、図2に示す構造と同一であるが、電動アクチュエータ1としての被駆動体を、弁装置3に特定しない、門扉やゲート等の汎用性の高いものとした、スクリュージャッキ装置としている点が異なる。
図2におけるウォーム12と噛合するウォームホイール15(図1参照)は、スクリュージャッキ装置の出力ねじ軸(図示略)として、ウォームホイール15の内腔に螺設した雌ねじ軸孔に螺設されている。
スクリュージャッキには、ウォームホイール15と出力ねじ軸が回転方向に固定されていて、被可動体を駆動するナット部材がねじ軸に螺合しているタイプもあるが、ウォームホイール15を回転するウォーム12の反力が、ウォーム軸13に伝達する機構は同一になっているので、前者の被駆動体を駆動するねじ軸が軸線方向に移動するタイプと、後者のねじ軸が回転してナットが移動するタイプも、スクリュージャッキの範疇に入るものとする。
ウォーム12を回転するに際して、出力ねじ軸(図1のステム4相当)に加わる負荷の反力は、ウォーム軸13を介して、起歪体29を歪ませて、フィルム状歪みゲージ39により前記の如くトルク信号を得ることができる。
図8の実施例においては、起歪体29の円型起歪溝38において、外側に列べたn個の抵抗R1、…、Rnと、内側に列べたn個の抵抗r1、…、rnを、外側の抵抗Rと内側抵抗rを対に組み合わせ、かつそれぞれに直列接続して、n個のハーフブリッジ回路群87を形成し、そのハーフブリッジ回路群87を2つのハーフブリッジ回路群87a、87bに分けてある。
一方のハーフブリッジ回路群87aは、外側の抵抗Rを正極性(+)の電源電圧を加わえるように、また、他方のハーフブリッジ回路群87bは、外側の抵抗Rを負極性(−)の電源電圧が加わるように、ハーフブリッジ回路群87におけるハーフブリッジ回路群87a、87bの両端に、正極性(+)88aと陰極性(−)88bの電源電圧を引加する。
図8において、ハーフブリッジ回路群87a、87bにおける各抵抗R、rに付した記号は、外側の抵抗を表すRと、内側の抵抗を表すrと、その後に、それぞれのハーフブリッジ回路群87aと87b毎に付したハーフブリッジ回路番号1〜nと、さらにその後に、一方のハーフブリッジ回路群87aの一つと、他方のハーフブリッジ回路群87bの一つを組み合わせて、1つのブリッジ回路を組み上げたときの、ブリッジ回路としての各4辺に付された抵抗番号(図5と図7を参照)とをもって表示してある。
ハーフブリッジ回路群87における外側の抵抗Rと内側の抵抗rの接続点は、両抵抗Rとrの電圧分岐端(d)…となっており、このハーフブリッジ回路群87全ての電圧分岐端(d)…に、電圧フォロアーアンプ89…とA/D変換器90…を直列に接続した、抵抗値検出回路91…を接続してある。
各抵抗値検出回路92の出力は、前記健全性検出処理手段65に送られて、初期校正時に初期値を初期値メモリー80に取り込まれる。この際に、通常のロードセルなどの校正時と同様に、温度環境などの条件は、予め定められている。
また、健全性検出処理手段65における設定値メモリー56には、不健全なハーフブリッジ回路を判別するための閾値や、各電圧分岐端(d)…同士の組み合わせ毎のオフセット値などが記録されている。
さらに、健全性検出処理手段65は、外側の抵抗Rが正極性(+)88aに繋がるハーフブリッジ回路群87aと、内側の抵抗rが正極性(+)88aに繋がるハーフブリッジ回路群87bの、各1組毎の組み合わせを、擬似ブリッジ回路として予め定めて、初期値取り込みの校正時に、それぞれの組み合わせ擬似ブリッジ回路毎の加圧値(校正加圧値)対電圧分岐端(d)同士の差分電圧(擬似差動出力すなわちトルク値)、及びそれの零点電圧からのオフセット電圧を、校正初期値として初期値メモリ80に記録してある。
また、組み合わされた各擬似ブリッジ回路を実行する優先順位を予め定めておき、健全性検出処理手段65が不健全と判定したハーフブリッジを含む擬似ブリッジ回路を除いて、予め定めた優先順位に従って擬似ブリッジ回路を実行するようになっている。
しかして、デジタル制御部79は、前記バルブ開閉制御信号63と同様に、駆動開始信号63aを、通信ユニット61又はローカル操作部62から受信して起動し、健全性検出処理手段65に入力する各電圧分岐端(d)のデータを取り込み、電圧比較判定手段83によって、不健全なハーフブリッジ回路を判定して、優先順位の高い、不健全ハーフブリッジ回路を含まない擬似ブリッジ回路の出力信号、即ち前記擬似トルク信号86を生成する。
擬似トルク信号86は、前記図7と同様のコントローラ53に送られ、このコントローラ53は、スクリュージャッキ1aのウォーム軸13に繋がる電動モータ10の電源18を、電源投入遮断スイッチ59を介して投入遮断するとともに、被駆動体をなしている門扉や開閉ゲート等の開閉途中の負荷トルクに応じて、異物の挾み込みを検知して緊急遮断し、かつ全開全閉時の負荷トルクに応じて被駆動体の駆動を自動停止する。
また、コントローラ53は、前記駆動信号63に応じて、適時に、かつ任意に電動モータ10の駆動並びに停止を制御することができる。
本発明は、上記実施形態および変形例のみに限定されるものではなく、例えば、被駆動体を弁装置、スクリュージャッキ、その他ウォームとウォームホイールを伝達構造にもつアクチュエータにおいて実施でき、被駆動体を上記以外のものに特定して変形した態様での実施が可能である。
1 電動バルブアクチュエータ
2 手動ハンドル
3 弁装置
4 ステム
5 グランド
6 ケーシング
7 中空室
8 出力軸
9 歯車
10 電動モータ
11 出力軸
12 ウォーム
13 ウォーム軸
13a 左方ウォーム軸
13b 縮径軸
13c 雄ねじ
13d 右方ウォーム軸
13e 縮径部
13f 雄ねじ
13g ナット
14 歯車
15 ウォームホイール
16 軸受突起
17 ラジアルベアリング
17a インナー
17b アウター
18 カラー
19 ナット
20 中空室
21 円筒壁
22 通孔
23 シリンダ
23a 遊端
24 開口部
24a 拡径段部
24c スナップリング
25 ラジアルスラスト軸受
25a インナー
25b アウター
26 第1縮径段部
27 第2縮径段部
28 第3縮径段部
29 起歪体
29a 係合孔
30 取付け孔
31 雄ねじ
32 ナット
33 ボス部
34 孔
35 供回り防止板
36 固定ねじ
37 フランジ部
38 円型起歪溝
38a 表面
39 歪みゲージ
40 保護膜
41 歪み検出パターン
42 感知抵抗部
42a 感知抵抗
42b 感知抵抗
43a ブリッジ回路
43b ブリッジ回路
44 通電部分
45 電子回路基板
46 基板取付け板
47 接続ケーブル
48 接続コネクタ
50a トルク値検出回路
50b トルク値検出回路
50c 出力信号
50d 出力信号
52a A/D変換器
52b A/D変換器
53 コントローラ
53a 第1コントローラ
53b 第2コントローラ
54 デジタル制御部
55 初期値メモリー
56 設定値メモリー
57 履歴メモリー
59 電源投入遮断スイッチ
58 モータ駆動電源
60a 弁開閉信号
60b 弁開閉信号
61 通信ユニット
62 ローカル操作部
63 バルブ開閉信号
64 切換スイッチ
65 健全性検出処理手段
66 電圧フォロアーアンプ
67 電圧フォロアーアンプ
68 電圧フォロアーアンプ
69 電圧フォロアーアンプ
71 抵抗値検出回路
72 抵抗値検出回路
73 抵抗値検出回路
74 抵抗値検出回路
75 A/D変換器
76 A/D変換器
77 A/D変換器
78 A/D変換器
79 デジタル制御部
80 初期値メモリー
81 設定値メモリー
82 履歴メモリー
83 電圧比較判定手段
84 切換スイッチ
85 切換スイッチ
86a 擬似的トルク信号
86b 擬似的トルク信号
87 ハーフブリッジ回路群
87a ハーフブリッジ回路群
87b ハーフブリッジ回路群
88a 正極性(+)
88b 陰極性(−)
89 電圧フォロアーアンプ
90 A/D変換器
91 抵抗値検出回路
X1 補正抵抗
Y1 補正抵抗
a1 信号
b1 信号
g1 開度計測信号
R11、R13、R21、R23抵抗
r12、r14、r22、r24抵抗

Claims (3)

  1. モータにより回転させられ、かつケーシングに対して軸方向に摺動可能として支持したウォームをもって被駆動体を駆動させるようにし、かつ前記ウォームの軸線方向と直交するとともに、前記ウォームの軸線方向の送りに基づく推力を受けるようにして前記ケーシングに設けた起歪体に歪みゲージを取付け、この起歪体の変形に伴う歪みゲージの抵抗変化によって、前記被駆動体の駆動トルクを検出するようにした電動アクチュエータにおけるトルク検出装置において、
    前記起歪体の中心に対して、互いに同一構造の歪みゲージ群を、円周方向に複数組配設し、各組の歪みゲージ群を、それぞれ専用の抵抗値検出回路に接続し、前記各抵抗値検出回路の出力値を、健全性検出処理手段において健全性を保つと見なせる値と比較して、許容値を超えて異なる値を出力する抵抗値検出回路を不健全回路として検出し、その不健全回路を除く残りの抵抗値検出回路の出力値を用いて、前記駆動体の駆動トルクを検出するようにしたことを特徴とする電動アクチュエータにおけるトルク検出装置。
  2. 複数組の互いに同一構造の歪みゲージ群が、起歪体における円型起歪溝の外周と内周に沿った1対の歪みゲージを、互いに直列接続してハーフブリッジを形成した複数組の歪みゲージである請求項1記載の電動アクチュエータにおけるトルク検出装置。
  3. 抵抗値検出回路が、円型起歪溝の外周と内周に沿った1対の歪みゲージを直列接続してなるハーフブリッジと、そのハーフブリッジの直列接続点の電圧を検出する電圧フォロア回路である請求項1又は2いずれか記載の電動アクチュエータにおけるトルク検出装置。
JP2015084356A 2015-04-16 2015-04-16 電動アクチュエータにおけるトルク検出装置 Active JP6272267B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084356A JP6272267B2 (ja) 2015-04-16 2015-04-16 電動アクチュエータにおけるトルク検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084356A JP6272267B2 (ja) 2015-04-16 2015-04-16 電動アクチュエータにおけるトルク検出装置

Publications (2)

Publication Number Publication Date
JP2016205861A JP2016205861A (ja) 2016-12-08
JP6272267B2 true JP6272267B2 (ja) 2018-01-31

Family

ID=57489477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084356A Active JP6272267B2 (ja) 2015-04-16 2015-04-16 電動アクチュエータにおけるトルク検出装置

Country Status (1)

Country Link
JP (1) JP6272267B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128290A (ja) * 2018-01-25 2019-08-01 アズビル株式会社 トルクセンサの過負荷警報装置及びその方法
WO2020149204A1 (ja) * 2019-01-18 2020-07-23 日本電産シンポ株式会社 トルク検出センサおよび動力伝達装置
JP7338936B2 (ja) 2019-06-06 2023-09-05 ニデックドライブテクノロジー株式会社 トルク検出センサおよび動力伝達装置
JP7380981B2 (ja) 2019-06-27 2023-11-15 ニデックドライブテクノロジー株式会社 トルク検出センサおよび動力伝達装置
CN115112277A (zh) * 2019-06-06 2022-09-27 日本电产新宝株式会社 扭矩检测传感器、动力传递装置及机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982090B2 (ja) * 1991-12-20 1999-11-22 日本ギア工業株式会社 バルブアクチュエータにおけるトルク測定方法とその装置
JP3283613B2 (ja) * 1993-02-19 2002-05-20 大和製衡株式会社 荷重計のノイズ計測装置
JP4425508B2 (ja) * 2001-11-26 2010-03-03 日本ギア工業株式会社 電動バルブアクチュエータにおける負荷連続検出装置
CA2644580C (en) * 2006-03-03 2015-08-25 Flowserve Management Company Load measurement method and device

Also Published As

Publication number Publication date
JP2016205861A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6272267B2 (ja) 電動アクチュエータにおけるトルク検出装置
RU2461039C2 (ru) Усовершенствованный силовой привод клапана
CN107436207B (zh) 负荷检测装置
EP1991806B1 (en) System and method for fluid regulation
EP0656500A1 (en) Torque and speed measuring apparatus for motor operated valves
US7484416B1 (en) Process control transmitter with vibration sensor
RU2376564C1 (ru) Устройство для вибрационного контроля (варианты)
CN102339059A (zh) 用于监控或控制工业生产过程的过程设备
CN101014916A (zh) 用于检测与反应器相关的异常情况的系统和方法
KR20210049941A (ko) 예측가능한 자체-교정 토크 컨트롤러를 가진 전자 밸브 액츄에이터
KR20220088794A (ko) 적어도 세 개의 스트레인 게이지 어셈블리 및 스트레인 웨이브 기어를 점검하는 방법
EP0513994A2 (en) An actuator and a valve actuator system
US7987080B2 (en) Method for operating an industrial scale installation and guidance system for same
EP3085497B1 (en) Control system and apparatus for power wrench
KR101347968B1 (ko) 전위차계의 열화 진단 방법
EP2241793A2 (en) Valve testing
DE102015114589A1 (de) Drehmomentdetektor
EP1443219B1 (de) Diagnoseverfahren und -vorrichtung für einen pneumatischen Stellantrieb
US8069708B2 (en) Method for determining the lifecycle of a power station component
JP2018091638A (ja) 回転体の検査装置
JP7015258B2 (ja) 電動弁駆動部の状態監視装置および状態監視方法
UA48198C2 (uk) Спосіб контролю експлуатаційної готовності арматури
EP1506385B1 (en) Power signature diagnosing
KR102053191B1 (ko) 열화 진단 장치 및 방법
JP2018029442A (ja) 電動機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6272267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250