JP6272062B2 - Water purification method, water purification system and water purification unit - Google Patents

Water purification method, water purification system and water purification unit Download PDF

Info

Publication number
JP6272062B2
JP6272062B2 JP2014019849A JP2014019849A JP6272062B2 JP 6272062 B2 JP6272062 B2 JP 6272062B2 JP 2014019849 A JP2014019849 A JP 2014019849A JP 2014019849 A JP2014019849 A JP 2014019849A JP 6272062 B2 JP6272062 B2 JP 6272062B2
Authority
JP
Japan
Prior art keywords
bacteria
anaerobic
water purification
aerobic
inhabitable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014019849A
Other languages
Japanese (ja)
Other versions
JP2015146740A (en
Inventor
直靖 庄司
直靖 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONMAMONNOUMITSUKUTTARE CO., LTD.
Original Assignee
HONMAMONNOUMITSUKUTTARE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONMAMONNOUMITSUKUTTARE CO., LTD. filed Critical HONMAMONNOUMITSUKUTTARE CO., LTD.
Priority to PCT/JP2014/052589 priority Critical patent/WO2014192330A1/en
Priority to US14/894,905 priority patent/US9771289B2/en
Priority to SG11201509752RA priority patent/SG11201509752RA/en
Priority to JP2014019849A priority patent/JP6272062B2/en
Publication of JP2015146740A publication Critical patent/JP2015146740A/en
Priority to CL2015003473A priority patent/CL2015003473A1/en
Application granted granted Critical
Publication of JP6272062B2 publication Critical patent/JP6272062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、保持槽内や海などに設けた水圏生物の養殖場などで発生した硫化水素を水中で低害化することが可能な水の浄化方法、水の浄化システムおよび水の浄化ユニットに関する。   TECHNICAL FIELD The present invention relates to a water purification method, a water purification system, and a water purification unit that can reduce hydrogen sulfide generated in aquatic organism farms in a holding tank or the sea, etc. in water. .

水槽等の保持槽内で水圏生物を飼育するとその排泄物等に由来する有機物から有害なアンモニアや硝酸等が発生することから、従来より、濾過装置を用いたり、これと併せて定期的に保持槽内の飼育水を新しいものに換える換水処理や保持槽内の砂を新しいものに入れ替える砂の入れ替え処理を行って排泄物等を除去する処理を行っている。しかしながら、例えば保持槽の上方などに取り付けるタイプの外付けの濾過装置はその設置や維持管理に費用がかかり、保持槽の規模が大きいとこの費用は莫大なものとなる。   When aquatic organisms are bred in a holding tank such as an aquarium, harmful ammonia or nitric acid is generated from organic matter derived from the excreta. We perform processing to remove excrement etc. by performing water replacement processing to replace the breeding water in the tank with a new one and sand replacement processing to replace the sand in the holding tank with a new one. However, for example, an external filtration device of the type attached above the holding tank is expensive to install and maintain, and this cost becomes enormous if the size of the holding tank is large.

一般的に上記のような外付けの濾過装置を使用しない飼育システムとして例えば特許文献1に記載されているようなモナコ式の飼育システムが挙げられる。この飼育システムでは、通水性を有する板状部材を利用して上げ底を行ったうえで当該板状部材上に砂の層を設け、その層の上側に有酸素環境であるとともに光が届く好気層を形成し、下側に無酸素環境であるとともに光が届かない通性嫌気層を形成する。好気層には好気性細菌が生息し、通性嫌気層には通性嫌気性細菌が生息する。これら好気性細菌及び通性嫌気性細菌が有機物から発生した有害なアンモニア、亜硝酸及び硝酸等を分解し、濾過機能を有することから、モナコ式の飼育システムでは一般的に上記のような外付けの濾過装置を不要としている。   In general, as a breeding system that does not use an external filtration device as described above, for example, a Monaco breeding system as described in Patent Document 1 can be given. In this breeding system, after raising the bottom using a plate-like member having water permeability, a sand layer is provided on the plate-like member, and an aerobic environment in which light reaches the upper side of the layer is aerobic. A layer is formed, and a facultative anaerobic layer in which light is not reached and an oxygen-free environment is formed on the lower side. Aerobic bacteria live in the aerobic layer, and facultative anaerobic bacteria live in the facultative anaerobic layer. Since these aerobic bacteria and facultative anaerobic bacteria have a filtration function by decomposing harmful ammonia, nitrous acid, and nitric acid generated from organic matter, monaco breeding systems generally have the above-mentioned external attachment. The filtration device is unnecessary.

特開2002−223664号公報JP 2002-223664 A

ところで、このようなモナコ式の飼育システムでは、板状部材の下方すなわち保持槽の底部に好気性細菌や通性嫌気性細菌の死骸やこれらの細菌によって生成された硫黄化合物を含む物質が堆積していく。これをそのまま放置しておくと硫黄化合物から絶対嫌気性細菌である硫酸還元菌により有害な硫化水素が生成され、この硫化水素が好気層及び通性嫌気層を通過して上昇すると水圏生物を死滅させるおそれがある。このようにモナコ式の飼育システムは、硫化水素を無害化できるものではなく、濾過機能を補う装置を別途に設けたり、定期的に換水処理や砂の入れ替え処理を行って硫化水素の発生原因となる硫黄化合物を取り除く必要がある。   By the way, in such a Monaco breeding system, a dead body of aerobic bacteria and facultative anaerobic bacteria and substances containing sulfur compounds produced by these bacteria are deposited below the plate member, that is, at the bottom of the holding tank. To go. If this is left as it is, harmful hydrogen sulfide is produced from sulfur compounds by sulfate-reducing bacteria, which is an absolute anaerobic bacterium. If this hydrogen sulfide passes through the aerobic and facultative anaerobic layers, There is a risk of death. In this way, the Monaco breeding system is not capable of detoxifying hydrogen sulfide, and a separate device that supplements the filtration function is provided, or water exchange treatment and sand replacement treatment are performed periodically to cause hydrogen sulfide generation. It is necessary to remove the sulfur compound.

しかしながら、濾過機能を補う装置を別途に設けたり、換水処理や砂の入れ替え処理を行うと、費用や手間が掛かるとともに、換水処理や砂の入れ替え処理では水圏生物に少なからずダメージを与えるおそれがあることから、濾過機能を補う装置の設置、換水処理や砂の入れ替え処理を行うことなく硫化水素による害を抑制可能なものが望まれている。   However, if a separate device that supplements the filtration function is provided, or if water replacement processing or sand replacement processing is performed, it will be expensive and time-consuming, and the water replacement processing and sand replacement processing may cause damage to aquatic organisms. For this reason, there is a demand for a device capable of suppressing the damage caused by hydrogen sulfide without performing installation of a device that supplements the filtration function, water exchange treatment, or sand replacement treatment.

また硫化水素は、水槽内に限らず、海などに設けた水圏生物の養殖場などでもそこに生息する細菌により水中の有機物が分解されて発生する可能性があるものであり、硫化水素が多量に発生した場合には水圏生物に被害を与えるおそれがある。   Hydrogen sulfide is not limited to being contained in aquariums, but can be generated by the decomposition of organic substances in water by bacteria that inhabit aquatic organism farms established in the sea. If this occurs, there is a risk of damage to aquatic organisms.

本発明は、このような課題を有効に解決するものであって、有機物に由来する有害物の堆積を抑制するとともに、細菌の働きにより発生した硫化水素を水中で低害化することができ、濾過機能を補う装置の設置を不要としつつ半永久的ないし長期間に亘って換水処理や砂の入れ替え処理を不要とすることが可能な水の浄化方法および水の浄化システムを提供することを目的とする。   The present invention effectively solves such a problem, and while suppressing the deposition of harmful substances derived from organic matter, it can reduce hydrogen sulfide generated by the action of bacteria in water, It is an object of the present invention to provide a water purification method and a water purification system that can eliminate the need for water replacement treatment and sand replacement treatment for a semipermanent or long-term while eliminating the need for a device that supplements the filtration function. To do.

また、水槽等の保持槽内や海などに設けた水圏生物の養殖場などで上記水の浄化方法および上記水の浄化システムを容易に実施することが可能な水の浄化ユニットを提供することを目的とする。   Further, it is intended to provide a water purification unit capable of easily carrying out the water purification method and the water purification system in a hydrosphere organism farm provided in a holding tank such as a water tank or in the sea. Objective.

本発明は、かかる目的を達成するために次のような手段を講じたものである。   The present invention takes the following means in order to achieve such an object.

すなわち、本発明に係る水の浄化方法は、絶対嫌気性細菌が生息可能な土質材料を予め押し固めた塊状の第1の細菌生息可能部を水中に設置された状態にするとともに、この第1の細菌生息可能部に隣接して粒状の担体を有し通性嫌気性細菌が生息可能な第2の細菌生息可能部と、この第2の細菌生息可能部に隣接して粒状の担体を有し好気性細菌が生息可能な第3の細菌生息可能部と、嫌気的な環境であって前記第1の細菌生息可能部と連通する嫌気空間とを水中に形成し、さらに前記第3の細菌生息可能部と連通する位置に有機物および酸素が存在する好気領域を位置づけて、この好気領域と前記嫌気空間とを連通状態にし、これにより前記第1の細菌生息可能部に絶対嫌気性細菌を増殖させ、前記第2の細菌生息可能部に通性嫌気性細菌を増殖させ、前記第3の細菌生息可能部に好気性細菌を増殖させて、これらの細菌により前記好気領域中の有機物を分解させるとともに、前記第1の細菌生息可能部から流出した絶対嫌気性細菌およびこれによる生成物を前記嫌気空間から前記好気領域に移動させつつ、前記第1の細菌生息可能部に増殖した絶対嫌気性細菌により生成された硫化水素を低害化させることを特徴とする。   That is, in the water purification method according to the present invention, the lump-like first bacterial habitable portion obtained by preliminarily compacting a soil material capable of inhabiting anaerobic bacteria is placed in the water, and the first A second carrier capable of inhabiting facultative anaerobic bacteria and a particulate carrier adjacent to the second bacteria inhabitable portion. And forming an aerobic bacterium capable of inhabiting a third bacterium and an anaerobic space in an anaerobic environment and communicating with the first bacterium inhabitable part. An aerobic region where organic matter and oxygen are present at a position communicating with the inhabitable portion is positioned, and the aerobic region and the anaerobic space are brought into communication with each other, whereby an absolute anaerobic bacterium is provided in the first bacterial inhabitable portion. And the facultative anaerobic cells in the second bacterial inhabitable part Anaerobic bacteria in the third bacteria-habitable part, organic substances in the aerobic region are decomposed by these bacteria, and absolute anaerobic flowed out from the first bacteria-habitable part The hydrogen sulfide produced by the absolute anaerobic bacteria grown in the first bacteria-inhabitable portion is reduced while moving the bacterial bacteria and the products thereby from the anaerobic space to the aerobic region. And

ここで、土質材料とは、腐葉土等の自然界に存在する土と同様の性質及び機能等を有するものであればよく、自然界に存在するものだけでなく人工的に製造されたものであってもよい。土と同様の性質及び機能等を有するものとは、土と同様に絶対嫌気性細菌が生息可能であり、層状態にしたときにその層の内部を有機物及び微生物等が移動可能であるとともにその層の内部を嫌気的な環境とすることができるものを言う。このような性質及び機能等が充たされる限りにおいて、土質材料それ自体の形状は特に限定されず、土その他の粒子状のものを押し固めるなどして層状態にしてもよく、スポンジのようにそれ自体が層状態になるような1塊のものであってもよい。また、第1の細菌生息可能部と嫌気空間とが連通する状態とは、第1の細菌生息可能部に絶対嫌気性細菌やその生成物、水などが存在する場合にそれらが嫌気空間に移動可能な状態をいい、好気領域と第3の細菌生息可能部とが連通する状態とは、好気領域に有機物や酸素、水などが存在する場合にそれらが第3の細菌生息可能部に移動可能な状態をいい、嫌気空間と好気領域とが連通する状態とは、嫌気空間に存在可能な絶対嫌気性細菌や硫化水素、水などが存在する場合にそれらが好気領域に移動可能な状態をいう。さらに、低害化とは、水圏生物に対する有害性を低下させることをいう。   Here, the soil material only needs to have the same properties and functions as the soil existing in the natural world such as humus, and may be not only a natural material but also an artificially manufactured material. Good. Those having the same properties and functions as soil can be inhabited by absolute anaerobic bacteria like soil, and when they are in a layered state, organic matter and microorganisms can move inside the layer and Says something that can make the inside of the strata an anaerobic environment. As long as such properties and functions are satisfied, the shape of the soil material itself is not particularly limited, and may be made into a layered state by pressing and solidifying soil or other particulate matter, such as a sponge. It may be one lump that is itself in a layered state. The state where the first bacteria-habitable part and the anaerobic space communicate with each other means that the first bacteria-habitable part contains absolute anaerobic bacteria, their products, water, etc., and they move to the anaerobic space. The state in which the aerobic region and the third bacteria inhabitable part communicate with each other means that the organic substance, oxygen, water, etc. are present in the aerobic area. This refers to the state of movement. The state where the anaerobic space and the aerobic region communicate with each other means that when there are absolute anaerobic bacteria, hydrogen sulfide, water, etc. that can exist in the anaerobic space, they can move to the aerobic region. State. Further, reduction of harm means reducing the harmfulness to aquatic organisms.

このような方法であれば、第3の細菌生息可能部と連通する位置に有機物が存在する好気領域を位置づけて、この好気領域と前記嫌気空間とを連通状態にすることで、第1の細菌生息可能部に絶対嫌気性細菌が増殖して絶対嫌気層が形成され、第2の細菌生息可能部に通性嫌気性細菌が増殖して通性嫌気層が形成され、第3の細菌生息可能部に好気性細菌が増殖して好気層が形成される。そして、水中の有機物は、好気層に到達した後に通性嫌気層に到達し、これらの層にそれぞれ生息する好気性細菌及び通性嫌気性細菌によって分解される。この分解物はその後、絶対嫌気層に到達して絶対嫌気性細菌により分解される。このとき、絶対嫌気性細菌であり嫌気条件下でのみ生息可能な硫酸還元菌によって硫黄化合物が硫化水素に分解されるが、このようにして発生した硫化水素は、好気領域、好気層、通性嫌気層、絶対嫌気層および嫌気空間の少なくとも何れかにおいて低害化される。具体的には、硫酸還元菌とともに好気領域に移動する過程で水中の鉄成分と反応して硫化水素よりも水圏生物に対する有害性が低い硫化鉄となったり、好気層などに生息する硫黄酸化細菌や光合成細菌等によって硫化水素よりも水圏生物に対する有害性が低い他の硫黄化合物に変換されることで低害化される。また、好気領域に移動した硫酸還元菌は硫化鉄と反応することで好気的な環境でも生息可能になり、好気層表面に到達してそこに存在する有機物量が比較的多ければ当該有機物の分解を行い、比較的少なければ休眠状態になることから、分解可能な有機物量が増加する。このように水中の有機物を分解しつつ、これにより発生した硫化水素を低害化することができることから、濾過機能を補う装置を別途設けることなく且つ半永久的ないし長期間に亘って換水処理や砂の入れ替え処理を行わなくても前記有機物に由来する有害物が堆積することを抑制することができ、水槽等の保持槽に保持された水や、海などに設けた水圏生物の養殖場などの水を浄化することができる。また予め押し固められた塊状の第1の細菌生息可能部を用いることで、上記のような硫化水素の低害化を伴う有機物の分解サイクルを所望の位置に短期間で人工的に形成することができる。   If it is such a method, the aerobic area | region where an organic substance exists will be located in the position connected with a 3rd bacteria inhabitable part, and this aerobic area | region and the said anaerobic space will be made into a communication state, and 1st An anaerobic bacterium grows in an area where the bacteria can live, and an anaerobic layer is formed. A facultative anaerobic bacterium grows in the second area where the bacteria can live, and a facultative anaerobic layer is formed. Aerobic bacteria grow in the habitable part and an aerobic layer is formed. The organic matter in the water reaches the aerobic layer after reaching the aerobic layer, and is decomposed by aerobic bacteria and facultative anaerobic bacteria that inhabit these layers, respectively. This degradation product then reaches the absolute anaerobic layer and is degraded by the absolute anaerobic bacteria. At this time, the sulfur compounds are decomposed into hydrogen sulfide by sulfate-reducing bacteria that are absolutely anaerobic bacteria and can only live under anaerobic conditions, but the hydrogen sulfide generated in this way is aerobic, aerobic, The damage is reduced in at least one of a facultative anaerobic layer, an absolute anaerobic layer, and an anaerobic space. Specifically, in the process of moving to an aerobic region together with sulfate-reducing bacteria, it reacts with iron components in water to become iron sulfide that is less harmful to aquatic organisms than hydrogen sulfide, or sulfur that inhabits aerobic layers, etc. It is reduced by being converted to other sulfur compounds that are less harmful to hydrosphere than hydrogen sulfide by oxidizing bacteria or photosynthetic bacteria. In addition, sulfate-reducing bacteria that have moved to the aerobic region can inhabit in an aerobic environment by reacting with iron sulfide, and if the amount of organic matter present on the aerobic layer is relatively high, The organic matter is decomposed, and if it is relatively small, it enters a dormant state, so that the amount of organic matter that can be decomposed increases. In this way, it is possible to reduce the hydrogen sulfide generated by decomposing organic substances in the water, so that there is no need to separately provide a device for supplementing the filtration function, and semi-permanent or long-term water exchange treatment or sand It is possible to suppress the accumulation of harmful substances derived from the organic matter without performing a replacement process, such as water held in a holding tank such as an aquarium, aquatic organism farms provided in the sea, etc. Water can be purified. In addition, by using the mass-stabilized first bacteria-infested portion that has been preliminarily compacted, an organic matter decomposition cycle with the above-mentioned reduction in hydrogen sulfide damage can be artificially formed in a desired position in a short period of time. Can do.

また、本発明に係る水の浄化システムは、有機物を含有する水を保持可能な保持槽と、この保持槽内に形成され、前記有機物および酸素が存在する好気領域と、この好気領域と連通し、好気性細菌が生息する好気層と、この好気層に隣接して設けられ、通性嫌気性細菌が生息する通性嫌気層と、この通性嫌気層に隣接して設けられ、絶対嫌気性細菌が生息するとともに土質材料により構成される絶対嫌気層と、嫌気的な環境であり、前記絶対嫌気層に生息する絶対嫌気性細菌およびこれによる生成物が流入可能な嫌気空間と、この嫌気空間と前記好気領域とを連通する連通手段と、前記好気領域、前記好気層、前記通性嫌気層、前記絶対嫌気層および前記嫌気空間の少なくとも何れかに形成され、前記絶対嫌気性細菌により生成された硫化水素を低害化する硫化水素低害化領域とを備えるものが挙げられる。このような水の浄化システムでも、本発明に係る水の浄化方法と同様に、細菌の働きにより発生した硫化水素を水中で低害化することができ、濾過機能を補う装置を別途設けることなく且つ半永久的ないし長期間に亘って換水処理や砂の入れ替え処理を行わなくても前記有機物に由来する有害物が堆積することを抑制することができる。また、本発明に係る水の浄化システムを水圏生物の飼育に用いる場合には、水圏生物が成長しても飼育数を減少させる必要が無く、また飼育可能な水圏生物の数を従来よりも多くすることができる。   Further, the water purification system according to the present invention includes a holding tank capable of holding water containing organic matter, an aerobic region formed in the holding tank and containing the organic matter and oxygen, and the aerobic region. Communicating, aerobic layer where aerobic bacteria inhabit, and adjacent to this aerobic layer, facultative anaerobic layer where facultative anaerobic bacteria inhabit, and adjacent to this facultative anaerobic layer An anaerobic layer inhabited by anaerobic bacteria and composed of soil materials, an anaerobic environment, an anaerobic space inhabiting the absolute anaerobic bacteria inhabiting the absolute anaerobic layer, and products produced thereby A communication means for communicating the anaerobic space and the aerobic region; and formed in at least one of the aerobic region, the aerobic layer, the facultative anaerobic layer, the absolute anaerobic layer, and the anaerobic space, Sulfidated water produced by absolute anaerobic bacteria It includes those having a low Gaika hydrogen sulfide lower Gaika region. Even in such a water purification system, as in the water purification method according to the present invention, hydrogen sulfide generated by the action of bacteria can be reduced in water, and a device for supplementing the filtration function is not provided separately. Moreover, it is possible to suppress the accumulation of harmful substances derived from the organic matter without performing a water replacement treatment or a sand replacement treatment for a semipermanent or long term. Further, when the water purification system according to the present invention is used for breeding aquatic organisms, it is not necessary to reduce the number of breeding even if the aquatic organism grows, and the number of aquatic organisms that can be reared is larger than before. can do.

また本発明に係る水の浄化ユニットは、土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部と、この細菌生息可能部によって少なくとも一部が構成される閉塞手段により囲まれた閉塞空間と、第1の開口部および第2の開口部が形成されているとともに前記閉塞空間から前記閉塞手段を貫通して延出可能な長さを有し、前記第1の開口部を前記閉塞空間に臨む位置に配置した場合に、前記第2の開口部が前記細菌生息可能部から所定距離離れた位置に配置される筒状部材とを有することを特徴とする。   Further, the water purification unit according to the present invention is composed of a soil material, and is surrounded by a massive bacterial habitable portion where absolute anaerobic bacteria can inhabit and an occlusion means which is at least partially constituted by the bacterial habitable portion. A closed opening, a first opening and a second opening are formed, and the first opening has a length capable of extending from the closing space through the closing means. And a cylindrical member disposed at a position away from the bacteria inhabitable portion by a predetermined distance when the second opening is disposed at a position facing the closed space.

このような構成であり、筒状部材が前記第1の開口部を前記閉塞空間を臨む位置に配置した場合に前記第2の開口部が前記細菌生息可能部から所定距離離れた位置に配置されることから、細菌生息可能部のうち筒状部材が突出している側の面に好気層や通性嫌気層を形成すべく粒状の担体等を供給した際に、筒状部材の延出端が粒状の担体等により塞がれることがなく、前述したような好気領域、好気層、通性嫌気層、絶対嫌気層、および好気領域と連通する嫌気空間を容易に形成することができる。また、細菌生息可能部は塊状のものであり、土質材料が予め押し固められていることから、前述した第1の細菌生息可能部を水中に容易に形成して上記のような有機物の分解サイクルが行われるようにするために必要な立ち上げ期間を短縮することができる。   In such a configuration, when the cylindrical member is disposed at a position where the first opening faces the closed space, the second opening is disposed at a position away from the bacteria inhabitable portion by a predetermined distance. Therefore, when a granular carrier or the like is supplied to form an aerobic layer or a facultative anaerobic layer on the surface of the bacteria-habitable portion where the cylindrical member protrudes, the extended end of the cylindrical member Can be easily formed in the aerobic region, the aerobic layer, the facultative anaerobic layer, the absolute anaerobic layer, and the anaerobic space communicating with the aerobic region. it can. In addition, since the bacteria-habitable part is a block and the soil material is preliminarily compacted, the above-mentioned first bacteria-habitable part can be easily formed in water to decompose the organic matter as described above. It is possible to shorten the start-up period necessary for performing the above.

前記土質材料がばらけて細菌生息可能部の形状が崩れたり、水中に浸漬させた水の浄化ユニットから前記土質材料が流れ出すことを抑制するためには、前記細菌生息可能部のうち少なくとも前記筒状部材が突出していない側の面を、前記土質材料の通過を遮る包囲部材により被覆していることが好ましい。   In order to prevent the soil material from being scattered and the shape of the bacteria-habitable portion from collapsing, or to prevent the soil material from flowing out of the water purification unit immersed in water, at least the tube of the bacteria-habitable portion. It is preferable that the surface on which the slab member does not protrude is covered with an enclosing member that blocks the passage of the soil material.

一般的な透明の水槽を利用して水の浄化システムを構成する際に、他の部材等を用いることなく閉塞空間に光が侵入することを防止するためには、前記包囲部材が遮光性を有する構成とすることが好ましい。   When constructing a water purification system using a general transparent water tank, in order to prevent light from entering the enclosed space without using other members, the surrounding member has a light shielding property. It is preferable to have a configuration.

前記閉塞空間に土質材料が進入することを抑制するためには、前記細菌生息可能部と前記閉塞空間との間に、通水性を有し且つ前記土質材料の通過を遮る網目状部材を設けられていることが好ましい。   In order to prevent the soil material from entering the enclosed space, a mesh member having water permeability and blocking the passage of the soil material is provided between the bacteria-inhabitable portion and the enclosed space. It is preferable.

複数の水の浄化ユニットを積み重ねて使用することを可能にしたり、海底等の凹凸のある場所にも設置しやすくするためには、設置面との間に所定の隙間を確保することが可能な支持脚を設けた構成とすることが好ましい。   In order to make it possible to use a plurality of water purification units stacked on top of each other, or to make it easier to install on uneven surfaces such as the seabed, it is possible to secure a predetermined gap with the installation surface. It is preferable that the support leg is provided.

また他の構成に係る水の浄化ユニットとしては、土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部と、第1の開口部および第2の開口部が形成されているとともに前記細菌生息可能部の一方側から他方側に延出可能な長さを有し、前記第1の開口部を前記細菌生息可能部の一方側に臨む位置に配置した場合に、前記第2の開口部が前記細菌生息可能部の他方側において前記細菌生息可能部から所定距離離れた位置に配置される筒状部材とを有するものが挙げられる。   Moreover, as a water purification unit according to another configuration, a massive bacterial habitable portion that is made of a soil material and can inhabit absolute anaerobic bacteria, and a first opening and a second opening are formed. And has a length that can extend from one side of the bacteria-habitable portion to the other side, and the first opening is disposed at a position facing one side of the bacteria-habitable portion, What has 2 opening part has the cylindrical member arrange | positioned in the position away from the said bacteria inhabitable part by the predetermined distance in the other side of the said bacteria inhabitable part.

このような構成であることから、有機物を含有する水中に浸漬するとともに細菌生息可能部のうち筒状部材の他端が配置されている側の面に好気層や通性嫌気層を形成すべく粒状の担体等を供給することで、閉塞空間形成手段を利用して細菌生息可能部の一方側に閉塞空間を形成することができる。また、筒状部材が前記第1の開口部を前記細菌生息可能部の一方側に臨む位置に配置した場合に前記第2の開口部が前記細菌生息可能部から所定距離離れた位置に配置されることから、前記粒状の担体等により筒状部材の他端が塞がれることがなく、前述したような好気領域、好気層、通性嫌気層、絶対嫌気層、および好気領域と連通する嫌気空間を容易に形成することができる。また細菌生息可能部は塊状のものであり、土質材料が予め押し固められていることから、前述した第1の細菌生息可能部を水中に容易に形成して上記のような有機物の分解サイクルが行われるようにするために必要な立ち上げ期間を短縮することができる。   Since it is such a structure, an aerobic layer and a facultative anaerobic layer are formed on the surface on the side where the other end of the cylindrical member is arranged in the bacteria inhabitable portion while being immersed in water containing organic matter. By supplying a granular carrier or the like as much as possible, the closed space can be formed on one side of the bacteria inhabitable portion using the closed space forming means. Further, when the cylindrical member is arranged at a position where the first opening faces the one side of the bacteria-habitable portion, the second opening is arranged at a position away from the bacteria-habitable portion by a predetermined distance. Therefore, the other end of the cylindrical member is not blocked by the granular carrier or the like, and the aerobic region, the aerobic layer, the facultative anaerobic layer, the absolute anaerobic layer, and the aerobic region as described above An anaerobic space that communicates can be easily formed. In addition, since the bacteria-habitable part is a lump and the soil material is preliminarily compacted, the above-mentioned first bacteria-habitable part is easily formed in water, and the organic matter decomposition cycle as described above is performed. It is possible to shorten the start-up period necessary to make it happen.

さらに他の構成に係る水の浄化ユニットとしては、土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部を有し、この細菌生息可能部に一方側から他方側に貫通する貫通部が形成されているものが挙げられる。このような構成であることから、たとえば貫通部に、第1の開口部および第2の開口部が形成され、第1の開口部を細菌生息可能部に一方側に配置した場合に第2の開口部が細菌生息可能部の他方側において細菌生息可能部から所定距離離れた位置に配置されるような筒状部材を差し込んだり、筒状部材を貫通部と連通するように細菌生息可能部の表面に配置することで、前述した水の浄化ユニットと実質的に同様の構成とすることができ、同様の効果を発揮することが可能となる。   Furthermore, as a water purification unit according to another configuration, it is composed of a soil material and has a massive bacterial habitable part that can inhabit absolute anaerobic bacteria, and penetrates from this side to the other side. The thing in which the penetration part which forms is formed is mentioned. Because of such a configuration, for example, when the first opening and the second opening are formed in the penetrating portion, and the first opening is arranged on one side of the bacteria inhabitable portion, the second opening Insert the tubular member whose opening is located at a predetermined distance away from the bacteria inhabitable portion on the other side of the bacteria inhabitable portion, or connect the tubular member to the penetrating portion of the bacteria inhabitable portion By arrange | positioning on the surface, it can be set as the structure substantially the same as the water purification unit mentioned above, and it becomes possible to exhibit the same effect.

上記のような水の浄化ユニットを使用して上記水の浄化方法を実現するためには通性嫌気層および好気層を形成するために粒状の担体を供給する必要がある場合があるが、この手間をなくした水の浄化ユニットとするためには、前記絶対嫌気性細菌が生息可能な細菌生息可能部を第1の細菌生息可能部とした場合に、この第1の細菌生息可能部に隣接して通性嫌気性細菌が生息可能な第2の細菌生息可能部と、この第2の細菌生息可能部に隣接して好気性細菌が生息可能な第3の細菌生息可能部とをそれぞれ形成すべく、好気性細菌および通性嫌気性細菌が生息可能な粒状の担体を更に備える構成とすることが好ましい。   In order to realize the water purification method using the water purification unit as described above, it may be necessary to supply a granular carrier to form a facultative anaerobic layer and an aerobic layer, In order to obtain a water purification unit that eliminates this hassle, when the bacteria capable of inhabiting the absolute anaerobic bacteria is designated as the first bacteria infectious part, A second bacterial inhabitable part capable of inhabiting facultative anaerobic bacteria and a third bacterial inhabitable part capable of inhabiting aerobic bacteria adjacent to the second bacterial inhabitable part, respectively. In order to form it, it is preferable to further comprise a granular carrier that can inhabit aerobic bacteria and facultative anaerobic bacteria.

また、水の浄化ユニットの軽量化を図るためには、前記細菌生息可能部が乾燥状態であることが好ましい。   Further, in order to reduce the weight of the water purification unit, it is preferable that the bacteria-habitable portion is in a dry state.

以上説明した本発明によれば、有機物に由来する有害物の堆積を抑制するとともに、細菌の働きにより有機物から発生した硫化水素を有害性の低い物質に変換するなどして低害化することで、濾過機能を補う装置の設置を不要としつつ半永久的ないし長期間に亘って換水処理や砂の入れ替え処理を不要とするために有用な水の浄化方法、水の浄化システムおよび水の浄化ユニットを提供することが可能である。   According to the present invention described above, the accumulation of harmful substances derived from organic substances can be suppressed, and hydrogen sulfide generated from organic substances can be reduced by converting bacteria into less harmful substances by the action of bacteria. A water purification method, a water purification system, and a water purification unit that are useful for eliminating the need for water replacement treatment or sand replacement treatment for a semi-permanent or long-term while eliminating the need for a device that supplements the filtration function. It is possible to provide.

本発明の第1の実施形態に係る水の浄化ユニットを示す断面図。Sectional drawing which shows the purification unit of the water which concerns on the 1st Embodiment of this invention. 同浄化ユニットを使用して構成した第1の実施形態に係る水の浄化システムを示す断面図。Sectional drawing which shows the water purification system which concerns on 1st Embodiment comprised using the purification unit. 同浄化システムにおける有機物の循環を示す模式図。The schematic diagram which shows the circulation of the organic substance in the purification system. 同浄化システムの立ち上げ方法を説明するための工程図。Process drawing for demonstrating the starting method of the purification system. 本発明の第2の実施形態に係る水の浄化ユニットを示す断面図。Sectional drawing which shows the purification unit of the water which concerns on the 2nd Embodiment of this invention. 同浄化ユニットを使用して構成した第2の実施形態に係る水の浄化システムを示す断面図。Sectional drawing which shows the water purification system which concerns on 2nd Embodiment comprised using the purification unit. 本発明の第3の実施形態に係る水の浄化システムを示す断面図。Sectional drawing which shows the purification system of the water which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る水の浄化システムを示す断面図。Sectional drawing which shows the purification system of the water which concerns on the 4th Embodiment of this invention. 第1の実施形態に係る水の浄化ユニットの変形例を示す断面図。Sectional drawing which shows the modification of the water purification unit which concerns on 1st Embodiment. 同浄化ユニットの他の変形例を示す断面図。Sectional drawing which shows the other modification of the purification | cleaning unit. 同浄化ユニットの他の変形例を示す断面図。Sectional drawing which shows the other modification of the purification | cleaning unit. 同浄化ユニットの他の変形例を示す断面図。Sectional drawing which shows the other modification of the purification | cleaning unit. 同浄化ユニットの他の変形例を示す断面図。Sectional drawing which shows the other modification of the purification | cleaning unit. 同浄化ユニットの他の変形例を示す断面図。Sectional drawing which shows the other modification of the purification | cleaning unit. 第3の実施形態に係る水の浄化ユニットの変形例を示す断面図。Sectional drawing which shows the modification of the purification unit of the water which concerns on 3rd Embodiment. 同浄化ユニットの他の変形例を示す断面図。Sectional drawing which shows the other modification of the purification | cleaning unit. 第1の実施形態に係る水の浄化システムの変形例を示す断面図。Sectional drawing which shows the modification of the water purification system which concerns on 1st Embodiment. 同浄化システムの他の変形例を示す模式的な断面図。Typical sectional drawing which shows the other modification of the purification system.

<第1の実施形態>
以下、本発明に係る第1の実施形態を、図1〜図4を参照して説明する。
<First Embodiment>
A first embodiment according to the present invention will be described below with reference to FIGS.

図1に示すように、本発明の第1の実施形態である水の浄化ユニット100は、水圏生物の飼育ユニットとして用いられるものであり、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部140と、少なくとも一部が細菌生息可能部140により囲まれた閉塞空間130と、閉塞空間130より延在するパイプ8とを備える。   As shown in FIG. 1, the water purification unit 100 according to the first embodiment of the present invention is used as a breeding unit for aquatic organisms, and is a massive bacterial habitable part where absolute anaerobic bacteria can live. 140, a closed space 130 at least partially surrounded by the bacteria inhabitable portion 140, and a pipe 8 extending from the closed space 130.

細菌生息可能部140は、団粒構造である土質材料としての黒ぼく土40を平面視略矩形状に押し固めて構成された乾燥状態のものである。なお乾燥状態とは、水分が全く含まれない状態だけではなく、いくらか含まれた状態も含む。本実施形態において閉塞空間130は、中空部材30により第1方向X(本実施形態では水平方向)の両側(側方)が囲まれるとともに、包囲部材131により第1方向Xと直交する第2方向Y(本実施形態では鉛直方向)の一方側(本実施形態では下方)、前記細菌生息可能部140により第2方向Yの他方側(本実施形態では上方)がそれぞれ囲まれている。中空部材30は第2方向Yの両端が開放された筒状のものであり、互いに離間して2つ設けられ、上側の開口30aに表面が網目状部材32で被覆された格子状又はすのこ状の板状部材31が載置されている。そして、このような中空部材30の第2方向Yの一方側を除いた周囲は、細菌生息可能部140を構成する黒ぼく土40により覆われている。前記網目状部材32は、黒ぼく土40の通過を遮りつつ通水性を有するものであり、細菌生息可能部140の黒ぼく土40が上方から閉塞空間130に進入することを抑制する。網目状部材32としては、このような機能を有する網目状の布類や繊維状のシート等を用いることができる。包囲部材131は、遮光性を有するとともに、黒ぼく土40及び酸素の通過を遮ぎるシート状や板状のものであり、細菌生息可能部140の第1方向Xにおける両面140bおよび第2方向Yにおける一方側の面140c、ならびに中空部材30の第2方向Yの一方側を被覆する。これら包囲部材131、中空部材30および細菌生息可能部140は、閉塞空間130を囲む閉塞手段132を構成している。なお、中空部材30としては筒状のものに限定されず、例えば第2方向Yの他方側のみが開放された箱状のものを用いてもよく、この場合には中空部材30および細菌生息可能部140が閉塞手段132を構成する。また、閉塞空間130の数は2つに限定されず1つ又は3つ以上であってもよい。   The bacteria inhabitable portion 140 is in a dry state formed by pressing and solidifying the black soil 40 as a soil material having a aggregate structure into a substantially rectangular shape in plan view. The dry state includes not only a state where no moisture is contained but also a state where some moisture is contained. In the present embodiment, the closed space 130 is surrounded by the hollow member 30 on both sides (sides) in the first direction X (horizontal direction in the present embodiment), and in the second direction orthogonal to the first direction X by the surrounding member 131. One side of Y (vertical direction in the present embodiment) (lower side in the present embodiment) and the other side in the second direction Y (upper side in the present embodiment) are surrounded by the bacteria habitable portion 140. The hollow member 30 has a cylindrical shape in which both ends in the second direction Y are open, and are provided with two spaced apart from each other. The surface is covered with a mesh member 32 on the upper opening 30a. The plate-like member 31 is placed. And the circumference | surroundings except the one side of the 2nd direction Y of such a hollow member 30 are covered with the black soil 40 which comprises the bacteria inhabitable part 140. FIG. The mesh-like member 32 has water permeability while blocking the passage of the black soil 40, and suppresses the black soil 40 of the bacteria inhabitable portion 140 from entering the closed space 130 from above. As the mesh member 32, a mesh-like cloth or a fibrous sheet having such a function can be used. The surrounding member 131 has a light shielding property and has a sheet shape or a plate shape that blocks the passage of the black soil 40 and oxygen, and the both sides 140b and the second direction Y in the first direction X of the bacteria inhabitable portion 140. 1 side 140c and the one side of the hollow member 30 in the second direction Y are covered. The surrounding member 131, the hollow member 30, and the bacteria inhabitable portion 140 constitute a closing means 132 that surrounds the closed space 130. Note that the hollow member 30 is not limited to a cylindrical one, and for example, a box-shaped member in which only the other side in the second direction Y is opened may be used. In this case, the hollow member 30 and bacteria can live. The unit 140 constitutes the closing means 132. Further, the number of closed spaces 130 is not limited to two and may be one or three or more.

筒状部材(連通手段)としてのパイプ8は、延在方向に互いに第2の距離L2離間して第1の開口部8abと第2の開口部8baが形成されており、本実施形態では両端に開口部8ab,8baが形成されている。この開口部8ab,8baは、後述する水の浄化システム1において嫌気空間3と好気領域90とを連通させることができる位置に形成されていれば特に限定されず、パイプ8の端部だけでなく延在方向の中央部に形成されていてもよい。パイプ8は、その一端8aが配置された閉塞空間130から中空部材30を貫通して第1方向Xに延び、細菌生息可能部140内で直角に屈曲して、延出端としての他端8bが細菌生息可能部140の第2方向Yにおける他方側の面140aから突出している。そして、第1の開口部8abが閉塞空間130に臨む位置に配置されるとともに、第2の開口部baが細菌生息可能部140から第1の距離L1離れた位置に配置される。パイプ8の材質は特に限定されず、例えば塩化ビニル製、陶器製、鉄製、ガラス製、ゴム製のものを用いることができ、また、後述する保持槽2の容量等に合った径のものを用いることが好ましい。また、本実施形態では各閉塞空間130から1本ずつパイプ8が延びているが、各閉塞空間130に複数本のパイプ8が設けられていてもよい。   A pipe 8 as a tubular member (communication means) is formed with a first opening 8ab and a second opening 8ba that are separated from each other by a second distance L2 in the extending direction. Openings 8ab and 8ba are formed in the opening. The openings 8ab and 8ba are not particularly limited as long as the openings 8ab and 8ba are formed at positions where the anaerobic space 3 and the aerobic region 90 can be communicated with each other in the water purification system 1 described later. Alternatively, it may be formed at the center in the extending direction. The pipe 8 extends in the first direction X from the closed space 130 in which the one end 8a is disposed, extends in the first direction X, bends at right angles in the bacteria inhabitable portion 140, and the other end 8b as an extension end. Protrudes from the surface 140a on the other side in the second direction Y of the bacteria inhabitable portion 140. And while the 1st opening part 8ab is arrange | positioned in the position which faces the obstruction | occlusion space 130, the 2nd opening part ba is arrange | positioned in the position away from the bacteria inhabitable part 140 1st distance L1. The material of the pipe 8 is not particularly limited. For example, a material made of vinyl chloride, ceramics, iron, glass, or rubber can be used, and a material having a diameter suitable for the capacity of the holding tank 2 to be described later. It is preferable to use it. In the present embodiment, one pipe 8 extends from each closed space 130, but a plurality of pipes 8 may be provided in each closed space 130.

このような水の浄化ユニット100を使用して本発明の第1の実施形態である水の浄化システム1を構成する際には、図2に示すような透明のガラス製又はアクリル製の保持槽(水槽)2の内底面2c上に水の浄化ユニット100を載置した後、その表面に粒状の担体としての砂50(又は砂利)及び珊瑚砂70を順次供給する。このとき砂50及び珊瑚砂70はパイプ8の他端8bよりも低い位置までしか堆積させず、パイプ8の他端8bが珊瑚砂70によって構成される珊瑚層7より突出した状態とする。珊瑚砂70はその成分に炭酸カルシウム(CaCO)を含み、これが図3に示すように炭酸カルシウムが飼育水9中に溶出することで飼育水9がアルカリ性に調整される。なお、珊瑚砂70の代わりに、又は珊瑚砂70とともに、炭酸カルシウムを含有する水質調整剤、卵殻及びこれらと同様に飼育水9中に炭酸カルシウムの成分を溶出させる機能を有するもの等を使用してもよい。さらに、後述する硫化水素低害化領域143において低害化させる硫化水素量を増加させるために、鉄粉などの鉄成分を加えた細菌生息可能部140を備える水の浄化ユニット100や、鉄成分を混合した砂50等を用いてもよい。その後、保持槽2内に飼育水9を充填して水の浄化ユニット100、砂50および珊瑚砂70を飼育水9中に浸漬させ、閉塞空間130も飼育水9で満たされた状態にする。これによって黒ぼく土40が予め押し固められた塊状の第1の細菌生息可能部140を飼育水9中に設置された状態にするとともに、この第1の細菌生息可能部140に隣接する砂50の層の下側が通性嫌気性が生息可能な第2の細菌生息可能部141となり、上側が好気性細菌が生息可能な第3の細菌生息可能部142となる。なお、本実施形態では粒状の担体として砂50を用いているが、好気性細菌や通性嫌気性細菌が生息可能なものであれば、プラスチック等の人工物や木屑、砂利などであってもよい。また、保持槽2内に飼育水9を充填するタイミングは珊瑚砂70の供給後に限定されず、水の浄化ユニット100の載置前や、水の浄化ユニット100の載置後から砂50又は珊瑚砂70の供給前であってもよい。 When the water purification system 1 according to the first embodiment of the present invention is configured using such a water purification unit 100, a transparent glass or acrylic holding tank as shown in FIG. After the water purification unit 100 is placed on the inner bottom surface 2c of the (water tank) 2, sand 50 (or gravel) and dredged sand 70 as granular carriers are sequentially supplied to the surface. At this time, the sand 50 and the dredged sand 70 are deposited only up to a position lower than the other end 8 b of the pipe 8, and the other end 8 b of the pipe 8 is projected from the dredged layer 7 constituted by the dredged sand 70. The cinnabar 70 contains calcium carbonate (CaCO 3 ) as a component thereof, and as shown in FIG. 3, the calcium carbonate is eluted into the breeding water 9 so that the breeding water 9 is adjusted to be alkaline. In addition, instead of or together with cinnabar 70, a water quality adjusting agent containing calcium carbonate, eggshell, and those having a function of eluting calcium carbonate components in breeding water 9 as well as these are used. May be. Furthermore, in order to increase the amount of hydrogen sulfide to be reduced in the hydrogen sulfide reduction zone 143 to be described later, a water purification unit 100 including a bacteria habitable portion 140 to which an iron component such as iron powder is added, or an iron component You may use the sand 50 etc. which mixed. Thereafter, the breeding water 9 is filled in the holding tank 2, the water purification unit 100, the sand 50 and the cinnabar sand 70 are immersed in the breeding water 9, and the closed space 130 is also filled with the breeding water 9. As a result, the lump-shaped first bacteria-habitable portion 140 in which the black soil 40 is preliminarily compacted is placed in the breeding water 9, and the sand 50 adjacent to the first bacteria-habitable portion 140 is placed. The lower part of the layer becomes the second bacterial inhabitable part 141 in which facultative anaerobic can inhabit, and the upper part becomes the third bacterial inhabitable part 142 in which aerobic bacteria can inhabit. In this embodiment, sand 50 is used as a granular carrier. However, as long as aerobic bacteria and facultative anaerobic bacteria can inhabit, artificial materials such as plastic, wood chips, gravel, etc. may be used. Good. Further, the timing of filling the breeding water 9 into the holding tank 2 is not limited to after the dredged sand 70 is supplied, and the sand 50 or the dredged water is placed before the water purification unit 100 is placed or after the water purification unit 100 is placed. It may be before the sand 70 is supplied.

その後、珊瑚砂70の第2方向Yにおける他方側に存在する好気領域90で水圏生物(水棲生物)を飼育するなどして飼育水9に一定量の水圏生物由来の有機物が含まれるようにし、このような状態をある程度の期間維持することで、上方及び側方から光が届くとともに飼育水9に溶存した酸素が進入する好気的な環境となっている第3の細菌生息可能部142が好気層6となり、有酸素条件下で生育可能な複数の種類の好気性細菌が増殖していく。なお、水圏生物由来の有機物としては、水圏生物の排泄物や死骸等が挙げられる。好気性細菌としては、例えば光合成硫黄細菌などの硫黄酸化細菌や光合成細菌、硝化細菌等が挙げられる。また、第2の細菌生息可能部141は、好気層6に生息する好気性細菌によって飼育水9中の酸素が消費され、砂50の層において下方に行くほど酸素量が少なくなることから、酸素のない又は少ない嫌気的な環境となって通性嫌気層5が生成される。この通性嫌気層5には好気層6で遮られて光もほとんど届かず、有酸素条件及び無酸素条件のどちらでも生育可能な複数の種類の通性嫌気性細菌が増殖していく。通性嫌気性細菌としては、例えば無色硫黄細菌などの硫黄酸化細菌や、硝酸還元細菌等が挙げられる。   Thereafter, aquatic organisms (aquatic organisms) are bred in an aerobic region 90 existing on the other side in the second direction Y of the cinnabar 70 so that the breeding water 9 contains a certain amount of organic matter derived from aquatic organisms. By maintaining such a state for a certain period of time, the third bacterial inhabitable portion 142 is an aerobic environment in which light reaches from above and from the side and oxygen dissolved in the breeding water 9 enters. Becomes the aerobic layer 6 and a plurality of types of aerobic bacteria that can grow under aerobic conditions grow. In addition, examples of the organic matter derived from aquatic organisms include excrement and carcasses of aquatic organisms. Examples of aerobic bacteria include sulfur-oxidizing bacteria such as photosynthetic sulfur bacteria, photosynthetic bacteria, and nitrifying bacteria. Moreover, since the oxygen in the breeding water 9 is consumed by the aerobic bacteria inhabiting the aerobic layer 6 and the amount of oxygen decreases as it goes downward in the layer of the sand 50, the second bacterial inhabitable part 141 A facultative anaerobic layer 5 is generated in an anaerobic environment with little or no oxygen. The facultative anaerobic layer 5 is blocked by the aerobic layer 6 and hardly receives light, and a plurality of types of facultative anaerobic bacteria that can grow under both aerobic and anoxic conditions grow. Examples of facultative anaerobic bacteria include sulfur-oxidizing bacteria such as colorless sulfur bacteria and nitrate-reducing bacteria.

また、第1の細菌生息可能部140は上方に第2の細菌生息可能部141および第3の細菌生息可能部142が存在するとともに黒ぼく土40により側方及び下方からの光が遮られることから、光が届かず酸素が存在しない嫌気的な環境となって絶対嫌気層4が生成され、無酸素条件下で生育可能な複数の種類の絶対嫌気性細菌が増殖する。絶対嫌気性細菌としては、例えば絶対嫌気層4だけでなく通性嫌気層5でも生息可能であるとともにそれぞれ異なる働きをする複数種類の硫酸還元菌B(図3参照)等が挙げられる。これら硫酸還元菌Bは弱アルカリ性の環境下で活性が最も活発になる細菌である。なお、絶対嫌気層4のうち保持槽2と接している表面部分(飼育水保持槽2を透過した光を遮る部分)では、絶対嫌気性細菌の生息数は内部よりも相対的に少なくなっている。ここで第1の細菌生息可能部140は黒ぼく土40により構成されており、黒ぼく土40には元々硫酸還元菌Bが生息していることから、比較的短期間で第1の細菌生息可能部140に硫酸還元菌Bを増殖させて絶対嫌気層4を形成することができる。また、閉塞空間130は光が届かず酸素が存在しない嫌気的な環境の嫌気空間3となり、筒状部材(連通手段)としてのパイプ8は嫌気空間3と好気領域90とを直接的に連通させるものとなる。このように、好気性細菌、通性嫌気性細菌および絶対嫌気性細菌が順次増殖して微生物の連鎖循環が生じ、本実施形態において水圏生物の飼育システムとして用いられる水の浄化システム1が形成される。なお、保持槽2の上部には、図示しない水槽用エアポンプを設け、飼育水9内に酸素を供給するようにすることが好ましい。   In addition, the first bacteria-habitable portion 140 has the second bacteria-habitable portion 141 and the third bacteria-habitable portion 142 above, and the black soil 40 blocks light from the side and below. Therefore, an anaerobic layer 4 is generated in an anaerobic environment where light does not reach and oxygen is not present, and a plurality of types of absolute anaerobic bacteria that can grow under anaerobic conditions grow. Examples of the absolute anaerobic bacteria include a plurality of types of sulfate-reducing bacteria B (see FIG. 3) that can live not only in the absolute anaerobic layer 4 but also in the facultative anaerobic layer 5 and have different functions. These sulfate-reducing bacteria B are bacteria that are most active in a weakly alkaline environment. It should be noted that the absolute anaerobic layer 4 has a relatively small number of absolute anaerobic bacteria in the surface portion in contact with the holding tank 2 (the portion that blocks light transmitted through the breeding water holding tank 2). Yes. Here, the first bacteria-habitable portion 140 is composed of the black soil 40, and the sulfate-reducing bacteria B originally inhabit the black soil 40. Therefore, the first bacteria can inhabit in a relatively short period of time. The absolute anaerobic layer 4 can be formed by allowing the sulfate-reducing bacteria B to grow on the possible portion 140. The closed space 130 becomes an anaerobic space 3 in an anaerobic environment where light does not reach and oxygen does not exist, and the pipe 8 as a cylindrical member (communication means) directly communicates the anaerobic space 3 and the aerobic region 90. To be As described above, the aerobic bacteria, facultative anaerobic bacteria, and absolute anaerobic bacteria are sequentially grown to cause a chain circulation of the microorganisms, and in this embodiment, the water purification system 1 used as a breeding system for aquatic organisms is formed. The In addition, it is preferable to provide a water tank air pump (not shown) on the holding tank 2 so as to supply oxygen into the breeding water 9.

このような水の浄化システム1では、水圏生物由来の有機物および酸素が存在する好気領域90は珊瑚層7を介して第3の細菌生息可能部142と連通する位置にあり、飼育水9中に含まれる飼育された水圏生物由来の有機物が珊瑚層7を通過して好気層6の表面に沈殿すると、この好気層6で好気性細菌により分解され、次に好気層6の下方にある通性嫌気層5で通性嫌気性細菌により分解される。前述のようにこれらの層5,6には複数の種類の好気性細菌及び通性嫌気性細菌がそれぞれ生息しており、このうち例えば好気性細菌である硝化細菌及び通性嫌気性細菌である硝酸還元細菌は、図3に示すように、有害なアンモニア(NH)を亜硝酸イオン(NO )及び硝酸イオン(NO )を経て無害な窒素(N)に分解する。これは従属栄養型脱窒又は単に脱窒と呼ばれる反応である。また、通性嫌気層5において、絶対嫌気層4から移動した一部の硫酸還元菌Bが従属栄養型脱窒の過程で発生した硝酸イオンを取り込み、その硫酸還元菌Bが元素状硫黄(SO)及び水素イオン(H)を放出する。これは無機栄養型脱窒又は硫黄脱窒と呼ばれる。なお、この水素イオンにより飼育水9が中性又は酸性となった場合には、硫酸還元菌Bの働きが低下したり、弱アルカリ性の環境を好む水圏生物にダメージを与えるおそれがあるが、水素イオンは珊瑚砂70から溶出した炭酸カルシウムにより中和される。水の浄化システム1の使用を開始した初期の段階ではアンモニアは従属栄養型脱窒により主に窒素に分解されるが、徐々に無機栄養型脱窒のほうが優勢になり、水の浄化システム1を使用して数年程度経過した後は、アンモニアは主に無機栄養型脱窒により分解されるようになる。さらに、従来公知の濾過装置、換水処理や砂の入れ替え処理により除去していたりん酸等の分解も別の種類の好気性細菌及び通性嫌気性細菌により行われる。 In such a water purification system 1, the aerobic region 90 in which organic matter and oxygen derived from aquatic organisms are present is in a position communicating with the third bacterial inhabitable portion 142 via the cocoon layer 7, and the breeding water 9 When organic matter derived from the aquatic organisms contained in the water passes through the cocoon layer 7 and settles on the surface of the aerobic layer 6, it is decomposed by aerobic bacteria in the aerobic layer 6, and then below the aerobic layer 6. It is decomposed by facultative anaerobic bacteria in facultative anaerobic layer 5. As described above, a plurality of types of aerobic bacteria and facultative anaerobic bacteria are inhabited in these layers 5 and 6, and among these, for example, nitrifying bacteria and facultative anaerobic bacteria which are aerobic bacteria. As shown in FIG. 3, nitrate-reducing bacteria decompose harmful ammonia (NH 3 ) into harmless nitrogen (N 2 ) via nitrite ions (NO 2 ) and nitrate ions (NO 3 ). This is a reaction called heterotrophic denitrification or simply denitrification. In the facultative anaerobic layer 5, some sulfate-reducing bacteria B that have migrated from the absolute anaerobic layer 4 take in nitrate ions generated during heterotrophic denitrification, and the sulfate-reducing bacteria B become elemental sulfur (SO ) And hydrogen ions (H + ). This is called inorganic vegetative denitrification or sulfur denitrification. In addition, when the breeding water 9 becomes neutral or acidic due to this hydrogen ion, there is a possibility that the function of the sulfate-reducing bacteria B may be reduced or damage to aquatic organisms that prefer a weak alkaline environment. The ions are neutralized by calcium carbonate eluted from the cinnabar 70. At the initial stage when the use of the water purification system 1 is started, ammonia is mainly decomposed into nitrogen by heterotrophic denitrification. However, the inorganic nutritional denitrification gradually becomes dominant, and the water purification system 1 After several years of use, ammonia will be decomposed mainly by inorganic vegetative denitrification. Furthermore, decomposition of phosphoric acid and the like which has been removed by a conventionally known filtration device, water exchange treatment or sand replacement treatment is also performed by another type of aerobic bacteria and facultative anaerobic bacteria.

これら好気性細菌及び通性嫌気性細菌による分解物等は、黒ぼく土40が含むマイナスに帯電したコロイド粒子の作用により絶対嫌気層4に浸透していき、絶対嫌気層4で絶対嫌気性細菌により分解される。前述のように絶対嫌気層4には複数の種類の絶対嫌気性細菌が生息しており、このうち一部の硫酸還元菌B(図3参照)は、図3に示すように、硫酸イオン(SO 2−)を含む硫黄化合物から硫化水素(HS)を生成する。絶対嫌気層4は網目状部材32及び板状部材31を介して嫌気空間3と連通しており、このようにして発生した一部の硫化水素及び硫酸還元菌Bは、網目状部材32及び板状部材31を通過して絶対嫌気層4から嫌気空間3に移動する。また、絶対嫌気層4では、一部の硫化水素は酸化鉄(FeO)と反応して硫化鉄(FeS)となって低害化される。なお、このような反応は嫌気空間3及び好気領域90でも起こる。また、嫌気空間3では、無機栄養型脱窒により発生した元素状硫黄が図3に示すように硫化鉄と反応して二硫化鉄(FeS)となる。二硫化鉄は少しずつ固形化されていき、嫌気空間3には数十年かけて黄鉄鉱やパイライトと呼ばれる二硫化鉄を成分として含むものが堆積していく。なお、このような反応は絶対嫌気層4でも起こる。また、無色硫黄細菌により図3に示すように通性嫌気層5において硫化水素より硫酸(HSO)が生成され、これによっても硫化水素が低害化される。なお、このような反応は絶対嫌気層4でも起こる。さらに、黒ぼく土40には元々鉄成分が含まれており、硫化水素はこの鉄成分とも反応して硫化鉄となる。またさらに通性嫌気層5や好気層6等にも鉄成分やその他の金属成分が含まれている場合には、これらにより硫化水素などの有害物質が吸着または低害化されることもある。 The degradation products by these aerobic bacteria and facultative anaerobic bacteria penetrate into the absolute anaerobic layer 4 by the action of the negatively charged colloidal particles contained in the black soil 40, and the absolute anaerobic bacteria in the absolute anaerobic layer 4 It is decomposed by. As described above, the absolute anaerobic layer 4 is inhabited by a plurality of types of absolute anaerobic bacteria. Among them, some sulfate-reducing bacteria B (see FIG. 3), as shown in FIG. Hydrogen sulfide (H 2 S) is generated from a sulfur compound containing SO 4 2− ). The absolute anaerobic layer 4 communicates with the anaerobic space 3 via the mesh member 32 and the plate-like member 31, and a part of the hydrogen sulfide and sulfate-reducing bacteria B generated in this way are the mesh member 32 and the plate. It moves from the absolute anaerobic layer 4 to the anaerobic space 3 through the member 31. In the absolute anaerobic layer 4, a part of hydrogen sulfide reacts with iron oxide (FeO) to become iron sulfide (FeS) and is reduced in harm. Such a reaction also occurs in the anaerobic space 3 and the aerobic region 90. In the anaerobic space 3, elemental sulfur generated by inorganic vegetative denitrification reacts with iron sulfide to become iron disulfide (FeS 2 ) as shown in FIG. Iron disulfide is solidified little by little, and in anaerobic space 3, what contains iron disulfide as a component called pyrite or pyrite accumulates over several decades. Such a reaction also occurs in the absolute anaerobic layer 4. Further, as shown in FIG. 3, colorless sulfur bacteria produce sulfuric acid (H 2 SO 4 ) from hydrogen sulfide in the facultative anaerobic layer 5, which also reduces hydrogen sulfide. Such a reaction also occurs in the absolute anaerobic layer 4. Further, the black clay 40 originally contains an iron component, and hydrogen sulfide reacts with the iron component to become iron sulfide. Further, when the facultative anaerobic layer 5 or the aerobic layer 6 contains an iron component or other metal component, harmful substances such as hydrogen sulfide may be adsorbed or reduced by these. .

ここで絶対嫌気層4より嫌気空間3に移動した硫酸還元菌B及び硫化水素の一部は、有機物等が下の層4〜6に浸透していくことで生じるわずかな水流によりパイプ8内部を通って好気領域90まで移動し、硫化水素は前述のように好気領域90に存在する酸化鉄と反応して硫化鉄となる。なお、硫化水素は有害な物質であるが、パイプ8から少しずつしか排出されず、また、酸化鉄とすばやく反応して有害性の低い硫化鉄となるため、好気領域90において水圏生物にダメージを与えることはない。好気領域90に移動した硫酸還元菌Bは、図3に示すように硫化鉄と結合した後、珊瑚層7や好気層6表面に沈殿する。前述のように硫酸還元菌Bは絶対嫌気性細菌であり好気条件下で生息することはできないが、硫化鉄は酸素と非常によく反応することから、表面に硫化鉄を付着させた硫酸還元菌Bは酸素の影響を受けず好気条件下でも生息可能なものに変化する。そして、このような硫酸還元菌Bは近傍に分解すべき有機物が多ければ活動して有機物の分解を行い、少なければ休眠状態となる。休眠状態の硫酸還元菌Bは有機物の量が増えれば活動を再開する。なお、好気領域90に移動した全ての硫化水素が硫化鉄と反応するわけではなく、一部の硫化水素は図3に示すように好気層6において酸素(O)と反応して硫酸となり、飼育水9中に溶解して硫酸イオンとなったり、硫化水素のまま好気層6や通性嫌気層5に到達する。また、好気領域90に存在する全ての硫化鉄が硫酸還元菌Bと結合するわけではなく、一部の硫化鉄は各細菌の働きなどにより硫酸イオンや二硫化鉄に変化することもある。さらに光合成細菌により好気領域90や珊瑚層7、好気層6において硫化水素からこれよりも有害性の低い他の硫黄化合物が生成され、硫化水素が低害化される。このようにして水の浄化システム1では、有機物が好気層6、通性嫌気層5、絶対嫌気層4における各細菌の働きにより3段階の生物濾過が行われ、低害化されて保持槽2内を循環するとともに、好気領域90、珊瑚層7、好気層6、通性嫌気層5、絶対嫌気層4および嫌気空間3の少なくとも何れかに細菌等の働きにより硫化水素を低害化することが可能な硫化水素低害化領域143(図2参照)を人工的に短期間で形成する。このような水圏生物由来の有機物を含有する飼育水9の浄化作用は、自然界(例えば海底)での浄化作用と略同一のものである。 Here, some of the sulfate-reducing bacteria B and hydrogen sulfide that have moved from the absolute anaerobic layer 4 to the anaerobic space 3 pass through the inside of the pipe 8 by a slight water flow caused by organic matter or the like penetrating into the lower layers 4 to 6. As a result, the hydrogen sulfide reacts with the iron oxide existing in the aerobic region 90 to become iron sulfide. Although hydrogen sulfide is a harmful substance, it is discharged little by little from the pipe 8, and it reacts quickly with iron oxide to form iron sulfide with low toxicity, so that it damages aquatic organisms in the aerobic region 90. Never give. The sulfate-reducing bacteria B that have moved to the aerobic region 90 are precipitated on the surface of the soot layer 7 and the aerobic layer 6 after being combined with iron sulfide as shown in FIG. As mentioned above, sulfate-reducing bacteria B is an absolute anaerobic bacterium and cannot live under aerobic conditions, but iron sulfide reacts very well with oxygen, so sulfate reduction with iron sulfide attached to the surface. Bacteria B are not affected by oxygen and change to those that can live under aerobic conditions. Such sulfate-reducing bacteria B are activated when there are many organic substances to be decomposed in the vicinity, and decompose organic substances, and when there are few organic substances, they become dormant. The dormant sulfate-reducing bacteria B resumes its activity when the amount of organic matter increases. Note that not all hydrogen sulfide moved to the aerobic region 90 reacts with iron sulfide, and some hydrogen sulfide reacts with oxygen (O 2 ) in the aerobic layer 6 as shown in FIG. Thus, it dissolves in the breeding water 9 and becomes sulfate ions, or reaches the aerobic layer 6 and the facultative anaerobic layer 5 with hydrogen sulfide. In addition, not all iron sulfides present in the aerobic region 90 are combined with the sulfate-reducing bacteria B, and some iron sulfides may be changed to sulfate ions or iron disulfide depending on the action of each bacterium. Further, the photosynthetic bacteria produce other sulfur compounds that are less harmful than hydrogen sulfide in the aerobic region 90, the soot layer 7, and the aerobic layer 6, thereby reducing hydrogen sulfide. In this way, in the water purification system 1, the organic matter is subjected to three stages of biological filtration by the action of each bacterium in the aerobic layer 6, the facultative anaerobic layer 5, and the absolute anaerobic layer 4, thereby reducing the harm and holding tank. 2 circulates in the aerobic region 90, and aerobic region 90, soot layer 7, aerobic layer 6, facultative anaerobic layer 5, absolute anaerobic layer 4, and anaerobic space 3 are less harmful to hydrogen sulfide by the action of bacteria, etc. The hydrogen sulfide harm-reducing region 143 (see FIG. 2) that can be formed is artificially formed in a short period of time. The purification action of the breeding water 9 containing such organic substances derived from aquatic organisms is substantially the same as the purification action in nature (for example, the sea floor).

なお、各層4〜6の厚さや溶存酸素量等によっては絶対嫌気層4の上方にさらに嫌気層が形成されて4段階の生物濾過が行われることもある。また、構成が同一であったとしても水の浄化システム1により各層に増殖する細菌の種類等が異なることがあり、増殖した細菌の種類等により前述した硫化水素の低害化に関するメカニズムのうちの少なくともいずれかが行われない、または上記以外のメカニズムで硫化水素が低害化されることもある。   In addition, depending on the thickness of each layer 4-6, the amount of dissolved oxygen, etc., an anaerobic layer may be further formed above the absolute anaerobic layer 4, and four-stage biological filtration may be performed. In addition, even if the configuration is the same, the type of bacteria that grow in each layer may differ depending on the water purification system 1, and among the mechanisms for reducing hydrogen sulfide damage described above depending on the type of bacteria that have propagated, etc. At least one of them may not be performed, or hydrogen sulfide may be reduced by a mechanism other than the above.

ところで、本実施形態の水の浄化システム1は、水の浄化ユニット100を使用しなくても構成することが可能である。具体的には、水の浄化ユニット100の代わりに、パイプ8、板状部材31および網目状部材32が取り付けられた中空部材30を保持槽2の内底面2cに設置し、その上から黒ぼく土40、砂50及び珊瑚砂70を順次供給するとともに、保持槽2内に飼育水9を充填することで図2に示すような状態にする。このとき、砂50としては、例えば元々好気性細菌や通性嫌気性細菌が生息している海底等から採取したものを利用することが好ましく、これによって、後述する水の浄化システム1の立ち上げにおいてこれらの細菌が好気層6及び通性嫌気層5に定着しやすくなり、立ち上げに要する時間を短くすることができる。   By the way, the water purification system 1 of this embodiment can be configured without using the water purification unit 100. Specifically, instead of the water purification unit 100, the hollow member 30 to which the pipe 8, the plate-like member 31 and the mesh-like member 32 are attached is installed on the inner bottom surface 2c of the holding tank 2, and the black member is drawn from above. The soil 40, sand 50, and dredged sand 70 are sequentially supplied, and the holding tank 2 is filled with breeding water 9 to obtain a state as shown in FIG. At this time, as the sand 50, it is preferable to use, for example, the one collected from the sea bottom where aerobic bacteria or facultative anaerobic bacteria originally inhabited. In this case, these bacteria are likely to settle on the aerobic layer 6 and the facultative anaerobic layer 5, and the time required for start-up can be shortened.

そして、このような状態の水の浄化システム1を立ち上げるためには、図4に示すように、まずパイプ8に図2に示すような気体供給手段80を取り付ける(行程S1)。この取り付け位置は、絶対嫌気層4よりも上方の範囲のうちできるだけ下方であることが好ましい。なお、気体供給手段80は、絶対嫌気層4となる黒ぼく土40表面に砂50を堆積させる際に取り付けられたものであってもよい。また、保持槽2内の好気領域90に水圏生物を放すとともに、保持槽2に少なくとも上方から光を当てる。なお、水圏生物を放したり、光を当てる処理は、適宜の行程の間で行われ、例えば行程S1の前に行われてもよい。この段階で保持槽2内に放す水圏生物の数は、立ち上げ後の水の浄化システム1で飼育可能な数よりも少なくする。また、保持槽2には図示しない蛍光灯等の光源により上方から光を当ててもよく、また、保持槽2を太陽光が入る場所に置くことで光が当たるようにしてもよい。さらに、水圏生物を放す代わりに生物由来の有機物を保持槽2内に供給するようにしてもよい。   In order to start up the water purification system 1 in such a state, first, as shown in FIG. 4, the gas supply means 80 as shown in FIG. 2 is attached to the pipe 8 (step S1). This attachment position is preferably as low as possible in the range above the absolute anaerobic layer 4. In addition, the gas supply means 80 may be attached when the sand 50 is deposited on the surface of the black clay 40 serving as the absolute anaerobic layer 4. In addition, aquatic organisms are released to the aerobic region 90 in the holding tank 2 and light is applied to the holding tank 2 from at least above. In addition, the process which releases an aquatic organism or shines light is performed between suitable processes, for example, may be performed before process S1. At this stage, the number of aquatic organisms released into the holding tank 2 is set to be smaller than the number that can be raised in the water purification system 1 after startup. Further, the holding tank 2 may be irradiated with light from above by a light source such as a fluorescent lamp (not shown), or the holding tank 2 may be irradiated with light by placing it in a place where sunlight enters. Furthermore, instead of releasing aquatic organisms, organism-derived organic matter may be supplied into the holding tank 2.

次に、気体供給手段80からパイプ8へ空気の供給を開始する(行程S2)。これによってパイプ8内部の飼育水9が空気によって少しずつ上方に押し出され、パイプ8内部に嫌気空間3から好気領域90に向かう水流が生じ、パイプ8から空気が小さな気泡として排出される。そして、これによってパイプ8の外側では好気領域90から絶対嫌気層4に向かう水流が生じるようになる。なお、気体供給手段80から供給する気体としては、有害なものでなければ空気に限定されない。   Next, supply of air from the gas supply means 80 to the pipe 8 is started (step S2). As a result, the breeding water 9 inside the pipe 8 is gradually pushed upward by the air, a water flow from the anaerobic space 3 toward the aerobic region 90 is generated inside the pipe 8, and the air is discharged from the pipe 8 as small bubbles. As a result, a water flow from the aerobic region 90 toward the absolute anaerobic layer 4 is generated outside the pipe 8. The gas supplied from the gas supply means 80 is not limited to air unless it is harmful.

この状態を維持し、パイプ8から排出される気泡の大きさを所定の期間(例えば3ヶ月〜半年程度)にわたって観察して、パイプ8から排出される気泡が大きくなり、所定の大きさの気泡が排出されるようになったか否か目視で判断する(行程S3)。上記の期間では、下方に向かう水流によって、好気層6及び通性嫌気層5を構成する砂50ならびに絶対嫌気層4を構成する黒ぼく土40が押し固められていき、絶対嫌気層4に飼育水9が浸透しにくくなっていく。これによって、好気層6から下方に向かうほど酸素量及び入射光量が減少していくとともに、好気層6には好気性細菌、通性嫌気層5には通性嫌気性細菌、絶対嫌気層4には絶対嫌気性細菌がそれぞれ増殖していく。また、パイプ8の内部を流れる飼育水9が減少し、気体供給手段80から供給された空気は上昇しにくくなって途中で詰まり、パイプ8から大きな気泡として排出されるようになっていく。そのため、パイプ8から所定の大きさの気泡が排出されなければ(行程S3:NO)黒ぼく土40が十分に押し固められていないと判断して上記の状態を維持し続け、数ヶ月が経過してパイプ8から所定の大きさの気泡が排出されるようになると(行程S3:YES)、黒ぼく土40が十分に押し固められた状態となっていると判断してパイプ8への空気の供給を停止する(行程S4)。この時点では、各層4〜6の環境に最適な細菌が各層4〜6に定着しており、気体供給手段80をパイプ8から取り外す(行程S5)ことで水の浄化システム1の立ち上げが完了する。このような立ち上げの処理は数ヶ月程度かけて行うことが好ましい。   By maintaining this state and observing the size of the bubbles discharged from the pipe 8 over a predetermined period (for example, about 3 months to half a year), the bubbles discharged from the pipe 8 become larger, and bubbles of a predetermined size Is visually determined (step S3). In the above period, the sand 50 constituting the aerobic layer 6 and the facultative anaerobic layer 5 and the black soil 40 constituting the absolute anaerobic layer 4 are pressed and solidified in the absolute anaerobic layer 4 by the downward water flow. Breeding water 9 becomes difficult to penetrate. As a result, the oxygen amount and the amount of incident light decrease from the aerobic layer 6 toward the lower side, the aerobic bacteria in the aerobic layer 6, the facultative anaerobic bacteria in the facultative anaerobic layer 5, and the absolute anaerobic layer. In 4, each anaerobic bacterium grows. Further, the breeding water 9 flowing inside the pipe 8 is reduced, the air supplied from the gas supply means 80 is less likely to rise, clogs in the middle, and is discharged from the pipe 8 as large bubbles. For this reason, if bubbles of a predetermined size are not discharged from the pipe 8 (step S3: NO), it is determined that the black clay 40 has not been sufficiently compacted and the above state is maintained, and several months have passed. Then, when bubbles of a predetermined size are discharged from the pipe 8 (step S3: YES), it is determined that the black clay 40 is sufficiently pressed and solidified, and the air to the pipe 8 is determined. Is stopped (step S4). At this point, bacteria optimal for the environment of each layer 4-6 have settled in each layer 4-6, and the startup of the water purification system 1 is completed by removing the gas supply means 80 from the pipe 8 (step S5). To do. Such startup processing is preferably performed over several months.

なお、気体供給手段80を用いる変わりにポンプを用い、パイプ8の他端8b(図2参照)から飼育水9を吸い上げることでパイプ8の内部に嫌気空間3から好気領域90に向かう水流を生じさせてもよい。また、このような立ち上げ処理を行わない場合であっても、水圏生物数を制限した状態で水の浄化システム1を使用していくことで砂50や黒ぼく土40が徐々に押し固められていき、上記各細菌が各層4〜6に増殖及び定着していくことから、上記のような立ち上げ処理は必須ではない。   In addition, by using a pump instead of using the gas supply means 80 and sucking the breeding water 9 from the other end 8b (see FIG. 2) of the pipe 8, the water flow from the anaerobic space 3 to the aerobic region 90 is generated inside the pipe 8. It may be generated. Even when such a start-up process is not performed, the sand 50 and the black soil 40 are gradually consolidated by using the water purification system 1 with the number of aquatic organisms limited. Thus, since each of the bacteria grows and settles in each of the layers 4 to 6, the above startup process is not essential.

以上のように本発明の第1の実施形態に係る水の浄化方法は、水圏生物の飼育方法として用いられており、絶対嫌気性細菌が生息可能な土質材料としての黒ぼく土40を予め押し固めた塊状の第1の細菌生息可能部140を飼育水9中に設置された状態にするとともに、この第1の細菌生息可能部140に隣接して粒状の担体としての砂50を有し通性嫌気性細菌が生息可能な第2の細菌生息可能部141と、この第2の細菌生息可能部141に隣接して砂50を有し好気性細菌が生息可能な第3の細菌生息可能部142と、嫌気的な環境であって前記第1の細菌生息可能部140と連通する嫌気空間3とを飼育水9中に形成し、さらに第3の細菌生息可能部142と連通する位置に水圏生物由来の有機物および酸素が存在する好気領域90を位置づけて、この好気領域90と嫌気空間3とを連通状態にし、これにより第1の細菌生息可能部140に絶対嫌気性細菌を増殖させ、第2の細菌生息可能部141に通性嫌気性細菌を増殖させ、第3の細菌生息可能部142に好気性細菌を増殖させて、これらの細菌により有機物を分解させるとともに、前記第1の細菌生息可能部140から流出した絶対嫌気性細菌およびこれによる生成物を嫌気空間3から好気領域90に移動させつつ、第1の細菌生息可能部140に増殖した絶対嫌気性細菌により生成された硫化水素を低害化させるものである。   As described above, the water purification method according to the first embodiment of the present invention is used as a method for breeding aquatic organisms, and pushes the black soil 40 as a soil material capable of inhabiting anaerobic bacteria in advance. The hardened lump-like first bacteria-habitable portion 140 is set in the breeding water 9 and has sand 50 as a granular carrier adjacent to the first bacteria-habitable portion 140. A second bacterial inhabitable portion 141 capable of inhabiting anaerobic bacteria, and a third bacterial inhabitable portion capable of inhabiting aerobic bacteria having sand 50 adjacent to the second bacterial inhabitable portion 141 142 and an anaerobic space 3 which is an anaerobic environment and communicates with the first bacteria-habitable portion 140 is formed in the breeding water 9, and is further in a hydrosphere at a position where it communicates with the third bacteria-habitable portion 142. Aerobic region 90 where biological organic matter and oxygen are present Positioning the aerobic region 90 and the anaerobic space 3 to communicate with each other, thereby causing the anaerobic bacteria to grow in the first bacterial habitable portion 140 and facultative anaerobic to the second bacterial habitable portion 141. An anaerobic bacterium that proliferates bacteria, causes aerobic bacteria to grow in the third bacteria-habitable portion 142, decomposes organic substances by these bacteria, and flows out of the first bacteria-habitable portion 140, and the same The hydrogen sulfide produced by the absolute anaerobic bacteria grown in the first bacteria inhabitable portion 140 is reduced while the product obtained by the above is moved from the anaerobic space 3 to the aerobic region 90.

このような水の浄化方法であれば、第3の細菌生息可能部142と連通する位置に水圏生物由来の有機物が存在する好気領域90を位置づけて、この好気領域90と嫌気空間3とを連通状態にすることで、第1の細菌生息可能部140に絶対嫌気性細菌が増殖して絶対嫌気層4が形成され、第2の細菌生息可能部141に通性嫌気性細菌が増殖して通性嫌気層5が形成され、第3の細菌生息可能部142に好気性細菌が増殖して好気層6が形成される。そして、飼育水9中の有機物は、好気層6に到達した後に通性嫌気層5に到達し、これらの層にそれぞれ生息する好気性細菌及び通性嫌気性細菌によって分解される。この分解物はその後、絶対嫌気層4に到達して絶対嫌気性細菌により分解される。このとき、絶対嫌気性細菌である硫酸還元菌Bによって硫黄化合物から硫化水素が生成されるが、このようにして発生した硫化水素は好気領域90、好気層6、通性嫌気層5、絶対嫌気層4および嫌気空間3の少なくとも何れかに形成される硫化水素低害化領域143で低害化される。具体的には、硫酸還元菌Bとともに好気領域90に移動する過程で飼育水9中の鉄成分と反応して硫化水素よりも水圏生物に対する有害性が低い硫化鉄(FeS)となったり、硫化水素低害化領域143に生息する硫黄酸化細菌や光合成細菌等によって硫化水素よりも水圏生物に対する有害性が低い他の硫黄化合物に変換されて低害化される。また、好気領域90に移動した硫酸還元菌Bは硫化鉄と反応することで好気的な環境でも生息可能になり、好気層6表面に到達してそこに存在する有機物量が比較的多ければ当該有機物の分解を行い、比較的少なければ休眠状態になることから、分解可能な有機物量が増加する。このように水圏生物に由来する飼育水9中の有機物を分解しつつ、これにより発生した硫化水素を低害化できることから、濾過機能を補う装置を別途設けることなく且つ半永久的ないし長期間に亘って換水処理や砂の入れ替え処理を行わなくても保持槽2内に有害物が堆積することを抑制することができ、保持槽2に保持された飼育水9を浄化することができる。また予め押し固められた塊状の第1の細菌生息可能部140を用いることで、上記のような硫化水素の低害化を伴う有機物の分解サイクルを所望の位置に短期間で人工的に形成することができる。   With such a water purification method, the aerobic region 90 in which organic substances derived from aquatic organisms are present is positioned at a position communicating with the third bacteria-habitable portion 142, and the aerobic region 90 and the anaerobic space 3 , The absolute anaerobic bacteria grow in the first bacterial habitable portion 140 to form the absolute anaerobic layer 4, and the facultative anaerobic bacteria grow in the second bacterial habitable portion 141. Thus, the facultative anaerobic layer 5 is formed, and the aerobic bacteria are grown in the third bacteria inhabitable portion 142 to form the aerobic layer 6. And the organic matter in the breeding water 9 reaches the facultative anaerobic layer 5 after reaching the aerobic layer 6, and is decomposed by the aerobic bacteria and facultative anaerobic bacteria that inhabit these layers, respectively. This decomposition product then reaches the absolute anaerobic layer 4 and is decomposed by the absolute anaerobic bacteria. At this time, hydrogen sulfide is generated from the sulfur compound by the sulfate-reducing bacteria B, which is an absolute anaerobic bacterium, and the hydrogen sulfide thus generated is generated in the aerobic region 90, the aerobic layer 6, the facultative anaerobic layer 5, The damage is reduced in the hydrogen sulfide reduced damage region 143 formed in at least one of the absolute anaerobic layer 4 and the anaerobic space 3. Specifically, in the process of moving to the aerobic region 90 together with the sulfate-reducing bacteria B, it reacts with iron components in the breeding water 9 to become iron sulfide (FeS) that is less harmful to aquatic organisms than hydrogen sulfide, The sulfur sulfide bacteria, photosynthetic bacteria, and the like that live in the hydrogen sulfide low-damage region 143 are converted to other sulfur compounds that are less harmful to aquatic organisms than hydrogen sulfide to reduce the damage. In addition, the sulfate-reducing bacteria B that have moved to the aerobic region 90 can inhabit in an aerobic environment by reacting with iron sulfide, reach the surface of the aerobic layer 6 and the amount of organic matter present therein is relatively high. If the amount is large, the organic matter is decomposed. If the amount is relatively small, the organic substance is in a dormant state. In this way, the organic matter in the breeding water 9 derived from aquatic organisms can be decomposed, and the hydrogen sulfide generated thereby can be reduced. Therefore, a separate device for supplementing the filtration function is not provided, and it is semi-permanent to long-term. Thus, it is possible to suppress the accumulation of harmful substances in the holding tank 2 without performing the water replacement process or the sand replacement process, and the breeding water 9 held in the holding tank 2 can be purified. In addition, by using the first bacteria-infested portion 140 that has been compacted in advance, an organic matter decomposition cycle accompanied by hydrogen sulfide reduction as described above is artificially formed at a desired position in a short period of time. be able to.

ところで、前述したモナコ式のような従来の飼育方法では、飼育可能な水圏生物数が限られるとともに、飼育可能な許容数以下であっても水圏生物が成長するにつれて排泄物等の量が増加して浄化能力が追いつかなくなることがあり、浄化能力が追いつかない状態で飼育を続けると飼育槽内の全ての水圏生物を死滅させてしまうことから、途中で水圏生物数を減らさなければならない場合がある。これに対して本発明に係る水の浄化方法は、上記のように分解可能な有機物量が多いことから、水圏生物が成長しても飼育数を減少させる必要が無く、また飼育可能な水圏生物の数を従来よりも多くすることができる。   By the way, in the conventional breeding method such as the Monaco method described above, the number of aquatic organisms that can be reared is limited, and even if the number is less than the allowable number that can be reared, the amount of excreta and the like increases as the aquatic organisms grow. The purification capacity may not be able to catch up, and if the breeding is continued in a state where the purification capacity cannot catch up, all the aquatic organisms in the breeding tank will be killed, so the number of aquatic organisms may have to be reduced on the way . On the other hand, the water purification method according to the present invention has a large amount of decomposable organic matter as described above, so that it is not necessary to reduce the number of breeding even if the aquatic organism grows. The number of can be increased more than before.

また本発明に係る水の浄化システム1は、水圏生物由来の有機物を含有する飼育水9を保持可能な保持槽2と、この保持槽2内に形成され、有機物および酸素が存在する好気領域90と、この好気領域90と連通し、好気性細菌が生息する好気層6と、この好気層6に隣接して設けられ、通性嫌気性細菌が生息する通性嫌気層5と、この通性嫌気層5に隣接して設けられ、絶対嫌気性細菌が生息するとともに黒ぼく土40により構成される絶対嫌気層4と、嫌気的な環境であり、絶対嫌気層4に生息する絶対嫌気性細菌およびこれによる生成物が流入可能な嫌気空間3と、この嫌気空間3と好気領域90とを連通する連通手段としてのパイプ8と、好気領域90、好気層6、通性嫌気層5、絶対嫌気層4および嫌気空間3の少なくとも何れかに形成され、絶対嫌気性細菌により生成された硫化水素を低害化する硫化水素低害化領域143とを備える。このような水の浄化システム1でも、本発明に係る水の浄化方法と同様に、濾過機能を補う装置を別途設けることなく且つ半永久的ないし長期間に亘って換水処理や砂の入れ替え処理を行わなくても保持槽2内に前記有機物に由来する有害物が堆積することを抑制することができるとともに、水圏生物が成長しても飼育数を減少させる必要が無く、また飼育可能な水圏生物の数を従来よりも多くすることができる。   Moreover, the water purification system 1 according to the present invention includes a holding tank 2 capable of holding breeding water 9 containing organic substances derived from aquatic organisms, and an aerobic region formed in the holding tank 2 and containing organic matter and oxygen. 90, an aerobic layer 6 communicating with the aerobic region 90 and inhabiting aerobic bacteria, and a facultative anaerobic layer 5 provided adjacent to the aerobic layer 6 and inhabiting facultative anaerobic bacteria. The anaerobic layer 4 is provided adjacent to the facultative anaerobic layer 5 and inhabited by the absolute anaerobic bacteria 4 and is composed of the black soil 40. An anaerobic space 3 into which an anaerobic bacterium and a product thereby can flow, a pipe 8 as a communication means for communicating the anaerobic space 3 and the aerobic region 90, an aerobic region 90, an aerobic layer 6, Sexual anaerobic layer 5, absolute anaerobic layer 4 and / or anaerobic space 3 It is formed, and a strictly anaerobic bacteria hydrogen sulphide low Gaika region 143 hydrogen sulfide produced is low Gaika by. Even in such a water purification system 1, as in the water purification method according to the present invention, a water replacement process and a sand replacement process are performed for a semipermanent or long term without separately providing a device for supplementing the filtration function. Even if it is not, it is possible to suppress the accumulation of harmful substances derived from the organic matter in the holding tank 2, and it is not necessary to reduce the breeding number even if the aquatic organism grows. The number can be increased more than before.

またこのような水の浄化方法および水の浄化システム1を実現するにあたり、黒ぼく土40により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部140と、この細菌生息可能部140によって少なくとも一部が構成される閉塞手段132により囲まれた閉塞空間130と、第1の開口部8abおよび第2の開口部8baが形成されているとともに閉塞空間130から閉塞手段132を貫通して延出可能な長さを有し、第1の開口部8abを閉塞空間130に臨む位置に配置した場合に、第2の開口部8baが細菌生息可能部140から第1の距離L1離れた位置に配置される筒状部材としてのパイプ8とを有する水の浄化ユニット100を用いている。   Further, in realizing such a water purification method and water purification system 1, a massive bacterial habitable portion 140 made of black soil 40 and capable of inhabiting anaerobic bacteria, and this bacterial habitable portion 140. A closed space 130 surrounded by at least a part of the closed means 132, a first opening 8ab and a second opening 8ba are formed and penetrates the closed means 132 from the closed space 130. When the first opening 8ab has a length that can be extended and is disposed at a position facing the closed space 130, the second opening 8ba is separated from the bacteria-habitable portion 140 by the first distance L1. A water purification unit 100 having a pipe 8 as a cylindrical member disposed on the surface is used.

このような構成であり、パイプ8が第1の開口部8abを閉塞空間130に臨む位置に配置した場合に第2の開口部8baが細菌生息可能部140から第1の距離L1離れた位置に配置されることから、細菌生息可能部140のうちパイプ8が突出している第2方向Yの他方側の面140aに好気層6や通性嫌気層5を形成すべく砂50等を供給した場合に第2の開口部8baが砂50等により塞がれることがなく、好気領域90、好気層6、通性嫌気層5、絶対嫌気層4、および好気領域90と連通する嫌気空間3を容易に形成することができる。またこのような水の浄化ユニット100を水圏生物由来の有機物を含有する飼育水9中に浸漬することで、閉塞空間130が嫌気的な環境である嫌気空間3になるとともに、第1の開口部8abから第2の開口部8baに向けて絶対嫌気性細菌及びこれによる生成物が移動可能に構成される。そのため、水の浄化ユニット100を利用することで、黒ぼく土40を押し固めた塊状の第1の細菌生息可能部140を飼育水9中に容易に形成することができ、図3に示すような有機物の分解が十分に行われるようにするための立ち上げ期間を短縮することができる。   With such a configuration, when the pipe 8 is arranged at a position where the first opening 8ab faces the closed space 130, the second opening 8ba is at a position away from the bacteria inhabitable portion 140 by the first distance L1. Therefore, sand 50 or the like is supplied to form the aerobic layer 6 or the facultative anaerobic layer 5 on the surface 140a on the other side in the second direction Y in which the pipe 8 protrudes in the bacteria inhabitable portion 140 In this case, the second opening 8ba is not blocked by the sand 50 or the like, and the anaerobic region 90, the aerobic layer 6, the facultative anaerobic layer 5, the absolute anaerobic layer 4, and the anaerobic region 90 are communicated. The space 3 can be easily formed. Moreover, by immersing such a water purification unit 100 in the breeding water 9 containing an organic substance derived from aquatic organisms, the closed space 130 becomes the anaerobic space 3 which is an anaerobic environment, and the first opening portion. An absolute anaerobic bacterium and a product thereby are configured to be movable from 8ab toward the second opening 8ba. Therefore, by using the water purification unit 100, the lump-like first bacteria habitable portion 140 obtained by pressing and solidifying the black soil 40 can be easily formed in the breeding water 9, as shown in FIG. It is possible to shorten the start-up period in order to sufficiently decompose organic substances.

また、細菌生息可能部140のうちパイプ8が突出していない側の面としての第1方向Xにおける両面140bおよび第2方向Yにおける一方側の面140cを、土質材料の通過を遮る包囲部材131により被覆していることから、土質材料がばらけて細菌生息可能部140の形状が崩れたり、飼育水9に浸漬した水の浄化ユニット100から土質材料が流れ出すことを抑制することができる。   Moreover, the surrounding member 131 which blocks | prevents passage of a soil material is used for the both surfaces 140b in the 1st direction X as a surface where the pipe 8 does not protrude among the bacteria inhabitable parts 140, and the one surface 140c in the 2nd direction Y. Since it coat | covers, it can suppress that a soil material spreads and the shape of the bacteria inhabitable part 140 collapses, or a soil material flows out from the purification unit 100 of the water immersed in the breeding water 9. FIG.

さらに、包囲部材131が遮光性を有するように構成したことから、水の浄化ユニット100を利用して水の浄化システム1を構成する際に、一般的に使用される透明な保持槽2を利用した場合にも閉塞空間130に光が入射されることを手間なく防止することができる。   Further, since the surrounding member 131 is configured to have a light shielding property, the transparent holding tank 2 that is generally used is used when the water purification system 1 is configured using the water purification unit 100. In this case, it is possible to prevent light from entering the closed space 130 without trouble.

また、水の浄化ユニット100が、第1の細菌生息可能部140と閉塞空間130との間に、通水性を有し且つ黒ぼく土40の通過を遮る網目状部材32を設けたものであることから、閉塞空間130(嫌気空間3)に黒ぼく土40が進入することを抑制することができる。   Further, the water purification unit 100 is provided with a mesh member 32 having water permeability and blocking the passage of the black soil 40 between the first bacteria-habitable portion 140 and the closed space 130. Therefore, it is possible to suppress the black soil 40 from entering the closed space 130 (anaerobic space 3).

さらに、水の浄化ユニット100において細菌生息可能部140が乾燥状態であることから、軽量化を図ることができ、持ち運びを容易にすることができる。   Furthermore, since the bacteria inhabitable portion 140 is in a dry state in the water purification unit 100, the weight can be reduced and the carrying can be facilitated.

<第2の実施形態>
次に、本発明に係る第2の実施形態を、図5および図6を参照して説明する。
<Second Embodiment>
Next, a second embodiment according to the present invention will be described with reference to FIGS.

この実施形態に係る水の浄化ユニット200は、閉塞空間201を形成するための構造が第1の実施形態である水の浄化ユニット100と異なっており、それ以外は水の浄化ユニット100と同様の構成である。なお、形状および材質等が同様のものは同一の符号を付けて説明を省略している。本実施形態では、第2方向Y(本実施形態では鉛直方向)の他方側(本実施形態では上方)の面全体が網目状部材203で覆われている略矩形状の板状部材204において、第2方向Yの一方側(本実施形態では下方)に柱状の支持手段205を複数取り付けている。また、網目状部材203の第2方向Yにおける他方側に隣接して形成した細菌生息可能部202の第1方向X(本実施形態では水平方向)における両面202a、網目状部材203の第1方向Xにおける両端面203a、板状部材204の第1方向Xにおける両端面204a、支持手段205の第2方向Yにおける一方側の面205aと接するように包囲部材131を設けており、細菌生息可能部202及び包囲部材131を閉塞手段132とし、細菌生息可能部202と包囲部材131とで囲まれた空間を閉塞空間201としている。また、閉塞空間201から板状部材204、網目状部材203および細菌生息可能部202を貫通して延在する側面視直線状のパイプ206を設けて、この一端206aを閉塞空間201に配置するとともに他端206bを細菌生息可能部202から突出させて延出させている。このパイプ206には、延在方向に互いに第2の距離L2離間して第1の開口部206abと第2の開口部206baが形成されており、本実施形態においてこれらの開口部206ab,206baは両端に形成されている。そして、第1の開口部206abが細菌生息可能部202の一端側に臨む位置に配置されるとともに、第2の開口部206baが細菌生息可能部202の他端側において細菌生息可能部202から第1の距離L1離れた位置に配置される。この開口部206ab,206baは、後述する水の浄化システム210において嫌気空間213と好気領域90とを連通させることができる位置に形成されていれば特に限定されず、パイプ206の端部だけでなく延在方向の中央部に形成されていてもよい。なお、板状部材204は第1実施形態の板状部材31と同様の材質のものを使用し、網目状部材203は第1実施形態の網目状部材32と同様の材質のものを使用している。   The water purification unit 200 according to this embodiment is different from the water purification unit 100 according to the first embodiment in the structure for forming the closed space 201, and is otherwise the same as the water purification unit 100. It is a configuration. In addition, the thing with the same shape, material, etc. attaches the same code | symbol, and abbreviate | omits description. In the present embodiment, in the substantially rectangular plate-shaped member 204 in which the entire surface on the other side (upper in the present embodiment) in the second direction Y (vertical direction in the present embodiment) is covered with the mesh member 203, A plurality of columnar support means 205 are attached to one side in the second direction Y (downward in this embodiment). Further, both surfaces 202a in the first direction X (horizontal direction in the present embodiment) of the bacteria inhabitable portion 202 formed adjacent to the other side in the second direction Y of the mesh member 203, and the first direction of the mesh member 203. The surrounding member 131 is provided so as to be in contact with both end surfaces 203a of X, both end surfaces 204a of the plate-like member 204 in the first direction X, and one side 205a of the support means 205 in the second direction Y, 202 and the surrounding member 131 are the closing means 132, and the space surrounded by the bacteria inhabitable portion 202 and the surrounding member 131 is the closing space 201. In addition, a straight pipe 206 in a side view extending from the closed space 201 through the plate-like member 204, the mesh-like member 203, and the bacteria inhabitable portion 202 is provided, and the one end 206a is disposed in the closed space 201. The other end 206b protrudes from the bacteria inhabitable portion 202 and extends. The pipe 206 is formed with a first opening 206ab and a second opening 206ba which are separated from each other by a second distance L2 in the extending direction. In the present embodiment, these openings 206ab and 206ba are It is formed at both ends. The first opening 206ab is arranged at a position facing one end side of the bacteria inhabitable portion 202, and the second opening 206ba is located on the other end side of the bacteria inhabitable portion 202 from the bacteria inhabitable portion 202. 1 at a distance L1 apart. The openings 206ab and 206ba are not particularly limited as long as the openings 206ab and 206ba are formed at positions where the anaerobic space 213 and the aerobic region 90 can communicate with each other in the water purification system 210 described later. Alternatively, it may be formed at the center in the extending direction. The plate member 204 is made of the same material as the plate member 31 of the first embodiment, and the mesh member 203 is made of the same material as the mesh member 32 of the first embodiment. Yes.

このような水の浄化ユニット200を図6に示すように保持槽2の内底面2cに載置した後、細菌生息可能部202の表面に砂50(又は砂利)および珊瑚砂70を順次堆積させ、さらに飼育水9を保持槽2内に充填する。また、保持槽2の側面2aの下方及び底面2bに非透過部102を設けて、閉塞空間201に光が差し込むことを防止している。非透過部102は、例えば保持槽2の側面2a下方及び底面2bに黒色のテープやシール等を貼り付けることで設けることができる。なお、保持槽2として非透過性のものを使用する場合には非透過部102を設けなくてもよい。そして飼育水9中に有機物が含まれる状態をある程度の期間に亘って維持することで、細菌生息可能部(第1の生息可能部)202に絶対嫌気性細菌が増殖して絶対嫌気層207が形成される。また、砂50の層の下側(第2の細菌生息可能部208)に通性嫌気性細菌が増殖して通性嫌気層5が形成されるとともに上側(第3の細菌生息可能部209)に好気性細菌が増殖して好気層6が形成される。また、閉塞空間201が嫌気的な環境となって嫌気空間213となる。   After placing such a water purification unit 200 on the inner bottom surface 2 c of the holding tank 2 as shown in FIG. 6, sand 50 (or gravel) and dredged sand 70 are sequentially deposited on the surface of the bacteria inhabitable portion 202. Further, the breeding water 9 is filled into the holding tank 2. Further, a non-transmissive portion 102 is provided below the side surface 2 a and the bottom surface 2 b of the holding tank 2 to prevent light from being inserted into the closed space 201. The non-transmissive portion 102 can be provided, for example, by sticking a black tape, a seal, or the like on the lower side surface 2 a and the bottom surface 2 b of the holding tank 2. In addition, when using a non-permeable thing as the holding tank 2, the non-permeable part 102 does not need to be provided. Then, by maintaining the state in which the organic matter is contained in the breeding water 9 for a certain period of time, the absolute anaerobic bacteria grow in the bacteria inhabitable part (first inhabitable part) 202 and the absolute anaerobic layer 207 is formed. It is formed. In addition, facultative anaerobic bacteria grow on the lower side of the sand 50 layer (second bacterial habitable portion 208) to form the facultative anaerobic layer 5, and the upper side (third bacterial habitable portion 209). The aerobic bacteria grow and the aerobic layer 6 is formed. Further, the closed space 201 becomes an anaerobic environment and becomes an anaerobic space 213.

このように水の浄化ユニット200を用いることによって、上から珊瑚層7、好気層6、通性嫌気層5、絶対嫌気層207が形成されるとともに、絶対嫌気層207の下方に形成された嫌気空間213と好気領域90とをパイプ206によって連通させた本発明の第2の実施形態に係る水の浄化システム210を形成することができる。このような構成の水の浄化システム210であっても、図2に示す前述の水の浄化システム1と同様に有機物を循環させて同様の効果を発揮することができ、硫化水素低害化領域143としての好気領域90、好気層6、通性嫌気層5、絶対嫌気層207および嫌気空間213で硫化水素を低害化することができる。   By using the water purification unit 200 in this way, the soot layer 7, the aerobic layer 6, the facultative anaerobic layer 5, and the absolute anaerobic layer 207 are formed from the top and below the absolute anaerobic layer 207. The water purification system 210 according to the second embodiment of the present invention in which the anaerobic space 213 and the aerobic region 90 are communicated with each other by the pipe 206 can be formed. Even in the water purification system 210 having such a configuration, the organic substance can be circulated similarly to the above-described water purification system 1 shown in FIG. Hydrogen sulfide can be reduced in the aerobic region 90, the aerobic layer 6, the facultative anaerobic layer 5, the absolute anaerobic layer 207, and the anaerobic space 213 as 143.

<第3の実施形態>
さらに、本発明に係る第3の実施形態を、図7を参照して説明する。
<Third Embodiment>
Furthermore, a third embodiment according to the present invention will be described with reference to FIG.

この実施形態に係る水の浄化ユニット250は、支持手段205および包囲部材131を備えない点が図5に示す水の浄化ユニット200と異なる。そして、水の浄化ユニット250とともに閉塞空間201を形成することが可能な閉塞空間形成手段252としての保持槽2の内底面2cに、同じく閉塞空間形成手段252としての複数の支柱部材251を設け、このような保持槽2内に水の浄化ユニット250を設置することで、支柱部材251により板状部材204が内底面2cより持ち上げられ、細菌生息可能部202の第2方向Yにおける一方側に図6に示すような閉塞空間201が形成される。保持槽2としては図7に示すように非透光部102が形成されている、又は遮光性のあるものを用いることが好ましい。細菌生息可能部202の第2方向Yにおける一方側に形成される閉塞空間201は、水の浄化ユニット250の第2方向Yにおける他方側に砂50等を堆積させるとともに保持槽2内に飼育水9を充填して水の浄化システム210を構成した際には嫌気空間213となる。なお、水の浄化ユニット250において細菌生息可能部202の黒ぼく土40がばらばらにならないようであれば、板状部材204および網目状部材203を設けなくてもよい。   The water purification unit 250 according to this embodiment is different from the water purification unit 200 shown in FIG. 5 in that the support unit 205 and the surrounding member 131 are not provided. And the several support | pillar member 251 as the closed space formation means 252 is similarly provided in the inner bottom face 2c of the holding tank 2 as the closed space formation means 252 which can form the closed space 201 with the water purification unit 250, By installing the water purification unit 250 in such a holding tank 2, the plate-like member 204 is lifted from the inner bottom surface 2 c by the support member 251, and is shown on one side in the second direction Y of the bacteria habitable portion 202. A closed space 201 as shown in FIG. 6 is formed. As the holding tank 2, it is preferable to use one having a non-light-transmitting portion 102 as shown in FIG. The closed space 201 formed on one side in the second direction Y of the bacteria habitable portion 202 deposits sand 50 or the like on the other side in the second direction Y of the water purification unit 250 and breeds water in the holding tank 2. 9 becomes an anaerobic space 213 when the water purifying system 210 is configured. Note that the plate-like member 204 and the mesh-like member 203 may not be provided as long as the black soil 40 of the bacteria-habitable portion 202 does not fall apart in the water purification unit 250.

このように水の浄化ユニット250は、黒ぼく土40により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部202と、第1の開口部206abおよび第2の開口部206baが形成されているとともに細菌生息可能部202の一方側から他方側に延出可能な長さを有し、第1の開口部206abを細菌生息可能部202の一方側に臨む位置に配置した場合に、第2の開口部206baが細菌生息可能部202の他方側において細菌生息可能部202から第1の距離L離れた位置に配置される筒状部材としてのパイプ206とを有するものである。   As described above, the water purification unit 250 is constituted by the black soil 40, and is formed with a massive bacterial habitable portion 202 in which absolute anaerobic bacteria can inhabit, and a first opening 206ab and a second opening 206ba. And has a length that can be extended from one side of the bacteria-habitable portion 202 to the other side, and the first opening 206ab is disposed at a position facing one side of the bacteria-habitable portion 202, The second opening 206ba has a pipe 206 as a cylindrical member disposed at a position away from the bacteria inhabitable portion 202 by a first distance L on the other side of the bacteria inhabitable portion 202.

このような構成であることから、水圏生物由来の有機物を含有する飼育水9中に浸漬するとともに細菌生息可能部202のうちパイプ206の他端206bが配置されている第2方向Yの他方側に好気層6や通性嫌気層5を形成すべく砂50等を供給することで、閉塞空間形成手段としての支柱部材251を利用して細菌生息可能部202の一方側に閉塞空間201を形成することができる。また、パイプ206が第1の開口部206abを細菌生息可能部202の一方側に臨む位置に配置した場合に、第2の開口部206baが細菌生息可能部202から第1の距離L離れた位置に配置されることから、第2の開口部206baが砂50等により塞がれることがなく、好気領域90、好気層6、通性嫌気層5、絶対嫌気層207、および好気領域90と連通する嫌気空間213を容易に形成することができる。さらに、閉塞空間201が嫌気的な環境となった嫌気空間213にパイプ206の一端206aが位置するとともに、好気領域90にパイプ206の他端206bが位置し、前記一端206aから前記他端206bに向けて絶対嫌気性細菌及びこれによる生成物が移動可能に構成される。さらに、このような水の浄化ユニット250を用いることでも図6に示す水の浄化システム210を構成することが可能となる。   Since it is such a configuration, the other side in the second direction Y where the other end 206b of the pipe 206 is disposed in the bacterium-inhabitable portion 202 is immersed in the breeding water 9 containing organic substances derived from aquatic organisms. By supplying sand 50 or the like to form the aerobic layer 6 or the facultative anaerobic layer 5, the closed space 201 is formed on one side of the bacteria inhabitable portion 202 using the support member 251 as the closed space forming means. Can be formed. In addition, when the pipe 206 is arranged at a position where the first opening 206ab faces one side of the bacteria inhabitable portion 202, the second opening 206ba is a position away from the bacteria inhabitable portion 202 by the first distance L. Since the second opening 206ba is not blocked by the sand 50 or the like, the aerobic region 90, the aerobic layer 6, the facultative anaerobic layer 5, the absolute anaerobic layer 207, and the aerobic region An anaerobic space 213 communicating with 90 can be easily formed. Further, one end 206a of the pipe 206 is located in the anaerobic space 213 where the closed space 201 becomes an anaerobic environment, and the other end 206b of the pipe 206 is located in the aerobic region 90, and the other end 206b from the one end 206a. The anaerobic bacterium and the resulting product are configured to be movable toward. Furthermore, the water purification system 210 shown in FIG. 6 can also be configured by using such a water purification unit 250.

<第4の実施形態>
またさらに、本発明に係る第4の実施形態を、図8を参照して説明する。
<Fourth Embodiment>
Furthermore, a fourth embodiment according to the present invention will be described with reference to FIG.

この実施形態に係る水の浄化ユニット255は、パイプ206を備えない点が図7に示す水の浄化ユニット250と異なる。水の浄化ユニット255には、細菌生息可能部202、板状部材204および網目状部材203を第2方向Y(本実施形態では鉛直方向)に貫通する貫通部としての筒状部材挿入孔202aが形成されている。このように水の浄化ユニット255は、土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部202を有し、この細菌生息可能部202に第2方向Yの一方側(本実施形態では下方)から他方側(本実施形態では上方)に貫通する貫通部としての筒状部材挿入孔202aが形成されている。   The water purification unit 255 according to this embodiment is different from the water purification unit 250 shown in FIG. 7 in that the pipe 206 is not provided. The water purification unit 255 has a cylindrical member insertion hole 202a as a penetrating portion that penetrates the bacteria-habitable portion 202, the plate-like member 204, and the mesh-like member 203 in the second direction Y (vertical direction in the present embodiment). Is formed. Thus, the water purification unit 255 is made of a soil material and has a massive bacterial habitable portion 202 in which absolute anaerobic bacteria can inhabit, and the bacterial habitable portion 202 has one side in the second direction Y ( A cylindrical member insertion hole 202a is formed as a penetrating portion penetrating from the lower side in this embodiment to the other side (upward in this embodiment).

このような構成であることから、たとえば筒状部材挿入孔202aに図7に示すように、第1の開口部206abおよび第2の開口部206baが形成され、第1の開口部206abを細菌生息可能部202の一方側に配置した場合に第2の開口部206baが細菌生息可能部202から第1の距離L1離れた位置に配置されるようなパイプ206を差し込んだり(細菌生息可能部202を貫通するように差し込んでも、細菌生息可能部202の途中まで差し込んでもよい)、パイプ206を貫通部と連通するように細菌生息可能部202の表面に配置することで水の浄化ユニット250と同様の構成とすることができ、図6に示す水の浄化システム210を構成することが可能となる。   Because of such a configuration, for example, as shown in FIG. 7, the cylindrical member insertion hole 202a is formed with a first opening 206ab and a second opening 206ba, and the first opening 206ab is inhabited by bacteria. When the pipes 206 are arranged such that the second opening 206ba is arranged at a first distance L1 from the bacteria inhabitable section 202 when the one is placed on one side of the capable section 202 (the bacteria inhabitable section 202 is It may be inserted so as to penetrate or part of the bacteria-habitable portion 202), or the pipe 206 is arranged on the surface of the bacteria-habitable portion 202 so as to communicate with the penetrating portion. The water purification system 210 shown in FIG. 6 can be configured.

なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。   The specific configuration of each unit is not limited to the above-described embodiment.

例えば、図9に示す水の浄化ユニット300のように、図1に示す第1の実施形態である水の浄化ユニット100の細菌生息可能部140を第1の細菌生息可能部140とした場合に、この第1の細菌生息可能部140の第2方向Yにおける他方側に隣接して通性嫌気性細菌が生息可能な第2の細菌生息可能部301を形成するとともに、この第2の細菌生息可能部301の第2方向Yにおける他方側に隣接して好気性細菌が生息可能な第3の細菌生息可能部302をさらに形成した構成としてもよい。この第2の細菌生息可能部301及び第3の細菌生息可能部302は、粒状の担体としての砂50等をある程度押し固めたものである。このような第2の細菌生息可能部301および第3の細菌生息可能部302は、前述した水の浄化ユニット200(図5参照)など他の水の浄化ユニットに予め形成されていてもよい。   For example, as in the case of the water purification unit 300 shown in FIG. 9, when the bacteria habitable portion 140 of the water purification unit 100 according to the first embodiment shown in FIG. The second bacterial habitat portion 301 is formed adjacent to the other side of the first bacterial habitable portion 140 in the second direction Y and in which facultative anaerobic bacteria can live. It is good also as a structure which further formed the 3rd bacteria inhabitable part 302 which can inhabit aerobic bacteria adjacent to the other side in the 2nd direction Y of the possible part 301. FIG. The second bacteria-habitable portion 301 and the third bacteria-habitable portion 302 are made by pressing sand 50 or the like as a granular carrier to some extent. Such second bacteria-habitable portion 301 and third bacteria-habitable portion 302 may be formed in advance in another water purification unit such as the water purification unit 200 (see FIG. 5) described above.

このように絶対嫌気性細菌が生息可能な第1の細菌生息可能部140に隣接して通性嫌気性細菌が生息可能な第2の細菌生息可能部301と、この第2の細菌生息可能部301に隣接して好気性細菌が生息可能な第3の細菌生息可能部302とをそれぞれ形成すべく、好気性細菌および通性嫌気性細菌が生息可能な粒状の担体としての砂50を更に備えている。このような水の浄化ユニット300を用いることで図2に示すような好気層6および通性嫌気層5を形成するために砂50等を供給する必要がなく、水の浄化システム1を構成するための手間を低減することができる。さらに、第3の細菌生息可能部302の表面に珊瑚砂70から構成された層をさらに形成して図14に示すような水の浄化ユニット550としてもよい。なお、好気層6および通性嫌気層5を形成するための粒状の担体としてそれぞれ異なる種類のものを用いてもよい。   In this way, the second bacteria inhabitable portion 301 in which facultative anaerobic bacteria can inhabit adjacent to the first bacteria inhabitable portion 140 in which absolute anaerobic bacteria can inhabit, and the second bacteria inhabitable portion. Further, sand 50 as a granular carrier capable of inhabiting aerobic bacteria and facultative anaerobic bacteria is further provided in order to form a third bacteria inhabitable portion 302 that can inhabit aerobic bacteria adjacent to 301. ing. By using such a water purification unit 300, it is not necessary to supply sand 50 or the like to form the aerobic layer 6 and the permeable anaerobic layer 5 as shown in FIG. Can be reduced. Furthermore, it is good also as a water purification | cleaning unit 550 as shown in FIG. 14 by further forming the layer comprised from the sand 70 on the surface of the 3rd bacteria habitable part 302. FIG. Different types of granular carriers for forming the aerobic layer 6 and the permeable anaerobic layer 5 may be used.

また、上記水の浄化ユニット100では、閉塞手段132が包囲部材131、中空部材30および細菌生息可能部140により構成されているが、図10に示す水の浄化ユニット350のように直方体状の細菌生息可能部353の内部に閉塞空間352を形成することで細菌生息可能部353のみにより閉塞手段354が形成されるようにしてもよい。この場合、このような閉塞空間352内に一端206aが位置し、細菌生息可能部353の第2方向Yにおける他方側の面353aより第1の距離L1だけ離間した位置に他端206bが位置するように細菌生息可能部353を貫通させてパイプ206を設ける。   Further, in the water purification unit 100, the closing means 132 is constituted by the surrounding member 131, the hollow member 30 and the bacteria inhabitable portion 140. However, as in the water purification unit 350 shown in FIG. By forming the closed space 352 inside the habitable portion 353, the closing means 354 may be formed only by the bacteria habitable portion 353. In this case, one end 206a is located in such a closed space 352, and the other end 206b is located at a position separated from the other side surface 353a in the second direction Y of the bacteria inhabitable portion 353 by the first distance L1. As described above, the pipe 206 is provided through the bacteria inhabitable portion 353.

また上記水の浄化ユニット100ではパイプ8が閉塞空間130より上方に突出するように構成されているが、下方に突出するように構成されていてもよく、図11に示す水の浄化ユニット400のように、パイプ206が閉塞空間130より側方に延びて細菌生息可能部401の側面401aから突出する構成としてもよい。この場合、側断面視下向きコ字状の細菌生息可能部401の表面に堆積させる砂50によりパイプ206の他端206bが塞がれないようにするために、細菌生息可能部401の側面401a及び下面401b等を被覆する包囲部材402として、上端402aが細菌生息可能部401の上面401cよりも上方に位置するものを用いることが好ましい。そして、砂50等は、この包囲部材402内に堆積させるようにする。このような包囲部材402を設けることで、どの程度の量の砂50等を供給すればいいかという目安にすることもできる。なお、このような包囲部材402を設ける代わりに、他端206bが細菌生息可能部401の側面401aから十分に離れた位置となるような長さの長いパイプを用いるようにしてもよい。   Moreover, in the said water purification unit 100, although the pipe 8 is comprised so that it may protrude upwards from the closed space 130, you may be comprised so that it may protrude below, The water purification unit 400 shown in FIG. As described above, the pipe 206 may extend laterally from the closed space 130 and protrude from the side surface 401 a of the bacteria inhabitable portion 401. In this case, in order to prevent the other end 206b of the pipe 206 from being clogged by the sand 50 deposited on the surface of the U-shaped bacteria-habitable portion 401 facing downward in a side view, the side surface 401a of the bacteria-habitable portion 401 and As the surrounding member 402 that covers the lower surface 401 b and the like, it is preferable to use a member whose upper end 402 a is located above the upper surface 401 c of the bacteria inhabitable portion 401. The sand 50 and the like are deposited in the surrounding member 402. By providing such an enclosing member 402, it can be used as a standard for how much sand 50 or the like should be supplied. Instead of providing such a surrounding member 402, a pipe having a long length such that the other end 206b is located sufficiently away from the side surface 401a of the bacteria inhabitable portion 401 may be used.

また、図10に示す水の浄化ユニット350の細菌生息可能部353および閉塞空間352は直方体形状であるが、形状は特に限定されず、図12に示すように球状であってもよい。このような水の浄化ユニット450では、球状の細菌生息可能部451の中心部に球状に閉塞空間452が形成されており、この閉塞空間452より閉塞手段453としての細菌生息可能部451を貫通してパイプ206が延在し、その他端(延出端)206bに形成された第2の開口部206baが細菌生息可能部451から第1の距離L1離れた位置で開口している。さらに、図13に示す水の浄化ユニット500のように、細菌生息可能部451を第1の細菌生息可能部451とした場合に、この第1の細菌生息可能部451の表面に通性嫌気性細菌が生息可能な球状の第2の細菌生息可能部501を形成するとともに、この第2の細菌生息可能部501の表面に好気性細菌が生息可能な球状の第3の細菌生息可能部502を形成してもよい。   Moreover, although the bacteria inhabitable portion 353 and the closed space 352 of the water purification unit 350 shown in FIG. 10 have a rectangular parallelepiped shape, the shape is not particularly limited, and may be spherical as shown in FIG. In such a water purification unit 450, a spherical closed space 452 is formed at the center of the spherical bacterial habitable portion 451, and penetrates the bacterial habitable portion 451 as the closing means 453 from the closed space 452. The pipe 206 extends, and a second opening 206ba formed at the other end (extending end) 206b opens at a position away from the bacteria inhabitable portion 451 by the first distance L1. Furthermore, when the bacteria-habitable portion 451 is the first bacteria-habitable portion 451 as in the water purification unit 500 shown in FIG. 13, the surface of the first bacteria-habitable portion 451 is facultative anaerobic. A spherical second bacterial inhabitable portion 501 in which bacteria can inhabit is formed, and a spherical third bacterial inhabitable portion 502 in which aerobic bacteria can inhabit is formed on the surface of the second bacterial inhabitable portion 501. It may be formed.

また、図14に示す水の浄化ユニット550のように、設置面552としての保持槽2や他の水の浄化ユニット550との間に所定の隙間Gを確保することが可能な支持脚551を設けてもよい。このように支持脚551が設けられていることで、パイプ8の他端8bを塞ぐことなく複数の水の浄化ユニット550を積み重ねて設置することができ、また第2方向Yにおける一方側にある水の浄化ユニット550の好気層6に飼育水9中の有機物および酸素を十分に侵入させることができる。このようにして水の浄化ユニット550の個数を増やすほど、分解可能な有機物の量を増加させることができ、分解能力を向上させることができる。また、水の浄化ユニット550を例えば海の底や河底などに設置する場合に、岩などにより多少凹凸があったとしても水の浄化ユニット550を水平に配置しやすくすることができる。なお、本実施形態では支持脚551が水の浄化ユニット550の下面550aから延びているが、上面550bや側面550cから延びるように構成してもよい。また、水の浄化ユニット550の下面550a又は上面550bにおいて他の水の浄化ユニット550のパイプ8の他端8bに対応する部分を側面550cにかけて凹ませることで、支持脚551を設置した場合と同様に複数の水の浄化ユニット550を適切に積み重ねることができるようにしてもよい。さらに、前述した水の浄化ユニット200(図5参照)など他の水の浄化ユニットに支持脚を設けたり、他の水の浄化ユニット表面を前述のように凹ませてもよく、当該他の水の浄化ユニットや水の浄化ユニット550を組み合わせて積み重ねてもよい。   Further, like the water purification unit 550 shown in FIG. 14, a support leg 551 capable of ensuring a predetermined gap G between the holding tank 2 as the installation surface 552 and another water purification unit 550. It may be provided. Since the support legs 551 are provided in this way, a plurality of water purification units 550 can be stacked and installed without blocking the other end 8b of the pipe 8, and are located on one side in the second direction Y. The organic matter and oxygen in the breeding water 9 can sufficiently enter the aerobic layer 6 of the water purification unit 550. As the number of water purification units 550 is increased in this manner, the amount of decomposable organic matter can be increased, and the decomposing ability can be improved. Further, when the water purification unit 550 is installed, for example, on the bottom of the sea or the riverbed, the water purification unit 550 can be easily arranged horizontally even if there are some irregularities due to rocks or the like. In this embodiment, the support leg 551 extends from the lower surface 550a of the water purification unit 550, but may be configured to extend from the upper surface 550b and the side surface 550c. Further, the lower surface 550a or the upper surface 550b of the water purification unit 550 is recessed at the side surface 550c so that the portion corresponding to the other end 8b of the pipe 8 of the other water purification unit 550 is recessed. A plurality of water purification units 550 may be appropriately stacked. Furthermore, a support leg may be provided in another water purification unit such as the water purification unit 200 (see FIG. 5) described above, or the surface of the other water purification unit may be recessed as described above. These purification units or water purification units 550 may be combined and stacked.

また、本発明の第3の実施形態である水の浄化ユニット250では保持槽2内に設置することで形成される閉塞空間201の上方にのみ細菌生息可能部202が形成されているが、図15に示す水の浄化ユニット600のように保持槽2の内底面2c上に設置することで形成される閉塞空間130の上方および側方に細菌生息可能部351が形成されるようなものであってもよい。この場合、閉塞空間形成手段252は保持槽2のみとなる。また、パイプ8の一端8aが細菌生息可能部351の一端側351aに位置し、パイプ8の他端8bが細菌生息可能部351の他端側351bに位置することになる。また、細菌生息可能部351の黒ぼく土40がばらばらにならないようであれば、中空部材30、板状部材31及び網目状部材32の少なくとも何れかが設けられなくてもよく、図16に示す水の浄化ユニット650のように、水の浄化ユニット600において中空部材30、板状部材31及び網目状部材32を備えないものとした構成としてもよい。   Further, in the water purification unit 250 according to the third embodiment of the present invention, the bacteria inhabitable portion 202 is formed only above the closed space 201 formed by being installed in the holding tank 2. As shown in the water purification unit 600 shown in FIG. 15, the bacteria inhabitable portion 351 is formed above and to the side of the closed space 130 formed by being installed on the inner bottom surface 2c of the holding tank 2. May be. In this case, the closed space forming means 252 is only the holding tank 2. In addition, one end 8 a of the pipe 8 is located on one end side 351 a of the bacteria-habitable portion 351, and the other end 8 b of the pipe 8 is located on the other end side 351 b of the bacteria-habitable portion 351. Further, as long as the black soil 40 of the bacteria-habitable portion 351 does not become separated, at least one of the hollow member 30, the plate-like member 31, and the mesh-like member 32 may not be provided, as shown in FIG. Like the water purification unit 650, the water purification unit 600 may not include the hollow member 30, the plate member 31, and the mesh member 32.

また、本発明の第1の実施形態に係る水の浄化システム1および第2の実施形態に係る水の浄化システム210では連通手段としてのパイプ8全体が保持槽2内に設けられているが、図17に示す水の浄化システム700のように嫌気空間3より延在するパイプ601が保持槽2の側面2aを貫通し、保持槽2の外方を上方に延在して再度保持槽2の側面2aを貫通することで好気領域90まで到達する構成としてもよい。   Further, in the water purification system 1 according to the first embodiment of the present invention and the water purification system 210 according to the second embodiment, the entire pipe 8 as the communication means is provided in the holding tank 2, A pipe 601 extending from the anaerobic space 3 as shown in the water purification system 700 shown in FIG. 17 penetrates the side surface 2a of the holding tank 2 and extends outwardly from the holding tank 2 again. It is good also as a structure which reaches the aerobic area | region 90 by penetrating the side surface 2a.

また、上記水の浄化システム1,210で使用する飼育水9としては水圏生物の種類に応じて海水や淡水等を使用でき、また、飼育水9以外にも有機物を含む水であればあらゆるものを使用することができる。また、上述した水の浄化ユニット100,200,250,255,300,350,400,450,500,550,600,650(以下これらの水の浄化ユニットをまとめて示す場合には「水の浄化ユニット100〜650」と記載する)や水の浄化方法を、海や湖、池、河川等やこれらに設けられている水圏生物の養殖場に沈めて使用したり、実施するようにしてもよい。水圏生物の養殖場は一般的に海などの一部分を網で囲って過密状態で水圏生物を飼育しており、自然界の浄化作用を超える量の排泄物が排出されて周辺海域の汚染が問題になることがあるが、このような養殖場で水の浄化ユニット100〜650を利用することで、自然の浄化作用と併せて排泄物などの有機物の分解量を増加させたり、硫化水素を低害化することができ、水質改善に寄与して養殖に伴う海洋汚染を抑制することができる。また、養殖している水圏生物が成長してもその数を減少させる必要が無く、また単位体積あたりにおける養殖可能な水圏生物の数を従来よりも多くすることができる。なお、第1の実施形態である水の浄化ユニット100のように第2の細菌生息可能部141や第3の細菌生息可能部142を備えないものを使用する場合には、海底などへの設置後に砂50等を供給するようにしてもよく、海底の海砂に埋めるようにしてもよい。また、保持槽2としては水槽に限定されず、生簀や上方が開口した箱状に成形されたコンクリート等も使用でき、上記水の浄化システム1,210,700,750を生簀などでの水圏生物の養殖(飼育)のために利用してもよい。さらには、地面に穴を掘り、その穴の中に水の浄化システム1,210,750を構成してもよい。この場合、その穴を構成する土壁が保持槽2に相当するものとなる。   In addition, as the breeding water 9 used in the water purification systems 1 and 210, seawater or fresh water can be used according to the type of aquatic organisms. In addition to the breeding water 9, any water containing organic matter can be used. Can be used. In addition, the water purification unit 100, 200, 250, 255, 300, 350, 400, 450, 500, 550, 600, 650 (hereinafter, these water purification units are collectively referred to as “water purification unit”). Units 100 to 650 ”) and water purification methods may be used by submerging them in seas, lakes, ponds, rivers, etc., and aquatic organism farms provided in these. . Aquatic organism farms generally enclose a portion of the sea, etc. with a net to keep aquatic organisms in an overcrowded state, and excreta exceeding the natural purification action is discharged, causing contamination of the surrounding sea area. However, by using the water purification units 100 to 650 in such aquaculture, the amount of decomposition of organic matter such as excreta can be increased in combination with the natural purification action, and hydrogen sulfide is less harmful. Can contribute to water quality improvement and suppress marine pollution associated with aquaculture. Moreover, even if the aquatic organisms that are cultivated grow, it is not necessary to reduce the number thereof, and the number of aquatic organisms that can be cultured per unit volume can be increased. In addition, when using the thing which is not provided with the 2nd bacteria inhabitable part 141 and the 3rd bacteria inhabitable part 142 like the water purification unit 100 which is 1st Embodiment, installation in the seabed etc. You may make it supply sand 50 grade | etc. Later, and you may make it bury in the sea sand of the seabed. In addition, the holding tank 2 is not limited to a water tank, but can be a ginger or a concrete shaped like a box with an open top, and the water purification system 1, 210, 700, 750 can be used for aquatic organisms such as a ginger. It may be used for aquaculture. Further, a hole may be dug in the ground, and the water purification system 1, 210, 750 may be configured in the hole. In this case, the earth wall constituting the hole corresponds to the holding tank 2.

また、上記水の浄化システム1,210,700,750の連通手段や上記水の浄化ユニット100〜650の筒状部材としては、嫌気空間3,213(閉塞空間130,201,352,452)と好気領域90とを連通させることができればパイプ8,206に限定されず、例えば、絶対嫌気層4、207や第1の細菌生息可能部140、202、351、353、401、451から第1の距離L1離れた位置に第2の開口部を有して延出可能なチューブや多孔質の岩石等であってもよい。さらに、細菌生息可能部140,141,142,202,301,302,351,353,401,451,501,502や各層4〜7を貫通する孔を連通手段としてもよく、この孔に筒状部材を差し込むことなくそのまま使用するようにしてもよい。   Moreover, as a communication means of the said water purification systems 1,210,700,750, and the cylindrical member of the said water purification units 100-650, anaerobic space 3,213 (closed space 130,201,352,452) and If it can communicate with the aerobic area | region 90, it will not be limited to the pipes 8 and 206, For example, it is 1st from absolute anaerobic layers 4 and 207 and the 1st bacteria inhabitable part 140,202,351,353,401,451. It may be a tube or a porous rock that can be extended with a second opening at a distance L1. Furthermore, the holes that penetrate the bacteria inhabitable portions 140, 141, 142, 202, 301, 302, 351, 353, 401, 451, 501, 502 and the respective layers 4 to 7 may be used as the communication means, and the holes have a cylindrical shape. You may make it use as it is, without inserting a member.

また、好気層6を形成する砂50の舞い上がりを抑制するために、好気層6の上方に海砂をさらに堆積させてもよい。さらに、絶対嫌気層4,207の上方、例えば珊瑚層7と好気層6との間に、水圏生物の通過を遮ることが可能な大きさの網目を有するステンレス製の網などを配置することで、穴を掘る習性のある水圏生物により砂50や黒ぼく土40が掘り返されて絶対嫌気層に酸素が侵入すること等を防止することができる。   Further, in order to suppress the rising of the sand 50 forming the aerobic layer 6, sea sand may be further deposited above the aerobic layer 6. Furthermore, a stainless steel net or the like having a mesh size that can block passage of aquatic organisms is disposed above the absolute anaerobic layers 4 and 207, for example, between the cocoon layer 7 and the aerobic layer 6. Thus, it is possible to prevent the sand 50 and the black soil 40 from being dug back by an aquatic organism having the habit of digging a hole and oxygen from entering the absolute anaerobic layer.

また、水の浄化ユニット100〜650としては、第1の細菌生息可能部140,202,351,353,401,451、第2の細菌生息可能部141,301,501、第3の細菌生息可能部142,302,502が乾燥状態のものに限定されず、前記細菌が生息可能な程度に水分を含んだ状態であってもよい。また、これらの細菌生息可能部140,202,351,353,401,451,141,208,301,501,142,209,302,502に予め十分な数の前記細菌が生息した状態のものであってもよい。   In addition, as the water purification units 100 to 650, the first bacteria-habitable portions 140, 202, 351, 353, 401, 451, the second bacteria-habitable portions 141, 301, 501 and the third bacteria-habitable portion The parts 142, 302, and 502 are not limited to those in a dry state, and may be in a state containing moisture to such an extent that the bacteria can live. In addition, in a state where a sufficient number of the bacteria inhabit in advance in these bacteria inhabitable portions 140, 202, 351, 353, 401, 451, 141, 208, 301, 501, 142, 209, 302, 502. There may be.

さらに本発明に係る水の浄化システム1,210,700,750は、外付けの濾過装置など濾過機能を補う装置の使用を必ずしも妨げるものではなく、また換水処理や砂の入れ替え処理を行うことを必ずしも妨げるものではない。さらに、保持槽2内に好気性細菌等の細菌を別途追加してもよい。   Furthermore, the water purification system 1, 210, 700, 750 according to the present invention does not necessarily prevent the use of a device that supplements the filtration function, such as an external filtration device, and also performs water replacement processing and sand replacement processing. It does not necessarily prevent. Furthermore, bacteria such as aerobic bacteria may be separately added to the holding tank 2.

また、上記実施形態では第1方向Xを水平方向とし、これと直交する第2方向Yを鉛直方向としているが、第1方向Xを鉛直方向、第2方向Yを水平方向としてもよく、これら以外の方向(例えば水平方向に対して傾斜した方向)としてもよい。そのため、本発明に係る水の浄化システム1,210,700,750としては、下方から上方に向けて好気層6、通性嫌気層5および絶対嫌気層4(207)の順で形成されるようなものであってもよく、また側方に向けて好気層6、通性嫌気層5および絶対嫌気層4(207)が形成されるようなものであってもよい。このような状況としては、例えば海の中に存在する洞窟の内壁面に本発明に係る水の浄化ユニット100〜650を設置した場合が考えられる。   In the above embodiment, the first direction X is the horizontal direction, and the second direction Y orthogonal thereto is the vertical direction. However, the first direction X may be the vertical direction and the second direction Y may be the horizontal direction. It is good also as directions other than (for example, the direction inclined with respect to the horizontal direction). Therefore, the water purification systems 1, 210, 700, and 750 according to the present invention are formed in the order of the aerobic layer 6, the facultative anaerobic layer 5, and the absolute anaerobic layer 4 (207) from below to above. The aerobic layer 6, the facultative anaerobic layer 5, and the absolute anaerobic layer 4 (207) may be formed toward the side. As such a situation, the case where the water purification units 100-650 which concern on this invention are installed in the inner wall surface of the cave which exists in the sea can be considered, for example.

また、本発明に係る水の浄化ユニット100〜650では、少なくとも黒ぼく土40が予めまとめて押し固められているものであるが、これらが分離した状態のものであってもよい。例えば、好気層6および通性嫌気層5の構成材料となる粒状の担体をブロック状に押し固めたものと、押し固められておらずバラバラの状態の黒ぼく土40と、互いに固定されていない状態の中空部材30、網目状部材32及び板状部材31と、パイプ8,206とを備えるものとしてもよい。また、好気層6および通性嫌気層5の構成材料となる粒状の担体50も黒ぼく土40と同様にバラバラの状態のものであってもよい。さらに水の浄化ユニット100〜650とともに、ブロック状でなくバラバラの状態で袋詰めされた砂50や珊瑚砂70等が同封されたものを水の浄化ユニットとしてもよい。またさらに、水の浄化ユニット100〜650ではパイプ8,206が予め細菌生息可能部と一体的に固定されているが、パイプ8,206を別体としておき、水の浄化システム1,210を構成する際に細菌生息可能部に差し込む構成としてもよい。   Further, in the water purification units 100 to 650 according to the present invention, at least the black clay 40 is preliminarily compacted together, but it may be in a separated state. For example, a granular carrier that is a constituent material of the aerobic layer 6 and the facultative anaerobic layer 5 is pressed into a block shape, and the black clay 40 that is not pressed and broken apart is fixed to each other. The hollow member 30, the mesh member 32, the plate member 31, and the pipes 8 and 206 may be provided. Further, the granular carrier 50 that is a constituent material of the aerobic layer 6 and the permeable anaerobic layer 5 may also be in a state of being separated like the black clay 40. Further, together with the water purification units 100 to 650, a water purification unit may be used in which sand 50 or dredged sand 70 or the like packed in a disassembled state is enclosed. Furthermore, in the water purification units 100 to 650, the pipes 8 and 206 are previously fixed integrally with the bacteria inhabitable part, but the pipes 8 and 206 are separately provided to constitute the water purification systems 1 and 210. It is good also as a structure inserted in a bacteria inhabitable part when doing.

さらに、絶対嫌気性細菌、通性嫌気性細菌および好気性細菌の増殖を促進させるもの(例えばこれらの細菌自体)を水の浄化システム1,210を構成する際に供給するようにしてもよい。   In addition, those that promote the growth of absolute anaerobic bacteria, facultative anaerobic bacteria, and aerobic bacteria (for example, these bacteria themselves) may be supplied when the water purification systems 1 and 210 are configured.

また、パイプ8等の筒状部材として伸縮可能なものを用いてもよい。これによって砂50や珊瑚砂70を堆積させることによって筒状部材の他端が層の中に埋もれることを防止することができる。   Moreover, you may use what can be expanded-contracted as cylindrical members, such as the pipe 8. FIG. By depositing the sand 50 and the cinnabar sand 70 by this, it can prevent that the other end of a cylindrical member is buried in a layer.

またさらに、図2に示す水の浄化システム1や図6に示す水の浄化システム210では好気領域90で水圏生物を飼育することで飼育水9に水圏生物由来の有機物が含まれるようにしているが、他の場所から水圏生物由来の有機物を含有する水を供給するようにしてもよく、さらに図18に示すように水圏生物を飼育する保持槽20を別途に設置し、保持槽20内の飼育水9を保持槽2内に送り込む構成としてもよい。   Further, in the water purification system 1 shown in FIG. 2 and the water purification system 210 shown in FIG. 6, the aquatic organisms are bred in the aerobic region 90 so that the breeding water 9 contains organic substances derived from aquatic organisms. However, water containing organic matter derived from aquatic organisms may be supplied from other locations, and a holding tank 20 for raising aquatic organisms is separately installed as shown in FIG. The breeding water 9 may be fed into the holding tank 2.

具体的に、図18に示す飼育システム750では、飼育槽20内の空間290と保持槽2内の好気領域90とが第1の送水手段651及び第2の送水手段652によりそれぞれ繋げられている。そして、第1の送水手段651を介して飼育槽20内の飼育水9を保持槽2に送るとともに、第2の送水手段652を介して保持槽2内の飼育水9を保持槽20に送ることができるように構成されている。第1の送水手段651及び第2の送水手段652としては、ポンプP1,P2と、これらのポンプP1,P2にそれぞれ接続され、端部が飼育槽20内の空間290及び保持槽2の好気領域90にそれぞれ挿入されたホース651a,652aとで構成されるものを用いている。なお、保持槽2内の飼育水9は保持槽20内に戻さずにさらに他の場所へ送り込んでもよく、また飼育水9を各槽2,20に送ることができればポンプP1,P2やホース651a,652a以外のものを用いてもよい。   Specifically, in the breeding system 750 shown in FIG. 18, the space 290 in the breeding tank 20 and the aerobic region 90 in the holding tank 2 are connected by the first water feeding means 651 and the second water feeding means 652, respectively. Yes. Then, the breeding water 9 in the breeding tank 20 is sent to the holding tank 2 via the first water feeding means 651 and the breeding water 9 in the holding tank 2 is sent to the holding tank 20 via the second water feeding means 652. It is configured to be able to. The first water supply means 651 and the second water supply means 652 are connected to the pumps P1 and P2 and the pumps P1 and P2, respectively, and the ends are aerobic in the space 290 in the breeding tank 20 and the holding tank 2. What is comprised by the hose 651a and 652a each inserted in the area | region 90 is used. The breeding water 9 in the holding tank 2 may be sent to another place without returning to the holding tank 20, and if the breeding water 9 can be sent to the tanks 2 and 20, the pumps P1 and P2 and the hose 651a. , 652a may be used.

その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。例えば、本明細書中に記載されていない部材であっても本発明に係る水の浄化ユニットを水中に浸漬させた際に嫌気状態にするために閉塞空間を囲むあらゆるものが閉塞手段となりうる。また、本発明に係る水の浄化ユニットとの間に閉塞空間を形成するあらゆるものが閉塞空間形成手段となりうる。さらに各実施形態の構成を適宜組み合わせたものも本発明の範囲に含まれる。   Other configurations can be variously modified without departing from the spirit of the present invention. For example, even if the member is not described in the present specification, anything surrounding the closed space can be used as the closing means in order to make an anaerobic state when the water purification unit according to the present invention is immersed in water. In addition, anything that forms a closed space with the water purification unit according to the present invention can be a closed space forming means. Furthermore, what combined the structure of each embodiment suitably is also contained in the scope of the present invention.

1、210、700、750・・・水の浄化システム
2・・・保持槽
3、213・・・嫌気空間
4、207・・・絶対嫌気層
5・・・通性嫌気層
6・・・好気層
8、206・・・連通手段、筒状部材(パイプ)
8ab、206ab・・・第1の開口部
8ba、206ba・・・第2の開口部
9・・・水(飼育水)
40・・・土質材料(黒ぼく土)
50・・・粒状の担体(砂)
90・・・好気領域
100、200、250、255、300、350、400、450、500、550、600、650・・・水の浄化ユニット
130、201、352、452・・・閉塞空間
132・・・閉塞手段
140、202、351、353、401、451・・・第1の細菌生息可能部
141、301、501・・・第2の細菌生息可能部
142、302、502・・・第3の細菌生息可能部
202a・・・貫通部(筒状部材挿入孔)
551・・・支持脚
552・・・設置面
G・・・隙間
L1・・・所定距離(第1の距離)
1, 210, 700, 750 ... water purification system 2 ... holding tank 3, 213 ... anaerobic space 4, 207 ... absolute anaerobic layer 5 ... facultative anaerobic layer 6 ... good Air layer 8, 206 ... Communication means, tubular member (pipe)
8ab, 206ab ... first opening 8ba, 206ba ... second opening 9 ... water (breeding water)
40 ... Soil material (black soil)
50 ... granular carrier (sand)
90 ... Aerobic region 100, 200, 250, 255, 300, 350, 400, 450, 500, 550, 600, 650 ... Water purification unit 130, 201, 352, 452 ... Occluded space 132 ... Closing means 140, 202, 351, 353, 401, 451 ... first bacteria habitable portion 141, 301, 501 ... second bacteria habitable portion 142, 302, 502 ... first 3 Bacteria inhabitable part 202a ... penetrating part (tubular member insertion hole)
551 ... support leg 552 ... installation surface G ... gap L1 ... predetermined distance (first distance)

Claims (11)

絶対嫌気性細菌が生息可能な土質材料を予め押し固めた塊状の第1の細菌生息可能部を水中に設置された状態にするとともに、この第1の細菌生息可能部に隣接して粒状の担体を有し通性嫌気性細菌が生息可能な第2の細菌生息可能部と、この第2の細菌生息可能部に隣接して粒状の担体を有し好気性細菌が生息可能な第3の細菌生息可能部と、嫌気的な環境であって前記第1の細菌生息可能部と連通する嫌気空間とを水中に形成し、さらに前記第3の細菌生息可能部と連通する位置に有機物および酸素が存在する好気領域を位置づけて、この好気領域と前記嫌気空間とを連通状態にし、
これにより前記第1の細菌生息可能部に絶対嫌気性細菌を増殖させ、前記第2の細菌生息可能部に通性嫌気性細菌を増殖させ、前記第3の細菌生息可能部に好気性細菌を増殖させて、これらの細菌により前記好気領域中の有機物を分解させるとともに、前記第1の細菌生息可能部から流出した絶対嫌気性細菌およびこれによる生成物を前記嫌気空間から前記好気領域に移動させつつ、前記第1の細菌生息可能部に増殖した絶対嫌気性細菌により生成された硫化水素を低害化させることを特徴とする水の浄化方法。
A lump-shaped first bacteria-habitable portion preliminarily compacted with a soil material capable of inhabiting anaerobic bacteria is placed in water, and a particulate carrier is adjacent to the first bacteria-habitable portion. A second bacterium capable of inhabiting facultative anaerobic bacteria, and a third bacterium capable of inhabiting aerobic bacteria having a particulate carrier adjacent to the second bacterium inhabitable part An inhabitable part and an anaerobic space which is an anaerobic environment and communicates with the first bacterial inhabitable part are formed in the water, and further, organic matter and oxygen are in a position communicating with the third bacterial inhabitable part. Position the existing aerobic region, and make this aerobic region and the anaerobic space communicated,
As a result, an absolute anaerobic bacterium is propagated in the first bacterial habitable part, a facultative anaerobic bacterium is propagated in the second bacterial habitable part, and an aerobic bacterium is introduced in the third bacterial habitable part. The organic substances in the aerobic region are decomposed by these bacteria, and the absolute anaerobic bacteria that have flowed out of the first bacteria-inhabitable part and the products thereof are moved from the anaerobic space to the aerobic region. A method for purifying water, characterized in that hydrogen sulfide produced by absolute anaerobic bacteria grown in the first bacteria-inhabitable part is reduced while being moved.
土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部と、Constructed by soil material, the massive bacteria habitable part where absolute anaerobic bacteria can live,
この細菌生息可能部によって少なくとも一部が構成される閉塞手段により囲まれた閉塞空間と、  An occlusion space surrounded by an occlusion means constituted at least in part by the bacteria inhabitable portion;
第1の開口部および第2の開口部が形成されているとともに前記閉塞空間から前記閉塞手段を貫通して延出可能な長さを有し、前記第1の開口部を前記閉塞空間に臨む位置に配置した場合に、前記第2の開口部が前記細菌生息可能部から所定距離離れた位置に配置される筒状部材と、  The first opening and the second opening are formed and have a length that can extend from the closed space through the closing means, and the first opening faces the closed space. A cylindrical member disposed at a position a predetermined distance away from the bacteria-habitable portion when the second opening is disposed at a position;
を有する水の浄化ユニットを用いている、請求項1に記載の水の浄化方法。The method for purifying water according to claim 1, wherein a water purification unit having a water content is used.
土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部と、Constructed by soil material, the massive bacteria habitable part where absolute anaerobic bacteria can live,
第1の開口部および第2の開口部が形成されているとともに前記細菌生息可能部の一方側から他方側に延出可能な長さを有し、前記第1の開口部を前記細菌生息可能部の一方側に臨む位置に配置した場合に、前記第2の開口部が前記細菌生息可能部の他方側において前記細菌生息可能部から所定距離離れた位置に配置される筒状部材と、  The first opening and the second opening are formed and have a length that can be extended from one side to the other side of the bacteria inhabitable portion, and the first opening can inhabit the bacteria A cylindrical member that is disposed at a position away from the bacteria-habitable portion on the other side of the bacteria-habitable portion when the second opening is disposed at a position facing one side of the portion;
を有する水の浄化ユニットを用いている、請求項1に記載の水の浄化方法。The method for purifying water according to claim 1, wherein a water purification unit having a water content is used.
土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部を有し、Consists of soil material, has a massive bacterial habitable part that can inhabit absolute anaerobic bacteria,
この細菌生息可能部に一方側から他方側に貫通する貫通部が形成された水の浄化ユニットを用いている、請求項1に記載の水の浄化方法。  The water purification method according to claim 1, wherein a water purification unit in which a penetrating part penetrating from one side to the other side is formed in the bacteria inhabitable part is used.
前記水の浄化ユニットの絶対嫌気性細菌が生息可能な細菌生息可能部を第1の細菌生息可能部とした場合に、この第1の細菌生息可能部に隣接して通性嫌気性細菌が生息可能な第2の細菌生息可能部と、この第2の細菌生息可能部に隣接して好気性細菌が生息可能な第3の細菌生息可能部とをそれぞれ形成すべく、好気性細菌および通性嫌気性細菌が生息可能な粒状の担体を更に備えていることを特徴とする、請求項2〜4の何れかに記載の水の浄化方法。When the bacteria capable of inhabiting the anaerobic bacteria of the water purification unit is defined as a first bacteria inhabitable part, facultative anaerobic bacteria inhabit adjacent to the first bacteria inhabitable part. An aerobic bacterium and faculty to form a possible second bacterial habitat and a third bacterial habitat adjacent to the second bacterial habitable part, respectively, where aerobic bacteria can inhabit. The water purification method according to any one of claims 2 to 4, further comprising a granular carrier capable of inhabiting anaerobic bacteria. 前記水の浄化ユニットの細菌生息可能部が乾燥状態であることを特徴とする請求項2〜5の何れかに記載の水の浄化方法。The method for purifying water according to any one of claims 2 to 5, wherein the bacteria-habitable portion of the water purification unit is in a dry state. 有機物を含有する水を保持可能な保持槽と、
この保持槽内に形成され、前記有機物および酸素が存在する好気領域と、
この好気領域と連通し、好気性細菌が生息する好気層と、
この好気層に隣接して設けられ、通性嫌気性細菌が生息する通性嫌気層と、
この通性嫌気層に隣接して設けられ、絶対嫌気性細菌が生息するとともに土質材料により構成される絶対嫌気層と、
嫌気的な環境であり、前記絶対嫌気層に生息する絶対嫌気性細菌およびこれによる生成物が流入可能な嫌気空間と、
この嫌気空間と前記好気領域とを連通する連通手段と、
前記好気領域、前記好気層、前記通性嫌気層、前記絶対嫌気層および前記嫌気空間の少なくとも何れかに形成され、前記絶対嫌気性細菌により生成された硫化水素を低害化させる硫化水素低害化領域とを備えることを特徴とする水の浄化システム。
A holding tank capable of holding water containing organic matter;
An aerobic region formed in the holding tank in which the organic matter and oxygen are present;
An aerobic layer that communicates with this aerobic region and inhabites aerobic bacteria,
A facultative anaerobic layer that is located adjacent to this aerobic layer and inhabited by facultative anaerobic bacteria,
An absolute anaerobic layer that is provided adjacent to this facultative anaerobic layer and inhabited by absolute anaerobic bacteria and is composed of soil materials,
An anaerobic environment, an anaerobic space into which the absolute anaerobic bacteria that inhabit the absolute anaerobic layer and products thereof can flow, and
Communicating means for communicating the anaerobic space and the aerobic region;
Hydrogen sulfide that is formed in at least one of the aerobic region, the aerobic layer, the facultative anaerobic layer, the absolute anaerobic layer, and the anaerobic space and that reduces hydrogen sulfide produced by the absolute anaerobic bacteria. A water purification system comprising: a low-damage area.
土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部と、Constructed by soil material, the massive bacteria habitable part where absolute anaerobic bacteria can live,
この細菌生息可能部によって少なくとも一部が構成される閉塞手段により囲まれた閉塞空間と、  An occlusion space surrounded by an occlusion means constituted at least in part by the bacteria inhabitable portion;
第1の開口部および第2の開口部が形成されているとともに前記閉塞空間から前記閉塞手段を貫通して延出可能な長さを有し、前記第1の開口部を前記閉塞空間に臨む位置に配置した場合に、前記第2の開口部が前記細菌生息可能部から所定距離離れた位置に配置される筒状部材と、  The first opening and the second opening are formed and have a length that can extend from the closed space through the closing means, and the first opening faces the closed space. A cylindrical member disposed at a position a predetermined distance away from the bacteria-habitable portion when the second opening is disposed at a position;
を有する水の浄化ユニットを用いている、請求項7に記載の水の浄化システム。The water purification system according to claim 7, wherein a water purification unit comprising:
土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部と、Constructed by soil material, the massive bacteria habitable part where absolute anaerobic bacteria can live,
第1の開口部および第2の開口部が形成されているとともに前記細菌生息可能部の一方側から他方側に延出可能な長さを有し、前記第1の開口部を前記細菌生息可能部の一方側に臨む位置に配置した場合に、前記第2の開口部が前記細菌生息可能部の他方側において前記細菌生息可能部から所定距離離れた位置に配置される筒状部材と、  The first opening and the second opening are formed and have a length that can be extended from one side to the other side of the bacteria inhabitable portion, and the first opening can inhabit the bacteria A cylindrical member that is disposed at a position away from the bacteria-habitable portion on the other side of the bacteria-habitable portion when the second opening is disposed at a position facing one side of the portion;
を有する水の浄化ユニットを用いている、請求項7に記載の水の浄化システム。The water purification system according to claim 7, wherein a water purification unit comprising:
土質材料により構成され、絶対嫌気性細菌が生息可能な塊状の細菌生息可能部を有し、
この細菌生息可能部に一方側から他方側に貫通する貫通部が形成された水の浄化ユニットを用いている、請求項7に記載の水の浄化システム
Consists of soil material, has a massive bacterial habitable part that can inhabit absolute anaerobic bacteria,
The water purification system according to claim 7, wherein a water purification unit in which a penetrating portion penetrating from one side to the other side is formed in the bacteria inhabitable portion is used .
前記水の浄化ユニットの絶対嫌気性細菌が生息可能な細菌生息可能部を第1の細菌生息可能部とした場合に、この第1の細菌生息可能部に隣接して通性嫌気性細菌が生息可能な第2の細菌生息可能部と、この第2の細菌生息可能部に隣接して好気性細菌が生息可能な第3の細菌生息可能部とをそれぞれ形成すべく、好気性細菌および通性嫌気性細菌が生息可能な粒状の担体を更に備えていることを特徴とする、請求項8〜10の何れかに記載の水の浄化システム。When the bacteria capable of inhabiting the anaerobic bacteria of the water purification unit is defined as a first bacteria inhabitable part, facultative anaerobic bacteria inhabit adjacent to the first bacteria inhabitable part. An aerobic bacterium and faculty to form a possible second bacterial habitat and a third bacterial habitat adjacent to the second bacterial habitable part, respectively, where aerobic bacteria can inhabit. The water purification system according to any one of claims 8 to 10, further comprising a granular carrier capable of inhabiting anaerobic bacteria.


JP2014019849A 2013-05-30 2014-02-04 Water purification method, water purification system and water purification unit Active JP6272062B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/052589 WO2014192330A1 (en) 2013-05-30 2014-02-04 Cleaning system for water, cleaning method for water, startup method for cleaning system for water, and cleaning unit for water
US14/894,905 US9771289B2 (en) 2013-05-30 2014-02-04 Water cleaning system, water cleaning method, startup method for water cleaning system, and water cleaning unit
SG11201509752RA SG11201509752RA (en) 2013-05-30 2014-02-04 Water cleaning system, water cleaning method, startup method for water cleaning system, and water cleaning unit
JP2014019849A JP6272062B2 (en) 2014-02-04 2014-02-04 Water purification method, water purification system and water purification unit
CL2015003473A CL2015003473A1 (en) 2013-05-30 2015-11-27 Water cleaning system, water cleaning method, starting method of water cleaning system and water cleaning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014019849A JP6272062B2 (en) 2014-02-04 2014-02-04 Water purification method, water purification system and water purification unit

Publications (2)

Publication Number Publication Date
JP2015146740A JP2015146740A (en) 2015-08-20
JP6272062B2 true JP6272062B2 (en) 2018-01-31

Family

ID=53890702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019849A Active JP6272062B2 (en) 2013-05-30 2014-02-04 Water purification method, water purification system and water purification unit

Country Status (1)

Country Link
JP (1) JP6272062B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626869B1 (en) * 1988-02-08 1992-06-12 Jaubert Jean PROCESS FOR BIOLOGICAL PURIFICATION OF WATERS CONTAINING ORGANIC MATERIALS AND DERIVATIVES, USING THE DIFFUSION AND ACTION OF AEROBIC AND ANAEROBIC MICROORGANISMS AND DEVICE FOR IMPLEMENTING THE SAME
JPH11188375A (en) * 1997-12-25 1999-07-13 Mitsuhiro Yoda Clarification apparatus
JP4096218B2 (en) * 1999-01-27 2008-06-04 正雄 矢野 Denitrification reduction water purification system by facultative anaerobic bacteria
JP2002058387A (en) * 2000-08-21 2002-02-26 Igarashi Hiroshi Apparatus for raising aquatic organism
JP2002335810A (en) * 2001-05-17 2002-11-26 Mitsuo Kuroiwa Water-cleaning apparatus

Also Published As

Publication number Publication date
JP2015146740A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
KR101241838B1 (en) Sewage purification methods and devices with combined effects by utilizing wetland
KR101370075B1 (en) Plant culture system and operating method thereof
CN113557334A (en) Lake restoration system and method
JP6100301B2 (en) Purification device and aquarium equipped with the same
JP4351708B2 (en) Water environment container, water environment protection system, and water environment protection method
KR101397889B1 (en) Multi-composite circuit style tank for aquaculture
JP2007209969A (en) Plant cultivating container for setting in water
JP6150996B2 (en) Land culture system
CN110092481A (en) Ecological device and the ecosystem
JP4185973B2 (en) Useful marine organisms cultivated on land, useful marine organisms obtained by the method and apparatus
JP2009060830A (en) Circulating aquarium and method for breeding fish and shellfish using the same
WO2014192330A1 (en) Cleaning system for water, cleaning method for water, startup method for cleaning system for water, and cleaning unit for water
KR101501348B1 (en) Apparatus of marine polychaete aquaculture
JP5410631B1 (en) Minamata organism rearing system, Minamata organism rearing system startup method and Minamata organism rearing unit
JP4620761B2 (en) Marine aquaculture system
JP6272062B2 (en) Water purification method, water purification system and water purification unit
JP3902476B2 (en) Firefly successive breeding system and method
KR101564807B1 (en) Automatic drainage for aquaculture tank
JP2015061513A (en) Completely closed circulation type land breeding system for abalones and land breeding method for abalones using the same
KR101047454B1 (en) Artificial wetland using circulation of ecosystem
JP2014233291A (en) Aquatic organism breeding system, method for starting the same, and aquatic organism breeding unit
JP6480071B1 (en) Aquaculture equipment
CN115180773B (en) Assembly type plant-growing flexible sinking and discharging system for in-situ repair of bottom mud
RU2784508C1 (en) Method for rehabilitation of water bodies
KR100884810B1 (en) Method and structure for building up crawfishes&#39; habitat of spontaneous restoring type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6272062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250