JP6270094B2 - 減塩醤油の製造方法 - Google Patents

減塩醤油の製造方法 Download PDF

Info

Publication number
JP6270094B2
JP6270094B2 JP2013052401A JP2013052401A JP6270094B2 JP 6270094 B2 JP6270094 B2 JP 6270094B2 JP 2013052401 A JP2013052401 A JP 2013052401A JP 2013052401 A JP2013052401 A JP 2013052401A JP 6270094 B2 JP6270094 B2 JP 6270094B2
Authority
JP
Japan
Prior art keywords
soy sauce
vinyl alcohol
exchange membrane
anionic
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013052401A
Other languages
English (en)
Other versions
JP2014176345A (ja
Inventor
小林 謙一
謙一 小林
直原 敦
敦 直原
崇裕 中島
崇裕 中島
充 比嘉
充 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Kuraray Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY, Kuraray Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2013052401A priority Critical patent/JP6270094B2/ja
Publication of JP2014176345A publication Critical patent/JP2014176345A/ja
Application granted granted Critical
Publication of JP6270094B2 publication Critical patent/JP6270094B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soy Sauces And Products Related Thereto (AREA)

Description

本発明は、減塩醤油の製造方法に関する。より詳しくは、電気透析装置を用いて、醤油のpH変化を小さく出来るとともに、塩分を減少させることを可能とする減塩醤油の製造方法に関する。
従来の陰陽イオン交換膜を用いた電気透析では、醤油中の食塩濃度を所定濃度まで低下させることのみを目的としており、陽イオン交換膜及び陰イオン交換膜を介してそれぞれ移動したNaイオン、Clイオンは濃縮室に移動し、食塩水溶液として系外に廃棄している。しかし、このような陰陽イオン交換膜を用いた電気透析法による減塩醤油の製造方法にあっては、交換膜の性能によって所定の通電電圧に達すると、それ以上の効果は得られず、電流効率は悪くなり、また、醤油の呈味をなすアミノ酸組成のバランスが崩れたり、pHが上昇したりすることによって減塩醤油の品質が悪化する問題があった。
電気透析装置を用いて醤油の脱塩を行う方法において、陰陽両電極間に、陰イオン交換膜、陽イオン交換膜及びバイポーラ膜を順次配列し、前記陰イオン交換膜と陽イオン交換膜との間にアルカリ性液を、前記陰イオン交換膜とバイポーラ膜との間に酸性液をそれぞれ通液しつつ、前記陰陽両電極間に直流電流を通じて、前記醤油中の塩分を減少させることが出来ることが知られている(特許文献1)。
また、陰陽両極間に陽極側から陽イオン交換膜、バイポーラ膜、陰イオン交換膜の順に設置した1個以上の繰り返し単位と陽イオン交換膜、陰イオン交換膜の順に設置した1個以上の繰り返し単位とにより構成した電気透析装置において、陽極側から陰イオン交換膜と陽イオン交換膜との間に形成される室に醤油を送液し、該醤油中の塩分を減少させることが出来ることも知られている(特許文献2)。
特開平7−184592 特開平7−313098
上記の特許文献1および2では、陰陽両電極間に陽イオン交換膜と陰イオン交換膜、及びバイポーラ膜を順次配列して陰イオン交換膜と陽イオン交換膜との間に醤油を、バイポーラ膜と陽イオン交換膜との間にアルカリ性液、バイポーラ膜と陰イオン交換膜との間に酸性液をそれぞれ通液しながら陰陽両極間に直流電流を通じて、アミノ酸組成のバランスを崩すことなく、醤油中の塩分を減少させる三室式電気透析装置が開示されている。しかし、長時間運転した際に、アミノ酸が徐々に膜に付着し経時的にイオン交換性能が悪化する問題点があった。
そこで、本発明者らは、長時間運転してもアミノ酸が膜に付着することなく、減塩醤油を製造することのできる製造方法の提供を課題とした。
本発明者らは、上記課題について鋭意検討を行った結果、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体を含み、ミクロ相分離が一定の範囲内に抑制された、荷電密度や膜抵抗などの電気特性に優れ、更には従来のスチレンジビニルベンゼン等の疎水性の膜よりも耐汚染性にも優れる陽イオン交換膜を得て、この陽イオン交換膜を用いて電気透析を行うことにより、上記課題が解決されることを見出し、本発明に到達した。
本発明は、電気透析により醤油中の塩分を減少させる減塩醤油の製造方法において、電気透析を、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体を含有し、ドメインサイズ(X)が、0nm<X≦150nmの範囲内にあるミクロ相分離構造を有する陽イオン交換膜を用いて行うことを特徴とする減塩醤油の製造方法である。
本発明において、減塩醤油とは、食塩濃度(塩分濃度)が0〜10重量%の醤油を意味する。
上記の製造方法において、前記ビニルアルコール重合体セグメントは、アニオン性基を含有しないビニルアルコール重合体から形成されるセグメントであり、該セグメントを有するビニルアルコール系共重合体を含有する陽イオン交換膜を用いて電気透析を行うことが好ましい。
上記の製造方法において、前記ビニルアルコール系共重合体に架橋構造が導入されていることが好ましい。
前記架橋構造が、ビニルアルコール系共重合体をジアルデヒド化合物と反応させて導入されたものであることが好ましい。
前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性ブロック共重合体であることが好ましい。
前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性グラフト共重合体であることが好ましい。
前記陽イオン交換膜のイオン交換容量が、0.30meq/g以上であることが好ましい。
前記陽イオン交換膜の膜抵抗が、10Ωcm以下であることが好ましい。
本発明に係る減塩醤油の製造方法によれば、電気透析処理に用いられる陽イオン交換膜は、アニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されているが、前記ビニルアルコール系共重合体に不純物として含有されている塩類の含有量を減少させてイオン交換膜が製膜されているため、アニオン性重合体セグメントとビニルアルコール重合体セグメントとのミクロ相分離が抑制されて、ドメインサイズが0nmよりも大きく、150nm以下の膜を形成している。このため、陽イオン交換膜としては、ビニルアルコール重合体セグメントが高い親水性を有することで膜抵抗が小さく、上記のようにミクロ相分離が抑制されているため、イオンパス構造が緻密形成され、耐久性が高く、長期間にわたって効率よく、安定に電気透析を行うことができる。かかる陽イオン交換膜を用いて醤油に対して電気透析処理を行うことにより、塩分が除去されて、減塩醤油の製造を効率的に行うことが出来る。
本発明に係る減塩醤油の製造方法に用いられる陽イオン交換膜の一例(CEM−5)の透過型電子顕微鏡(TEM)写真である。 本発明に係る減塩醤油の製造方法に用いられる陽イオン交換膜の一例(CEM−7)のTEM写真である。 本発明に係る減塩醤油の製造方法に用いられる陽イオン交換膜と比較されるイオン交換膜(CEM−8)のTEMのTEM写真である。 本発明に係る減塩醤油の製造方法に用いられる陽イオン交換膜と比較されるイオン交換膜(CEM−9)のTEM写真である。 本発明に係る減塩醤油の製造方法に用いられる陽イオン交換膜と比較されるイオン交換膜(CEM−10)のTEM写真である。 本発明に用いる陽イオン交換膜の膜抵抗の測定に用いる装置の説明図である。 本発明の減塩醤油の製造方法に用いられる製造システムの一例を示す概略構成図である。 本発明の減塩醤油の製造方法に用いられる製造システムの一例を示す部分概略構成図である。 本発明の減塩醤油の製造方法に用いられる製造システムの一例を示す部分概略構成図である。
(電気透析による減塩醤油の製造)
本発明は、原料醤油(通常、塩分濃度17〜20重量%)に電気透析を行って、塩分濃度を12重量%以下に低下した減塩醤油を製造する製造方法である。本発明において、電気透析とは、陽極と陰極との間に複数枚の陽イオン交換膜(陰極側)と陰イオン交換膜(陽極側)とを交互に配列して構成した電気透析槽内に原料醤油を含む水性液を供給して通電することにより、塩分を除去する操作を意味するが、本発明の特徴とするところは、該電気透析処理による減塩醤油の製造方法において、陽イオン交換膜として、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体を含有し、ドメインサイズ(X)が、0nm<X≦150nmの範囲内にあるミクロ相分離構造を有する陽イオン交換膜を用いて、電気透析を行う点にある。そこで、以下、本発明において用いられる陽イオン交換膜について詳述する。
(陽イオン交換膜)
本発明に用いる陽イオン交換膜は、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントとを有するビニルアルコール系共重合体とから構成されている。通常、アニオン性重合体セグメントとビニルアルコール重合体セグメントとは共有結合で結合されて、ビニルアルコール系共重合体を構成している。本発明において、重合体セグメントとは、同一のモノマー単位が2個以上連結した同一の繰り返し単位を含む重合体鎖を意味し、ブロック共重合体における重合体ブロック、グラフト重合体における幹鎖または枝鎖に相当する重合体ブロックを包含する用語として用いられている。また、アニオン性基を有するアニオン性重合体セグメントにおいて、アニオン性基は重合体末端に含まれていてもよいので、アニオン性基を有する単量体が繰り返し単位でなくてもよい。
本発明に用いる陽イオン交換膜は、上記のように、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されるが、この共重合体だけでなく、この共重合体に加えて、アニオン性重合体セグメントと結合していないアニオン性基を有しないビニルアルコール系重合体、ビニルアルコール重合体と結合していないアニオン性重合体を、相分離構造に影響しない程度に含んでいてもよい。
本発明に用いる陽イオン交換膜は、ビニルアルコール系共重合体に含まれる塩類の含有量を低下させて製膜することにより、膜を構成するビニルアルコール系共重合体はミクロ相分離構造を示し、そのドメインサイズを150nm以下にできることを本発明者は見出した。本発明において用いる陽イオン交換膜は、通常、ビニルアルコール重合体セグメントが架橋処理されて実用に供されるが、ドメインサイズ(X)が、0nm<X≦150nmの範囲に特定されることにより、イオンパス構造に変化がなく、膜構造が安定し、荷電密度や膜抵抗などの電気特性が優れた、電気透析用として有用な陽イオン交換膜を得ることができる。上記のドメインサイズ(X)は、塩類含有量を低下させるほど小さくなり、0nm<X≦130nm、さらには0nm<X≦100nmとすることができる。
本発明に用いる陽イオン交換膜は、上記のようにビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されているので、親水性のイオン交換膜である。このことにより被処理液中の有機汚染物質の付着による汚染を抑制できる利点を有する。ここで構成ポリマーが親水性であるとは、上記アニオン性重合体であるために必要な官能基(アニオン性基)がない構造において親水性を有することを意味する。このように、構成重合体が親水性重合体であることにより、親水性度の高い陽イオン交換膜が得られ、被処理液中の有機汚染物質が陽イオン交換膜に付着して膜の性能を低下させる問題を低減できる。また、膜強度が高くなるという利点を有する。
(アニオン性重合体)
本発明で用いられるアニオン性重合体セグメントを構成するアニオン性重合体は、分子鎖中にアニオン性基を含有する重合体である。当該アニオン性基は主鎖、側鎖、末端のいずれに含まれていても構わない。アニオン性基としては、スルホネート基、カルボキシレート基、ホスホネート基などが例示される。また、スルホン酸基、カルボキシル基、ホスホン酸基のように、水中において少なくともその一部が、スルホネート基、カルボキシレート基、ホスホネート基に変換し得る官能基も、アニオン性基に含まれる。この中で、イオン解離定数が大きい点から、スルホネート基が好ましい。アニオン性重合体は、1種類
のみのアニオン性基を含有していてもよいし、複数種のアニオン性基を含有していてもよい。また、アニオン性基の対カチオンは特に限定されず、水素イオン、アルカリ金属イオン、などが例示される。この中で、設備の腐蝕問題が少ない点から、アルカリ金属イオンが好ましい。アニオン性重合体は、1種類のみの対カチオンを含有していてもよいし、複数種の対カチオンを含有していてもよい。
本発明で用いられるアニオン性重合体は、上記アニオン性基を含有する構造単位のみからなる重合体であってもよいし、上記アニオン性基を含有しない構造単位をさらに含む重合体であってもよい。また、これらの重合体は架橋性を有するものであることが好ましい。アニオン性重合体は、1種類のみの重合体からなるものであってもよいし、複数種のアニオン性重合体を含むものであってもよい。また、これらアニオン性重合体と別の重合体との混合物であっても構わない。ここでアニオン性重合体以外の重合体はカチオン性重合体でないことが望ましい。
アニオン性重合体としては、以下の一般式(1)および(2)の構造単位を有するものが例示される。
Figure 0006270094
[式中、Rは水素原子またはメチル基を表す。Gは−SOH、−SO−M、−POH、−PO−M、−COHまたは−CO−Mを表す。Mはアンモニウムイオンまたはアルカリ金属イオンを表す。]
一般式(1)で表わされる構造単位を含有するアニオン性重合体としては、2−アクリルアミド−2−メチルプロパンスルホン酸の単独重合体または共重合体などが例示される。
Figure 0006270094
[式中、R5は水素原子またはメチル基を表わし、Tは水素原子がメチル基で置換されていてもよいフェニレン基またはナフチレン基を表わす。Gは一般式(1)と同義である。]
一般式(2)で表わされる構造単位を含有するアニオン性重合体としては、p−スチレンスルホン酸ナトリウムなどp−スチレンスルホン酸塩の単独重合体または共重合体などが例示される。
また、アニオン性重合体としては、ビニルスルホン酸、(メタ)アリルスルホン酸などのスルホン酸またはその塩の単独重合体または共重合体、フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のジカルボン酸、その誘導体またはその塩の単独重合体または共重合体なども例示される。
一般式(1)または(2)において、Gは、より高い荷電密度を与えるスルホネート基
、スルホン酸基、ホスホネート基、またはホスホン酸基であることが好ましい。また一般
式(1)および一般式(2)中、Mで表わされるアルカリ金属イオンとしてはナトリウ
ムイオン、カリウムイオン、リチウムイオン等が挙げられる。
(ビニルアルコール重合体セグメント)
本発明において、ビニルアルコール重合体セグメントを構成するポリビニルアルコール
としては、ビニルエステル系モノマーを重合して得られたビニルエステル系重合体をけん化し、ビニルエステル単位をビニルアルコール単位としたものが用いられる。前記ビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができ、これらのなかでも酢酸ビニルを用いるのが好ましい。
ビニルエステル系モノマーを共重合させる際には、必要に応じて共重合可能なモノマー
を、発明の効果を損なわない範囲内(好ましくは50モル%以下、より好ましくは30モ
ル%以下の割合)で共重合させても良い。
このようなビニルエステル系モノマーと共重合可能なモノマーとしては、例えば、エチ
レン、プロピレン、1−ブテン、イソブテン等の炭素数3〜30のオレフィン類;アクリ
ル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、ア
クリル酸i−プロピル、アクリル酸n−ブチル、アクリル酸i−ブチル、アクリル酸t−
ブチル、アクリル酸2−エチルへキシル、アクリル酸ドデシルアクリル酸オクタデシル等
のアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル
酸エチル、メタクリル酸n−プロピル、メタクリル酸i−プロピル、メタクリル酸n−ブ
チル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルへキ
シル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;
アクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N,N−ジメ
チルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸お
よびその塩、アクリルアミドプロピルジメチルアミンおよびその塩、N−メチロールアク
リルアミドおよびその誘導体等のアクリルアミド誘導体;メタクリルアミド、N−メチル
メタクリルアミド、N−エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸
およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩、N−メチロール
メタクリルアミドおよびその誘導体等のメタクリルアミド誘導体;N−ビニルホルムアミ
ド、N−ビニルアセトアミド、N−ビニルピロリドン等のN−ビニルアミド類;メチルビ
ニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、i−プロピルビニ
ルエーテル、n−ブチルビニルエーテル、i−ブチルビニルエーテル、t−ブチルビニル
エーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類;
アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、塩化ビニリデン、
フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル類;酢酸アリル、塩化アリル等の
アリル化合物;マレイン酸およびその塩またはそのエステル;イタコン酸およびその塩ま
たはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペ
ニル等を挙げることができる。
ビニルアルコール系共重合体におけるアニオン性基以外の部分の構造単位は、それぞれ独立に選択することができるが、前記共重合体は、同一の構造単位を有する単量体から構成されることが好ましい。これにより、ドメイン同士の間の親和性が高くなるため、陽イオン交換膜の機械的強度が増大する。ビニルアルコール系共重合体は、同一の構造単位を50モル%以上有していることが好ましく、70モル%以上有していることがより好ましい。
また、親水性であることが望ましいことから、同一の構造単位がビニルアルコール単位
であることが特に好ましい。ビニルアルコール単位を有することにより、グルタルアルデ
ヒドなどの架橋処理剤によりドメイン同士の間を化学的に架橋することができるので、陽
イオン交換膜の機械的強度をさらに高くすることもできる。
上記のように、本発明において、アニオン性重合体セグメントとビニルアルコール重合
体セグメントとを有するビニルアルコール系共重合体は、アニオン性重合体セグメントとビニルアルコール重合体セグメントとが結合している構造が好ましい。
本発明に用いる陽イオン交換膜は、上記のようにアニオン性重合体セグメントにビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成されているが、ビニルアルコール系共重合体は、アニオン性基を含有しないビニルアルコール重合体を含み混合物から構成されていてもよい。
(ブロックまたはグラフト共重合体)
本発明において、前記ビニルアルコール系共重合体は、アニオン性重合体セグメントとビニルアルコール重合体セグメントとがブロック共重合体またはグラフト共重合体を形成しているのが好ましい。なかでも、ブロック共重合体がより好適に用いられる。こうすることにより、陽イオン交換膜全体の強度の向上、膜の膨潤度の抑制、および形状保持についての機能を担うビニルアルコール重合体ブロックと、陽イオンを透過させる機能を担うアニオン性基単量体を重合してなるアニオン性重合体ブロックと、が役割分担でき、陽イオン交換膜のイオン透過機能と寸法安定性とを両立することができる。アニオン性基単量体を重合してなる重合体ブロックの構造単位は特に限定されないが、前記一般式(1)〜(2)で表わされるものなどが例示される。この中で、入手容易である点から、アニオン性重合体を構成する単量体としては、p−スチレンスルホン酸塩または2−アクリルアミド−2−メチルプロパンスルホン酸塩を用いて、p−スチレンスルホン酸塩を重合してなるアニオン性重合体ブロックとビニルアルコール重合体ブロックとを含有するアニオン性ブロック共重合体、または2−アクリルアミド−2−メチルプロパンスルホン酸塩を重合してなるアニオン性重合体ブロックとビニルアルコール重合体ブロックとからなるブロック共重合体が好ましく用いられる。
また、グラフト共重合体としては、アニオン性重合体セグメントを幹鎖として、ビニル
アルコール重合体性セグメントを枝鎖とする場合と、ビニルアルコール重合体セグメント
を幹鎖として、アニオン性重合体セグメントを枝鎖とする場合とがある。本発明において
は特に限定されないが、強度的性質を得やすい点から、ビニルアルコールを幹鎖として、
アニオン性重合体セグメントを枝鎖とするグラフト共重合体が好ましい。グラフト共重合
方法としては、公知の方法が適用される。
(ブロック共重合体の製造方法)
本発明で用いられるアニオンン性単量体を重合してなるアニオン性重合体ブロックとビ
ニルアルコール重合体ブロックとを含有するブロック共重合体の製造方法は主に次の2つ
の方法に大別される。すなわち、(1)所望のブロック共重合体を製造した後、特定のブ
ロックにアニオン性基を結合させる方法、および(2)少なくとも1種類のアニオン性基
単量体を重合させて所望のブロック共重合体を製造する方法である。このうち、(1)に
ついては、末端にメルカプト基を有するポリビニルアルコールの存在下、1種類または複
数種の単量体をブロック共重合させ、次いでブロック共重合体中の1種類または複数種の
重合体成分にイオン基を導入する方法、(2)については、末端にメルカプト基を有する
ポリビニルアルコールの存在下、少なくとも1種類のアニオン性基単量体をラジカル重合
させることによりブロック共重合体を製造する方法が挙げられるが、これらの方法は、工
業的な容易さから好ましい。特に、ブロック共重合体中のビニルアルコールブロックとア
ニオン性基単量体を重合してなるアニオン性重合体ブロックの各ブロックにおける構成単
量体の種類や量を容易に制御できることから、末端にメルカプト基を有するポリビニルア
ルコールの存在下、少なくとも1種類のアニオン性基単量体をラジカル重合させてブロッ
ク共重合体を製造する方法が好ましい。こうして得られるアニオン性基単量体を重合して
なる重合体ブロックとビニルアルコール重合体ブロックとを含有するブロック共重合体に
は、末端にメルカプト基を有するポリビニルアルコールが未反応のまま含まれていても構
わない。
これらのブロック共重合体の製造に用いられる、末端にメルカプト基を有するビニルア
ルコール系重合体は、例えば、特開昭59−187003号公報などに記載されている方
法により得ることができる。すなわち、チオール酸の存在下にビニルエステル系単量体、
例えば酢酸ビニルをラジカル重合して得られるビニルエステル系重合体をけん化する方法
が挙げられる。このようにして得られる末端にメルカプト基を有するポリビニルアルコー
ルと、アニオン性基単量体とを用いてブロック共重合体を得る方法としては、例えば、特
開昭59−189113号公報などに記載された方法が挙げられる。すなわち、末端にメ
ルカプト基を有するポリビニルアルコールの存在下にアニオン性基単量体をラジカル重合
させることによりブロック共重合体を得ることができる。このラジカル重合は公知の方法
、例えばバルク重合、溶液重合、パール重合、乳化重合などによって行うことができるが
、末端にメルカプト基を含有するポリビニルアルコールを溶解し得る溶剤、例えば水やジ
メチルスルホキシドを主体とする媒体中で行うのが好ましい。また、重合プロセスとして
は、回分法、半回分法、連続法のいずれをも採用することができる。
上記ラジカル重合は、通常のラジカル重合開始剤、例えば、2,2’−アゾビスイソブ
チロニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジイソプロピル
パーオキシカーボネート、4,4′−アゾビス−(4−シアノペンタノイックナトリウム
)、4,4′−アゾビス−(4−シアノペンタノイックアンモニウム)、4,4′−アゾ
ビス−(4−シアノペンタノイックカリウム)、4,4′−アゾビス−(4−シアノペン
タノイックリチウム)等や2,2′−アゾビス{2−メチル−N−[1,1′−ビス(ヒ
ドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2過硫酸カリウム、過
硫酸アンモニウム等の中から重合系にあったものを使用して行うことができるが、水系で
の重合の場合、ビニルアルコール系重合体末端のメルカプト基と臭素酸カリウム、過硫酸
カリウム、過硫酸アンモニウム、過酸化水素等の酸化剤によるレドックス開始や,2′−
アゾビス[2−メチル−N(2−ヒドロキシエチル)プロピオンアミド]等でも可能である
。特には、分解後もイオン性残基が発生しないものが特に好まれる。
ビニルエステル系重合体のけん化反応の触媒としては通常アルカリ性物質が用いられ、
その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およ
びナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。けん化触媒は、
けん化反応の初期に一括して添加しても良いし、あるいはけん化反応の初期に一部を添加
し、残りをけん化反応の途中で追加して添加しても良い。けん化反応に用いられる溶媒と
しては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメ
チルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましい。けん
化反応は、バッチ法および連続法のいずれの方式にても実施可能である。けん化反応の終
了後に、必要に応じて、残存するけん化触媒を中和しても良く、使用可能な中和剤として
、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などが挙げられる。
(ビニルアルコール重合体のけん化度)
ビニルアルコール重合体のけん化度は特に限定されないが、40〜99.9モル%であ
ることが好ましい。けん化度が40モル%未満だと、結晶性が低下し、陽イオン交換膜の
強度が不足するおそれがある。けん化度が60モル%以上であることがより好ましく、8
0モル%以上であることがさらに好ましい。通常、けん化度は99.9モル%以下である
。このとき、前記ポリビニルアルコールが複数種のポリビニルアルコールの混合物である
場合のけん化度は、混合物全体としての平均のけん化度をいう。なお、ポリビニルアルコ
ールのけん化度は、JIS K6726に準じて測定した値である。
(ポリビニルアルコールの重合度)
ビニルアルコール重合体セグメントを構成するポリビニルアルコールの粘度平均重合度
(以下単に重合度と言うことがある)は特に限定されないが、50〜10000であるこ
とが好ましい。重合度が50未満だと、実用上で陽イオン交換膜が十分な強度を保持でき
ないおそれがある。重合度が100以上であることがより好ましい。重合度が10000
を超えると重合体水溶液の粘度が高すぎて、塗布が困難になり、得られる膜に欠陥が生じ
やすくなるおそれがある。重合度が8000以下であることがより好ましい。このとき、
前記ポリビニルアルコールが複数種のポリビニルアルコールの混合物である場合の重合度
は、混合物全体としての平均の重合度をいう。なお、ポリビニルアルコールの粘度平均重
合度は、JIS K6726に準じて測定した値である。本発明で用いられるイオン基を
含有しないポリビニルアルコールの重合度も、上記範囲であることが好ましい。
(アニオン性基単量体単位の含有量)
陽イオン交換膜を構成するビニルアルコール系共重合体中のアニオン性基単量体単位の含有量は特に限定されないが、前記共重合体のアニオン性基単量体単位の含有量、すなわち、前記共重合体中の単量体単位の総数に対するアニオン性基単量体単位の数の割合が、0.1モル%以上であることが好ましい。アニオン性基単量体単位の含有量が0.1モル%未満だと、陽イオン交換膜中の有効荷電密度が低下し、電解質選択透過性が低下するおそれがある。アニオン性基単量体単位の含有量が0.5モル%以上であることがより好ましく、1モル%以上であることがさらに好ましい。また、アニオン性基単量体単位の含有量は50モル%以下であることが好ましい。アニオン性基単量体単位の含有量が50モル%を超えると、陽イオン交換膜の膨潤度が高くなり、陽イオン交換膜中の有効荷電密度が低下し、電解質選択透過性が低下するおそれがある。アニオン性基単量体単位の含有量が30モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。ビニルアルコール系共重合体が、アニオン性基を含有する重合体とアニオン性基を含有しない重合体との混合物である場合や、アニオン性基を含有する重合体の複数種の混合物である場合のアニオン性基単量体単位の含有量は、混合物中の単量体単位の総数に対するアニオン性基単量体単位の数の割合をいう。
(陽イオン交換膜の製造方法)
本発明に用いる陽イオン交換膜の製造方法の特徴は、ビニルアルコール重合体セグメントと、アニオン性基を有するアニオン性重合体セグメントを構成成分とするビニルアルコール系共重合体(好ましくは、ブロック共重合体)を主成分とし、前記共重合体中の塩類を低減し、製膜することで相分離ドメインサイズを小さくしたことにある。ここで言う塩類とは、ビニルアルコール重合体セグメントを構成するポリビニルアルコール中に含まれる不純物である硫酸塩、酢酸塩や、アニオン性基を有するアニオン性重合体セグメントを構成する、アニオン性基を有するモノマーに不純物として含まれる、臭化物塩、塩化物塩、硝酸塩、リン酸塩などの金属塩が挙げられる。これらの塩類は、ビニルアルコール系共重合体に不可避的に不純物として混入するものであるが、本発明者らはこの不純物の混入が、製膜時において、ビニルアルコール系共重合体におけるアニオン性重合体セグメントのミクロ相分離を大きくして、膜特性に悪影響を及ぼすことを見出した。本発明においては、ビニルアルコール系共重合体に含まれる塩類の含有量を低下させて製膜することで、膜の相分離ドメインサイズを小さくすることができる。このときのビニルアルコール系共重合体の重量(P)に対する塩類の重量(C)の比(重量比)(C)/(P)は、4.5/95.5以下が必要で、より相分離ドメインサイズを小さくするには、4.0/96.0以下、さらに好ましくは、3.5/96.5以下である、重量比(C)/(P)が4.5/95.5を超えると、アニオン性基重合体セグメントのミクロ相分離ドメインサイズが大きくなり、陽イオン交換膜として使用したとき、イオンパス構造に変化が生じて、耐久性にある陽イオン交換膜を得ることができない。
ビニルアルコール系共重合体に含まれる塩類の含有量を所定値以下に減少させるには、特に限定されないが、例えば、ビニルコール重合体セグメントを構成するポリビニルアルコール中に含まれる不純物については、ポリマーフレークを水洗することにより減少させることができる。
また、アニオン性重合体セグメントを構成するポリマー中に含まれる不純物については
、該ポリマーを適当な溶媒に溶解したポリマー溶液を貧溶媒中で再沈殿精製することによ
り減少させて、ポリマーを精製することができる。
なお、本発明において、塩類の含有量は上記のように低減されておればよく、したがっ
て、ポリビニルアルコールとアニオン性重合体のどちらか一方または両方を精製して上記
に規定する含有量に低減させればよい。
(製膜)
上記により塩類含有量を調整されたビニルアルコール系共重合体を、水、メタノール、エタノール、1−プロパノール、2−プロパノールなどの低級アルコール、又はこれらの混合溶媒から構成される溶媒に溶解して、ダイから押し出して膜状に成形し、溶媒を揮発除去することにより所定厚みの膜を形成することができる。皮膜をプレート上またはローラ上で成形する際の製膜温度は、特に限定されないが、通常、室温〜100℃程度の温度範囲が適当である。溶媒除去は、適宜加熱しておこなうことができる。
(膜厚)
本発明に用いる陽イオン交換膜は、電気透析用電解質膜として必要な性能、機械的強度、ハンドリング性等の観点から、その膜厚が30〜1000μm程度であることが好ましい。膜厚が30μm未満である場合には、膜の機械的強度が不充分となる傾向がある。逆に、膜厚が1000μmを超える場合には、膜抵抗が大きくなり、充分なイオン交換性が発現しないため、電気透析効率が低くなる傾向となる。好ましくは40〜500μmであり、より好ましくは50〜300μmである。
(架橋処理)
本発明に用いる陽イオン交換膜においては、製膜後、架橋処理を施すことが好ましい。架橋処理を施すことによって、得られる陽イオン交換膜の機械的強度が増大する。架橋処理の方法は、重合体の分子鎖同士を化学的に結合する方法でもよく、また、熱処理などにより物理的な結合を導入してもよく、特に限定されない。
化学的に結合する場合には、通常、架橋処理剤を含む溶液に浸漬する方法などが用いら
れる。該架橋処理剤としては、グルタルアルデヒド、ホルムアルデヒド、グリオキザール
などのポリビニルアルコールのアセタール化剤が例示されるが、なかでもグルタルアルデヒド、グリオギザールなどのジアルデヒド架橋剤が好ましい。該架橋処理剤の濃度は、通常、溶液に対する架橋処理剤の体積濃度が0.001〜10体積%である。架橋反応は、上記のアルデヒドを、水、アルコールまたはそれらの混合溶媒中で、酸性条件下で、ポリビニルアルコール系共重合体を処理して、化学的に架橋結合を導入することにより行うことができる。架橋反応後、水洗して未反応のアルデヒド、酸などを取り除くのが好ましい。
また、架橋処理の方法として、熱処理を行って分子鎖間に物理的な架橋を導入してもよ
い。熱処理を施すことによって、物理的な架橋が生じ、得られるイオン交換膜の機械的強
度が増大する。熱処理の方法は特に限定されず、熱風乾燥機などが一般に用いられる。熱
処理の温度は、特に限定されないが、ポリビニルアルコールの場合、50〜250℃であ
ることが好ましい。熱処理の温度が50℃未満だと、得られるイオン交換膜の機械的強度
が不足するおそれがある。該温度が80℃以上であることがより好ましく、100℃以上
であることがさらに好ましい。熱処理の温度が250℃を超えると、結晶性重合体が融解
するおそれがある。該温度が230℃以下であることがより好ましく、200℃以下であ
ることがさらに好ましい。
前記製造方法においては、熱処理と化学的な架橋処理の両方を行ってもよいし、そのい
ずれかのみを行ってもよい。熱処理と架橋処理を両方行う場合、熱処理の後に架橋処理を
行ってもよいし、架橋処理の後に熱処理を行ってもよいし、両者を同時に行ってもよい。
熱処理の後に架橋処理を行うこと、特に、ビニルアルコール系共重合体溶液を溶解した溶液から製膜して得られる皮膜を、100℃以上の温度で熱処理した後、水、アルコール又はそれらの混合溶媒中で、酸性条件下、ジアルデヒド化合物による架橋処理を行うことが得られるイオン交換膜の機械的強度の面から好ましい。
(イオン交換容量)
電気透析用の陽イオン交換膜として使用するのに十分なイオン交換性を発現するために
は、得られるビニルアルコール系共重合体のイオン交換容量は0.30meq/g以上であることが好ましく、0.50meq/g以上であることがより好ましい。ビニルアルコール系共重合体のイオン交換容量の上限については、イオン交換容量が大きくなりすぎると親水性が高まり膨潤度の抑制が困難となるので、3.0meq/g以下であるのが好ましい。
(荷電密度)
また、電気透析用の陽イオン交換膜として使用するのに十分な電気特性を発現するため
には、得られる陽イオン交換膜の荷電密度は0.6mol/dm以上であることが好ま
しく、1.0mol/dm以上であることがより好ましい。陽イオン交換膜の荷電密度
としては、より高いものが好まれるが、膜抵抗との兼ね合いで、比較的低膜抵抗性を維持
して、荷電密度を発現するものが好ましい。
本発明に用いる陽イオン交換膜は、必要に応じて、不織布、織布、多孔体などの支持体と積層することにより補強されて使用することができる。
(電気透析処理において用いられる陰イオン交換膜)
本発明における電気透析処理において、上述の陽イオン交換膜とともに用いられる陰イオン交換膜としては、特に限定はなく、第4級アンモニウム基等の強塩基性基を有するポリマーからなる膜、第1級アミノ基、第2級アミノ基、第3級アミノ基等の弱塩基性官能基を有するポリマーからなる膜を適宜選択して使用できる。
(電気透析システム)
本発明の醤油の製造方法において用いる醤油製造システムの実施態様を図面に基づいて説明する。
図3は、本発明の減塩醤油の製造方法に用いる製造システムの一例を示す概略構成図であり、醤油を電気透析処理により減塩化する場合の概略構成図である。図3に示しているように、本実施形態の一例である減塩醤油製造システムには、少なくとも電気透析処理設備1が備えられ、該電気透析処理設備1にはビニルアルコール系重合体からなる陽イオン交換膜10が備えられている。以下、減塩醤油の製造方法を具体的に説明する。
まず大豆、小麦及び麹を適量混合した醤油麹と食塩水とを、配合割合を調整して諸味製造タンク2で充分に混合し、ポンプ2Pにて所定の移送量で発酵タンク3へと移送する。該発酵タンク3 にて所定の条件で醤油麹を発酵させ、醤油を製造する。次に得られた醤油をポンプ3P にて所定の移送量で圧搾機4へと移送し、該圧搾機4にて所定の条件でプレスして醤油中の液体成分と固体成分とを分離して、中間精製醤油(原料醤油)と醤油粕とを得る。醤油粕は圧搾機4から排出し、中間精製醤油はポンプ4Pにて所定の移送量で醤油タンク5へと移送する。
かくして醤油タンク5へと移送された中間精製醤油を、ポンプ5Pにて所定の移送量で透析処理設備1へと移送する。ここで電気透析処理設備1にて電気透析処理を行う。
本発明において、電気透析処理に用いられるイオン交換膜は、アニオン性基含有ビニルアルコール系共重合体から構成される陽イオン交換膜である。該ビニルアルコール系共重合体からなる陽イオン交換膜は、イオンチャンネルを介してイオンを透過させることはできるが、低分子量有機物質や非イオンは、透過させることができないか、ほんの僅かしか透過させないといった優れた機能性膜である。
このように該ビニルアルコール系共重合体からなる陽イオン交換膜は、うま味成分であるアミノ酸成分等の膜への吸着や透過を抑えることができるため、最終精製醤油の品質、風味に影響を及ぼす恐れがない。しかも塩成分であるNa+ 及びCl-は他のイオンと比較して透過性が特に高いので、これらNa+ 及びCl- は電気透析で選択的に透過し、中間精製醤油から効率よく除去される。このように、かかるイオン交換膜にて中性〜酸性になるようにpHチェックをしながら電気透析処理を行った場合には、その品質、風味を維持したまま、最終精製醤油中の塩分含量を確実に低減させることが可能である。
図3に示すように、電気透析処理設備1内の液槽1A,1Bは、イオン交換膜10、11 で仕切られており、液槽1Aに中間精製醤油(原料醤油)を移送し、もう一方の液槽1Bには例えば電流が流れる程度の透析水を流入する。その後、イオン交換膜を介して、電流を流すことでイオンがイオン交換膜中のイオンチャンネル膜を透過し、液槽1A中の中間精製醤油からイオンが除去されて最終精製醤油となり、液槽1Bにイオンが透過して、濃縮された最終精製醤油が得られる。
さらに他の透析処理条件は、充分な処理効果が得られる限り、すなわち原料醤油中の塩分含量が充分に低減する限り特に限定がなく、醤油の品質や目的とする醤油の品質などに応じて適宜変更することができ、例えば処理温度(醤油温度) は10〜80 ℃ 程度、さらには15〜60℃ 程度であることが好ましい。なおかかる処理温度は醤油の品質、風味が変化しない範囲であらかじめ適宜設定すればよい。
図3の概略構成図に示す、醤油を一例とした減塩醤油の製造方法では、電気透析処理設備1が1つのみ備えられているが、本実施形態の別の一例として、電気透析処理設備が複数備えられた製造システムを構成し、透析処理を複数回行うことも可能である。
図4Aに、2つの透析処理設備1、1が並列して備えられた場合の醤油の製造方法の一例を、図4Bに、2つの1電気透析処理設備1、1が直列して備えられた場合の醤油の製造方法の一例を、それぞれ、醤油タンク(中間精製醤油)5以降、ポンプ8P 、9Pの手前までのプロセスを示す部分概略構成図として示す。図4A及び図4B に示すように、2つの電気透析処理設備1、1 内にはいずれもイオン交換膜が備えられており、醤油タンク5 内の中間精製醤油は、ポンプ5Pにて所定の移送量で移送され、2つの電気透析処理設備1、1にて同時に( 図4A)又は1段目の電気透析処理設備1 及び2 段目の電気透析処理設備1 にて順次( 図4B )、電気透析処理が施される。
なお、図4A、図4Bでは2つの電気透析処理設備にて透析処理を2回行う場合を示したが、透析処理の回数には限定がなく、対象醤油中の塩分含量、目的とする減塩醤油の塩分含量、処理に供する醤油の量などに応じて適宜変更することが好ましい。また並列での処理及び直列での処理を適宜組み合わせることも可能である。
かくして透析処理が施された後のタンク7内の最終精製醤油は、塩成分であるNa+及びCl-が充分に除去された減塩醤油として電気透析処理設備1からポンプ1APにて減塩醤油タンク7へと移送される。減塩醤油はこの減塩醤油タンク7内に一度貯留された後、ポンプ7Pにて火入れなどの次工程へと移送される。なお、このように電気透析処理の後に火入れを行ってもよいが、先に火入れを行った火入れ醤油(原料醤油)に電気透析処理(脱塩処理)を施してもよい。
一方液槽1内に供給された透析水は、Na+ 及びCl-を含有した食塩水として透析処理設備1からポンプ1BPにて排出され、食塩水タンク8に一度貯留される。この食塩水は諸味用の食塩水として再利用することができるので、ポンプ8Pを経た後、必要に応じて、殺菌処理などを適宜施してポンプ9Pにて諸味製造タンク2へと移送される。また食塩水の再利用が必要ない場合には、ポンプ8Pを経た後、ポンプ10Pにて排水処理施設へと移送される。
なお、例えば一般の醤油における塩分含量は通常17〜20 重量%程度であるが、本発明における陽イオン交換膜を用いて、図3に示す減塩醤油製造システムにて減塩醤油を製造した際に、得られる減塩醤油の塩分含量を約10重量% 以下、さらには約8重量% 以下にまで低減させることが可能である。すなわち、目的とする減塩醤油の種類や用途によっても多少異なるが、処理対象とする原料醤油の塩分含量に対して、得られる減塩醤油の塩分含量を70%以下、さらには60%以下に低減させることが好ましい。なお、減塩醤油中の塩分含量があまりにも少ない場合には、そもそもその醤油が有する塩分由来の効果などが妨げられる恐れがあるので、処理対象とする醤油の塩分含量に対して、得られる減塩醤油の塩分含量が20% 以上となるように透析処理することが好ましい。このように対象醤油の塩分含量を所望のとおり低減させることは、ビニルアルコール系共重合体からなるイオン交換膜の種類や透析処理条件などを適宜調整することによって達成することが可能である。
以上、減塩醤油の製造方法を代表的な具体例としてあげて説明したように、本実施形態の減塩醤油の製造方法によれば、醤油中の塩分含量が減少しつつも、本来のよい風味を維持した良質な減塩醤油を確実かつ容易に得ることができる。また同時に醤油中の着色成分量を低減させることによって、醤油の淡色化も可能であり、淡色の減塩醤油を得ることもできる。
なお、本発明の製造方法において用いられる醤油製造システムの実施形態を示す、図3、4A、4Bの概略構成図には示していないが、システム全体が効率的かつ安全正確に連続操業されるように、電気透析処理設備1などの設備、各種タンクのポンプなどは、それぞれが運転制御されている。
以下、本発明を更に詳細に説明するため実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。なお、実施例中、特に断りのない限り「%」および「部」は重量基準である。
実施例および比較例に示す陽イオン交換膜の特性は、以下の方法により測定した。
1)膜含水率(H)
イオン交換膜の乾燥重量を予め測定しておき、その後、脱イオン水に浸漬し膨潤平衡に達したところで湿潤重量を測定した。膜含水率(H)は下式により算出した。H=<(W−D)/ 1.0> /<(W−D)/ 1.0+(D/1.3)>
ここで1.0と1.3はそれぞれ水とポリマーの比重を示している。
・H:膜含水率[−]
・D:膜の乾燥重量[g]
・W:膜の湿潤重量[g]
2)陽イオン交換容量の測定
陽イオン交換膜を1mol/LのHCl水溶液に10時間以上浸漬する。その後、1mol/LのNaNO水溶液で水素イオン型を硝酸イオン型に置換させ、遊離した水素イオンを酸-塩基滴定により定量した(Amol)。
次に、同じ陽イオン交換膜を1mol/LのNaCl水溶液に4時間以上浸漬し、イオン交換水で十分に水洗したのち熱風乾燥機中で105℃、8時間乾燥し、乾燥時の重さW(g)を測定した。
イオン交換容量は次式により算出した。
・イオン交換容量=A×1000/W [mmol/g−乾燥膜]
3)ポリビニルアルコール系共重合体中の塩の測定
ポリビニルアルコール系共重合体中の塩類の量は、ポリビニルアルコール系共重合体の架橋前の皮膜をメタノール溶液にてソックスレー抽出を行い、抽出物を乾固後、イオンクロマトグラフィICS−5000(DIONEX社製)により測定を行った。
4)膜抵抗の測定
膜抵抗は、図2に示される白金黒電極板を有する2室セル中に陽イオン交換膜を挟み、膜の両側に0.5mol/L−NaCl溶液を満たし、交流ブリッジ(周波数10サイクル/秒)により25℃における電極間の抵抗を測定し、該電極間抵抗と陽イオン交換膜を設置しない場合の電極間抵抗との差により求めた。上記測定に使用する膜は、あらかじめ0.5mol/L−NaCl溶液中で平衡にしたものを用いた。
5)ドメインサイズの測定
蒸留水に浸漬した陽イオン交換膜を一辺1cmの正方形に切り出して測定試料を作製した。この測定試料を、酢酸鉛(II)で染色した後、TEM(透過電子顕微鏡)を用いて観察し、測定試料中の粒子群についての画像を得た。得られた画像について、三谷商事株式会社製画像処理ソフト「WINROOF」を用いて画像処理を行い、各々の粒子の最大粒子径を求めた。約400個の粒子について最大粒子径を求め、最大粒子径の累積頻度が50%である粒子径を、陽イオン交換膜のアニオン性基ポリマーセグメントのドメインサイズとした。得られたアニオン性ブロック共重合体の特性を表3に示す。
<PVA−1(分子末端にメルカプト基を有するポリビニルアルコール系共重合体の合成)の作製>
特開昭59−187003号公報に記載された方法によって、表1に示す分子末端にメルカプト基を有するポリビニルアルコール(PVA−1)を合成した。PVA−1の重合度およびけん化度を表1に示す。
Figure 0006270094
<NaSS−1(アニオン性重合体)の作製>
表2に示すポリスチレンスルホン酸ナトリウムモノマー(NaSS:東ソー製)をそのまま用いた。塩類の含有量はイオンクロマトグラフィICS−5000(DIONEX社製)により測定を行った。なお、表2に示す全塩量以外のモノマー中の不純物は水分とした。
<NaSS−2の作製>
ポリスチレンスルホン酸ナトリウムモノマー(NaSS:東ソー製)を1000gと純水950g、水酸化ナトリウム40g、硝酸ナトリウム、1gを60℃で1時間溶解させ、20℃に冷却して再結晶を行った。その後、遠心ろ過によりポリスチレンスルホン酸モノマーの結晶を分離し、結晶を乾燥させ表2に示すNaSS−2(精製ポリスチレンスルホン酸モノマー)を得た。塩類の含有量はイオンクロマトグラフィICS−5000(DIONEX社製))により測定を行った。
Figure 0006270094
<P−1(アニオン性ブロック共重合体)の合成>
還流冷却管、攪拌翼を備え付けた1L四つ口セパラブルフラスコに、水660g、末端にメルカプト基を有するビニルアルコール系重合体として表1に示すPVA−1を80gと、NaSS−1を46.6g仕込み、攪拌下95℃まで加熱して該ビニルアルコール系重合体とNaSS−1を溶解した。また、水溶液中に窒素をバブリングしながら30分間系内を窒素置換した。窒素置換後、90℃まで冷却し、上記水溶液に2,2′−アゾビス[2−メチル−N(2−ヒドロキシエチル)プロピオンアミド]5.4%溶液13mlを1.5時間かけて逐次的に添加してブロック共重合を開始、進行させた後、系内温度を90
℃に1時間維持して重合をさらに進行させ、ついで冷却して、固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH−NMR測定に付した結果、パラスチレンスルホン酸ナトリウム単位の変性量は10モル%であった。得られたアニオン性ブロック共重合体の特性を表3に示す。
<P−2の合成>
使用するアニオン性モノマーとしてNaSS−2を表3に示す組成で使用した。これ以外はP−1と同様の方法により固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。
<P−3の合成>
還流冷却管、攪拌翼を備え付けた1L四つ口セパラブルフラスコに、水616g、末端にメルカプト基を有するビニルアルコール系重合体として表1に示すPVA−1を80gと、NaSS−1を46.6gと、を仕込み、攪拌下95℃まで加熱して該ビニルアルコール系重合体とNaSS−1を溶解した後、室温まで冷却した。該水溶液に1/2規定の硫酸を添加してpHを3.0に調整した。90℃まで加温し、また、水溶液中に窒素をバブリングしながら30分間系内を窒素置換した。窒素置換後、上記水溶液に過硫酸カリウムの2.5%水溶液63mLを1.5時間かけて逐次的に添加してブロック共重合を開始、進行させた後、系内温度を90℃に1時間維持して重合をさらに進行させ、ついで冷却して、固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウムブロック共重合体水溶液を得た。得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH−NMR測定に付した結果、p−スチレンスルホン酸ナトリウム単位の変性量は10モル%であった。得られたアニオン性ブロック共重合体の特性を表3に示す。
<P−4の合成>
使用するアニオン性モノマーとしてNaSS−2を表3に示す組成で使用した。これ以外はP−3と同様の方法により固形分濃度15%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。得られたアニオン性ブロック共重合体の特性を表3に示す。
<P−5の合成>
アニオン性モノマーとしてNaSS−2を使用し、表3に示す組成にて、P−1と同様の方法により固形分濃度17%のPVA−(b)−p−スチレンスルホン酸ナトリウム水溶液を得た。得られたアニオン性ブロック共重合体の特性を表3に示す。
<P−6の合成>
攪拌機、温度センサー、滴下漏斗および還流冷却管を備え付けた6Lのセパラブルフラスコに、酢酸ビニル2450g、メタノール762g、および2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム(AMPS)27gを仕込み、攪拌下に系内を窒素置換した後、内温を60℃まで上げた。この系に2,2’−アゾビスイソブチロニトリル(AIBN)を0.8g含有するメタノール20gを添加し、重合反応を開始した。重合開始時点より2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム(AMPS)を25質量%含有するメタノール溶液568gを系内に添加しながら、4時間重合反応
を行った後、重合反応を停止した。重合反応を停止した時点における系内の固形分濃度、すなわち、重合反応スラリー全体に対する固形分の含有率は30質量%であった。ついで、系内にメタノール蒸気を導入することにより、未反応の酢酸ビニル単量体を追い出し、ビニルエステル共重合体を30質量%含有するメタノール溶液を得た。
このビニルエステル共重合体を30質量%含有するメタノール溶液に、該共重合体中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が0.02、ビニルエステル共重合体の固形分濃度が30質量%となるように、メタノール、水酸化ナトリウムを10質量%含有するメタノール溶液をこの順序で攪拌下に加え、40℃でけん化反応を開始した。
けん化反応の進行に伴ってゲル化物が生成した直後に、これを反応系から取り出して粉砕し、ついで、ゲル化物が生成してから1時間が経過した時点で、この粉砕物に酢酸メチルを添加することにより中和を行い、膨潤状態のポリビニルアルコール−ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム)のランダムブロック共重合体の水溶液を得た。この膨潤したアニオン性重合体に対して質量基準で6倍量(浴比6倍)のメタノールを加え、還流下に1時間洗浄し、該重合体をろかした。該重合体を65℃で16時間乾燥した。得られた重合体を重水に溶解し、400MHzでのH−NMR測定を
行ったところ、該アニオン性重合体中のアニオン性単量体の含有量、すなわち、該重合体中の単量体単位の総数に対する2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム単量体単位の数の割合は5モル%であった。得られたアニオン性ブロック共重合体の特性を表4に示す。
Figure 0006270094
Figure 0006270094
<CEM−1作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の1倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。
こうして得られた皮膜を、160℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、皮膜を2mol/Lの硫酸ナトリウムの電解質水溶液に24時間浸漬させた。該水溶液にそのpHが1になるように濃硫酸を加えた後、1.0体積%グルタルアルデヒド水溶液に皮膜を浸漬し、25℃で24時間スターラーを用いて撹拌し、架橋処理を行った。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。架橋処理の後、皮膜を脱イオン水に浸漬し、途中数回脱イオン水を交換しながら、皮膜が膨潤平衡に達するまで浸漬させ、陽イオン交換膜を得た。
(イオン交換膜の評価)
このようにして作製した陽イオン交換膜を、所望の大きさに裁断し、測定試料を作製した。得られた測定試料を用い、上記方法にしたがって、膜含水率、陽イオン交換容量、膜抵抗の測定、相分離サイズの測定を行なった。得られた結果を表5に示す。
<CEM−2作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の2倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製キャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM−3作製>
(イオン交換膜の作製)
P−2の水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM−4作製>
CEM−3において、熱処理温度を表5に示すように変更した以外は、CEM−3と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM−5作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の5倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM−6作製>
P−3の樹脂を濃度10wt%まで希釈し、樹脂溶液の10倍の体積のメタノールにより再沈して塩類を除去した樹脂を取り出した。次いで、必要量の蒸留水を加えて濃度15wt%の水溶液を調整した。この水溶液を縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。これ以外は、CEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
<CEM−7〜11作製>
陽イオン交換樹脂を表5に示す内容に変更した以外はCEM−1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
Figure 0006270094
図1(a)、図1(b)、図1(c)、図1(d)および図1(e)は、塩含有量の異なるブロック共重合体を用いた陽イオン交換膜のTEM写真を示している(塩含有量は、表5を参照)。図1(a)〜図1(e)のTEM写真から、相分離構造は塩含有量により変化し、塩含有重量(C)/ブロック共重合体の重量(P)の減少と共にドメインサイズが小さくなることがわかる。特に変性量10モル%での含有塩の重量(C)が最も少ない図1(b)[CEM−7]では、膜の相溶性が向上し、ドメインサイズが4nmと非常に小さいものであった。一方で、含有塩重量(C)の最も多い図1(C)[CEM−8]では、相分離が激しく空隙が発生した。
表5の結果からは、特に塩含有重量(C)が4.5%以下のブロック共重合体(P)を用いた膜は、ドメインサイズが150nm以下となり、荷電密度が高く、膜抵抗が低い膜となり、陽イオン交換膜として優れていることが判る(CEM−1〜7)。さらに、塩含有重量(C)が4.0%以下の膜は、ドメインサイズが130nm以下であり、陽イオン交換膜の特性も荷電密度1.0mol/dm以上で膜抵抗も低くなることがわかる(CEM−2〜7)。一方で、ドメインサイズが150nmよりも大きい陽イオン交換膜は、低い荷電密度と高い膜抵抗であり、陽イオン交換膜としての特性が発現しなかった(CEM−8〜10)。特に、塩含有量(C)の多いものは膜のポリマーセグメントの相分離が激しく、イオン交膜全体で空隙が発生し、イオン交換膜として満足のいく特性を発現していない(CEM−8)。なお、CEM−9では、精製したNaSS−2を使用しているが、重合開始剤としてKPSを使用しているため、得られた陽イオン交換樹脂中の塩含有量は高い。
一方で、完全相溶系であると考えられるミクロ相分離が確認されなかったランダムブロック共重合体のP−6を用いた膜(CEM−11)は、相分離ドメインサイズの小さいブロック共重合体P−5(CEM−7)に比べ、膜抵抗が高い(表5)。これから、相分離ドメインが存在し、相分離ドメインサイズ(X)が0を超す、すなわちX>0であるブロック共重合体であることが、膜性能発現に重要であることがわかる。
<実施例1>
バイポーラ膜電気透析槽((株)アストム製、アシライザーEX3B)を用い、一対の陰陽極間に陽イオン交換膜にCEM−3を使用し、陰イオン交換膜((株)アストム製、AMX)、及びバイポーラ膜(株)アストム製BP−1)と配列した。通常の製造方法により醸造された濃口生醤油5Lを脱塩室に、酸室に0.1規定の塩酸5L、アルカリ室に0.1規定の水酸化ナトリウム水溶液5L、塩濃縮室に濃度3%の塩化ナトリウム4L水溶液をそれぞれ透析室内に線速度が6cm/sec.になるように循環供給して循環した。液温は各室一定とし、30〜35℃の範囲にコントロールした。各液温度は、熱交換器により20ないし30℃に制御した。醤油の減塩処理を行い、通電時間に対する醤油中の食塩濃度(モール法により測定:日本農林規格協会)とpH及び有機汚染度(開始時点の電圧からの5時間分運転時の電圧上昇率)を測定した。電流密度は1A/dmで5時間、バッチ式電気透析を行い、脱塩率の算出などの結果を表6に示す。
<実施例2〜5>
陽イオン交換膜を表6に示す陽イオン交換膜に変更した以外は、実施例1と同じ条件で測定した結果を表6に示す
<比較例1〜3>
陽イオン交換樹脂を表6に示す内容に変更した以外は実施例1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表6に示す。
<比較例4>
市販の陽イオン交換膜AMX(商品名、(株)アストム製)について実施例1と同じ条件で測定した結果を表6に示す。
Figure 0006270094
表6の結果から、実施例1〜5において用いた陽イオン交換膜CEM−3〜6では、比較例1〜4と比べて、脱塩率が高く、しかも電圧上昇率が低くい(膜汚染が少ない)ことから長時間にわたる電気透析の可能性を示している。
上記のように、アニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体から構成され、ドメインサイズが0nm<X≦150nmの範囲内にあるミクロ相分離構造を有する陽イオン交換膜は、イオン交換容量や膜抵抗に優れるとともに耐久性に優れており、かかる陽イオン交換膜を用いることにより、長時間の電気透析が可能になり、減塩醤油を効率的に製造することができる。
以上、本発明の好ましい実施態様を例示的に説明したが、当業者であれば、特許請求の範囲に開示した本発明の範囲および精神から逸脱することなく多様な修正、付加および置換ができることが理解可能であろう。
A イオン交換膜
B 白金電極
C NaCl水溶液
D 水浴
E LCR メーター
1 電気透析処理設備
2 諸味製造タンク
3 発酵タンク
4 圧搾機
5 醤油タンク
6 透析水タンク
7 減塩醤油タンク
8 食塩水タンク
1 0;1 1 イオン交換膜
1AP;1BP;2P;3P;4P;5P;6P;7P;8P;9P;10P ポンプ

Claims (8)

  1. 電気透析により醤油中の塩分を減少させる減塩醤油の製造方法において、電気透析を、アニオン性基を有するアニオン性重合体セグメントとビニルアルコール重合体セグメントを有するビニルアルコール系共重合体を含有し、ドメインサイズ(X)が、前記ビニルアルコール系共重合体のアニオン性重合体セグメントの粒子径であって、0nm<X≦150nmの範囲内にあるミクロ相分離構造を有する陽イオン交換膜を用いて行うことを特徴とする減塩醤油の製造方法。
  2. 前記ビニルアルコール重合体セグメントは、アニオン性基を含有しないビニルアルコール重合体から形成されるセグメントであり、該セグメントを有するビニルアルコール系共重合体を含有する陽イオン交換膜を用いて行うことを特徴とする請求項1に記載の減塩醤油の製造方法。
  3. 前記ビニルアルコール系共重合体に架橋構造が導入されていることを特徴とする、請求項1または2に記載の減塩醤油の製造方法。
  4. 前記架橋構造が、ビニルアルコール系共重合体をジアルデヒド化合物と反応させて導入されたものである、請求項3に記載の減塩醤油の製造方法。
  5. 前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性ブロック共重合体であることを特徴とする請求項1〜4のいずれか1項に記載の減塩醤油の製造方法。
  6. 前記ビニルアルコール系共重合体が、ビニルアルコール重合体ブロックとアニオン性基を有するアニオン性重合体ブロックを有するアニオン性グラフト共重合体であることを特徴とする請求項1〜4のいずれか1項に記載の減塩醤油の製造方法。
  7. 前記陽イオン交換膜のイオン交換容量が、0.30meq/g以上であることを特徴とする請求項1〜6のいずれか1項に記載の減塩醤油の製造方法。
  8. 前記陽イオン交換膜の膜抵抗が、10Ωcm以下であることを特徴とする請求項1〜7のいずれか1項に記載の減塩醤油の製造方法。
JP2013052401A 2013-03-14 2013-03-14 減塩醤油の製造方法 Expired - Fee Related JP6270094B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052401A JP6270094B2 (ja) 2013-03-14 2013-03-14 減塩醤油の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052401A JP6270094B2 (ja) 2013-03-14 2013-03-14 減塩醤油の製造方法

Publications (2)

Publication Number Publication Date
JP2014176345A JP2014176345A (ja) 2014-09-25
JP6270094B2 true JP6270094B2 (ja) 2018-01-31

Family

ID=51697048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052401A Expired - Fee Related JP6270094B2 (ja) 2013-03-14 2013-03-14 減塩醤油の製造方法

Country Status (1)

Country Link
JP (1) JP6270094B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348077B2 (ja) * 2015-02-27 2018-06-27 ヤマサ醤油株式会社 Perlolyrineを含有する呈味改善剤、hTRPV1の活性化剤または食品。
JP6418614B2 (ja) * 2016-12-02 2018-11-07 ヤマサ醤油株式会社 風味の良好な鶏ガラスープ
CN107319484A (zh) * 2017-06-27 2017-11-07 孙德善 酱油原汁及其制备方法
CN114403418A (zh) * 2020-10-28 2022-04-29 烟台欣和企业食品有限公司 酱油的防腐保鲜方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102159A (en) * 1980-12-18 1982-06-25 Tokuyama Soda Co Ltd Preparation of low-salt soy
CN102634008A (zh) * 2006-08-11 2012-08-15 东丽株式会社 高分子电解质材料、高分子电解质成型体、膜电极复合体和固体高分子型燃料电池
WO2008090774A1 (ja) * 2007-01-23 2008-07-31 Kuraray Co., Ltd. 高分子電解質膜及びその製法、並びに膜-電極接合体及び固体高分子型燃料電池
JP5531267B2 (ja) * 2009-04-13 2014-06-25 国立大学法人山口大学 イオン交換膜およびその製造方法
US20130052564A1 (en) * 2009-10-16 2013-02-28 Sumitomo Chemical Company, Limited Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell

Also Published As

Publication number Publication date
JP2014176345A (ja) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5715558B2 (ja) 陰イオン交換膜及びその製造方法
US9833742B2 (en) Cation exchange membrane and method for producing same
JP6270094B2 (ja) 減塩醤油の製造方法
JP6202607B2 (ja) 埋立浸出液の処理方法
JP6066804B2 (ja) 有機性廃水の処理方法
JP6133180B2 (ja) リチウム塩の回収方法
JP5413683B2 (ja) モザイク荷電膜の製造方法
JP6018005B2 (ja) 硝酸イオンの分離方法
JP2014176346A (ja) 食品の製造方法及びそれに用いる食品製造システム
JP6172662B2 (ja) 塩の製造方法
JP6053514B2 (ja) 有機物の脱塩方法
JP6202609B2 (ja) 酸の回収方法
JP2015200585A (ja) 放射性廃液の処理方法
JP6018020B2 (ja) 脱イオン水の製造方法
JP6202608B2 (ja) フッ素イオンの除去方法
JP6270099B2 (ja) 海水を利用したミネラル成分含有組成物の製造方法
JP6238188B2 (ja) 乳類の脱塩方法
JP6195188B2 (ja) ペプチドの製造方法および該方法により得られるペプチド含有医薬組成物
JP2014088514A (ja) 陰イオン交換膜及びその製造方法
JP2014198001A (ja) 梅漬調味液の脱塩方法
JP2014198000A (ja) 糖液の脱塩方法
JP6018006B2 (ja) 果汁含有アルコール溶液中の電解質の除去方法
JP2015067770A (ja) 陰イオン交換膜
JP5633847B2 (ja) モザイク荷電膜およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6270094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees