JP6265789B2 - Conductive paste for silicon, method for producing silver electrode, and method for producing solar cell - Google Patents

Conductive paste for silicon, method for producing silver electrode, and method for producing solar cell Download PDF

Info

Publication number
JP6265789B2
JP6265789B2 JP2014045618A JP2014045618A JP6265789B2 JP 6265789 B2 JP6265789 B2 JP 6265789B2 JP 2014045618 A JP2014045618 A JP 2014045618A JP 2014045618 A JP2014045618 A JP 2014045618A JP 6265789 B2 JP6265789 B2 JP 6265789B2
Authority
JP
Japan
Prior art keywords
nickel
silver powder
conductive paste
mass
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014045618A
Other languages
Japanese (ja)
Other versions
JP2014208882A (en
Inventor
徳昭 野上
徳昭 野上
愛子 長原
愛子 長原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2014045618A priority Critical patent/JP6265789B2/en
Publication of JP2014208882A publication Critical patent/JP2014208882A/en
Application granted granted Critical
Publication of JP6265789B2 publication Critical patent/JP6265789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Powder Metallurgy (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、銀電極と半導体層の界面における接触抵抗値を低減させるニッケル被覆銀粉、その製造方法、ニッケル被覆銀粉を含有する導電ペースト、及びこの導電ペーストを焼成して成形した銀電極を備える太陽電池に関する。   The present invention relates to a nickel-coated silver powder that reduces the contact resistance value at the interface between the silver electrode and the semiconductor layer, a method for producing the same, a conductive paste containing the nickel-coated silver powder, and a solar electrode provided with a silver electrode formed by firing this conductive paste. It relates to batteries.

近年、再生可能エネルギーに関する社会的関心の高まりとともに、太陽電池に対する関心も高まっている。太陽電池は、部材の差異に起因した多様な種類があり、それぞれ特徴を有している。結晶シリコン型太陽電池は、その発電効率の高さから注目され続けており、更なる発電効率の向上が期待されている。例えば、特許文献1では、太陽電池製造用導電ペーストに用いる銀粉が提案されている。   In recent years, interest in solar cells has also increased with increasing social interest in renewable energy. There are various types of solar cells due to differences in members, and each has its own characteristics. Crystalline silicon solar cells continue to attract attention because of their high power generation efficiency, and further improvements in power generation efficiency are expected. For example, in patent document 1, the silver powder used for the electrically conductive paste for solar cell manufacture is proposed.

特開2009−231840号公報JP 2009-231840 A

太陽電池の発電効率を向上させるには、光電変換により生じた電流の伝播の際の抵抗ロスを低くする、すなわち太陽電池素子の直列抵抗値を下げることが重要である。太陽電池の表面電極は、銀ペーストを印刷し焼成して得られた銀電極である。従来の技術に係る銀ペーストは、銀粉、ガラスフリット、樹脂バインダー、及び溶剤からなる。従来の技術に係る銀ペーストを太陽電池の構成部材に印刷して焼成すると、銀ペーストに含まれるガラスフリットが太陽電池の構成部材である反射防止層を溶解することにより(ファイヤースルー)、焼成銀が太陽電池の部材であるN型またはP型、のシリコン層と接触して銀電極が形成される。この銀電極とシリコン層との間には、接触抵抗が存在する。表面電極だけでなく、バックコンタクト電極においても同様に銀電極とシリコンとの間に接触抵抗が存在する。   In order to improve the power generation efficiency of the solar cell, it is important to reduce the resistance loss at the time of propagation of the current generated by the photoelectric conversion, that is, to reduce the series resistance value of the solar cell element. The surface electrode of the solar cell is a silver electrode obtained by printing and baking a silver paste. The silver paste according to the prior art consists of silver powder, glass frit, resin binder, and solvent. When a silver paste according to the prior art is printed on a constituent member of a solar cell and baked, the glass frit contained in the silver paste dissolves the antireflection layer that is a constituent member of the solar cell (fire-through), and the baked silver Is in contact with an N-type or P-type silicon layer which is a member of a solar cell, and a silver electrode is formed. Contact resistance exists between the silver electrode and the silicon layer. Similarly, not only the surface electrode but also the back contact electrode has a contact resistance between the silver electrode and silicon.

例えば、結晶シリコン型太陽電池において、シリコン半導体エミッタ層(日光暴露表面)と銀グリッド線との接触抵抗値は約10−3Ω・cm台である。この接触抵抗値は、半導体集積回路デバイス内で達しえる接触抵抗値(例えば、約10−7Ω・cm程度)よりも数桁大きい値である。このように接触抵抗値が大きい原因としては、ガラスフリットが非導電性であること、シリコン半導体エミッタ層と銀電極グリッド線との間の有効接触面積が小さいこと、シリコン半導体エミッタ層と銀電極グリッド線との間の有効接触面において、シリコンと銀とがシリサイドを形成しないこと、等が考えられる。 For example, in a crystalline silicon solar cell, the contact resistance value between the silicon semiconductor emitter layer (sun exposure surface) and the silver grid line is about 10 −3 Ω · cm 2 . This contact resistance value is a value several orders of magnitude larger than the contact resistance value (for example, about 10 −7 Ω · cm 2 ) that can be reached in the semiconductor integrated circuit device. The reason why the contact resistance value is large is that the glass frit is non-conductive, the effective contact area between the silicon semiconductor emitter layer and the silver electrode grid line is small, the silicon semiconductor emitter layer and the silver electrode grid It is conceivable that silicon and silver do not form silicide at the effective contact surface between the lines.

特許文献1では、この問題を解決するために、パッシベーション層を貫く複数のコンタクト開口部を形成し、この開口部の中をシリコンとシリサイドを形成するコンタクト金属で選択的にメッキし、さらにコンタクト金属の上部に金属含有層を堆積して金属グリッド線を形成し焼結することで太陽電池の電極を成形する。しかし、特許文献1の方法は、従来の印刷法と比較すると、製造工程が非常に複雑で製造コストが増大するため、大量生産には適さない。   In Patent Document 1, in order to solve this problem, a plurality of contact openings penetrating the passivation layer are formed, and the openings are selectively plated with a contact metal that forms silicon and silicide. The electrode of the solar cell is formed by depositing a metal-containing layer on top of the substrate to form a metal grid line and sintering it. However, the method of Patent Document 1 is not suitable for mass production because the manufacturing process is very complicated and the manufacturing cost increases as compared with the conventional printing method.

本発明は、上述の状況の下でなされたものであり、その解決しようとする課題は、銀ペーストの塗布する際の最も簡便で一般的な方式であるスクリーン印刷法に適した、直列抵抗値の低い銀電極を構成できる導電ペーストを提供することである。さらには、この導電ペーストの構成材料であるニッケル被覆銀粉及びその製造方法、並びにこの導電ペースト(以下、単に「ペースト」と記載する場合がある)を焼成した銀電極を備える太陽電池を提供することである。   The present invention has been made under the above-mentioned circumstances, and the problem to be solved is a series resistance value suitable for a screen printing method which is the simplest and general method when applying a silver paste. It is providing the electrically conductive paste which can comprise a low silver electrode. Furthermore, the present invention provides a nickel-coated silver powder that is a constituent material of the conductive paste, a method for producing the same, and a solar cell including a silver electrode obtained by firing the conductive paste (hereinafter sometimes simply referred to as “paste”). It is.

上記の課題を解決するために、本発明に係る第一の手段は、ニッケルが銀粉を被覆したニッケル被覆銀粉であって、前記ニッケル被覆銀粉におけるニッケル含有率が0.01質量%以上30質量%以下のものである。   In order to solve the above problems, a first means according to the present invention is nickel-coated silver powder in which nickel is coated with silver powder, and the nickel content in the nickel-coated silver powder is 0.01 mass% or more and 30 mass%. It is as follows.

本発明に係る第二の手段は、第一の手段において、前記ニッケルが湿式法により析出した金属ニッケルであるものである。   A second means according to the present invention is the first means wherein the nickel is metallic nickel deposited by a wet method.

本発明に係る第三の手段は、第一又は第二の手段において、太陽電池製造用の導電ペーストに用いられるものである。なお、太陽電池製造用の導電ペーストに用いられるとは、太陽電池の構成部材である銀電極の製造に用いられる導電ペーストの材料として使用されることをいう。   The 3rd means which concerns on this invention is used for the electrically conductive paste for solar cell manufacture in a 1st or 2nd means. In addition, being used for the electrically conductive paste for solar cell manufacture means using as a material of the electrically conductive paste used for manufacture of the silver electrode which is a structural member of a solar cell.

本発明に係る第四の手段は、ニッケル塩及びクエン酸塩を含む溶液に銀粉及び還元剤を加え、前記ニッケル塩を還元してニッケルを析出させることにより、ニッケル被覆銀粉の質量に対して0.01質量%以上30質量%以下の前記ニッケルを前記銀粉の表面に被覆させることである。   According to a fourth means of the present invention, a silver powder and a reducing agent are added to a solution containing a nickel salt and a citrate, and the nickel salt is reduced to precipitate nickel, thereby reducing the mass of the nickel-coated silver powder to 0. The surface of the silver powder is coated with 0.01% by mass or more and 30% by mass or less of the nickel.

本発明に係る第五の手段は、第一の手段であるニッケル被覆銀粉及びニッケルが被覆されていない銀粉の混合粉と、ガラスフリットと、樹脂バインダーと、溶剤と、分散剤とを含むものである。   A fifth means according to the present invention includes a first mixed powder of nickel-coated silver powder and silver powder not coated with nickel, glass frit, a resin binder, a solvent, and a dispersant.

本発明に係る第六の手段は、第一の手段であるニッケル被覆銀粉とニッケルが被覆されていない銀粉との混合粉を含有する導電ペーストであって、前記混合粉におけるニッケル含有率が0.01質量%以上0.07質量%以下のものである。   The sixth means according to the present invention is a conductive paste containing a mixed powder of nickel-coated silver powder and silver powder not coated with nickel as the first means, and the nickel content in the mixed powder is 0.00. It is a thing of 01 mass% or more and 0.07 mass% or less.

本発明に係る第七の手段は、第五又は第六の手段において、太陽電池製造用のものである。なお、太陽電池製造用とは、太陽電池の構成部材である銀電極の製造に用いられることをいう。   The seventh means according to the present invention is the fifth or sixth means for manufacturing a solar cell. The term “for solar cell production” means that it is used for the production of a silver electrode that is a constituent member of a solar cell.

本発明に係る第八の手段は、第五〜第七のいずれかの手段において、導電ペーストを基板に塗布し焼成した銀電極を備えるものである。   An eighth means according to the present invention comprises a silver electrode obtained by applying a conductive paste to a substrate and firing it in any of the fifth to seventh means.

本発明に係る第九の手段は、第五〜第七のいずれかの手段である導電ペーストを基板に塗布し焼成して銀電極とする工程を含むことである。   A ninth means according to the present invention includes a step of applying a conductive paste, which is any one of the fifth to seventh means, to a substrate and baking it to form a silver electrode.

本発明の第十の手段は、ニッケル及び銀を含有し、かつ、前記ニッケル及び前記銀の合計質量に対する前記ニッケルの含有率が0.01質量%以上0.07質量%以下である銀電極を備えるものである。   A tenth means of the present invention is a silver electrode containing nickel and silver, wherein the nickel content relative to the total mass of the nickel and the silver is 0.01% by mass or more and 0.07% by mass or less. It is to be prepared.

本発明によれば、ニッケル被覆銀粉を含有する導電ペーストを半導体層上で焼成することにより銀電極を成形するため、半導体層との界面に存在する銀粒子の表面に付着したニッケルが焼成時に半導体層とシリサイドを形成することから、銀電極と半導体層との界面における接触抵抗値を低減できる。また、本発明によれば、導電ペーストにおけるニッケル含有率が低く抑えられるので、銀電極の体積抵抗値の増大を抑制できる。よって、本発明に係る太陽電池によれば、銀電極と半導体層との界面における接触抵抗が低減し、かつ、銀電極の体積抵抗値が低く抑えられることから、高い開放電圧と高い変換効率が実現される。   According to the present invention, since the silver electrode is formed by firing a conductive paste containing nickel-coated silver powder on the semiconductor layer, the nickel adhered to the surface of the silver particles existing at the interface with the semiconductor layer becomes the semiconductor during firing. Since the silicide is formed with the layer, the contact resistance value at the interface between the silver electrode and the semiconductor layer can be reduced. Moreover, according to this invention, since the nickel content rate in an electrically conductive paste is restrained low, the increase in the volume resistance value of a silver electrode can be suppressed. Therefore, according to the solar cell of the present invention, the contact resistance at the interface between the silver electrode and the semiconductor layer is reduced, and the volume resistance value of the silver electrode is kept low, so that a high open-circuit voltage and high conversion efficiency are obtained. Realized.

本発明に係るニッケル被覆銀粉のSEM写真である(実施例1)。It is a SEM photograph of nickel covering silver powder concerning the present invention (Example 1). 本発明に係るニッケル被覆銀粉のSEM写真である(実施例2)。It is a SEM photograph of the nickel covering silver powder concerning this invention (Example 2). 本発明に係るニッケル被覆銀粉のFE−AESによる定性分析結果を示す図である。It is a figure which shows the qualitative analysis result by FE-AES of the nickel covering silver powder which concerns on this invention. 本発明に係るニッケル被覆銀粉のFE−AESによるSEM像と元素マッピング分析結果を示す図である。It is a figure which shows the SEM image and element mapping analysis result by FE-AES of the nickel covering silver powder concerning this invention.

以下、本発明の実施の形態について詳細に説明する。なお、本明細書において、「銀粒子」とは、個々の銀粒子に着目した場合の表現であり、一方で「銀粉」とは、多数の銀粒子を集合体として扱う場合の表現である。   Hereinafter, embodiments of the present invention will be described in detail. In this specification, “silver particles” is an expression when attention is paid to individual silver particles, while “silver powder” is an expression when a large number of silver particles are handled as an aggregate.

太陽電池の銀電極には、低い体積抵抗値と強い耐酸化性が求められる。この特性を実現するには、銀電極は、表面が被覆されていない銀粉(以下、「非被覆銀粉」と称する)のみで構成されることが最適である。しかし、非被覆銀粉のみからなる銀電極は、銀がシリコンとシリサイドを形成しないため、半導体層との界面における接触抵抗値が高いという問題がある。一方で、ニッケルはシリコンとシリサイドを形成するので、ニッケルが銀電極と半導体層との界面に存在すれば、銀電極と半導体層との界面における接触抵抗値を低減できる。しかし、ニッケルは銀よりも体積抵抗値が高い。そのため、銀電極のニッケル含有率が高くなるにしたがって、銀電極の体積抵抗値が増大していき、ニッケルのシリサイド形成による接触抵抗値の低減効果が減少する。つまり、銀電極のニッケル含有率が所定値を超えると、太陽電池素子の直列抵抗値(接触抵抗値、体積抵抗値、及び固有抵抗値の総和)は、非被覆銀粉のみからなる銀電極で構成される太陽電池素子の直列抵抗値よりも高くなる。そこで、銀電極と半導体層との界面における接触抵抗値を低下させると共に、銀電極の体積抵抗値を抑制することによって太陽電池素子の直列抵抗値を低減させるため、銀電極の構成材料として、非被覆銀粉とニッケル被覆銀粉とを併用する。   A silver electrode of a solar cell is required to have a low volume resistance value and strong oxidation resistance. In order to realize this characteristic, it is optimal that the silver electrode is composed only of silver powder whose surface is not coated (hereinafter referred to as “uncoated silver powder”). However, a silver electrode made of only uncoated silver powder has a problem that the contact resistance value at the interface with the semiconductor layer is high because silver does not form silicide with silicon. On the other hand, since nickel forms silicide with silicon, the contact resistance value at the interface between the silver electrode and the semiconductor layer can be reduced if nickel is present at the interface between the silver electrode and the semiconductor layer. However, nickel has a higher volume resistance than silver. Therefore, as the nickel content of the silver electrode increases, the volume resistance value of the silver electrode increases, and the effect of reducing the contact resistance value due to nickel silicide formation decreases. In other words, when the nickel content of the silver electrode exceeds a predetermined value, the series resistance value (the sum of the contact resistance value, the volume resistance value, and the specific resistance value) of the solar cell element is composed of a silver electrode made of only uncoated silver powder. It becomes higher than the series resistance value of the solar cell element. Therefore, in order to reduce the contact resistance value at the interface between the silver electrode and the semiconductor layer and reduce the series resistance value of the solar cell element by suppressing the volume resistance value of the silver electrode, Coated silver powder and nickel-coated silver powder are used in combination.

(ニッケル被覆銀粉)
ニッケル被覆銀粉は、個々の銀粒子の表面を湿式法によりニッケルで金属メッキして被覆膜が形成されたものである。ニッケル被覆銀粉は、その芯材が銀粒子であるため、銀電極の構成材料として使用されても、銀電極の体積抵抗値を著しく増大させることはない。一方で、銀電極と半導体層との界面では、ニッケル被覆銀粉の表面のニッケルが半導体層のシリコンとシリサイドを形成するので、ニッケル被覆銀粉は、銀電極と半導体層との界面における接触抵抗値を低下させることができる。
(Nickel coated silver powder)
Nickel-coated silver powder is a coating film formed by metal plating the surface of individual silver particles with nickel by a wet method. Since the core material of the nickel-coated silver powder is silver particles, the volume resistance value of the silver electrode is not significantly increased even when used as a constituent material of the silver electrode. On the other hand, at the interface between the silver electrode and the semiconductor layer, nickel on the surface of the nickel-coated silver powder forms silicide with silicon of the semiconductor layer, so the nickel-coated silver powder has a contact resistance value at the interface between the silver electrode and the semiconductor layer. Can be reduced.

ニッケル被覆銀粉におけるニッケル含有率は、0.01質量%以上30質量%以下であり、好ましくは0.5質量%以上10質量%以下であり、さらに好ましくは1質量%以上7質量%以下である。また、ニッケル被覆銀粉における個々の銀粒子の形状は、球形、楕円体形、フレーク状、又は不定形状でよい。ちなみに、非被覆銀粉における個々の銀粒子の形状も、球形、楕円体形、フレーク状、又は不定形状でよい。ニッケル被覆銀粉の平均粒径D50は、1μm以上50μm以下が好ましく、さらには20μm以下が好適であり、特に本発明者らの実験によれば5μm以下がより好ましい。なお,平均粒径D50(μm)とは,マイクロトラックによる粒度分布測定結果を、横軸に粒径D(μm)をとり、粒径Dμm以下の粒子が存在する容積%(Q%)を縦軸とした累積粒度曲線で表したときに、Q=50%に対応する粒径D(μm)の値を言う。なお、ニッケル被覆膜は、銀粒子の表面を均一に、かつ、完全に覆うことが好ましいが、銀粒子の表面の一部が露出していてもよい。なお、下記の湿式法で被覆することにより、ニッケル被覆膜は、銀粒子の表面を均一に、薄く覆うことができる。湿式法により例えば平均厚さが1〜10nm、より好ましくは1〜6nmの非常に薄い被覆とすることができるため、ニッケル粉などを混ぜる場合に比べてニッケルが拡散しても銀電極内に空隙が生じ難く、銀電極の体積抵抗値の上昇の恐れが少ないと考えられる。   The nickel content in the nickel-coated silver powder is 0.01% by mass to 30% by mass, preferably 0.5% by mass to 10% by mass, and more preferably 1% by mass to 7% by mass. . Further, the shape of each silver particle in the nickel-coated silver powder may be a spherical shape, an ellipsoidal shape, a flake shape, or an indefinite shape. Incidentally, the shape of the individual silver particles in the uncoated silver powder may be spherical, ellipsoidal, flaky, or indefinite. The average particle diameter D50 of the nickel-coated silver powder is preferably 1 μm or more and 50 μm or less, more preferably 20 μm or less, and more preferably 5 μm or less according to the experiments by the present inventors. The average particle diameter D50 (μm) is the particle size distribution measurement result by Microtrack, the horizontal axis is the particle diameter D (μm), and the volume% (Q%) in which particles having a particle diameter of D μm or less exist is the vertical axis. This is the value of the particle size D (μm) corresponding to Q = 50% when expressed by the cumulative particle size curve with the axis. The nickel coating film preferably covers the surface of the silver particles uniformly and completely, but a part of the surface of the silver particles may be exposed. In addition, by coating with the following wet method, the nickel coating film can cover the surface of the silver particles uniformly and thinly. For example, a very thin coating having an average thickness of 1 to 10 nm, more preferably 1 to 6 nm, can be formed by a wet method. Is less likely to occur and there is little risk of an increase in the volume resistance of the silver electrode.

オージェ電子分光分析装置(FE−AES)によるニッケル被覆銀粉の定性分析結果を図3に示す。また、図4に、そのニッケルの元素マッピング分析結果を示す。図3、図4からNi(ニッケル)により銀粉が被覆されていることが分かる。なお、元素マッピング分析により定性分析で観察されたC(炭素)は、銀粉の表面に存在し、P(リン)は銀粉にある一部が揮散したように全体に観察されている。なお、Al(アルミニウム)とO(酸素)はバックグラウンドであることが判明している。炭素は分散剤、リンは還元剤に起因すると考えられ、銀粉表面には、還元により析出した金属ニッケルが存在している。金属ニッケルは不純物としてリンを含んでいても良い。銀粒子との界面付近においては、ニッケルは銀と合金化している場合もある。   FIG. 3 shows the qualitative analysis results of the nickel-coated silver powder by the Auger electron spectroscopy analyzer (FE-AES). FIG. 4 shows the result of elemental mapping analysis of the nickel. 3 and 4 that the silver powder is covered with Ni (nickel). In addition, C (carbon) observed by qualitative analysis by element mapping analysis exists on the surface of silver powder, and P (phosphorus) is observed as a whole as if a part of the silver powder is volatilized. It has been found that Al (aluminum) and O (oxygen) are the background. Carbon is considered to be caused by a dispersing agent and phosphorus is considered to be caused by a reducing agent, and metallic nickel precipitated by reduction is present on the surface of the silver powder. The metallic nickel may contain phosphorus as an impurity. In the vicinity of the interface with the silver particles, nickel may be alloyed with silver.

(ニッケル被覆銀粉の製造方法)
ニッケル被覆銀粉は、化学還元法や電解法等の湿式法で製造できる。湿式法では、先ずニッケル塩とクエン酸塩とを含む溶液(水溶液が好ましい)に銀粉を加え撹拌して分散液を作成する。次いで、このニッケルイオンを含有する分散液に還元剤である次亜リン酸塩等の還元剤を加えて加熱する。この還元剤の添加及び加熱により、ニッケルイオンを還元して銀粒子の表面にニッケルを析出させ、ニッケル被覆銀粉のスラリーを得る。次いで、ニッケル被覆銀粉のスラリーを濾別して、ニッケル被覆銀粉を採集する。次いで、採集したニッケル被覆銀粉を水洗した後に真空乾燥する。これら一連の製造工程を経てニッケル被覆銀粉が得られる。
(Production method of nickel-coated silver powder)
The nickel-coated silver powder can be produced by a wet method such as a chemical reduction method or an electrolytic method. In the wet method, first, silver powder is added to a solution (preferably an aqueous solution) containing a nickel salt and a citrate and stirred to prepare a dispersion. Next, a reducing agent such as hypophosphite as a reducing agent is added to the dispersion containing nickel ions and heated. By adding and heating the reducing agent, nickel ions are reduced to deposit nickel on the surface of the silver particles, thereby obtaining a slurry of nickel-coated silver powder. Next, the nickel-coated silver powder slurry is filtered and the nickel-coated silver powder is collected. Next, the collected nickel-coated silver powder is washed with water and then vacuum-dried. Nickel-coated silver powder is obtained through these series of manufacturing steps.

ニッケルイオン含有分散液に添加する還元剤としては、次亜リン酸ナトリウム、ヒドラジン、又は水素化ホウ素ナトリウムが好ましい。また、ニッケルイオンの還元反応を促進するため、還元剤を入れた分散液の温度を室温(20℃)から95℃までの範囲に維持することが望ましい。より好ましくは、70〜90℃である。本発明者らの行った実験によれば、ニッケルが析出し始めた時の液温が70℃であったことから、70℃未満では還元反応が進行し難いと考えられ、一方で90℃を超えると水の蒸発が多くなる。   As a reducing agent added to the nickel ion-containing dispersion, sodium hypophosphite, hydrazine, or sodium borohydride is preferable. Further, in order to promote the reduction reaction of nickel ions, it is desirable to maintain the temperature of the dispersion containing the reducing agent in the range from room temperature (20 ° C.) to 95 ° C. More preferably, it is 70-90 degreeC. According to the experiments conducted by the present inventors, the liquid temperature when nickel began to precipitate was 70 ° C., and therefore it is considered that the reduction reaction is difficult to proceed below 70 ° C. If exceeded, water evaporation will increase.

また、銀粉がニッケルイオン含有分散液中に均一に分散し、ニッケルイオンの還元反応が停滞しないように、スラリーを常時撹拌し続けることが好ましい。この撹拌を継続することにより、銀粉をニッケルが均一に被覆するようになる共に、銀粉が沈殿して凝集してしまうことを防止できる。   Moreover, it is preferable to keep stirring the slurry at all times so that the silver powder is uniformly dispersed in the nickel ion-containing dispersion and the nickel ion reduction reaction does not stagnate. By continuing this stirring, it is possible to uniformly coat the silver powder with nickel and to prevent the silver powder from precipitating and agglomerating.

また、大気中からニッケルイオン含有分散液への酸素の混入を防止するため、不活性ガス(窒素ガスやアルゴンガス)でパージした雰囲気下でニッケルイオンの還元反応を進行させることが好ましい。   In order to prevent oxygen from being mixed into the nickel ion-containing dispersion from the atmosphere, it is preferable to proceed the nickel ion reduction reaction in an atmosphere purged with an inert gas (nitrogen gas or argon gas).

また、ニッケル被覆銀粉の粒子同士の凝集を防止するため、有機高分子からなる分散剤(凝集防止剤又は界面活性剤と呼ばれることもある)をニッケルイオン含有分散液に添加することが好ましい。この分散剤の添加により、真空乾燥後のニッケル被覆銀粉の解粒作業が容易になると共に、この解粒作業によって銀粉を被覆したニッケル被膜が剥離することを回避できる。また、分散剤が有機高分子であれば、太陽電池の製造工程で導電ペーストが焼成される際に、分散剤は気化消失するため、分散剤の添加によって本発明に係る太陽電池の銀電極の性能が低下することはない。有機高分子分散剤としては、例えばステアリン酸などの脂肪酸が使用できる。   Moreover, in order to prevent aggregation of the particles of the nickel-coated silver powder, it is preferable to add a dispersant made of an organic polymer (sometimes referred to as an aggregation inhibitor or a surfactant) to the nickel ion-containing dispersion. The addition of this dispersant facilitates the pulverization of the nickel-coated silver powder after vacuum drying, and avoids peeling of the nickel coating coated with the silver powder by the pulverization. Further, if the dispersant is an organic polymer, when the conductive paste is baked in the solar cell manufacturing process, the dispersant vaporizes and disappears. Therefore, by adding the dispersant, the silver electrode of the solar cell according to the present invention is added. There is no degradation in performance. As the organic polymer dispersant, for example, a fatty acid such as stearic acid can be used.

(導電ペースト)
導電ペーストは、ニッケル被覆銀粉と非被覆銀粉との混合粉及び溶剤を含有し、さらに必要に応じて、ガラスフリット、樹脂バインダー、及び分散剤を含有する。
(Conductive paste)
The conductive paste contains a mixed powder of nickel-coated silver powder and non-coated silver powder and a solvent, and further contains a glass frit, a resin binder, and a dispersant as necessary.

以下に、導電ペーストの構成材料である(1)ニッケル被覆銀粉と非被覆銀粉の混合粉、(2)ガラスフリット、(3)樹脂バインダー、(4)溶剤、(5)分散剤、及び(6)その他の添加剤について説明する。   The following are constituent materials of the conductive paste: (1) mixed powder of nickel-coated silver powder and uncoated silver powder, (2) glass frit, (3) resin binder, (4) solvent, (5) dispersant, and (6 ) Other additives will be described.

(1)ニッケル被覆銀粉と非被覆銀粉との混合粉
導電ペーストにおけるニッケル被覆銀粉と非被覆銀粉との混合粉の含有率は、65質量%以上95質量%以下が好ましい。混合粉の含有率が65質量%以上であれば、焼成後の銀電極の銀含有率が十分となり、受光面側の銀電極の固有抵抗値が上昇することを防止できる。一方で、混合粉の含有率が95質量%以下であれば、ペーストの印刷性が担保されると共に、銀電極と半導体層との間の物理的な接着強度が担保される。
(1) Mixed powder of nickel-coated silver powder and uncoated silver powder The content of the mixed powder of nickel-coated silver powder and uncoated silver powder in the conductive paste is preferably 65% by mass or more and 95% by mass or less. If the content rate of mixed powder is 65 mass% or more, the silver content rate of the silver electrode after baking will become enough, and it can prevent that the specific resistance value of the silver electrode by the side of a light-receiving surface rises. On the other hand, when the content of the mixed powder is 95% by mass or less, the printability of the paste is ensured and the physical adhesive strength between the silver electrode and the semiconductor layer is ensured.

混合粉におけるニッケル含有率は、0.01質量%〜0.07質量%が好ましく、0.01質量%〜0.06質量%がより好ましく、0.01質量%〜0.04質量%が好適であり、さらに本発明者らの実験によれば0.02質量%〜0.027質量%が最適である。混合粉におけるニッケル含有率が0.01質量%〜0.06質量%であれば、ニッケルのシリサイド形成による銀電極と半導体層との界面における接触抵抗値の低減効果が、ニッケルの高い体積抵抗値によって太陽電池素子の直列抵抗値が増大する負の効果を上回る。   The nickel content in the mixed powder is preferably 0.01% by mass to 0.07% by mass, more preferably 0.01% by mass to 0.06% by mass, and preferably 0.01% by mass to 0.04% by mass. Furthermore, 0.02% by mass to 0.027% by mass is optimal according to experiments by the present inventors. If the nickel content in the mixed powder is 0.01% by mass to 0.06% by mass, the effect of reducing the contact resistance value at the interface between the silver electrode and the semiconductor layer due to the formation of nickel silicide is the high volume resistance value of nickel. This exceeds the negative effect of increasing the series resistance value of the solar cell element.

ニッケル被覆銀粉と非被覆銀粉との混合は、焼成前のどのタイミングで行なわれても良い。下記の実施例では粉の状態で混合し、その後にペースト化しているが、これに限定されず、ニッケル被覆銀粉と非被覆銀粉のそれぞれをペースト化した後に混合してもよい。   Mixing of the nickel-coated silver powder and the uncoated silver powder may be performed at any timing before firing. In the following examples, the powders are mixed in a powder state and then made into a paste. However, the present invention is not limited to this, and each of nickel-coated silver powder and non-coated silver powder may be mixed and pasted.

(2)ガラスフリット
導電ペーストに含まれるガラスフリットは、導電ペーストが750℃から950℃で焼成された時に、太陽電池の半導体層上に形成された反射防止層を適度に侵食すると共に、導電ペーストの焼成物である銀電極を半導体層に接着するものである。そのため、ガラスフリットは、300℃以上、550℃以下の軟化点を有するものが好ましい。ガラスフリットの軟化点が300℃以上であれば、反射防止層への過度の侵食が発生せず、一方で軟化点が550℃以下であれば、反射防止層への侵食は必要十分に起こる。
(2) Glass frit The glass frit contained in the conductive paste appropriately corrodes the antireflection layer formed on the semiconductor layer of the solar cell when the conductive paste is baked at 750 ° C. to 950 ° C. The silver electrode, which is a fired product, is bonded to the semiconductor layer. Therefore, the glass frit preferably has a softening point of 300 ° C. or higher and 550 ° C. or lower. If the softening point of the glass frit is 300 ° C. or higher, excessive erosion of the antireflection layer does not occur. On the other hand, if the softening point is 550 ° C. or lower, erosion of the antireflection layer occurs sufficiently and sufficiently.

ガラスフリットの形状は特に限定されず、球状でも、不定球状でもよい。導電ペーストにおけるガラスフリットの含有率は、0.1質量%以上10質量%以下が好ましい。この含有率が0.1質量%以上であれば、銀電極が半導体層に十分な強度で接着できる。一方で、この含有率が10質量%以下であれば、導電ペーストにおけるガラスの浮きや後工程での半田付け不良等の問題が生じない。   The shape of the glass frit is not particularly limited, and may be spherical or indefinite. The content of glass frit in the conductive paste is preferably 0.1% by mass or more and 10% by mass or less. If this content rate is 0.1 mass% or more, the silver electrode can be bonded to the semiconductor layer with sufficient strength. On the other hand, when the content is 10% by mass or less, problems such as glass floating in the conductive paste and poor soldering in a subsequent process do not occur.

(3)樹脂バインダー
導電ペーストに含まれる樹脂バインダーは、特に限定されるものではないが、例えば、メチルセルロース、エチルセルロース等のセルロース誘導体、アクリル樹脂、アルキド樹脂、ポリプロピレン系樹脂、ポリウレタン系樹脂、ロジン系樹脂、テルペン系樹脂、フェノール系樹脂、脂肪族系石油樹脂、アクリル酸エステル系樹脂、キシレン系樹脂、クマロンインデン系樹脂、スチレン系樹脂、ジシクロペンタジエン系樹脂、ポリブテン系樹脂、ポリエーテル系樹脂、ユリア系樹脂、メラミン系樹脂、酢酸ビニル系樹脂、又はポリイソブチル系樹脂等が好ましい。
(3) Resin binder The resin binder contained in the conductive paste is not particularly limited. For example, cellulose derivatives such as methyl cellulose and ethyl cellulose, acrylic resins, alkyd resins, polypropylene resins, polyurethane resins, and rosin resins. Terpene resin, phenol resin, aliphatic petroleum resin, acrylate ester resin, xylene resin, coumarone indene resin, styrene resin, dicyclopentadiene resin, polybutene resin, polyether resin, A urea resin, a melamine resin, a vinyl acetate resin, a polyisobutyl resin, or the like is preferable.

導電ペーストにおける樹脂バインダーの含有率は、0.1質量%以上10質量%以下が好ましい。この含有率が0.1質量%以上あれば、銀電極が半導体層に十分な強度で接着できる。一方で、この含有率が10質量%以下であれば、導電ペーストの粘度上昇が回避されるため、導電ペーストの印刷性が担保される。   As for the content rate of the resin binder in an electrically conductive paste, 0.1 to 10 mass% is preferable. If this content is 0.1% by mass or more, the silver electrode can be bonded to the semiconductor layer with sufficient strength. On the other hand, if the content is 10% by mass or less, an increase in the viscosity of the conductive paste is avoided, so that the printability of the conductive paste is ensured.

(4)溶剤
導電ペーストに含まれる溶剤は、特に限定されるものではないが、例えば、ヘキサン、トルエン、エチルセロソルブ、シクロヘキサノン、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトール、ブチルカルビトールアセテート、ジエチレングリコールジエチルエーテル、ジアセトンアルコール、ターピネオール、メチルエチルケトン、又はベンジルアルコール等が好ましい。導電ペーストにおける溶剤の含有率は、1質量%以上40質量%以下が好ましい。この含有率が1質量%以上40質量%以下であれば、導電ペーストの印刷性が担保される。
(4) Solvent The solvent contained in the conductive paste is not particularly limited. For example, hexane, toluene, ethyl cellosolve, cyclohexanone, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, butyl carbitol acetate, diethylene glycol diethyl ether, Diacetone alcohol, terpineol, methyl ethyl ketone, benzyl alcohol or the like is preferable. The content of the solvent in the conductive paste is preferably 1% by mass or more and 40% by mass or less. If this content rate is 1 mass% or more and 40 mass% or less, the printability of an electrically conductive paste is ensured.

(5)分散剤
導電ペーストに含まれる分散剤は、例えば、ステアリン酸、パルミチン酸、ミリスチン酸、オレイン酸、又はラウリン酸等が好ましい。なお、分散剤は、一般的なものであれば、有機酸に限定されるものではない。導電ペーストにおける分散剤の含有率は、0.05質量%以上10質量%以下が好ましい。この含有率が0.05質量%以上であれば、導電ペースト中の混合粉やガラスフリットの分散性が担保される。一方で、この含有率が10質量%以下であれば、太陽電池における受光面側銀電極の固有抵抗値の上昇を回避できる。
(5) Dispersant The dispersant contained in the conductive paste is preferably stearic acid, palmitic acid, myristic acid, oleic acid, lauric acid, or the like. In addition, if a dispersing agent is a general thing, it will not be limited to an organic acid. The content of the dispersant in the conductive paste is preferably 0.05% by mass or more and 10% by mass or less. If this content rate is 0.05 mass% or more, the dispersibility of the mixed powder and glass frit in an electrically conductive paste is ensured. On the other hand, if the content is 10% by mass or less, an increase in the specific resistance value of the light receiving surface side silver electrode in the solar cell can be avoided.

(6)その他の添加剤
導電ペーストには、本発明の効果を妨げない範囲で、安定剤、酸化防止剤、紫外線吸収剤、シランカップリング剤、消泡剤、及び粘度調整剤等の各種添加剤を適宜添加してもよい。ただし、これらの添加剤は、導電ペーストの全質量におけるナトリウム含有率が100ppm未満となるように選択されることが好ましい。
(6) Other additives Various additives such as stabilizers, antioxidants, ultraviolet absorbers, silane coupling agents, antifoaming agents, and viscosity modifiers are added to the conductive paste as long as the effects of the present invention are not hindered. An agent may be added as appropriate. However, these additives are preferably selected such that the sodium content in the total mass of the conductive paste is less than 100 ppm.

(太陽電池)
太陽電池には、光電変換素子である半導体層を挟んで対向する両側に、隣接する光電変換素子を直列に連結する、導電ペーストを焼成した銀電極が設けられる。半導体層を挟んで対向するどちらの側の銀電極でも、導電ペーストを焼成して成形できる。また、Si系のバックコンタクト用の電極にも、本発明に係る導電ペーストを使用できる。
(Solar cell)
The solar cell is provided with silver electrodes obtained by firing a conductive paste that connects adjacent photoelectric conversion elements in series on both sides facing each other across a semiconductor layer that is a photoelectric conversion element. Either side of the silver electrode facing the semiconductor layer can be formed by firing the conductive paste. The conductive paste according to the present invention can also be used for an Si-based back contact electrode.

銀電極を成形するための導電ペーストの塗布方法としては、スクリーン印刷法、オフセット印刷法、又はジェット印刷法等が好ましい。特に、最も簡便で一般的な方式であるスクリーン印刷法が好適である。   As a method for applying the conductive paste for forming the silver electrode, a screen printing method, an offset printing method, a jet printing method, or the like is preferable. In particular, the screen printing method which is the simplest and general method is suitable.

ニッケル被覆銀粉は、銀電極と半導体層との界面においてニッケルのシリサイドを形成することにより、同界面における接触抵抗値を低減させるという効果を奏する。しかし、銀電極におけるニッケル含有率が高くなるにしたがって、銀電極の体積抵抗値が増大するという負の効果が大きくなる。したがって、銀電極の一つの理想的な構成は、半導体層との界面付近ではニッケル被覆銀粉の含有率が高く、一方で半導体層から離れた位置では非被覆銀粉の含有率が高い構成である。この理想的な構成を実現するために、先ずニッケル被覆銀粉のみを含む導電ペーストを半導体層にスクリーン印刷等によって塗布し、次いで非被覆銀粉だけの導電ペーストをそのスクリーン印刷面上に再度塗布することが考えられる。その他、ニッケル被覆銀粉と非被覆銀粉のそれぞれのペーストを、混合率を変えながら塗布することも考えられる。   The nickel-coated silver powder has the effect of reducing the contact resistance value at the interface by forming nickel silicide at the interface between the silver electrode and the semiconductor layer. However, as the nickel content in the silver electrode increases, the negative effect that the volume resistance value of the silver electrode increases increases. Therefore, one ideal configuration of the silver electrode is a configuration in which the content of nickel-coated silver powder is high near the interface with the semiconductor layer, while the content of uncoated silver powder is high at a position away from the semiconductor layer. In order to realize this ideal configuration, first, a conductive paste containing only nickel-coated silver powder is applied to the semiconductor layer by screen printing or the like, and then a conductive paste containing only uncoated silver powder is applied again on the screen printing surface. Can be considered. In addition, it is possible to apply each paste of nickel-coated silver powder and uncoated silver powder while changing the mixing ratio.

太陽電池素子の直列抵抗値が低減すれば、太陽電池の曲線因子(FF)が高くなり、その変換効率が改善する。   If the series resistance value of the solar cell element is reduced, the fill factor (FF) of the solar cell is increased, and the conversion efficiency is improved.

以下、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
<ニッケル被覆銀粉の製造>
硫酸ニッケル16g及びクエン酸アンモニウム17gを水125mLに溶解し、液温を30℃に保ち攪拌しながら、非被覆銀粉31.5g、続いて還元剤として次亜リン酸ナトリウム水溶液を添加した。この次亜リン酸ナトリウム水溶液は、次亜リン酸ナトリウム14gを水50mLに溶解したものである。攪拌を継続しながら液温を90℃に加温し、還元反応により非被覆銀粉の表面にニッケルを析出させ、ニッケル被覆銀粉含有スラリーを得た。このスラリーを濾別して採集物を水洗し、次いで75℃で真空乾燥することにより、実施例1に係るニッケル被覆銀粉Aを得た。ニッケル被覆銀粉Aの5000倍のSEM写真を「図1」に示す。
Example 1
<Manufacture of nickel-coated silver powder>
16 g of nickel sulfate and 17 g of ammonium citrate were dissolved in 125 mL of water, and 31.5 g of uncoated silver powder was added while stirring at a liquid temperature of 30 ° C., followed by an aqueous sodium hypophosphite solution as a reducing agent. This aqueous sodium hypophosphite solution is obtained by dissolving 14 g of sodium hypophosphite in 50 mL of water. While continuing the stirring, the liquid temperature was heated to 90 ° C., and nickel was deposited on the surface of the uncoated silver powder by a reduction reaction to obtain a nickel-coated silver powder-containing slurry. The slurry was separated by filtration, the collected material was washed with water, and then vacuum-dried at 75 ° C. to obtain nickel-coated silver powder A according to Example 1. A 5000 times SEM photograph of nickel-coated silver powder A is shown in FIG.

<ニッケル被覆銀粉の評価>
ニッケル被覆銀粉Aのニッケル含有率、粒度分布、及び比表面積(BET値)の測定結果を「表1」に示す。非被覆銀粉はニッケルを含まないため、ニッケル被覆銀粉Aのニッケル含有率2.0質量%は、そのままニッケル被覆量とみなせる。なお、ニッケル含有率は、重量法(質量法)と発光分光分析(ICP)とを用いた組成分析により算出した。具体的には、ニッケル被覆銀粉を硝酸で溶解した後、塩酸を加えて塩化銀を沈殿させて濾別し、塩化銀の質量を測定して銀の含有量を算出した。また、ニッケルが溶解しているろ液にアンモニア水を加えて水酸化ニッケルを沈殿させて濾別し、水酸化ニッケルを焼成して酸化ニッケルとしてから質量を測定してニッケルの含有量を算出した。さらに、ニッケル被覆銀粉を硝酸で溶解した溶液についてICPを用いることにより、不純物の量を測定した。
<Evaluation of nickel-coated silver powder>
The measurement results of nickel content, particle size distribution, and specific surface area (BET value) of the nickel-coated silver powder A are shown in “Table 1”. Since the uncoated silver powder does not contain nickel, the nickel content 2.0% by mass of the nickel-coated silver powder A can be regarded as the nickel coating amount as it is. The nickel content was calculated by composition analysis using a weight method (mass method) and emission spectroscopic analysis (ICP). Specifically, after the nickel-coated silver powder was dissolved with nitric acid, hydrochloric acid was added to precipitate silver chloride and filtered, and the mass of silver chloride was measured to calculate the silver content. Also, ammonia water was added to the filtrate in which nickel was dissolved to precipitate nickel hydroxide, and the nickel hydroxide was precipitated and filtered. The nickel hydroxide was calcined to form nickel oxide, and the mass was measured to calculate the nickel content. . Furthermore, the amount of impurities was measured by using ICP for a solution obtained by dissolving nickel-coated silver powder with nitric acid.

ニッケル被覆銀粉Aの粒度分布は、ニッケル被覆銀粉A0.3gをイソプロピルアルコール50mLに入れ、50W超音波洗浄器で5分間分散処理後、マイクロトラック9320−X100(ハネウエル−日機装社製)を用いて測定した。表1には、D10(累積10質量%粒径)、D50(累積50質量%粒径)、D90(累積90質量%粒径)、及びDmax(最大粒径)の値を示す。   The particle size distribution of nickel-coated silver powder A is measured using Microtrack 9320-X100 (Honeywell-Nikkiso Co., Ltd.) after adding 0.3 g of nickel-coated silver powder A to 50 mL of isopropyl alcohol and dispersing for 5 minutes with a 50 W ultrasonic cleaner. did. Table 1 shows values of D10 (cumulative 10 mass% particle diameter), D50 (cumulative 50 mass% particle diameter), D90 (cumulative 90 mass% particle diameter), and Dmax (maximum particle diameter).

ニッケル被覆銀粉Aの比表面積は、BET値で0.76m/gであった。ニッケル被覆銀粉Aにおけるニッケル含有率は2.0質量%であるから、ニッケル被覆銀粉の比表面積から計算されるニッケル被覆膜の平均厚さは3nmとなる。 The specific surface area of the nickel-coated silver powder A was 0.76 m 2 / g as a BET value. Since the nickel content in the nickel-coated silver powder A is 2.0% by mass, the average thickness of the nickel-coated film calculated from the specific surface area of the nickel-coated silver powder is 3 nm.

<導電ペーストの製造>
ニッケル被覆銀粉A0.86質量部と、平均粒径3μmの非被覆銀粉85.14質量部と、軟化点が530℃のBa系ガラスフリット1質量部と、エチルセルロース1質量部(樹脂バインダー)と、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート11質量部(有機溶剤)と、ステアリン酸0.5質量部(分散剤)と、ステアリン酸マグネシウム1質量部と、二酸化テルル2質量部とを、それぞれ秤量して配合した。この配合物を三本ロールミルで混合することによりペースト状にした。さらに、後述するスクリーン印刷時のペースト粘度が約400Pa・sとなるように、このペーストに有機溶剤を適宜添加し、実施例1に係る導電ペーストを得た。
<Manufacture of conductive paste>
0.86 parts by mass of nickel-coated silver powder A, 85.14 parts by mass of uncoated silver powder having an average particle size of 3 μm, 1 part by mass of a Ba-based glass frit having a softening point of 530 ° C., 1 part by mass of ethyl cellulose (resin binder), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate 11 parts by weight (organic solvent), stearic acid 0.5 part by weight (dispersing agent), magnesium stearate 1 part by weight, tellurium dioxide Two parts by mass were weighed and blended. This blend was made into a paste by mixing with a three-roll mill. Furthermore, an organic solvent was appropriately added to this paste so that the paste viscosity at the time of screen printing described later was about 400 Pa · s, and the conductive paste according to Example 1 was obtained.

<導電ペーストの印刷>
外形が156mm×156mmの大きさで、表面にn型拡散層が形成され、さらにn型拡散層の上にSiNxの反射防止層が形成されたp型単結晶シリコンウエハを準備した。裏面電極形成用のアルミニウムペーストを、シリコンウエハの裏面全面にスクリーン印刷により塗布し、200℃で20分間乾燥を行った後、自然放冷により室温まで冷却した。そして、シリコンウエハの表面側に、実施例1に係る導電ペーストをスクリーン印刷により塗布し、200℃で20分間乾燥を行った後、自然放冷により室温まで冷却した。
<Printing of conductive paste>
A p-type single crystal silicon wafer having an outer shape of 156 mm × 156 mm, an n-type diffusion layer formed on the surface, and an SiNx antireflection layer formed on the n-type diffusion layer was prepared. An aluminum paste for forming the back electrode was applied to the entire back surface of the silicon wafer by screen printing, dried at 200 ° C. for 20 minutes, and then cooled to room temperature by natural cooling. And the electrically conductive paste which concerns on Example 1 was apply | coated to the surface side of the silicon wafer by screen printing, and it dried at 200 degreeC for 20 minutes, Then, it cooled to room temperature by natural cooling.

<太陽電池素子の製造>
導電ペーストがスクリーン印刷されたシリコンウエハを、高速焼成炉に挿入して最大温度780℃で1分間焼成し、実施例1に係る太陽電池素子を得た。
<Manufacture of solar cell elements>
The silicon wafer on which the conductive paste was screen-printed was inserted into a high-speed baking furnace and baked at a maximum temperature of 780 ° C. for 1 minute to obtain a solar cell element according to Example 1.

<太陽電池素子の特性評価>
太陽電池素子をソーラーシミュレータに装填し、太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。表1における直列抵抗値、曲線因子(FF)、及び変換効率(η)の値は、後述するニッケル被覆銀粉を含まないペーストを用いた比較例1に係る太陽電池素子の各特性値を基準値として正規化した値である。表1から明らかなように、実施例1に係る太陽電池は、比較例1に係る太陽電池素子に比べて、直列抵抗値が低下し、曲線因子及び変換効率(公称変換効率)は向上した。
<Characteristic evaluation of solar cell element>
The solar cell element was loaded into a solar simulator, and the characteristics of the solar cell element were measured. The measurement results are shown in “Table 1”. The values of the series resistance value, the fill factor (FF), and the conversion efficiency (η n ) in Table 1 are based on the characteristic values of the solar cell element according to Comparative Example 1 using a paste that does not contain nickel-coated silver powder described later. It is a value normalized as a value. As is apparent from Table 1, the solar cell according to Example 1 had a lower series resistance value and an improved curve factor and conversion efficiency (nominal conversion efficiency) as compared with the solar cell element according to Comparative Example 1.

ここで、曲線因子(FF:Fill Factor)は、下記式(1)で表記される。   Here, the fill factor (FF) is expressed by the following formula (1).

また、照射光による入力エネルギーを100mW/cm(又は1000W/m)で規格化した測定による変換効率(公称変換効率:η)は、下記式(2)で表記される。 The conversion efficiency input energy due to the incident light by the measured normalized by 100 mW / cm 2 (or 1000W / m 2) (nominal conversion efficiency: eta n) is denoted by the following formula (2).

(実施例2)
<ニッケル被覆銀粉の製造>
硫酸ニッケル32g、クエン酸アンモニウム34g、水酸化ナトリウム0.5gを水750mLに溶解し、液温を30℃に保ち攪拌しながら、非被覆銀粉80g、続いて次亜リン酸ナトリウム水溶液を添加した。この次亜リン酸ナトリウム水溶液は、次亜リン酸ナトリウム30gを水50mLに溶解したものである。攪拌を継続しながら液温を80〜95℃に加温して、ここにステアリン酸を加えた。ステアリン酸の存在下で、還元反応によりニッケルを銀粒子表面に析出させ、ニッケル被覆銀粉含有スラリーを得た。このスラリーを濾別して採集物を水洗した後に75℃で真空乾燥を行い、実施例2に係るニッケル被覆銀粉Bを得た。ニッケル被覆銀粉Bの5000倍のSEM写真を「図2」に示す。
(Example 2)
<Manufacture of nickel-coated silver powder>
32 g of nickel sulfate, 34 g of ammonium citrate and 0.5 g of sodium hydroxide were dissolved in 750 mL of water, and 80 g of uncoated silver powder and then an aqueous sodium hypophosphite solution were added while stirring at a liquid temperature of 30 ° C. This aqueous sodium hypophosphite solution is obtained by dissolving 30 g of sodium hypophosphite in 50 mL of water. The liquid temperature was heated to 80 to 95 ° C. while stirring was continued, and stearic acid was added thereto. In the presence of stearic acid, nickel was precipitated on the surface of the silver particles by a reduction reaction to obtain a nickel-coated silver powder-containing slurry. The slurry was filtered and the collected product was washed with water, followed by vacuum drying at 75 ° C. to obtain nickel-coated silver powder B according to Example 2. An SEM photograph of the nickel-coated silver powder B at 5000 times is shown in FIG.

<ニッケル被覆銀粉の評価>
ニッケル被覆銀粉Bのニッケル含有率、粒度分布、及び比表面積(BET値)を実施例1と同じ方法で測定した。その測定結果を「表1」に示す。非被覆銀粉はニッケルを含まないため、ニッケル被覆銀粉Bのニッケル含有率2.7質量%は、そのままニッケル被覆量とみなせる。ニッケル被覆銀粉の比表面積は0.75m/gであるから、計算されるニッケル被覆膜の平均厚さは4nmとなる。
<Evaluation of nickel-coated silver powder>
The nickel content, particle size distribution, and specific surface area (BET value) of the nickel-coated silver powder B were measured by the same method as in Example 1. The measurement results are shown in “Table 1”. Since the uncoated silver powder does not contain nickel, the nickel content of 2.7% by mass of the nickel-coated silver powder B can be regarded as the nickel coating amount as it is. Since the specific surface area of the nickel-coated silver powder is 0.75 m 2 / g, the calculated average thickness of the nickel-coated film is 4 nm.

<導電ペーストの製造>
ニッケル被覆銀粉Aの代わりにニッケル被覆銀粉Bを用いた以外は、実施例1と同じ製造方法で実施例2に係る導電ペーストを得た。
<Manufacture of conductive paste>
A conductive paste according to Example 2 was obtained by the same manufacturing method as Example 1 except that nickel-coated silver powder B was used instead of nickel-coated silver powder A.

<導電ペーストの印刷>
実施例2に係る導電ペーストを、実施例1と同じペーストの印刷方法でシリコンウエハの表面側にスクリーン印刷により塗布し、乾燥を行った後、自然放冷により室温まで冷却した。
<Printing of conductive paste>
The conductive paste according to Example 2 was applied to the surface side of the silicon wafer by screen printing by the same paste printing method as in Example 1, dried, and then cooled to room temperature by natural cooling.

<太陽電池素子の製造>
実施例2に係る導電ペーストがスクリーン印刷されたシリコンウエハを、実施例1と同じ方法で焼成し、実施例2に係る太陽電池素子を得た。
<Manufacture of solar cell elements>
The silicon wafer on which the conductive paste according to Example 2 was screen-printed was baked in the same manner as in Example 1 to obtain a solar cell element according to Example 2.

<太陽電池素子の特性評価>
実施例2に係る太陽電池素子をソーラーシミュレータに装填し、実施例1と同じ方法で太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。
<Characteristic evaluation of solar cell element>
The solar cell element according to Example 2 was loaded into a solar simulator, and the characteristics of the solar cell element were measured in the same manner as in Example 1. The measurement results are shown in “Table 1”.

表1に示す結果から明らかなように、実施例2に係る太陽電池素子は、比較例1に係る太陽電池素子に比べて、直列抵抗値が低下し、曲線因子及び変換効率(公称変換効率)は向上した。   As is clear from the results shown in Table 1, the solar cell element according to Example 2 has a series resistance value lower than that of the solar cell element according to Comparative Example 1, and has a fill factor and conversion efficiency (nominal conversion efficiency). Improved.

(比較例1)
<導電ペーストの製造>
ニッケル被覆銀粉を用いず、平均粒径3μmの非被覆銀粉を86重量部用いた以外は、実施例1と同じ製造方法で導電ペーストを得た。
(Comparative Example 1)
<Manufacture of conductive paste>
A conductive paste was obtained by the same production method as in Example 1 except that 86 parts by weight of uncoated silver powder having an average particle size of 3 μm was used without using nickel-coated silver powder.

<導電ペーストの印刷>
比較例1に係る導電ペーストを、実施例1と同じ方法でシリコンウエハの表面側にスクリーン印刷により塗布し、乾燥を行った後、自然放冷により室温まで冷却した。
<Printing of conductive paste>
The conductive paste according to Comparative Example 1 was applied to the surface side of the silicon wafer by screen printing in the same manner as in Example 1, dried, and then cooled to room temperature by natural cooling.

<太陽電池素子の製造>
比較例1に係る導電ペーストがスクリーン印刷されたシリコンウエハを、実施例1と同じ方法で焼成し、比較例1に係る太陽電池素子を得た。
<Manufacture of solar cell elements>
The silicon wafer on which the conductive paste according to Comparative Example 1 was screen-printed was baked by the same method as in Example 1 to obtain a solar cell element according to Comparative Example 1.

<太陽電池素子の特性評価>
比較例1に係る太陽電池素子をソーラーシミュレータに装填し、実施例1と同じ方法で太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。
<Characteristic evaluation of solar cell element>
The solar cell element according to Comparative Example 1 was loaded into a solar simulator, and the characteristics of the solar cell element were measured by the same method as in Example 1. The measurement results are shown in “Table 1”.

表1から明らかなように、比較例1に係る太陽電池は、実施例1及び2に係る太陽電池素子に比べて、直列抵抗値が高く、曲線因子及び変換効率(公称変換効率)は低いものであった。   As is clear from Table 1, the solar cell according to Comparative Example 1 has a higher series resistance value and lower curve factor and conversion efficiency (nominal conversion efficiency) than the solar cell elements according to Examples 1 and 2. Met.

(実施例3)
<ニッケル被覆銀粉の製造>
硫酸ニッケル・6水和物27g、クエン酸ニアンモニウム27gを水400mLに溶解し、ここに次亜リン酸ナトリウム水溶液を添加した。この次亜リン酸ナトリウム水溶液は、次亜リン酸ナトリウム29.5gを水50mLに溶解したものである。室温で攪拌しながら、非被覆銀粉(平均粒径3μm、球形)20gを水50mLと共に添加した。攪拌を継続しながら液温を94℃に加温し、還元反応によりニッケルを非被覆銀粉の表面に析出させ、ニッケル被覆銀粉含有スラリーを得た。このスラリーに分散剤としてBTA−Na0.07gを希釈して加えた。次いで、このスラリーを濾別して採集物を水洗した後に70℃で8時間の真空乾燥を行った。次いで、真空乾燥したニッケル被覆銀粉の凝集体を解砕して、実施例3に係るニッケル被覆銀粉Cを得た。
(Example 3)
<Manufacture of nickel-coated silver powder>
27 g of nickel sulfate hexahydrate and 27 g of diammonium citrate were dissolved in 400 mL of water, and an aqueous sodium hypophosphite solution was added thereto. This aqueous sodium hypophosphite solution is obtained by dissolving 29.5 g of sodium hypophosphite in 50 mL of water. While stirring at room temperature, 20 g of uncoated silver powder (average particle size 3 μm, spherical shape) was added together with 50 mL of water. While continuing the stirring, the liquid temperature was heated to 94 ° C., and nickel was precipitated on the surface of the uncoated silver powder by a reduction reaction to obtain a nickel-coated silver powder-containing slurry. To this slurry, 0.07 g of BTA-Na was diluted and added as a dispersant. The slurry was then filtered off and the collected material was washed with water, followed by vacuum drying at 70 ° C. for 8 hours. Next, the nickel-coated silver powder C according to Example 3 was obtained by crushing the aggregate of the nickel-coated silver powder that had been vacuum-dried.

<ニッケル被覆銀粉の評価>
ニッケル被覆銀粉Cのニッケル含有率、粒度分布、及び比表面積(BET値)を実施例1と同じ方法で測定した。その測定結果を「表1」に示す。非被覆銀粉はニッケルを含まないため、ニッケル被覆銀粉Cのニッケル含有率6.0質量%は、そのままニッケル被覆量とみなせる。
<Evaluation of nickel-coated silver powder>
The nickel content, particle size distribution, and specific surface area (BET value) of the nickel-coated silver powder C were measured in the same manner as in Example 1. The measurement results are shown in “Table 1”. Since the uncoated silver powder does not contain nickel, the nickel content of 6.0% by mass of the nickel-coated silver powder C can be regarded as the nickel coating amount as it is.

また、ニッケル被覆銀粉Cの比表面積(BET値)は1.1m/gであった。ニッケル被覆銀粉Cにおけるニッケル含有率は6.0質量%であるから、ニッケル被覆銀粉Cの比表面積から計算されるニッケル被覆膜の平均厚さは6nmとなる。なお、銀の含有率は91.8質量%であった。銀とニッケル以外の不純物の総量は2.2質量%となり、それらは分散剤や、除去しきれなかった還元剤などの成分であると考えられる。 Moreover, the specific surface area (BET value) of the nickel-coated silver powder C was 1.1 m 2 / g. Since the nickel content in the nickel-coated silver powder C is 6.0% by mass, the average thickness of the nickel-coated film calculated from the specific surface area of the nickel-coated silver powder C is 6 nm. The silver content was 91.8% by mass. The total amount of impurities other than silver and nickel is 2.2% by mass, which are considered to be components such as a dispersant and a reducing agent that could not be removed.

<導電ペーストの製造>
ニッケル被覆銀粉Aの代わりにニッケル被覆銀粉Cを用いた以外は、実施例1と同じ製造方法で実施例3に係る導電ペーストを得た。
<Manufacture of conductive paste>
A conductive paste according to Example 3 was obtained by the same manufacturing method as Example 1 except that nickel-coated silver powder C was used instead of nickel-coated silver powder A.

<導電ペーストの印刷>
実施例3に係る導電ペーストを、実施例1と同じ方法でシリコンウエハの表面側にスクリーン印刷により塗布し、乾燥を行った後、自然放冷により室温まで冷却した。
<Printing of conductive paste>
The conductive paste according to Example 3 was applied to the surface side of the silicon wafer by screen printing in the same manner as in Example 1, dried, and then cooled to room temperature by natural cooling.

<太陽電池素子の製造>
実施例3に係る導電ペーストがスクリーン印刷されたシリコンウエハを、実施例1と同じ方法で焼成し、実施例3に係る太陽電池素子を得た。
<Manufacture of solar cell elements>
The silicon wafer on which the conductive paste according to Example 3 was screen-printed was baked in the same manner as in Example 1 to obtain a solar cell element according to Example 3.

<太陽電池素子の特性評価>
実施例3に係る太陽電池素子をソーラーシミュレータに装填し、実施例1と同じ方法で太陽電池素子の特性を測定した。その測定結果を「表1」に記載する。
<Characteristic evaluation of solar cell element>
The solar cell element according to Example 3 was loaded into a solar simulator, and the characteristics of the solar cell element were measured by the same method as in Example 1. The measurement results are shown in “Table 1”.

(実施例4)
実施例3の導電ペーストの製造において、ニッケル被覆銀粉Cの配合量を半分の0.43質量部とし、非被覆銀粉の配合量を85.57質量部とした以外は、実施例3と同じ方法で太陽電池素子を製造し、その特性を評価した。実施例4に係る太陽電池素子の構成及び特性評価結果を「表1」に記載する。
Example 4
In the production of the conductive paste of Example 3, the same method as Example 3 except that the blending amount of nickel-coated silver powder C was 0.43 parts by mass and the blending amount of uncoated silver powder was 85.57 parts by mass. A solar cell element was manufactured and evaluated for its characteristics. The configuration and characteristic evaluation results of the solar cell element according to Example 4 are described in “Table 1”.

(参考例1)
実施例2の導電ペーストの製造において、ニッケル被覆銀粉Bの配合量を3倍の2.58質量部とし、非被覆銀粉の配合量を83.42質量部とした以外は、実施例2と同じ方法で太陽電池素子を製造し、その特性を評価した。参考例1に係る太陽電池素子の構成及び特性評価結果を「表1」に記載する。
(Reference Example 1)
In the production of the conductive paste of Example 2, the same amount as in Example 2 except that the amount of nickel-coated silver powder B was tripled to 2.58 parts by mass and the amount of uncoated silver powder was 83.42 parts by mass. The solar cell element was manufactured by the method and the characteristic was evaluated. The configuration and characteristic evaluation results of the solar cell element according to Reference Example 1 are described in “Table 1”.

(太陽電池素子の特性の比較検討)
実施例1〜4、比較例1、及び参考例1で製造した太陽電池素子の特性を比較すれば、導電ペーストにおけるニッケル被覆銀粉の含有量が多すぎると、太陽電池素子の直列抵抗値が上昇し、その曲線因子及び変換効率は悪化することが分かる。導電ペーストの組成にも因ると考えられるが、混合粉におけるニッケル含有率には適量領域が存在すると強く推認される。具体的には、混合粉におけるニッケル含量率が0.01質量%以上0.07質量%以下であれば、太陽電池素子の変換効率は確実に改善し、特に混合粉におけるニッケル含量率が0.020質量%以上0.027質量%以下の範囲において、太陽電池素子の変換効率が最高域に達する。
(Comparison study of characteristics of solar cell elements)
If the characteristics of the solar cell elements manufactured in Examples 1 to 4, Comparative Example 1 and Reference Example 1 are compared, if the content of the nickel-coated silver powder in the conductive paste is too large, the series resistance value of the solar cell element increases. And it turns out that the fill factor and conversion efficiency deteriorate. Although it is considered to be caused by the composition of the conductive paste, it is strongly inferred that there is an appropriate amount region in the nickel content in the mixed powder. Specifically, when the nickel content rate in the mixed powder is 0.01% by mass or more and 0.07% by mass or less, the conversion efficiency of the solar cell element is surely improved. In the range of 020 mass% or more and 0.027 mass% or less, the conversion efficiency of the solar cell element reaches the maximum range.

本発明に係るニッケル被覆銀粉を用いれば、銀電極と半導体層との界面における接触抵抗値を低減できるので、本発明は半導体素子を利用する装置、例えばダイオード、半導体メモリ、又は集積回路等の用途にも適用できる。   Since the contact resistance value at the interface between the silver electrode and the semiconductor layer can be reduced by using the nickel-coated silver powder according to the present invention, the present invention is applied to a device using a semiconductor element, such as a diode, a semiconductor memory, or an integrated circuit. It can also be applied to.

Claims (3)

ニッケル含有率が0.01質量%以上30質量%以下であるニッケル被覆銀粉とニッケルが被覆されていない銀粉との混合粉を含有する導電ペーストであって、
前記混合粉におけるニッケル含有率が0.01質量%以上0.07質量%以下であることを特徴とするシリコン用導電ペースト。
A conductive paste containing a mixed powder of nickel-coated silver powder having a nickel content of 0.01% by mass to 30% by mass and silver powder not coated with nickel,
The conductive paste for silicon, wherein the nickel content in the mixed powder is 0.01% by mass or more and 0.07% by mass or less.
請求項1に記載のシリコン用導電ペーストをシリコンに塗布し焼成することを特徴とする銀電極の製造方法A method for producing a silver electrode , wherein the conductive paste for silicon according to claim 1 is applied to silicon and baked. 請求項1に記載のシリコン用導電ペーストをシリコンに塗布し焼成して銀電極とする工程を含む太陽電池の製造方法。   The manufacturing method of the solar cell including the process of apply | coating and baking the electrically conductive paste for silicon | silicones of Claim 1 to silicon | silicone, and making it a silver electrode.
JP2014045618A 2013-03-22 2014-03-07 Conductive paste for silicon, method for producing silver electrode, and method for producing solar cell Expired - Fee Related JP6265789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045618A JP6265789B2 (en) 2013-03-22 2014-03-07 Conductive paste for silicon, method for producing silver electrode, and method for producing solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013060566 2013-03-22
JP2013060566 2013-03-22
JP2014045618A JP6265789B2 (en) 2013-03-22 2014-03-07 Conductive paste for silicon, method for producing silver electrode, and method for producing solar cell

Publications (2)

Publication Number Publication Date
JP2014208882A JP2014208882A (en) 2014-11-06
JP6265789B2 true JP6265789B2 (en) 2018-01-24

Family

ID=51903271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045618A Expired - Fee Related JP6265789B2 (en) 2013-03-22 2014-03-07 Conductive paste for silicon, method for producing silver electrode, and method for producing solar cell

Country Status (1)

Country Link
JP (1) JP6265789B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575672A (en) * 2014-12-23 2015-04-29 合肥中南光电有限公司 Conductive silver paste taking coating silver powder as main material
CN105655008A (en) * 2016-03-22 2016-06-08 广西吉宽太阳能设备有限公司 Mixed slurry for silicon solar cell
CN105655416A (en) * 2016-03-22 2016-06-08 广西吉宽太阳能设备有限公司 Electrode slurry for silicon solar cell
CN105810287A (en) * 2016-03-22 2016-07-27 广西吉宽太阳能设备有限公司 Paste for crystalline silicon solar cell
CN105655010A (en) * 2016-03-22 2016-06-08 广西吉宽太阳能设备有限公司 Mixed electrode slurry for crystalline silicon solar cells
JP6859111B2 (en) * 2017-01-19 2021-04-14 信越化学工業株式会社 Manufacturing method of high photoelectric conversion efficiency solar cell
KR20210103850A (en) * 2020-02-14 2021-08-24 엘지전자 주식회사 Solar cell, and solar cell panel and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178615B2 (en) * 1991-12-10 2001-06-25 トヨタ自動車株式会社 Conductive electrode material
JP2003306701A (en) * 2002-04-19 2003-10-31 Mitsui Mining & Smelting Co Ltd Silver powder with heat resistant metal layer, silver paste using the silver powder, and wiring board obtained by using the silver paste
JP4182234B2 (en) * 2002-09-20 2008-11-19 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
JP5297123B2 (en) * 2008-09-03 2013-09-25 京都エレックス株式会社 Conductive paste for forming electrode of solar cell element, solar cell element, and method for manufacturing the solar cell element

Also Published As

Publication number Publication date
JP2014208882A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6265789B2 (en) Conductive paste for silicon, method for producing silver electrode, and method for producing solar cell
JP4714633B2 (en) Conductive paste for solar cell electrode
EP2802545B1 (en) Conductive paste composition and solar cell comprising the same
JP6242198B2 (en) Conductive paste for forming conductive film of semiconductor device, semiconductor device, and method for manufacturing semiconductor device
JP4556886B2 (en) Conductive paste and solar cell element
JPWO2008078374A1 (en) Conductive paste for solar cell
JP2014209598A (en) Conductive paste for solar battery device surface electrode, and method for manufacturing solar battery device
TW201133511A (en) Paste composition for electrode and photovoltaic cell
KR101859017B1 (en) Method of forming electrode, electrode manufactured therefrom and solar cell
WO2012138186A2 (en) Silver paste composition for forming an electrode, and method for preparing same
TWI759447B (en) Paste composition for solar cells
TWI726167B (en) Paste composition
CN103000248B (en) A kind of solar cell positive silver paste powder material adapting to high square resistance shallow junction
TW201737502A (en) Conductive paste and solar cell
TWI702265B (en) Conductive paste composition for providing enhanced adhesion strength to a semiconductor sunstrate and its use
TW200901487A (en) Paste composition and solar cell element
TWI646700B (en) Finger electrode for solar cell and manufacturing method thereof
JP5600702B2 (en) Conductive paste for electrode formation of solar cell elements
JP2011171673A (en) Conductive paste for forming electrode of solar cell element, solar cell element, and method of manufacturing the same
JP6400907B2 (en) Indium-coated silver powder, method for producing the same, conductive paste, and solar cell
TWI632562B (en) Paste composition and solar cell components
JP6403963B2 (en) Firing paste for solar cell electrode, solar cell and silver powder
JP5362615B2 (en) Silver powder and method for producing the same
KR101731675B1 (en) Electro-conductive carbon-ball, composition for forming solar cell comprising the same and method for preparing the same
JP7198855B2 (en) Silver powder, its manufacturing method, and conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171214

R150 Certificate of patent or registration of utility model

Ref document number: 6265789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees