JP6264541B2 - Approach control method and automatic guided equipment for automatic guided vehicle - Google Patents

Approach control method and automatic guided equipment for automatic guided vehicle Download PDF

Info

Publication number
JP6264541B2
JP6264541B2 JP2014011928A JP2014011928A JP6264541B2 JP 6264541 B2 JP6264541 B2 JP 6264541B2 JP 2014011928 A JP2014011928 A JP 2014011928A JP 2014011928 A JP2014011928 A JP 2014011928A JP 6264541 B2 JP6264541 B2 JP 6264541B2
Authority
JP
Japan
Prior art keywords
stop
distance
traveling
steering
cargo handling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014011928A
Other languages
Japanese (ja)
Other versions
JP2015141422A (en
Inventor
斎藤 浩一
浩一 斎藤
浩一 結城
浩一 結城
Original Assignee
ユニキャリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニキャリア株式会社 filed Critical ユニキャリア株式会社
Priority to JP2014011928A priority Critical patent/JP6264541B2/en
Publication of JP2015141422A publication Critical patent/JP2015141422A/en
Application granted granted Critical
Publication of JP6264541B2 publication Critical patent/JP6264541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自立誘導により走行される無人搬送車の寄付き誘導制御方法および無人搬送設備に関する。 The present invention relates to a close-up guidance control method and automatic guided equipment for an automatic guided vehicle traveling by self-supporting guidance.

走行床面に埋設または貼付されて固定された磁性体を、無人搬送車の台車本体に設けられた磁気センサで検出し、磁性体を介して自立誘導される自走台車が、たとえば特許文献1に開示されている。   For example, Patent Document 1 discloses a self-propelled cart that is detected by a magnetic sensor provided in a cart body of an automated guided vehicle and that is fixed by being embedded or affixed on a traveling floor surface. Is disclosed.

特許第3656938号公報Japanese Patent No. 3656938

無人搬送車の台車本体に移載装置を具備し、荷役ステーションに対して荷を受渡しする無人搬送車では、荷役ステーションに対して台車本体を高精度で停止する必要がある。しかしながら、レーザ誘導による自立誘導制御では、自走台車の停止位置の精度が±60mm前後と低く、また自走台車の停止傾斜姿勢の精度も低いという問題があった。また、荷役ステーションに対して台車本体を高精度で停止するためには、走行床面に磁気テープを敷設しなければならず、他の設備の干渉や障害が発生するおそれがあった。
本発明は上記問題点を解決して、走行床面に磁性体の敷設も不要で、荷役ステーションに対して台車本体を高精度でかつ正確な姿勢で停止できる無人搬送車の寄付き誘導制御方法および無人搬送設備を提供することを目的とする。
In an automatic guided vehicle that includes a transfer device in the main body of the automatic guided vehicle and delivers the load to the loading station, it is necessary to stop the main body of the cart with respect to the loading station with high accuracy. However, in the self-contained guidance control by laser guidance, there is a problem that the accuracy of the stop position of the self-propelled carriage is as low as about ± 60 mm and the accuracy of the stop tilt posture of the self-propelled carriage is low. In addition, in order to stop the cart body with high precision with respect to the cargo handling station, a magnetic tape has to be laid on the traveling floor surface, which may cause interference and failure of other equipment.
The present invention solves the above-mentioned problems, and there is no need to lay a magnetic material on the traveling floor, and the guided guidance control method for an automatic guided vehicle capable of stopping the main body of the carriage with a high accuracy and an accurate posture with respect to the cargo handling station and The purpose is to provide unmanned transport equipment .

請求項1記載の発明は、
台車本体の少なくとも前後位置に配置された走行操舵輪により搬送経路を走行する無人搬送車を、荷役ステーションの寄付き基準位置に接近させて停止する無人搬送車の寄付き誘導制御方法であって、
台車本体の側面の前後位置で、荷役ステーションに搬送経路と平行に設置された停止用反射板との距離をそれぞれ検出し、
次いで、前後の走行操舵輪を、荷役ステーション側に同一の指定傾斜舵角だけそれぞれ操舵し、台車本体を、前記寄付き基準位置に接近する寄付き準備位置まで平行移動させ、
前記停止用反射板との前後位置での距離に基づいて、前記寄付き基準位置で台車本体が前記停止用反射板に平行姿勢となるように、前後の走行操舵輪をそれぞれ独立して操舵し、台車本体を前記寄付き基準位置に移動させ停止することを特徴とする。
The invention described in claim 1
An unattended guided vehicle approach control method for stopping an unmanned transport vehicle that travels on a transport route by a traveling steering wheel disposed at least in the front-rear position of the main body of a carriage, approaching a close reference position of a cargo handling station,
At the front and back positions on the side of the cart body, the distance to the reflector for stopping installed at the cargo handling station in parallel with the transport path is detected.
Next, the front and rear traveling steered wheels are respectively steered to the cargo handling station side by the same designated tilt rudder angle, and the cart body is moved in parallel to the approaching preparation position approaching the approaching reference position,
Based on the distance at the front and rear position with respect to the stop reflector, the front and rear traveling steering wheels are steered independently so that the cart body is parallel to the stop reflector at the approach reference position, The carriage main body is moved to the close reference position and stopped.

請求項2記載の発明は、台車本体の少なくとも前後位置に配置された走行操舵輪により搬送経路を走行する無人搬送車を、荷役ステーションに接近させて寄付き基準位置で停止させ、台車本体に設けられた移載装置と荷役ステーションとの間で荷を受渡しする無人搬送車の寄付き誘導制御方法であって、台車本体の側面で前後に所定間隔をあけて配置された前側測距センサと後側測距センサにより、荷役ステーションに搬送経路に対面して平行に設置された停止用反射板との距離を検出するステップAと、前後の走行操舵輪を、荷役ステーション側に同一の指定傾斜舵角だけそれぞれ操舵する傾斜寄付き制御を行い、台車本体を平行移動させて荷役ステーションに接近させるステップBと、前側測距センサと後側測距センサの一方が、前記停止用反射板から、荷役ステーションに対面して前記寄付き基準位置より所定距離だけ搬送経路側の寄付き準備位置までの距離を検出するステップCと、前記寄付き準備位置から前記寄付き基準位置まで、前後の走行操舵輪でそれぞれ独立して台車本体を接近させるように制御して台車本体の姿勢制御を行う独立誘導制御を行い、前記寄付き基準位置で台車本体が前記停止用反射板に平行姿勢となるように停止させるステップDと、を順次行うことを特徴とする。 According to the second aspect of the present invention, the automatic guided vehicle that travels on the transport path by the traveling steering wheels disposed at least in the front-rear position of the carriage main body is brought close to the cargo handling station and stopped at the approach reference position, and is provided in the carriage main body. This is a method for controlling the guidance of an automated guided vehicle for delivering a load between a transfer device and a cargo handling station. The distance sensor detects the distance from the stop reflector installed in parallel to the cargo handling station facing the conveyance path, and the front and rear traveling steer wheels are connected to the cargo handling station only at the same specified tilt steering angle. performs inclination approaching control for steering each of the steps B to approach the handling station by translating the carriage main body, the one of the front distance measuring sensor and the rear distance measuring sensor, said stop From use reflector, a step C of detecting a distance only to the indu ready position of the transport path side a predetermined distance from the approaching reference position facing the handling station, to said approaching the reference position from the indu ready position, the travel of the front and rear Independent guidance control is performed to control the position of the trolley body by controlling the trolley body to approach each other independently with the steered wheels so that the trolley body is in a parallel posture to the stop reflector at the close reference position. Step D for stopping is sequentially performed.

請求項3記載の発明は、請求項2記載の構成において、
ステップBにおける指定傾斜舵角は、30°以上で70°以下であることを特徴とする。
The invention described in claim 3 is the configuration described in claim 2,
The designated tilt rudder angle in Step B is 30 ° or more and 70 ° or less.

請求項4記載の発明は、少なくとも前後位置に配置された走行操舵輪により搬送経路を走行する無人搬送車の台車本体と、前記台車本体を搬送経路から寄付き基準位置に接近させて停止する荷役ステーションと、を具備した無人搬送設備であって、搬送経路に対面して荷役ステーションに搬送経路と平行に設置された停止用反射板と、搬送経路に対面して荷役ステーションに設置された停止マーカーと、無人搬送車の台車本体の側面で前後方向に離間して配置されて、前記停止用反射板まで距離を計測し、台車本体の停止距離と姿勢を検出する前側測距センサおよび後側測距センサと、台車本体の側面に設置されるとともに、前記停止マーカーを検出して搬送経路方向の台車本体の停止位置を認識する停止センサと、前側測距センサおよび後側測距センサならびに停止センサの信号に基づいて、前後の走行操舵輪を操作する走行・操舵制御部と、を具備し、前記走行・操舵制御部は、搬送経路から、荷役ステーションに対面して停止する寄付き基準位置から所定距離だけ搬送経路側の寄付き準備位置まで、前後の操舵輪を同一の指定傾斜舵角だけそれぞれ転舵して台車本体を平行移動する傾斜寄付き制御を行い、さらに前記寄付き準備位置から寄付き基準位置まで、前後の走行操舵輪をそれぞれ独立して操舵し、前記寄付き基準位置で台車本体前記停止用反射板に平行姿勢で停止させる誘導寄付き制御を行うように構成されたことを特徴とする。 According to a fourth aspect of the present invention, there is provided a cart main body of an automatic guided vehicle that travels on a conveyance path by traveling steering wheels disposed at least in the front-rear position, and a cargo handling station that stops the carriage main body from the conveyance path close to a close reference position. An unmanned conveyance facility comprising: a stop reflector installed in the loading station in parallel with the conveyance path facing the conveyance path; and a stop marker installed in the loading station facing the conveyance path. A front ranging sensor and a rear ranging sensor, which are spaced apart in the front-rear direction on the side surface of the cart body of the automated guided vehicle, measure the distance to the stop reflector, and detect the stopping distance and posture of the cart body sensor and is disposed on the side surface of the carriage body Rutotomoni, wherein the stop sensor recognizes the stop position of the detection to the conveying path direction of the carriage body and stop markers, front distance measuring sensor and after A traveling / steering control unit that operates the front and rear traveling steering wheels based on signals from the distance measuring sensor and the stop sensor, and the traveling / steering control unit stops from the conveyance path facing the cargo handling station. From the close reference position to the close preparation position on the transport path side by a predetermined distance, the front and rear steered wheels are respectively steered by the same specified tilt rudder angle, and the tilt close control is performed to move the cart body in parallel. from position to indu reference position, and steering independently a travel steering wheel before and after the approaching reference position to the carriage body configured to perform induction approaching control to stop in parallel orientation to said stop reflector in It is characterized by.

請求項5記載の発明は、請求項4記載の構成において、
指定傾斜舵角を、30°以上で70°以下としたことを特徴とする。
The invention according to claim 5 is the configuration according to claim 4,
The designated tilt rudder angle is 30 ° or more and 70 ° or less.

請求項1記載の発明によれば、台車本体の前後位置で停止用反射板までの距離を計測しつつ、まず台車本体を平行移動させて寄付き準備位置まで接近させ、さらに計測した停止用反射板までの距離に対応して、前後の走行操舵輪をそれぞれ独立して操舵し、台車本体の姿勢を修正しつつ寄付き基準位置まで接近移動させて停止する。これにより、走行床面に磁性体の敷設も不要で、走行床面への磁気台車本体を迅速かつ精度良く寄付き基準位置に接近停止させることができ、さらに台車本体を、荷役ステーションに対面する正確な姿勢で停止させることができる。   According to the first aspect of the present invention, while measuring the distance to the stop reflector at the front and rear positions of the cart body, the cart body is first moved in parallel to approach the close-up preparation position, and further measured. The front and rear traveling steerable wheels are independently steered in accordance with the distance up to, and moved to the approaching reference position while stopping the posture of the carriage body and stopped. This eliminates the need to lay a magnetic material on the traveling floor, allows the magnetic carriage main body to the running floor to approach and stop at the approaching reference position quickly and accurately, and allows the carriage main body to face the cargo handling station accurately. Can be stopped in a proper posture.

請求項2記載の発明によれば、ステップAで、台車本体の前後位置で前側測距センサと後側測距センサにより、停止用反射板との距離を計測しつつ、まずステップBで、前後の走行操舵輪を同一の指定傾斜舵角だけ操舵して、台車本体を寄付き準備位置まで平行移動させる傾斜寄付き制御を行い、さらにステップDで、前側測距センサと後側測距センサにより計測した停止用反射板との距離に対応して、前後の走行操舵輪を独立して寄付き制御することにより台車本体の姿勢を制御する独立誘導制御を行い、台車本体の姿勢を修正しつつ寄付き基準位置まで移動する。これにより、走行床面に磁性体の敷設も不要で、台車本体を迅速かつ精度良く寄付き基準位置に接近して停止させることができ、さらに台車本体を、荷役ステーションに対面する正確な姿勢で停止させることができる。   According to the invention described in claim 2, in step A, the distance between the front and rear distance measuring sensors is measured at the front and rear positions of the main body of the carriage by the front and rear distance measuring sensors. The steering wheel is steered by the same designated tilt rudder angle, and the tilt contact control is performed to translate the carriage body to the close preparation position. Further, in step D, measurement is performed by the front distance sensor and the rear distance sensor. Corresponding to the distance from the stop reflector, independent guidance control is performed to control the attitude of the cart body by independently controlling the front and rear traveling steering wheels, and the reference position of the approach is corrected while correcting the attitude of the cart body Move up. This eliminates the need to lay magnetic material on the running floor, allows the bogie body to stop quickly by approaching the close reference position, and stops the bogie body in an accurate posture facing the cargo handling station. Can be made.

請求項3記載の発明によれば、指定傾斜舵角を30°以上とすることにより、停止用反射板を短くできて寄付き制御に必要な専用面積を小さくできる。また指定傾斜舵角を70°以下とすることにより、走行操舵輪による走行床面の摩耗や損傷を防止することができる。   According to the invention described in claim 3, by setting the specified tilt rudder angle to 30 ° or more, the stop reflecting plate can be shortened, and the dedicated area necessary for the close-up control can be reduced. Further, by setting the designated tilt rudder angle to 70 ° or less, it is possible to prevent the traveling floor from being worn or damaged by the traveling steering wheel.

請求項4記載の発明によれば、台車本体の前後位置で前側測距センサと後側測距センサにより、停止用反射板との距離を計測しつつ、走行・操舵制御部により、まず前後の走行操舵輪を同一の指定傾斜舵角だけ操舵して、台車本体を寄付き準備位置まで平行移動させる傾斜寄付き制御を行い、ついで前側測距センサと後側測距センサにより計測した停止用反射板との距離に対応して、前後の走行操舵輪をそれぞれ独立して操舵する独立誘導制御を行い、台車本体の姿勢を修正しつつ寄付き基準位置まで移動する。これにより、走行床面に磁性体の敷設も不要で、台車本体を迅速かつ精度良く寄付き基準位置に接近して停止させることができ、さらに台車本体を、荷役ステーションに対面する正確な姿勢で停止させることができる。   According to the fourth aspect of the invention, the front / rear distance sensor and the rear distance sensor at the front / rear position of the main body of the carriage measure the distance to the stop reflector, The steering wheel is steered by the same designated tilt rudder angle, and the tilting control is performed to translate the bogie body to the approaching preparation position, and then the stop reflecting plate measured by the front ranging sensor and the rear ranging sensor In response to this distance, independent guidance control is performed to independently steer the front and rear traveling steering wheels, and the position of the carriage body is corrected and moved to the approaching reference position. This eliminates the need to lay magnetic material on the running floor, allows the bogie body to stop quickly by approaching the close reference position, and stops the bogie body in an accurate posture facing the cargo handling station. Can be made.

請求項5記載の発明によれば、指定傾斜舵角を30°以上とすることにより、停止用反射板を短くできて寄付き制御に必要な専用面積を小さくできる。また指定傾斜舵角を70°以下とすることにより、走行操舵輪による走行床面の摩耗や損傷を防止することができる。   According to the fifth aspect of the invention, by setting the specified tilt rudder angle to 30 ° or more, the stop reflector can be shortened, and the dedicated area necessary for the close-up control can be reduced. Further, by setting the designated tilt rudder angle to 70 ° or less, it is possible to prevent the traveling floor from being worn or damaged by the traveling steering wheel.

本発明に係る実施例1を示す無人搬送車の概略側面図である。It is a schematic side view of the automatic guided vehicle showing Example 1 according to the present invention. 無人搬送車および荷役ステーションを示す概略平面図である。It is a schematic plan view which shows an automatic guided vehicle and a cargo handling station. 無人搬送車の走行操舵機構を示すブロック図である。It is a block diagram which shows the driving | running | working steering mechanism of an automatic guided vehicle. 荷役ステーションへの寄付き誘導制御を説明するフロー図である。It is a flowchart explaining the approach guidance control to a cargo handling station. 寄付き誘導制御を説明する概略平面図1である。FIG. 3 is a schematic plan view 1 for explaining the approach guidance control. 寄付き誘導制御を説明する概略平面図2である。FIG. 3 is a schematic plan view 2 for explaining the approach guidance control. 寄付き誘導制御を説明する概略平面図3である。FIG. 4 is a schematic plan view 3 for explaining the approach guidance control. 寄付き誘導制御を説明する概略平面図4である。FIG. 5 is a schematic plan view 4 for explaining the approach guidance control.

[実施例]
以下、本発明の実施例を図面に基づいて説明する。
図1および図2に示すように、無人搬送車は、台車本体11に左右一対の前輪と左右一対の後輪を具備し、右の前輪および右の後輪をそれぞれ走行駆動および操舵する前後の走行操舵輪12S,13Sに構成している。また左の前輪11Cおよび左の後輪12Cを、上下方向の旋回軸心周りに回動自在に支持されて前後の走行操舵輪12S,13Sに追従する前後のキャスター車輪12C,13Cに構成している。そして、台車本体11の上面に、荷(パレット付)Wを支持して搬送するとともに、幅方向に荷Wを移送して荷役ステーションSTとの間で受け渡す移載用コンベヤ(移載装置)10が搭載されている。
[Example]
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the automatic guided vehicle includes a pair of left and right front wheels and a pair of left and right rear wheels on a carriage body 11 before and after driving and steering the right front wheel and the right rear wheel, respectively. The traveling steering wheels 12S and 13S are configured. Also, the left front wheel 11C and the left rear wheel 12C are configured as front and rear caster wheels 12C and 13C that are supported rotatably around a vertical turning axis and follow the front and rear traveling steering wheels 12S and 13S. Yes. Then, a load (with pallet) W is supported on the upper surface of the carriage body 11 and conveyed, and the load W is transferred in the width direction and transferred to and from the cargo handling station ST (transfer device). 10 is mounted.

荷役ステーションSTで無人搬送車の搬送経路CLに対面する寄付き面(移載用停止面)に、所定長さLRの停止用反射板14が搬送経路CLに平行に設置されている。
台車本体11のたとえば右側面には、停止用反射板14との距離を計測するレーザ式の前側測距センサ15と後側測距センサ16が設置され、前側測距センサ15は前の走行操舵輪12Sから前後方向に所定のセンサ前輪間距離W1をあけて設置され、後側測距センサ16は後の走行操舵輪13Sから前後方向に所定のセンサ後輪間距離W2をあけて設置されている。また側面の所定位置、たとえば前側測距センサ15および後側測距センサ16の間に、荷役ステーションSTに設けられた停止マーカー17を検出する光電式の停止センサ18が設置されている。
図3に示すように、この無人搬送車は、走行・操舵制御部(CPU)21を具備し、走行・操舵制御部21からの信号を、A/D変換機22、D/A変換器23を介して前輪操舵用サーボドライバ24Fおよび後輪操舵用サーボドライバ24Rに出力し、前輪操舵用モータ25Fおよび後輪操舵用モータ25Rをそれぞれ操作して、前、後の走行操舵輪12S,13Sを操舵する。同時に、走行・操舵制御部21からの信号を、A/D変換機22、D/A変換器23を介して前輪走行用サーボドライバ26Fおよび後輪走行用サーボドライバ26Rに出力し、前輪走行用モータ27Fおよび後輪走行用モータ27Rをそれぞれ操作して前、後の走行操舵輪12S,13Sを走行駆動する。
A stop reflecting plate 14 having a predetermined length LR is installed in parallel with the transport path CL on the abutting surface (transfer stop surface) facing the transport path CL of the automatic guided vehicle at the cargo handling station ST.
For example, a laser-type front ranging sensor 15 and a rear ranging sensor 16 for measuring the distance from the stop reflecting plate 14 are installed on the right side surface of the carriage body 11, and the front ranging sensor 15 is used for front traveling steering. A predetermined sensor front wheel distance W1 is installed in the front-rear direction from the wheel 12S, and the rear distance measuring sensor 16 is installed in the front-rear direction from the rear traveling steered wheel 13S with a predetermined sensor rear wheel distance W2. Yes. Further, a photoelectric stop sensor 18 for detecting a stop marker 17 provided at the cargo handling station ST is installed between a predetermined position on the side surface, for example, between the front distance measuring sensor 15 and the rear distance measuring sensor 16.
As shown in FIG. 3, the automatic guided vehicle includes a travel / steering control unit (CPU) 21, and signals from the traveling / steering control unit 21 are converted into an A / D converter 22 and a D / A converter 23. To the front wheel steering servo driver 24F and the rear wheel steering servo driver 24R, and operate the front wheel steering motor 25F and the rear wheel steering motor 25R, respectively. Steer. At the same time, a signal from the traveling / steering control unit 21 is output to the front wheel traveling servo driver 26F and the rear wheel traveling servo driver 26R via the A / D converter 22 and the D / A converter 23, for front wheel traveling. The front and rear traveling steered wheels 12S and 13S are driven to travel by operating the motor 27F and the rear wheel traveling motor 27R, respectively.

前輪、後輪操舵用モータ25F,25Rには、前後の走行操舵輪12S,13Sの操舵角を検出する前輪用、後輪用ポテンショメータ28F,28Rがそれぞれ設けられており、車輪の転舵角がA/D変換機22を介して走行・操舵制御部21に入力される。また前輪、後輪用走行用モータ27F,27Rには、車輪の回転角(走行距離を検出するための)を検出する前輪用、後輪用ロータリエンコーダ29F,29Rがそれぞれ設けられており、車輪の回転パルスが高速カウンタユニットを介して走行・操舵制御部21に入力され、前、後の走行操舵輪12S,13Sの走行距離をそれぞれ検出している。   Front wheel and rear wheel steering motors 25F and 25R are provided with front wheel and rear wheel potentiometers 28F and 28R for detecting the steering angles of the front and rear traveling steering wheels 12S and 13S, respectively. The data is input to the travel / steering control unit 21 via the A / D converter 22. The front wheel and rear wheel driving motors 27F and 27R are respectively provided with front wheel and rear wheel rotary encoders 29F and 29R for detecting the rotation angle of the wheel (for detecting the travel distance). Are input to the traveling / steering control unit 21 via the high-speed counter unit, and the traveling distances of the front and rear traveling steering wheels 12S and 13S are detected.

図4〜図8を参照して、無人搬送車の寄付き誘導制御の動作を説明する。
(STEP.1)たとえばレーザ誘導方式による自立誘導により、走行床面に設定された搬送経路CLに沿って無人搬送車を走行させる。この自立誘導では、図5に示すように、搬送経路CL上における台車本体11の搬送経路CLに対する許容傾斜角αは、たとえば±2.5°である。このレーザ誘導方式は、たとえば無人搬送車のレーザ式距離測定装置から周囲に半導体レーザを照射し、特定位置に設置された複数の再帰反射体からの反射光を受光して、各再帰反射体と無人搬送車とのそれぞれの距離から無人搬送車の位置を求め、自立誘導走行するものが採用されるが、このレーザ誘導方式に限るものではなく、磁気誘導などの自立誘導方式であってもよい。
With reference to FIGS. 4-8, the operation | movement of the approach guidance control of an automatic guided vehicle is demonstrated.
(STEP.1) The automatic guided vehicle travels along the transport route CL set on the traveling floor surface, for example, by self-supporting guidance using a laser guidance method. In this self-supporting guidance, as shown in FIG. 5, the allowable inclination angle α of the carriage body 11 with respect to the transport path CL on the transport path CL is, for example, ± 2.5 °. This laser guidance method, for example, irradiates a semiconductor laser around the laser type distance measuring device of an automatic guided vehicle, receives reflected light from a plurality of retroreflectors installed at a specific position, and each retroreflector The position of the automatic guided vehicle is obtained from the respective distance from the automatic guided vehicle, and a self-supporting guided vehicle is adopted. However, the present invention is not limited to this laser guided method, and a self-guided method such as magnetic induction may be used. .

(STEP.2)[ステップA]無人搬送車が荷役ステーションSTに接近すると、前側測距センサ15および後側測距センサ16がそれぞれ停止用反射板14を検出し、これにより、無人搬送車の側部前方に荷役ステーションSTが対面されたかどうかを判断する。   (STEP.2) [Step A] When the automatic guided vehicle approaches the cargo handling station ST, the front distance measuring sensor 15 and the rear distance measuring sensor 16 detect the stop reflecting plate 14, respectively. It is determined whether or not the cargo handling station ST is faced to the front side.

(STEP.3)[ステップB]ここで、前側、後側測距センサ15,16により検出される停止用反射板14までの検出値は、予め、台車本体11の傾斜角αを考慮して、搬送経路CL(停止用反射板14)に対して垂直方向の距離L1,L2として出力される。   (STEP.3) [Step B] Here, the detected values up to the stop reflecting plate 14 detected by the front and rear distance measuring sensors 15 and 16 are determined in advance in consideration of the inclination angle α of the carriage body 11. Are output as distances L1 and L2 in the vertical direction with respect to the transport path CL (stop reflector 14).

前側、後側測距センサ15,16が停止用反射板14までの距離L1,L2を検出すると、斜行寄付き制御が実施される。図5に示すように、走行・操舵制御部21により前輪、後輪操舵用モータ25F,25Rが操作されて走行操舵輪12S,13Sが荷役ステーションST側に傾斜する指定傾斜舵角θCだけ同一方向に転舵される。この斜行寄付き制御により、台車本体11を平行移動させて荷役ステーションSTに接近させる。   When the front and rear distance measuring sensors 15 and 16 detect the distances L1 and L2 to the stop reflecting plate 14, the skew approach control is performed. As shown in FIG. 5, the front and rear wheel steering motors 25F and 25R are operated by the traveling / steering control unit 21 so that the traveling steered wheels 12S and 13S are inclined in the same direction by a designated tilt steering angle θC that tilts toward the cargo handling station ST. It is steered to. By this skew approach control, the cart body 11 is moved in parallel to approach the cargo handling station ST.

ここで、指定傾斜舵角θCが90°であれば、荷役ステーションSTに接近停止する走行距離を最も短くできるが、前後の走行操舵輪12S,13Sが90°転舵されることで走行床面を損傷させる恐れがある。したがって、指定傾斜舵角θCは、好適値である30°以上で70°以下の範囲から選択される。ここで、指定傾斜舵角θCが30°未満では、荷役ステーションSTに接近停止する搬送経路CL方向の走行距離が大きくなりすぎて、必要以上に長い停止用反射板14が必要となり、寄付き誘導に使用する走行床面が広く必要になるからであり、また指定傾斜舵角θCが70°を超えると、前、後の走行操舵輪12S,13Sの転舵により、走行床面を損傷させる恐れがあるからである。ここで、指定傾斜舵角θCの最適範囲は、45°〜65°であり、たとえば走行床面の保護を目的として60°が設定される。   Here, if the specified tilt steering angle θC is 90 °, the travel distance approaching and stopping at the cargo handling station ST can be shortened, but the front and rear traveling steered wheels 12S and 13S are steered by 90 ° so that the traveling floor surface May cause damage. Therefore, the designated tilt steering angle θC is selected from a range of 30 ° or more and 70 ° or less, which is a preferable value. Here, if the specified tilt steering angle θC is less than 30 °, the travel distance in the direction of the conveyance path CL that approaches and stops at the cargo handling station ST becomes too large, and the stop reflecting plate 14 that is longer than necessary is necessary. This is because the traveling floor to be used is widely required, and if the specified tilt rudder angle θC exceeds 70 °, the traveling floor may be damaged by turning the front and rear traveling steered wheels 12S and 13S. Because there is. Here, the optimum range of the designated tilt rudder angle θC is 45 ° to 65 °, and for example, 60 ° is set for the purpose of protecting the traveling floor surface.

(STEP.4)[ステップC]図6に示すように、前側、後側測距センサ15,16の一方により計測される停止用反射板14までの距離L1,L2が、寄付き準備距離LBに達すると、斜行寄付き制御から独立誘導制御に移行される。そして、この停止用反射板14から寄付き準備距離LBだけ離間した寄付き準備位置PBは、停止用反射板14から距離Lだけ離れた寄付き基準位置PLから、さらに準備距離ΔSだけ手前の位置であり、寄付き準備距離LB=L+ΔSである。   (STEP.4) [Step C] As shown in FIG. 6, the distances L1 and L2 to the stop reflecting plate 14 measured by one of the front and rear distance measuring sensors 15 and 16 are the contact preparation distance LB. When it reaches, the control shifts from the skew approach control to the independent guidance control. Then, the approach preparation position PB separated from the stop reflecting plate 14 by the approach preparation distance LB is a position further from the approach reference position PL separated from the stop reflecting plate 14 by the distance L by the preparation distance ΔS. The contact preparation distance LB = L + ΔS.

(STEP.5)独立誘導制御の準備工程として、前、後の走行操舵輪12S,13Sを直進方向の寄付き基準舵角(舵角0°)に復帰させる。この状態で台車本体11は、また搬送経路CLの走行状態と同様に傾斜角αで傾斜された姿勢である。   (STEP.5) As a preparation step for independent guidance control, the front and rear traveling steered wheels 12S and 13S are returned to the reference rudder angle (steering angle 0 °) in the straight traveling direction. In this state, the carriage main body 11 is also in a posture inclined at an inclination angle α as in the traveling state of the transport path CL.

(STEP.6)ここで、台車本体11の傾斜角αが許容範囲(たとえば±2.5°)を超えるかどうかが判断され、傾斜角αが許容範囲を超える場合は、異常検出プログラムにより非常停止される(STEP.7)。
(STEP.8)[ステップD]台車本体11が搬送経路CLに沿って停止センサ18が停止マーカー17を検出するまでの距離で、かつ停止用反射板14に寄付き準備距離ΔSだけ接近する間に、搬送経路CLに対する台車本体11の傾斜角を許容傾斜角αから0°にするように、前、後の走行操舵輪12S,13Sをそれぞれ独立して操舵する独立誘導制御を行う。
(STEP.6) Here, it is determined whether the inclination angle α of the cart body 11 exceeds the allowable range (for example, ± 2.5 °). If the inclination angle α exceeds the allowable range, the abnormality detection program Stopped (STEP.7).
(STEP.8) [Step D] The distance until the main body 11 moves along the transport path CL until the stop sensor 18 detects the stop marker 17 and while approaching the stop reflector 14 by the approaching preparation distance ΔS. Then, independent guidance control is performed in which the front and rear traveling steering wheels 12S and 13S are independently steered so that the inclination angle of the carriage body 11 with respect to the transport path CL is 0 ° from the allowable inclination angle α.

独立誘導制御では、図7に示すように、前側測距センサ15と前の走行操舵輪12Sの転舵軸心との前後方向のセンサ前輪間距離W1と、後側測距センサ16と前の走行操舵輪13Sの転舵軸心との前後方向のセンサ後輪間距離W2において、寄付き目標距離(偏差)|L−L1|または偏差|L−L2|をそれぞれ0にするために、前後のセンサ設置距離W1、W2が小さいほど指定舵角Δθ1、Δθ2を大きくする必要がある。そしてセンサ輪間距離W1,W2と寄付き目標距離(L−L1),(L−L2)から前、後の走行操舵輪12S,13Sの実際に転舵する実施指定舵角Δθ1’,Δθ2’が(1)式〜(4)式により演算される。   In the independent guidance control, as shown in FIG. 7, the front-to-front sensor distance W1 between the front ranging sensor 15 and the turning axis of the front traveling steering wheel 12S, the rear ranging sensor 16 and the front In order to set the target contact distance (deviation) | L−L1 | or deviation | L−L2 | to 0 in the front-rear sensor rear wheel distance W2 with respect to the turning axis of the traveling steering wheel 13S, As the sensor installation distances W1 and W2 are smaller, it is necessary to increase the designated steering angles Δθ1 and Δθ2. Then, from the sensor wheel distances W1, W2 and the approach target distances (L-L1), (L-L2), the execution designated steering angles Δθ1 ′, Δθ2 ′ for actually turning the front and rear traveling steered wheels 12S, 13S are obtained. It is calculated by the equations (1) to (4).

すなわち、センサ前輪間距離W1>0またはセンサ前輪間距離W1<0の場合、
前の走行操舵輪12Sを通る前後方向の軸線Aと、前の走行操舵輪12Sの進行方向の直線Bと、前側測距センサ15の測距軸線Cからなる直角三角形abcにおいて、前走行操舵輪12Sの転舵角Δθ1、測距軸線C上の辺の長さac=ΔL1とすると、
tanΔθ1=ΔL1/W1
tanΔθ1=(L−L1)/W1
Δθ1=tan-1{(L−L1)/W1}…(1’)式
実施指定舵角Δθ1’=Δθ1×K1…(1)式により求められる。(K1は後述する。)
次に、後側測距センサ16と後の走行操舵輪13Sの転舵軸心との前後方向の距離がW2とすると、センサ後輪間距離W2>0またはセンサ後輪間距離W2<0の場合、後の走行操舵輪13Sを通る前後方向の軸線Aと、後の走行操舵輪13Sの進行方向の直線Dと、前側測距センサ15の測距軸線Eからなる直角三角形defにおいて、後の走行操舵輪13Sの転舵角Δθ2、測距軸線E上の辺の長さdf=ΔL2とすると、
tanΔθ2=ΔL2/W2
tanΔθ2=(L−L2)/W2
Δθ2=tan-1{(L−L2)/W2}…(2’)式
実施指定舵角Δθ2’=Δθ2×K2…(2)式により求められる。
That is, when the sensor front wheel distance W1> 0 or the sensor front wheel distance W1 <0,
A front traveling steered wheel is represented by a right-angled triangle abc consisting of a longitudinal axis A passing through the previous traveling steered wheel 12S, a straight line B in the traveling direction of the previous traveling steered wheel 12S, and a distance measuring axis C of the front ranging sensor 15. When the turning angle Δθ1 of 12S and the length of the side on the distance measuring axis C are ac = ΔL1,
tanΔθ1 = ΔL1 / W1
tan Δθ1 = (L−L1) / W1
Δθ1 = tan −1 {(L−L1) / W1} (1 ′) Formula The designated steering angle Δθ1 ′ = Δθ1 × K1 (1) is obtained. (K1 will be described later.)
Next, assuming that the distance in the front-rear direction between the rear distance measuring sensor 16 and the turning axis of the rear traveling steered wheel 13S is W2, the sensor rear wheel distance W2> 0 or the sensor rear wheel distance W2 <0. In this case, in the right triangle def consisting of the longitudinal axis A passing through the rear traveling steering wheel 13S, the straight line D in the traveling direction of the rear traveling steering wheel 13S, and the distance measuring axis E of the front distance measuring sensor 15, Assuming that the turning angle Δθ2 of the traveling steered wheel 13S and the side length df = ΔL2 on the distance measuring axis E are as follows:
tanΔθ2 = ΔL2 / W2
tan Δθ2 = (L−L2) / W2
Δθ2 = tan −1 {(L−L2) / W2} (2 ′) Formula: Designated steering angle Δθ2 ′ = Δθ2 × K2 (2)

ここで、前の走行操舵輪12Sは、K1=0.25が選択されて、荷役ステーションSTに対する台車本体11の寄付き距離L1=Lとする制御を行う。また後の走行操舵輪13は、K2=1が選択されて、荷役ステーションSTに対する台車本体11の寄付き距離L2=Lとする制御を行う。この結果、台車本体11の姿勢を、反射板14と平行となるように、L1=L2=L、許容傾斜角αを0とすることを目標とする姿勢制御となる。センタリングは、停止センサ18による停止マーカー17の検出により行う。   Here, K1 = 0.25 is selected for the front traveling steered wheel 12S, and the approach distance L1 = L of the carriage main body 11 with respect to the cargo handling station ST is controlled. Further, the following traveling steered wheels 13 are controlled such that K2 = 1 is selected and the approach distance L2 of the carriage main body 11 with respect to the cargo handling station ST is set to L. As a result, the posture control is performed such that the posture of the carriage main body 11 is set to L1 = L2 = L and the allowable inclination angle α is set to 0 so as to be parallel to the reflecting plate 14. Centering is performed by detecting the stop marker 17 by the stop sensor 18.

なお、上記K1,K2は、前後の走行操舵輪12S,13Sの操舵角の差が大きくなりすぎると台車本体の安定性を欠くことから、実際の誘導状態から導き出された調整値である。すなわち、現場仕様毎に前側測距センサ15および後側測距センサ16の設置位置が異なるため、例えば、前側測距センサ15の設置位置が走行操舵輪12Sの転舵軸心に極端に近い位置に設置される場合(センサ前輪間距離W1<>0,W1≒0)および、後側測距センサ16の設置位置が走行操舵輪13Sの転舵軸心に極端に近い位置に設置される場合(センサ前輪間距離W2<>0,W2≒0)では、上記(1’)式および上記(2’)式のみでは実施指定舵角の差が極端に大きくなる可能性がある。図示の事例においても、たとえばW1=135mm、W2=20mmである場合、実施指定舵角の差が極端に大きくなると判断される。また、操舵速度に上限があり、(AGVの最大荷重時の必要操舵トルクを考慮し操舵用ACサーボモータの出力軸に減速機があるため)上記の事例の場合、実際の最大操舵速度は3.125秒/180°である。このため実施指定舵角の差が大きいほど、姿勢が安定するまでの走行距離が増加する。   Note that K1 and K2 are adjustment values derived from the actual guiding state because the stability of the cart body is lost if the difference in steering angle between the front and rear traveling steering wheels 12S and 13S becomes too large. That is, since the installation positions of the front ranging sensor 15 and the rear ranging sensor 16 are different for each field specification, for example, the installation position of the front ranging sensor 15 is extremely close to the turning axis of the traveling steering wheel 12S. (The distance between the front wheels of the sensor W1 <> 0, W1≈0) and the installation position of the rear ranging sensor 16 is extremely close to the turning axis of the traveling steering wheel 13S. In the (sensor front wheel distance W2 <> 0, W2≈0), there is a possibility that the difference in the execution designated steering angle becomes extremely large only by the above formula (1 ′) and the above formula (2 ′). Also in the example shown in the figure, for example, when W1 = 135 mm and W2 = 20 mm, it is determined that the difference in the execution designated steering angle becomes extremely large. In the above case, the actual maximum steering speed is 3 (there is a reduction gear on the output shaft of the steering AC servo motor in consideration of the necessary steering torque at the maximum load of AGV). 125 seconds / 180 °. For this reason, the greater the difference between the implementation-designated rudder angles, the longer the travel distance until the posture is stabilized.

姿勢が安定するまでの走行距離を少なくするために、実施指定舵角差に制限を設ける必要があり、上記K1,K2を調整することにより実際の誘導状態から最大実施指定舵角差を約25°以下に抑制するようにする。   In order to reduce the travel distance until the posture is stabilized, it is necessary to limit the execution designated rudder angle difference. By adjusting K1 and K2, the maximum implementation designated rudder angle difference is about 25 from the actual guidance state. Keep it below °.

前側、後側測距センサ15,16の測距軸線C,E上に、前後の走行操舵輪12S,13Sの転舵軸心がある、センサ前輪間距離W1=0、センサ後輪間距離W2=0の場合、
前の走行操舵輪12Sの場合の実施指定舵角Δθ1’は、Δθ1’=(L−L1)×K1…(3)式により求められる。また後の走行操舵輪13Sの場合の実施指定舵角Δθ2’は、Δθ2’=(L−L2)×K2…(4)式により求められる。
The front and rear distance measuring sensors 15 and 16 have distance steering axes C and E on which the front and rear traveling steered wheels 12S and 13S have turning centers, a sensor front wheel distance W1 = 0, and a sensor rear wheel distance W2. = 0
The execution designated steering angle Δθ1 ′ in the case of the previous traveling steered wheel 12S is obtained by Δθ1 ′ = (L−L1) × K1 (3). Further, the execution designated steering angle Δθ2 ′ in the case of the subsequent traveling steered wheel 13S is obtained by the following equation: Δθ2 ′ = (L−L2) × K2 (4).

上記実施指定舵角Δθ1’,Δθ2’は前側、後側測距センサ15,16の検出距離L1,L2の変化に従って時系列で演算される。
なお、ここで実施指定舵角Δθ1’およびΔθ2’が0を超える場合には、平面視で時計回り方向に転舵され、実施指定舵角Δθ1’およびΔθ2’が0未満の場合には、平面視で反時計回り方向に転舵される。
The implementation specified steering angles Δθ1 ′ and Δθ2 ′ are calculated in time series according to changes in the detection distances L1 and L2 of the front and rear distance measuring sensors 15 and 16.
Here, when the execution designated rudder angles Δθ1 ′ and Δθ2 ′ exceed 0, the steering wheel is turned clockwise in plan view, and when the execution designated rudder angles Δθ1 ′ and Δθ2 ′ are less than 0, It is steered in the counterclockwise direction visually.

(STEP.9)図8に示すように、停止センサ18が停止マーカー17を検出すると、(STEP.10)[ステップD]台車本体11が停止される。ここで、走行操舵輪12S,13Sに設けられたロータリエンコーダ29F,29Rにより、停止センサ18が停止マーカー17を検出後、停止するまでの検出遅延距離を計測しており、停止マーカー17の検出幅に対して、各荷役ステーションSTのパラメータ値が設定されて、各荷役ステーションSTにおける停止位置の精度を向上させている。また、この時に前側、後側測距センサ15,16は、寄付き基準距離Lをそれぞれ検出しており、停止用反射板14と台車本体11の側面が互いに平行となる。   (STEP.9) As shown in FIG. 8, when the stop sensor 18 detects the stop marker 17, (STEP.10) [Step D] The cart body 11 is stopped. Here, the detection delay distance until the stop sensor 18 detects the stop marker 17 and then stops after the stop sensor 17 is detected by the rotary encoders 29F and 29R provided on the traveling steering wheels 12S and 13S. On the other hand, the parameter value of each cargo handling station ST is set to improve the accuracy of the stop position at each cargo handling station ST. At this time, the front and rear distance measuring sensors 15 and 16 detect the approach reference distance L, respectively, and the side surfaces of the stop reflecting plate 14 and the carriage main body 11 are parallel to each other.

ここで、搬送経路CL上の無人搬送車と停止用反板14とのステーション間距離LAは、たとえば500mmである。寄付き基準距離L=170mm、寄付き準備距離ΔS=60mmとすると、寄付き方向の走行距離は、斜行寄付き制御:独立誘導制御=270:60=4.5:1となる。   Here, the inter-station distance LA between the automatic guided vehicle on the conveyance path CL and the stop reaction plate 14 is, for example, 500 mm. Assuming that the reference distance L is 170 mm and the preparation distance ΔS is 60 mm, the traveling distance in the contact direction is skewed control: independent guidance control = 270: 60 = 4.5: 1.

(STEP.11)移載用コンベヤ10により荷Wが荷役ステーションSTに自動的に移載される。
(STEP.12)移載作業が完了すると、前後の走行操舵輪12S,13Sをそれぞれ指定傾斜舵角−θCに反転転舵して、(STEP.13)指定傾斜舵角による斜行離間制御が行われる。斜行離間制御の指定傾斜舵角−θCも、斜向寄付き制御と同様に、30°以上で70°以下の範囲から選択され、さらに好適範囲は45°〜65°であり、たとえば走行床面の保護を目的として60°が選択される。
(STEP.11) The load W is automatically transferred to the cargo handling station ST by the transfer conveyor 10.
(STEP.12) When the transfer operation is completed, the front and rear traveling steered wheels 12S and 13S are reversely steered to the specified tilt steering angle −θC, and (STEP.13) the skew separation control by the specified tilt steering angle is performed. Done. The designated tilt rudder angle -θC of the skew separation control is also selected from the range of 30 ° or more and 70 ° or less, and the preferred range is 45 ° to 65 °, as in the case of the leaning control. 60 ° is selected for the purpose of protection.

(STEP.14)前側測距センサ15または後側測距センサ16により、停止用反射板14からの離間距離が所定値を検出すると、(STEP.15)レーザ誘導方式による自立誘導制御に復帰する。   (STEP.14) When the front distance sensor 15 or the rear distance sensor 16 detects a predetermined distance from the stop reflector 14, (STEP.15) returns to the independent guidance control by the laser guidance method. .

上記実施例1によれば、(STEP.2)で、前側測距センサ15と後側測距センサ16により、台車本体11から停止用反射板14までの距離L1,L2を計測可能になると、まず(STEP.3)で、前後の走行操舵輪12S,13Sを同一の指定傾斜舵角θCだけ転舵して、台車本体11を寄付き準備位置PBまで平行移動させる傾斜寄付き制御を行い、さらに(STEP.8)で、前側測距センサ15と後側測距センサ16により計測した停止用反射板との距離L1,L2に対応して、前後の走行操舵輪12S,13Sをそれぞれ独立して操舵する独立誘導制御を行い、台車本体11の姿勢を修正しつつ寄付き基準位置PLまで移動する。   According to the first embodiment, in (STEP.2), when the distances L1 and L2 from the carriage main body 11 to the stop reflecting plate 14 can be measured by the front distance measuring sensor 15 and the rear distance measuring sensor 16, First, in (STEP.3), the front and rear traveling steered wheels 12S and 13S are steered by the same designated tilt steering angle θC, and the tilt contact control is performed to translate the cart body 11 to the close preparation position PB. In STEP.8), the front and rear traveling steered wheels 12S and 13S are steered independently in accordance with the distances L1 and L2 between the front distance measuring sensor 15 and the rear distance measuring sensor 16, respectively. Independent guidance control is performed to move to the approaching reference position PL while correcting the posture of the cart body 11.

このように、傾斜寄付き制御により台車本体11を、搬送経路CLから寄付き準備位置PBまで長い距離を平行移動させて接近させた後、短い準備距離ΔSの走行中に、前の走行操舵輪12Sを独立して寄付きのための制御を行い、後の走行操舵輪13Sを独立して寄付きのための制御を行い、この結果、搬送経路CL上の許容傾斜角αを0とする台車本体の姿勢を制御することになり、台車本体11を迅速かつ高精度で寄付き基準位置PLに停止させるとともに、正確な姿勢で停止させることができる。そして、走行床面に磁性体の敷設も不要となる。   In this way, after the carriage main body 11 is moved closer to the approach preparation position PB from the transport route CL by the tilt approach control, the previous travel steered wheel 12S is moved during the short preparation distance ΔS. Independent control for close-up is performed, and control for close-up of the following traveling steered wheels 13S is performed independently. As a result, the position of the cart body with the allowable inclination angle α on the transport path CL being 0 is determined. As a result, the main body 11 can be stopped at the approach reference position PL quickly and with high accuracy, and can be stopped in an accurate posture. And it is not necessary to lay a magnetic material on the traveling floor.

また指定傾斜舵角θCを30°以上とすることにより、停止用反射板14を適正な長さに設定できて、寄付き動作に必要な無人搬送車の占有面積を小さくできる。また指定傾斜舵角θCを70°以下とすることにより、前後の走行操舵輪12S,13Sによる走行床面の摩耗や損傷を防止することができる。さらに指定傾斜舵角θCを45°〜65°の好適範囲とすることにより、上記の作用効果を増大させることができる。   Further, by setting the designated tilt steering angle θC to 30 ° or more, the stop reflector 14 can be set to an appropriate length, and the area occupied by the automatic guided vehicle necessary for the close-up operation can be reduced. Further, by setting the designated tilt steering angle θC to 70 ° or less, it is possible to prevent the traveling floor from being worn or damaged by the front and rear traveling steered wheels 12S, 13S. Furthermore, the above-described effects can be increased by setting the designated tilt steering angle θC within a suitable range of 45 ° to 65 °.

なお、前側、後側測距センサ15,16および停止センサ18は、台車本体11の右側面に設けたが、移載用コンベヤ10により台車本体11の左右両側に荷Wを移載可能な場合には、台車本体11の左側面にも各センサ15,16,18をそれぞれ設けて、同様の制御により荷役ステーションSTに高精度で接近停止させることができる。   The front and rear ranging sensors 15 and 16 and the stop sensor 18 are provided on the right side surface of the carriage main body 11, but the load W can be transferred to the left and right sides of the carriage main body 11 by the transfer conveyor 10. In addition, the sensors 15, 16, and 18 are also provided on the left side surface of the carriage main body 11, respectively, and can approach and stop the cargo handling station ST with high accuracy by the same control.

W 荷
ST 荷役ステーション
CL 搬送経路
PL 寄付き基準位置
PB 寄付き準備位置
ΔS 準備距離
10 移載用コンベヤ
11 台車本体
12S 前走行操舵輪
12C 前キャスター
13S 後走行操舵輪
13C 後キャスター
14 停止用反射板
15 前側測距センサ
16 後側測距センサ
17 停止マーカー
18 停止センサ
21 走行・操舵制御部
W Load ST Load Handling Station CL Transport Path PL Contact Reference Position PB Contact Preparation Position ΔS Preparation Distance 10 Transfer Conveyor 11 Cart Body 12S Front Travel Steering Wheel 12C Front Caster 13S Rear Travel Steering Wheel 13C Rear Caster 14 Stop Reflector 15 Front Side Distance sensor 16 Rear distance sensor 17 Stop marker 18 Stop sensor 21 Traveling / steering control unit

Claims (5)

台車本体の少なくとも前後位置に配置された走行操舵輪により搬送経路を走行する無人搬送車を、荷役ステーションの寄付き基準位置に接近させて停止する無人搬送車の寄付き誘導制御方法であって、
台車本体の側面の前後位置で、荷役ステーションに搬送経路と平行に設置された停止用反射板との距離をそれぞれ検出し、
次いで、前後の走行操舵輪を、荷役ステーション側に同一の指定傾斜舵角だけそれぞれ操舵し、台車本体を、前記寄付き基準位置に接近する寄付き準備位置まで平行移動させ、
前記停止用反射板との前後位置での距離に基づいて、前記寄付き基準位置で台車本体が前記停止用反射板に平行姿勢となるように、前後の走行操舵輪をそれぞれ独立して操舵し、台車本体を前記寄付き基準位置に移動させ停止する
ことを特徴とする無人搬送車の寄付き誘導制御方法。
An unattended guided vehicle approach control method for stopping an unmanned transport vehicle that travels on a transport route by a traveling steering wheel disposed at least in the front-rear position of the main body of a carriage, approaching a close reference position of a cargo handling station,
At the front and back positions on the side of the cart body, the distance to the reflector for stopping installed at the cargo handling station in parallel with the transport path is detected.
Next, the front and rear traveling steered wheels are respectively steered to the cargo handling station side by the same designated tilt rudder angle, and the cart body is moved in parallel to the approaching preparation position approaching the approaching reference position,
Based on the distance at the front and rear position with respect to the stop reflector, the front and rear traveling steering wheels are steered independently so that the cart body is parallel to the stop reflector at the approach reference position, A guided guidance control method for an automatic guided vehicle, characterized in that the cart body is moved to the reference position for stopping and stopped.
台車本体の少なくとも前後位置に配置された走行操舵輪により搬送経路を走行する無人搬送車を、荷役ステーションに接近させて寄付き基準位置で停止させ、台車本体に設けられた移載装置と荷役ステーションとの間で荷を受渡しする無人搬送車の寄付き誘導制御方法であって、
台車本体の側面で前後に所定間隔をあけて配置された前側測距センサと後側測距センサにより、荷役ステーションに搬送経路に対面して平行に設置された停止用反射板との距離を検出するステップAと、
前後の走行操舵輪を、荷役ステーション側に同一の指定傾斜舵角だけそれぞれ操舵する傾斜寄付き制御を行い、台車本体を平行移動させて荷役ステーションに接近させるステップBと、
前側測距センサと後側測距センサの一方が、前記停止用反射板から、荷役ステーションに対面して前記寄付き基準位置より所定距離だけ搬送経路側の寄付き準備位置までの距離を検出するステップCと、
前記寄付き準備位置から前記寄付き基準位置まで、前後の走行操舵輪でそれぞれ独立して台車本体を接近させるように制御して台車本体の姿勢制御を行う独立誘導制御を行い、前記寄付き基準位置で台車本体が前記停止用反射板に平行姿勢となるように停止させるステップDと、を順次行う
ことを特徴とする無人搬送車の寄付き誘導制御方法。
A transfer vehicle and a loading station provided on the main body of the cart, stopping an unmanned transport vehicle that travels on the transport path by a traveling steering wheel disposed at least at the front and rear positions of the main body of the carriage close to the loading station and stopping at the approaching reference position. It is a close-up guidance control method for an automated guided vehicle that delivers a load between
The distance between the front and rear ranging sensors located at the front and back of the trolley body at a predetermined distance is detected from the stop reflector installed in parallel at the cargo handling station facing the transport path. Step A to
Step B, in which front and rear traveling steered wheels are steered to the cargo handling station side by the same specified tilt steering angle, respectively, and the carriage body is moved in parallel to approach the cargo handling station;
Step C in which one of the front distance sensor and the rear distance sensor detects a distance from the stop reflector to the close preparation position on the transport path side by a predetermined distance from the close reference position facing the cargo handling station. When,
From the close-up preparation position to the close-up reference position, independent guidance control is performed to control the position of the main body of the carriage independently with the front and rear traveling steering wheels, and the cart at the reference position of closeness. Step D for stopping the main body so as to be parallel to the reflecting plate for stopping.
ステップBにおける指定傾斜舵角は、30°以上で70°以下である
ことを特徴とする請求項2記載の無人搬送車の寄付き誘導制御方法。
The method according to claim 2, wherein the specified tilt rudder angle in step B is not less than 30 ° and not more than 70 °.
少なくとも前後位置に配置された走行操舵輪により搬送経路を走行する無人搬送車の台車本体と、前記台車本体を搬送経路から寄付き基準位置に接近させて停止する荷役ステーションと、を具備した無人搬送設備であって、
搬送経路に対面して荷役ステーションに搬送経路と平行に設置された停止用反射板と、
搬送経路に対面して荷役ステーションに設置された停止マーカーと、
無人搬送車の台車本体の側面で前後方向に離間して配置されて、前記停止用反射板まで距離を計測し、台車本体の停止距離と姿勢を検出する前側測距センサおよび後側測距センサと、
台車本体の側面に設置されるとともに、前記停止マーカーを検出して搬送経路方向の台車本体の停止位置を認識する停止センサと、
前側測距センサおよび後側測距センサならびに停止センサの信号に基づいて、前後の走行操舵輪を操作する走行・操舵制御部と、を具備し、
前記走行・操舵制御部は、搬送経路から、荷役ステーションに対面して停止する寄付き基準位置から所定距離だけ搬送経路側の寄付き準備位置まで、前後の操舵輪を同一の指定傾斜舵角だけそれぞれ転舵して台車本体を平行移動する傾斜寄付き制御を行い、さらに前記寄付き準備位置から寄付き基準位置まで、前後の走行操舵輪をそれぞれ独立して操舵し、前記寄付き基準位置で台車本体前記停止用反射板に平行姿勢で停止させる誘導寄付き制御を行うように構成された
ことを特徴とする無人搬送設備
An unmanned transport facility comprising: a cart body of an automated guided vehicle that travels on a transport path by travel steering wheels disposed at least in the front-rear position; and a cargo handling station that stops the cart body from the transport path by approaching a close reference position. Because
A reflector for stopping that is placed in parallel with the transport path at the cargo handling station facing the transport path;
A stop marker installed at the cargo handling station facing the transport path,
A front ranging sensor and a rear ranging sensor which are arranged on the side surface of the bogie main body of the automatic guided vehicle so as to be separated in the front-rear direction, measure the distance to the stop reflector and detect the stop distance and posture of the bogie main body. When,
Rutotomoni is disposed on the side surface of the carriage body, a stop sensor which recognizes the stop position of the carriage body of the conveying path direction by detecting the stop markers,
A traveling / steering control unit that operates the front and rear traveling steering wheels based on signals from the front and rear ranging sensors and the stop sensor; and
The travel / steering control unit rotates the front and rear steered wheels by the same specified tilt steering angle from the transport path to the close preparation position on the transport path side by a predetermined distance from the close reference position that stops facing the cargo handling station. Steering is performed to control the tilting movement of the cart body in parallel, and the front and rear traveling steering wheels are independently steered from the padding preparation position to the padding reference position, and the cart body is stopped at the padding reference position. An unmanned transport facility that is configured to perform guided approach control that stops the reflector in a parallel posture.
指定傾斜舵角を、30°以上で70°以下とした
ことを特徴とする請求項4記載の無人搬送設備
The specified tilt steering angle, unmanned conveyance equipment according to claim 4, characterized in that a 70 ° or less 30 ° or more.
JP2014011928A 2014-01-27 2014-01-27 Approach control method and automatic guided equipment for automatic guided vehicle Expired - Fee Related JP6264541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011928A JP6264541B2 (en) 2014-01-27 2014-01-27 Approach control method and automatic guided equipment for automatic guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011928A JP6264541B2 (en) 2014-01-27 2014-01-27 Approach control method and automatic guided equipment for automatic guided vehicle

Publications (2)

Publication Number Publication Date
JP2015141422A JP2015141422A (en) 2015-08-03
JP6264541B2 true JP6264541B2 (en) 2018-01-24

Family

ID=53771770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011928A Expired - Fee Related JP6264541B2 (en) 2014-01-27 2014-01-27 Approach control method and automatic guided equipment for automatic guided vehicle

Country Status (1)

Country Link
JP (1) JP6264541B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3356899B1 (en) * 2015-09-28 2021-12-29 Uatc, Llc Method of operating an autonomous vehicle having independent auxiliary control unit
US9580080B1 (en) 2016-03-15 2017-02-28 Uber Technologies, Inc. Drive-by-wire control system
CN110968086B (en) * 2018-09-30 2023-05-26 宇通客车股份有限公司 Vehicle arrival control method and system
CN113110531B (en) * 2021-04-19 2021-11-12 飞马滨(青岛)智能科技有限公司 Automatic wall-adhering method for underwater robot and ship to be washed

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017507A (en) * 1983-07-11 1985-01-29 Daifuku Co Ltd Stop controlling device of unmanned car
JPH06202730A (en) * 1992-03-11 1994-07-22 Meidensha Corp Guide route determining method for automated guided vehicle
JPH06161550A (en) * 1992-11-27 1994-06-07 Daifuku Co Ltd Controller for traveling of moving vehicle
JP5721980B2 (en) * 2010-09-03 2015-05-20 株式会社日立製作所 Automated guided vehicle and travel control method

Also Published As

Publication number Publication date
JP2015141422A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6264541B2 (en) Approach control method and automatic guided equipment for automatic guided vehicle
EP2897017B1 (en) Steer control maneuvers for materials handling vehicles
JP6109616B2 (en) Automated guided vehicle
US8280573B2 (en) Guided control device for unmanned vehicle
JP5689278B2 (en) Control method of automatic guided vehicle
JP2006259877A (en) Article conveyance equipment
EP2821324B1 (en) Method for transporting an object with an automatically controllable vehicle in an object processing system, vehicle and object processing system.
JP2007213356A (en) Automated guided facility
JP2018194937A (en) Travel control device and travel control method of unmanned carrier
JPH07284938A (en) Square welding robot
JP7268336B2 (en) Travel control device for unmanned forklift, travel control method for unmanned forklift, travel control device for unmanned towing vehicle, travel control method for unmanned towing vehicle
JP2018177002A (en) Unmanned transport truck
JP4984831B2 (en) Automated guided vehicle and control method thereof
JP5611744B2 (en) Automated guided vehicle
JP5134402B2 (en) Route change method and route change device for automated guided vehicle
JP2008175674A (en) Traveling vehicle, and measuring method of its wheel abrasion quantity
JP2011243129A (en) Transportation vehicle system
JP2016224903A (en) Carrier vehicle
JPS6049407A (en) Unmanned truck
CN111766856A (en) Automatic guide transport vehicle, auxiliary positioning method and system thereof and vehicle-mounted controller
JP2023148135A (en) Autonomous traveling device and control method for autonomous traveling device
JP2005330076A (en) Combined system of moving shelf and unmanned forklift
JP2823324B2 (en) Self-driving car
JPH10254543A (en) Guiding equipment for moving body
JPH0794320B2 (en) Automatic cargo handling control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6264541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees