JP2018177002A - Unmanned transport truck - Google Patents

Unmanned transport truck Download PDF

Info

Publication number
JP2018177002A
JP2018177002A JP2017079565A JP2017079565A JP2018177002A JP 2018177002 A JP2018177002 A JP 2018177002A JP 2017079565 A JP2017079565 A JP 2017079565A JP 2017079565 A JP2017079565 A JP 2017079565A JP 2018177002 A JP2018177002 A JP 2018177002A
Authority
JP
Japan
Prior art keywords
carriage
truck
rotation
distance
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017079565A
Other languages
Japanese (ja)
Inventor
井上 薫
Kaoru Inoue
薫 井上
勝 浜田
Masaru Hamada
勝 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heads Corp
Original Assignee
Heads Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heads Corp filed Critical Heads Corp
Priority to JP2017079565A priority Critical patent/JP2018177002A/en
Publication of JP2018177002A publication Critical patent/JP2018177002A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an unmanned transport truck capable of moving along a guidepath without requiring field adjustment.SOLUTION: In an unmanned transport truck 10 including an automatic driving operation part 14 for moving a truck part 12 along a guidepath 13 of a floor surface 11, the automatic driving operation part 14 includes truck deviation detection means 15 for detecting a truck deviation distance X with respect to the guidepath 13 of the truck part 12 and truck driving control means 16 for moving the truck part 12 along the guidepath 13 while correcting the truck deviation distance X. The truck driving control menas 16 includes a truck movement command unit 19 for outputting a rotation driving signal by which the rotation of driving wheels 17, 18 of the truck part 12 is controlled, a track correction command unit 20 for calculating the rotation correction amount of the driving wheels 17, 18 required for the correction of the truck deviation distance X by the sliding mode control and outputting it as a rotation correction signal, and a driving source control unit 23 for inputting rotation command signals including a combination of a rotation driving signal and a rotation correction signal into rotation driving sources 21, 22 of the driving wheels 17, 18.SELECTED DRAWING: Figure 2

Description

本発明は、磁気誘導式の無人搬送台車に係り、詳細には現場での調整が不要で、積載物の重量変動や床面の状態変化等の不確定要素の影響を受けずに床面上に設定された誘導路に沿って移動する無人搬送台車に関する。 The present invention relates to an unmanned transport carriage of a magnetic induction type, and in particular, no on-site adjustment is required, and the floor surface is not affected by uncertain factors such as weight change of load and floor condition change. The present invention relates to an unmanned transfer carriage that moves along a guideway set in

磁気誘導式の無人搬送台車が移動する床面上には、無人搬送台車の移動を誘導する磁気テープからなる誘導路が敷設され、誘導路の左右両側には、無人搬送台車に、例えば、前進、後進、旋回、停止、増速、及び減速等の指示を与える磁気テープからなる磁気マーカが複数配置されている。一方、無人搬送台車の下部には、誘導路を構成している磁気テープを検知するために、無人搬送台車の幅方向の中心を中央にして幅方向両側に第1の磁気センサが所定のピッチで複数並べて配置され、更に無人搬送台車の下部両側には、磁気マーカを構成する磁気テープを検知するために、第2の磁気センサが配置されている。 On the floor surface on which the magnetic guidance type unmanned transfer carriage moves, guide paths consisting of magnetic tapes for guiding the movement of the unmanned transfer carriage are laid, and on the left and right sides of the guide path, for example, A plurality of magnetic markers made of magnetic tape for giving instructions such as reverse travel, turning, stop, acceleration and deceleration are arranged. On the other hand, in the lower part of the unmanned transfer carriage, in order to detect the magnetic tape constituting the guide path, the first magnetic sensors are arranged at predetermined pitches on both sides in the width direction centering on the center in the width direction of the unmanned transfer carriage A plurality of magnetic sensors are arranged side by side, and second magnetic sensors are arranged on both sides of the lower part of the unmanned transfer carriage in order to detect the magnetic tape constituting the magnetic marker.

そして、磁気マーカを構成する磁気テープが第2の磁気センサにより順次検出されると、無人搬送台車の制御装置を介して磁気マーカの検知順に予め登録された移動様式に従って無人搬送台車が移動しながら、誘導路を構成している磁気テープが複数の第1の磁気センサの中の所定の個数で常時検出されるように無人搬送台車の移動方向が制御される。ここで、無人搬送台車の移動方向の制御では、無人搬送台車の中心位置と誘導路(誘導路を構成している磁気テープ)の中心位置との距離、即ち台車ずれを求め、台車ずれに応じて左右の駆動車輪の一方の減速率を設定して減速することにより移動方向の修正(台車ずれを0とすること)が行なわれる(例えば、特許文献1参照)。 Then, when the magnetic tape constituting the magnetic marker is sequentially detected by the second magnetic sensor, the unmanned transfer carriage moves according to the movement mode registered in advance in the detection order of the magnetic marker through the control device of the unmanned transfer carriage. The moving direction of the unmanned transfer carriage is controlled such that the magnetic tape constituting the guide path is always detected by a predetermined number of the plurality of first magnetic sensors. Here, in the control of the movement direction of the unmanned transfer carriage, the distance between the center position of the unmanned transfer carriage and the center position of the guideway (the magnetic tape constituting the guideway), that is, the truck offset is determined. By setting and decelerating the deceleration rate of one of the left and right drive wheels, correction of the movement direction (making the carriage displacement 0) is performed (see, for example, Patent Document 1).

特開平10−111718号公報Japanese Patent Application Laid-Open No. 10-111718

無人搬送台車の左右の駆動車輪と、左右の駆動車輪をそれぞれ回転させる左右の駆動機構には、機械的な個体差が必ず存在するため、制御装置から、例えば、直進指令、即ち、左右の駆動車輪を同一速度で回転させる指令を与えても、無人搬送台車は一般に直進しない。そこで、無人搬送台車毎に動作応答特性を把握し、動作応答特性を考慮した移動手順を制御装置の指令処理部(例えば、プログラマブルロジックコントローラ)に入力している。このため、無人搬送台車の微少な操作変更に対応して移動手順の修正を行なう場合、動作応答特性に関する処理手順を残しながら移動の処理手順を修正するという注意深い作業が無人搬送台車の利用者側に要求されると同時に、無人搬送台車の製造者側には動作応答特性に関する処理手順等の制御ノウハウが知られてしまうという問題がある。 Since individual mechanical differences always exist in the left and right drive wheels that rotate the unmanned transfer carriage and the left and right drive mechanisms that respectively rotate the left and right drive wheels, for example, straight-ahead commands from the control device, that is, left and right drive Even if a command to rotate the wheels at the same speed is given, the unmanned transfer carriage generally does not go straight. Therefore, the operation response characteristic is grasped for each unmanned transfer carriage, and the movement procedure in consideration of the operation response characteristic is input to the command processing unit (for example, programmable logic controller) of the control device. Therefore, when correcting the movement procedure in response to a slight change in operation of the unmanned transfer carriage, the user's side of the unmanned conveyance carriage is careful work to correct the movement procedure while leaving the processing procedure regarding the operation response characteristic. At the same time, the manufacturer of the unmanned transfer carriage has a problem that control know-how such as processing procedures relating to operation response characteristics will be known.

また、無人搬送台車が移動する床面の状態は場所により異なり、無人搬送台車の移動特性は積載物の重量の影響を受けるため、例えば、無人搬送台車を誘導路から脱線しないように旋回させる場合、無人搬送台車を実際に旋回させて旋回地点毎に回転半径の微調整を行なう必要があり、誘導路の敷設や変更の際には必ず現場調整(例えば、PIDによるフィードバック制御におけるゲイン調整)を行わねばならないという問題がある。 In addition, since the state of the floor surface on which the unmanned transfer carriage moves varies depending on the location, and the movement characteristics of the unmanned transfer carriage are affected by the weight of the load, for example, the unmanned transfer carriage is not turned away from the taxiway , It is necessary to actually turn the unmanned transport carriage and finely adjust the turning radius at each turning point, and always make on-site adjustments (for example, gain adjustment in feedback control by PID) when laying or changing a guideway There is a problem that it has to be done.

本発明はかかる事情に鑑みてなされたもので、現場調整を行わなくても床面上に設定された誘導路に沿って移動が可能な無人搬送台車を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an unmanned transfer carriage that can move along a guideway set on a floor surface without performing on-site adjustment.

前記目的に沿う本発明に係る無人搬送台車は、床面上を移動可能な台車部と、該台車部に搭載され、該台車部を該床面に形成された誘導路に沿って移動させる移動指令を該台車部に入力する自動運転操作部とを備えた無人搬送台車において、
前記自動運転操作部には、移動中の前記台車部の前記誘導路に対する台車ずれ距離を順次求めて出力する台車ずれ検出手段と、
前記台車ずれ距離を取得し、該台車ずれ距離を修正しながら前記台車部を前記誘導路に沿って移動させる台車運転制御手段とが設けられ、
前記台車運転制御手段は、前記台車部を移動及び停止させる際に、該台車部に設けられた複数の駆動車輪のそれぞれの回転を制御する回転駆動信号を出力する台車移動指令ユニットと、
前記台車ずれ距離から該台車ずれ距離の修正に必要な前記複数の駆動車輪のそれぞれの回転修正量をスライディングモード制御により求めて回転修正信号として出力する軌道修正指令ユニットと、
前記回転駆動信号と前記回転修正信号を組み合わせて形成した回転指令信号を前記複数の駆動車輪のそれぞれの回転駆動源に入力する駆動源制御ユニットとを有する。
An unmanned transport carriage according to the present invention in accordance with the above object comprises: a carriage capable of moving on a floor; and a carriage mounted on the carriage and moving the carriage along a guideway formed on the floor. An unmanned transport carriage comprising an automatic driving operation unit for inputting a command into the carriage unit,
The automatic driving operation unit comprises a carriage displacement detection means for sequentially obtaining and outputting a carriage displacement distance of the carriage portion being moved relative to the guide path;
A truck operation control unit configured to move the truck unit along the guide path while acquiring the truck shift distance and correcting the truck shift distance;
The carriage operation control unit outputs a rotational drive signal for controlling rotation of each of a plurality of driving wheels provided on the carriage when the carriage is moved and stopped;
A trajectory correction command unit which obtains rotation correction amounts of the plurality of drive wheels necessary for correcting the carriage displacement distance from the carriage displacement distance by sliding mode control, and outputs them as a rotation correction signal;
And a drive source control unit configured to input a rotation command signal formed by combining the rotation drive signal and the rotation correction signal to the rotation drive sources of the plurality of drive wheels.

本発明に係る無人搬送台車において、前記スライディングモード制御の切り替え線は、前記誘導路による誘導方向と前記台車部の移動方向との間の台車ずれ角度及び前記台車ずれ距離により決定される構成とすることができる。
台車ずれ距離と台車ずれ角度は、無人搬送台車と誘導路との関係で決まり、不確定要素の影響や外乱の影響を受けないので、現場調整が不要となる。
In the unmanned transfer carriage according to the present invention, the switching line of the sliding mode control is determined by the carriage deviation angle between the guiding direction by the guide path and the movement direction of the carriage and the carriage deviation distance. be able to.
The truck shift distance and the truck shift angle are determined by the relationship between the unmanned transfer truck and the guideway, and are not affected by the uncertainty factor or the disturbance, so the site adjustment is not necessary.

本発明に係る無人搬送台車において、前記駆動車輪は前記台車部の幅方向の左右両側に設けられ、前記回転修正信号は左右の前記駆動車輪に回転速度差を生じさせる指令とすることができる。
左右の駆動車輪に回転速度差を生じさせる指令により、無人搬送台車の移動速度を保った状態で低回転速度の駆動車輪を内側にして無人搬送台車を旋回することができる。
In the unmanned transfer carriage according to the present invention, the drive wheels may be provided on the left and right sides in the width direction of the carriage portion, and the rotation correction signal may be a command to generate a rotational speed difference between the left and right drive wheels.
The unmanned transport carriage can be turned by turning the drive wheels of low rotational speed inside while keeping the moving velocity of the unmanned transport carriage by the command to generate the rotational speed difference between the left and right drive wheels.

本発明に係る無人搬送台車において、前記誘導路は磁気テープからなり、前記台車ずれ検出手段は、前記台車部の下部に前記床面に対向して該台車部の幅方向に沿って隙間を設けて配置された複数の磁気センサと、前記各磁気センサが前記磁気テープを検知した際に出力されるアナログ検知信号から前記磁気テープの幅方向中心位置と前記台車部の幅方向中心位置の中心間距離を求める演算部と、該中心間距離を前記台車ずれ距離として出力する出力部とを有することが好ましい。
磁気センサから出力されるアナログ検知信号を使用するため、台車ずれの変化を高精度かつ高速度で検出することができる。
In the unmanned transfer carriage according to the present invention, the guideway is made of magnetic tape, and the carriage deviation detection means is provided at the lower part of the carriage with a gap facing the floor surface along the width direction of the carriage. Between the magnetic tape center position in the width direction and the center position in the width direction of the carriage from an analog detection signal output when each magnetic sensor detects the magnetic tape It is preferable to have an operation unit for obtaining a distance, and an output unit for outputting the center-to-center distance as the truck offset distance.
Since the analog detection signal output from the magnetic sensor is used, it is possible to detect a change in the truck displacement with high accuracy and high speed.

本発明に係る無人搬送台車において、前記演算部は、前記アナログ検知信号をデジタル化する信号処理回路と、該信号処理回路より出力される処理信号から前記中心間距離を求めるデジタルシグナルプロセッサ(DSP)を備えたずれ距離演算回路とを有し、
前記軌道修正指令ユニットは、前記台車ずれ検出手段より出力される前記台車ずれ距離から更に前記台車ずれ角度を求めて左右の前記駆動車輪の前記回転速度差を演算するデジタルシグナルプロセッサを備えた回転修正演算回路を有し、
前記台車移動指令ユニットは、前記誘導路に沿って前記台車部を移動させる際の左右の前記駆動車輪の前記回転駆動信号を形成して出力するプログラマブルロジックコントローラ(PLC)を有していることが好ましい。
In the unmanned transfer carriage according to the present invention, the operation unit is a signal processing circuit that digitizes the analog detection signal, and a digital signal processor (DSP) that obtains the center-to-center distance from the processing signal output from the signal processing circuit. And a shift distance calculation circuit having
The trajectory correction instruction unit further includes a digital signal processor for calculating the rotational speed difference between the left and right drive wheels by further obtaining the carriage displacement angle from the carriage displacement distance output from the carriage displacement detection means. Has an arithmetic circuit,
The carriage movement command unit has a programmable logic controller (PLC) that forms and outputs the rotational drive signals of the drive wheels on the left and right when moving the carriage along the guide path. preferable.

ずれ距離演算回路を設けることで台車ずれ距離の演算を高速で行うことができ、軌道修正指令ユニットに回転修正演算回路を設けることにより回転速度差の演算を高速で行うことができる。これにより、軌道修正指令ユニットによるサンプリング間隔を短くすることができ、スライディングモード制御で発生するリミットサイクルを回避することができる。
また、台車移動指令ユニットにプログラマブルロジックコントローラを設けることで、無人搬送台車の移動手順の作成、変更、及び修正の作業が容易となる。
更に、回転速度差の演算に必要な無人搬送台車の動作応答特性に関する処理手順をチップ化して回転修正演算回路内に組み込むことで、処理の高速化を図ると共に、制御ノウハウの保護を確実に行うことができる。
By providing the shift distance calculation circuit, calculation of the carriage shift distance can be performed at high speed, and by providing the rotation correction calculation circuit in the trajectory correction command unit, calculation of the rotational speed difference can be performed at high speed. Thereby, the sampling interval by the trajectory correction command unit can be shortened, and the limit cycle generated in the sliding mode control can be avoided.
In addition, by providing the programmable logic controller in the carriage movement command unit, the work of creating, changing and correcting the movement procedure of the unmanned transfer carriage becomes easy.
Furthermore, by processing the processing procedure related to the operation response characteristics of the unmanned transfer carriage necessary for calculation of the rotational speed difference into a chip and incorporating it in the rotation correction arithmetic circuit, processing speed can be increased and control know-how can be protected reliably. be able to.

本発明に係る無人搬送台車では、無人搬送台車の台車部の誘導路に対する台車ずれ距離を修正しながら誘導路に沿って無人搬送台車(台車部)を移動させる台車運転制御手段がスライディングモード制御を採用している。このため、例えば、無人搬送台車が移動する床面の状態や積載物の重量変化等の不確定要素の影響を受けずに、発生した台車ずれ距離を適宜修正することができるので、無人搬送台車が移動する現場での調整作業が不要になる。 In the unmanned transfer carriage according to the present invention, the carriage operation control means for moving the unmanned transfer carriage (cart) along the guideway while correcting the carriage deviation distance of the carriage of the unmanned transfer carriage with respect to the guideway performs sliding mode control. It is adopted. For this reason, for example, since the generated truck shift distance can be appropriately corrected without being affected by uncertain factors such as the state of the floor surface on which the unmanned transfer carriage moves and the weight change of the load, etc. There is no need for adjustment work at the site where the

また、台車運転制御手段が、台車部の各駆動車輪を制御する回転駆動信号を出力する台車移動指令ユニットと、発生した台車ずれ距離の修正に必要な各駆動車輪の回転修正信号をスライディングモード制御により求めて出力する軌道修正指令ユニットとを有するので、台車移動指令ユニットには無人搬送台車の基本的移動手順(前進、後進、旋回、停止、増速、及び減速等)のプログラムを、軌道修正指令ユニットには無人搬送台車の動作応答特性に関する処理手順や台車ずれ距離の修正手順のプログラムをそれぞれ搭載することができる。これにより、無人搬送台車の利用者は無人搬送台車を制御する移動手順の変更を台車移動指令ユニットにおいて容易に行なうことが可能となり、無人搬送台車の製造者は無人搬送台車の動作応答特性に関する処理手順等の制御ノウハウを容易に保護することが可能になる。 In addition, a bogie movement control unit outputs a rotational drive signal for controlling each drive wheel of the bogie part, and a sliding mode control of rotation correction signals of each drive wheel necessary for correcting the generated bogie deviation distance. Since the truck movement command unit has a program for basic movement procedures (forward, reverse, turn, stop, acceleration, deceleration, etc.) of the unmanned transport carriage, trajectory correction The command unit can be loaded with a processing procedure relating to the operation response characteristics of the unmanned transfer carriage and a program for correcting the carriage displacement distance. As a result, the user of the unmanned transfer carriage can easily change the movement procedure for controlling the unmanned transfer carriage in the dolly movement command unit, and the manufacturer of the unmanned transfer carriage processes the operation response characteristics of the unmanned transfer carriage It becomes possible to easily protect control know-how such as procedures.

台車運転制御手段が、更に、回転駆動信号と回転修正信号を組み合わせた回転指令信号を各駆動車輪の回転駆動源に入力する駆動源制御ユニットを有するので、各駆動車輪の回転駆動源を同時に独立させて駆動させることが容易になる。また、回転駆動信号と回転修正信号をそれぞれデジタル信号形式にすると、回転指令信号もデジタル信号形式となるため、各回転駆動源を高精度に制御することも可能になる。 Since the bogie driving control means further includes a drive source control unit for inputting a rotation command signal obtained by combining the rotation drive signal and the rotation correction signal to the rotation drive source of each drive wheel, the rotation drive source of each drive wheel is simultaneously independent. It becomes easy to make it drive. In addition, when the rotation drive signal and the rotation correction signal are respectively converted to digital signals, the rotation command signals are also converted to digital signals, so that each rotation drive source can be controlled with high precision.

本発明の一実施の形態に係る無人搬送台車の平面図である。It is a top view of the unmanned carrier truck concerning one embodiment of the present invention. 同無人搬送台車の側面図である。It is a side view of the unmanned conveyance truck. 同無人搬送台車の移動状態の説明図である。It is an explanatory view of a movement state of the unmanned conveyance truck. 自動運転操作部の構成を示す説明図である。It is explanatory drawing which shows the structure of an automatic driving | operation operation part. 台車ずれ検出手段の構成を示す説明図である。It is an explanatory view showing the composition of a truck gap detection means.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2に示すように、本発明の一実施の形態に係る無人搬送台車10は、床面11上を移動可能な台車部12と、台車部12に搭載され、台車部12を床面11に形成された磁気テープからなる誘導路13に沿って移動させる移動指令を台車部12に入力する自動運転操作部14とを備えている。なお、誘導路13の左右両側には、無人搬送台車10(台車部12)に、例えば、前進、後進、旋回、停止、増速、及び減速等の移動状態の切り替えに関する指示を与える磁気テープからなる磁気マーカ(図示せず)が複数配置されている。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the attached drawings for understanding of the present invention.
As shown in FIGS. 1 and 2, the unmanned transfer carriage 10 according to the embodiment of the present invention is mounted on a carriage 12 which can move on the floor surface 11 and the carriage 12, and the carriage 12 is The automatic driving operation unit 14 inputs a movement command to be moved along the guiding path 13 made of a magnetic tape formed on the surface 11 to the carriage unit 12. In addition, from the magnetic tape, for example, the unmanned transfer carriage 10 (the carriage 12) is instructed to switch the moving state such as forward, reverse, turning, stopping, accelerating, and decelerating on both left and right sides of the guiding path 13. A plurality of magnetic markers (not shown) are arranged. The details will be described below.

図3に示すように、床面11上を移動する無人搬送台車10上に、誘導路13による誘導方向をP軸方向、誘導路13の誘導方向に直交する方向をQ軸方向とする二次元座標系を設定する。従って、台車部12の移動が誘導路13に対してずれた場合、二次元座標系では、台車ずれ距離XはQ軸方向に生じ、台車ずれ角度θは台車部12の移動方向(台車部12の移動速度Vの方向)とP軸とのなす角度となる。 As shown in FIG. 3, on the unmanned transfer carriage 10 moving on the floor surface 11, a two-dimensional direction in which the guiding direction by the guiding path 13 is the P axis direction and the direction orthogonal to the guiding direction of the guiding path 13 is the Q axis direction Set coordinate system. Therefore, when the movement of the carriage 12 is displaced relative to the guideway 13, the carriage displacement distance X is generated in the Q axis direction in the two-dimensional coordinate system, and the carriage displacement angle θ is the movement direction of the carriage 12 (the carriage 12 (The direction of the moving velocity V) of the lens and the P axis.

図1、図2、図4に示すように、自動運転操作部14には、移動中の台車部12の誘導路13に対する台車ずれ距離Xを順次求めて出力する台車ずれ検出手段15と、台車ずれ距離Xを取得し、台車部12を台車ずれ距離Xを修正しながら誘導路13に沿って移動させる台車運転制御手段16とが設けられている。
ここで、台車運転制御手段16は、台車部12を移動及び停止させる際に、台車部12の幅方向(左右方向)の両側に設けられた左右の駆動車輪17、18(複数の駆動車輪の一例)のそれぞれの回転を制御する回転駆動信号を出力する台車移動指令ユニット19と、台車ずれ距離Xから台車ずれ距離Xの修正に必要な左右の駆動車輪17、18のそれぞれの回転修正量をスライディングモード制御により求めて回転修正信号として出力する軌道修正指令ユニット20と、回転駆動信号と回転修正信号を組み合わせて形成した回転指令信号を駆動車輪17、18のそれぞれの回転駆動源21、22に入力する駆動源制御ユニット23とを有する。なお、符号34、35は台車部12の幅方向の左側に設けられた従動車輪、符号36、37は台車部12の幅方向の右側に設けられた従動車輪である。
As shown in FIG. 1, FIG. 2 and FIG. 4, the automatic driving operation unit 14 sequentially detects and outputs a carriage displacement distance X with respect to the guiding path 13 of the carriage 12 under movement. A truck operation control means 16 is provided which acquires the shift distance X and moves the truck portion 12 along the guide path 13 while correcting the truck shift distance X.
Here, when the carriage operation control means 16 moves and stops the carriage 12, the left and right drive wheels 17, 18 provided on both sides in the width direction (left and right direction) of the carriage 12 can be used. Correction amounts of the drive wheels 17 and 18 required to correct the carriage displacement distance X from the carriage displacement distance X, and the carriage movement command unit 19 for outputting the rotational drive signal for controlling each rotation of A trajectory correction command unit 20 determined by sliding mode control and output as a rotation correction signal, and a rotation command signal formed by combining a rotation drive signal and a rotation correction signal are sent to rotation drive sources 21 and 22 of the drive wheels 17 and 18, respectively. And a drive source control unit 23 for inputting. Reference numerals 34 and 35 denote driven wheels provided on the left side in the width direction of the carriage 12, and reference numerals 36 and 37 denote driven wheels provided on the right side in the width direction of the carriage 12.

図5に示すように、台車ずれ検出手段15は、台車部12の下部に床面11に対向して台車部12の幅方向に沿って隙間を設けて配置された複数のホール素子24(磁気センサの一例)を備えた誘導路検知部25と、各ホール素子24が誘導路13を検知した際に誘導路検知部25から出力される各ホール素子24のアナログ検知信号から誘導路13の幅方向中心位置と台車部12の幅方向中心位置の中心間距離Δを求める演算部26と、中心間距離Δを台車ずれ距離Xとして出力する出力部27とを有している。 As shown in FIG. 5, the bogie misalignment detection means 15 has a plurality of Hall elements 24 (magnetic members arranged at intervals in the width direction of the bogie 12 facing the floor 11 at the lower part of the bogie 12). A guideway detection unit 25 provided with an example of a sensor and a width of the guideway 13 from an analog detection signal of each hall device 24 output from the guideway detection unit 25 when each hall element 24 detects the induction way 13 An arithmetic unit 26 for obtaining a center-to-center distance Δ between the direction center position and the width-direction center position of the carriage 12 and an output unit 27 for outputting the center distance Δ as the carriage displacement distance X.

演算部26は、各ホール素子24から出力されたアナログ検知信号をデジタル化する信号処理回路28(例えば、A/D変換器)と、信号処理回路28より出力される処理信号(デジタル信号)から中心間距離Δを求めるデジタルシグナルプロセッサを備えたずれ距離演算回路29とを有している。なお、ずれ距離演算回路29内には、ホール素子24の中心と誘導路13の幅方向中心との間の距離を変えながらそのときにホール素子24から出力されるアナログ検知信号値を求めて作成した各ホール素子24のアナログ検知信号値の距離特性と各ホール素子24の台車部12の幅方向中心からの距離に関する各データから構成されるデータベース30を予め保存しておく。従って、ずれ距離演算回路29では、各ホール素子24から出力されたアナログ検知信号をデジタル化した処理信号とデータベース30内のデータを用いて、デジタルシグナルプロセッサにより中心間距離Δを高精度かつ高速度で算出することができる。これにより、移動する台車部12で生じる台車ずれ距離Xの変動を、台車ずれ検出手段15を介して高精度かつ高速度で検出することができる。 The arithmetic unit 26 converts the analog detection signal output from each Hall element 24 into a signal processing circuit 28 (for example, an A / D converter) and a processing signal (digital signal) output from the signal processing circuit 28. And a shift distance calculation circuit 29 provided with a digital signal processor for determining the center distance Δ. Note that while the distance between the center of the Hall element 24 and the center in the width direction of the induction path 13 is changed in the displacement distance calculation circuit 29, the analog detection signal value output from the Hall element 24 is determined and created at that time. A database 30 composed of data on distance characteristics of the analog detection signal value of each Hall element 24 and the distance from the center in the width direction of the carriage 12 of each Hall element 24 is stored in advance. Therefore, in the shift distance calculation circuit 29, using the processing signal obtained by digitizing the analog detection signal output from each Hall element 24 and the data in the database 30, the center signal distance Δ can be made high accuracy and high speed by the digital signal processor. It can be calculated by As a result, it is possible to detect the fluctuation of the carriage displacement distance X caused by the carriage 12 which is moving, with high accuracy and high speed via the carriage displacement detection means 15.

図3に示すように、誘導路13に対して台車部12に台車ずれ距離Xが発生して、誘導路13による誘導方向と台車部12の移動方向(台車部12の移動速度Vの方向)との間にθの台車ずれ角度が発生した場合、台車部12の台車ずれ速度x(台車ずれ距離Xの時間微分)と台車部12の移動速度Vとの間には、x=Vsinθの関係が成立し、θが小さい場合x=Vθと近似できる。そこで、台車部12の移動速度Vを一定とする拘束下で、台車ずれ角度θの角速度ωを制御入力としてスライディングモード制御系を構成する。 As shown in FIG. 3, a bogie shift distance X is generated in the carriage 12 with respect to the guideway 13, and the guiding direction by the guideway 13 and the moving direction of the carriage 12 (direction of moving speed V of the carriage 12) Between the carriage displacement speed x of the carriage unit 12 (the time derivative of the carriage displacement distance X) and the movement velocity V of the carriage unit 12: x = V sin θ And when θ is small, it can be approximated as x = Vθ. Therefore, under the constraint that the moving speed V of the carriage 12 is constant, a sliding mode control system is configured with the angular velocity ω of the carriage offset angle θ as a control input.

スライディングモード制御の切り替え線は、台車ずれ距離Xと台車ずれ角度θを用いてX+αθ=0(αは制御下で台車部12の移動に影響を及ぼす正数)として与える。ここで、スライディングモード制御において、誘導路13に対する台車部12のずれは、x=Vθから、X+(α/V)x=0を満足するので、制御入力である角速度ωは、台車ずれ距離Xを用いて−kXの形式で与えることができる。なお、kはフィードバックゲインであって、台車ずれ距離Xと台車ずれ角度θで決まる変化領域において誘導路13に対する台車部12のずれの状態(X,θ)が、切り替え線上の台車ずれ角度θに対して+側にあるか、−側にあるか、切り替え線上の台車ずれ距離Xに対して+側にあるか、−側にあるかによりkを切り替える。 The switching line of sliding mode control is given as X + αθ = 0 (α is a positive number affecting the movement of the carriage 12 under control) using the carriage displacement distance X and the carriage displacement angle θ. Here, in the sliding mode control, the displacement of the carriage 12 with respect to the guiding path 13 satisfies X + (α / V) x = 0 from x = Vθ, so the angular velocity ω, which is the control input, is Can be given in the form -kX. Here, k is a feedback gain, and the state (X, θ) of displacement of the carriage 12 with respect to the guiding path 13 in the change region determined by the carriage displacement distance X and the carriage displacement angle θ is the carriage displacement angle θ on the switching line. In this case, k is switched depending on whether it is on the + side, on the-side, on the + side with respect to the carriage displacement distance X on the switching line, or on the-side.

台車部12の左右の駆動車輪17、18の速度をV、V、左右の駆動車輪17、18の間の距離をSとすると、台車部12の移動速度Vは(V+V)/2、台車ずれ角度θの角速度ωは(V−V)/Sで与えられる。このため、スライディングモード制御系の制御入力を台車ずれ角度θの角速度ωとする場合、軌道修正指令ユニット20から出力される回転修正信号は左右の駆動車輪17、18に回転速度差を生じさせる指令となる。
台車部12の移動速度Vを一定とする拘束下において、左右の駆動車輪17、18に回転速度差を発生させると、台車部12(無人搬送台車10)の移動速度Vを保った状態で、低回転速度の駆動車輪を内側にして台車部12に旋回が生じ、台車部12の移動方向が修正されることにより台車ずれ距離Xが減少する。
Assuming that the speeds of the left and right drive wheels 17 and 18 of the truck unit 12 are V L and V R and the distance between the left and right drive wheels 17 and 18 is S, the moving velocity V of the truck unit 12 is (V L + V R ) The angular velocity ω of the carriage offset angle θ is given by (V L −V R ) / S. For this reason, when the control input of the sliding mode control system is the angular velocity ω of the truck offset angle θ, the rotation correction signal output from the trajectory correction command unit 20 is a command that causes the left and right drive wheels 17 and 18 to generate a rotational speed difference. It becomes.
Under the constraint that the moving speed V of the carriage 12 is constant, when the rotational speed difference is generated in the left and right driving wheels 17 and 18, the moving speed V of the carriage 12 (the unmanned transfer carriage 10) is maintained. The low-rotational speed drive wheel is turned inward to cause the carriage 12 to turn, and the movement direction of the carriage 12 is corrected, whereby the carriage displacement distance X is reduced.

軌道修正指令ユニット20は、台車ずれ検出手段15より出力される台車ずれ距離Xから更に台車ずれ角度θを求め、台車ずれ距離Xと台車ずれ角度θの修正に必要な左右の駆動車輪17、18の回転速度差を演算するデジタルシグナルプロセッサを備えた回転修正演算回路31を有している。これにより、回転速度差の演算を高速で行うことができ、台車ずれ検出手段15から出力される台車ずれ距離Xの軌道修正指令ユニット20によるサンプリング間隔を短くすることが可能になる。その結果、スライディングモード制御で発生するリミットサイクルを回避することができる。 The trajectory correction command unit 20 further obtains a carriage displacement angle θ from the carriage displacement distance X output from the carriage displacement detection means 15, and the left and right drive wheels 17, 18 necessary for correcting the carriage displacement distance X and the carriage displacement angle θ. And a rotation correction operation circuit 31 provided with a digital signal processor that calculates the rotation speed difference. As a result, the calculation of the rotational speed difference can be performed at high speed, and the sampling interval by the trajectory correction command unit 20 of the carriage displacement distance X output from the carriage displacement detection means 15 can be shortened. As a result, it is possible to avoid the limit cycle generated in the sliding mode control.

台車移動指令ユニット19は、誘導路13に沿って台車部12を移動させる際の左右の駆動車輪17、18の回転駆動信号を形成して出力するプログラマブルロジックコントローラ32を有している。ここで、プログラマブルロジックコントローラ32には、無人搬送台車10の移動手順のプログラムのみが搭載されているので、無人搬送台車10の移動手順の作成、変更、及び修正の作業を容易に行うことができる。 The carriage movement command unit 19 has a programmable logic controller 32 that forms and outputs rotational drive signals of the left and right drive wheels 17 and 18 when moving the carriage 12 along the guide path 13. Here, since only the program of the moving procedure of the unmanned transfer carriage 10 is mounted on the programmable logic controller 32, the work of creating, changing and correcting the moving procedure of the unmanned transfer carriage 10 can be easily performed .

駆動源制御ユニット23には、左右の駆動車輪17、18の中で加速される側、例えば、左の駆動車輪17の回転駆動源21にプログラマブルロジックコントローラ32から入力される回転駆動信号と軌道修正指令ユニット20から入力される回転速度差(回転修正信号)とを加えて形成される回転指令信号を入力し、左右の駆動車輪17、18の中で減速される側、例えば、右の駆動車輪18の回転駆動源22に回転駆動信号から回転速度差を差し引いて形成される回転指令信号を入力する回転速度調節回路33が設けられている。 In the drive source control unit 23, for example, the rotational drive signal input from the programmable logic controller 32 to the rotational drive source 21 of the left drive wheel 17 and the side to be accelerated among the left and right drive wheels 17, 18 and trajectory correction The rotational command signal formed by adding the rotational speed difference (rotation correction signal) input from the command unit 20 is input, and the side decelerated among the left and right drive wheels 17 and 18, for example, the right drive wheel A rotational speed adjustment circuit 33 is provided to input a rotational command signal formed by subtracting the rotational speed difference from the rotational drive signal to the 18 rotational drive sources 22.

続いて、本発明の一実施の形態に係る無人搬送台車10の作用について説明する。
無人搬送台車10では、台車部12の誘導路13に対する台車ずれ距離Xを修正しながら誘導路13に沿って台車部12(無人搬送台車10)を移動させる台車運転制御手段16が、スライディングモード制御を採用している。このため、例えば、無人搬送台車10が移動する床面11の状態や積載物の重量変化等の不確定要素の影響を受けずに、発生した台車ずれ距離Xを適宜修正することができるので、無人搬送台車10が移動する現場での調整作業は不要になる。
Subsequently, the operation of the unmanned transfer carriage 10 according to the embodiment of the present invention will be described.
In the unmanned transfer carriage 10, the carriage operation control means 16 for moving the carriage 12 (the unmanned transfer carriage 10) along the guide route 13 while correcting the carriage displacement distance X of the carriage 12 with respect to the guide route 13 Is adopted. Therefore, for example, the generated truck displacement distance X can be appropriately corrected without being affected by uncertain factors such as the state of the floor surface 11 on which the unmanned transport carriage 10 moves and the weight change of the load, etc. Adjustment work at the site where the unmanned transfer carriage 10 moves becomes unnecessary.

また、台車運転制御手段16が、台車部12の左右の駆動車輪17、18を制御する回転駆動信号を出力する台車移動指令ユニット19と、発生した台車ずれ距離Xの修正に必要な左右の駆動車輪17、18の回転修正信号をスライディングモード制御により求めて出力する軌道修正指令ユニット20とを有するので、台車移動指令ユニット19には無人搬送台車10の基本的移動手順(前進、後進、旋回、停止、増速、及び減速等)のプログラムを、軌道修正指令ユニット20には無人搬送台車10の動作応答特性に関する処理手順や台車ずれ距離Xの修正手順のプログラムをそれぞれ搭載することができる。 Further, the carriage movement control unit 19 outputs the rotational drive signal for controlling the left and right drive wheels 17 and 18 of the carriage 12 and the left and right drive necessary for correction of the generated carriage displacement distance X. Since the trajectory correction command unit 20 for obtaining and outputting rotation correction signals of the wheels 17 and 18 by sliding mode control, the carriage movement command unit 19 performs basic movement procedures of the unmanned transfer carriage 10 (forward, reverse, turn, A program for stopping, accelerating, decelerating, etc.) can be installed in the trajectory correction command unit 20, respectively.

これにより、無人搬送台車10の利用者は、無人搬送台車10を制御する移動手順の変更を台車移動指令ユニット19に搭載されたプログラムを変更することにより容易に行なうことが可能となる。一方、無人搬送台車10の製造者は、無人搬送台車10の動作応答特性に関する処理手順等の制御ノウハウに関するプログラムを、例えば、チップ化して回転修正演算回路31内に組み込むことができるので、制御ノウハウの保護を確実に行うことができる。 As a result, the user of the unmanned transfer carriage 10 can easily change the movement procedure for controlling the unmanned transfer carriage 10 by changing the program mounted on the carriage movement command unit 19. On the other hand, the manufacturer of the unmanned transfer carriage 10 can, for example, chip and integrate a program for control know-how such as a processing procedure related to the operation response characteristic of the unmanned transfer carriage 10 into the rotation correction arithmetic circuit 31. Protection can be ensured.

台車運転制御手段16が、回転駆動信号と回転修正信号を組み合わせた回転指令信号を左右の駆動車輪17、18の回転駆動源21、22に入力する駆動源制御ユニット23を有するので、左右の駆動車輪17、18の回転駆動源21、22を同時に独立させて駆動させることが可能になる。また、回転駆動信号と回転修正信号をそれぞれデジタル信号形式にすると、回転指令信号もデジタル信号形式となるため、回転駆動源21、22を高精度に制御することも可能になる。 Since the carriage operation control means 16 has the drive source control unit 23 which inputs the rotation command signal combining the rotation drive signal and the rotation correction signal to the rotation drive sources 21 and 22 of the left and right drive wheels 17 and 18, It becomes possible to simultaneously drive the rotary drive sources 21 and 22 of the wheels 17 and 18 independently. Further, when the rotation drive signal and the rotation correction signal are respectively converted to digital signals, the rotation command signals are also converted to digital signals, so that the rotation drive sources 21 and 22 can be controlled with high accuracy.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
更に、本実施の形態とその他の実施の形態や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the configuration described in the above-described embodiment, and the items described in the appended claims It also includes other embodiments and modifications that are considered within the scope.
Furthermore, combinations of components included in the present embodiment and other embodiments and modifications are also included in the present invention.

10:無人搬送台車、11:床面、12:台車部、13:誘導路、14:自動運転操作部、15:台車ずれ検出手段、16:台車運転制御手段、17:左の駆動車輪、18:右の駆動車輪、19:台車移動指令ユニット、20:軌道修正指令ユニット、21、22:回転駆動源、23:駆動源制御ユニット、24:ホール素子、25:誘導路検知部、26:演算部、27:出力部、28:信号処理回路、29:ずれ距離演算回路、30:データベース、31:回転修正演算回路、32:プログラマブルロジックコントローラ、33:回転速度調節回路、34、35、36、37:従動車輪 10: Unmanned conveyance carriage, 11: floor, 12: carriage, 13: taxiway, 14: automatic operation operation unit, 15: carriage deviation detection means, 16: carriage operation control means, 17: left drive wheel, 18 : Right driving wheel, 19: Carriage movement command unit, 20: Trajectory correction command unit, 21, 22: Rotational drive source, 23: Drive source control unit, 24: Hall element, 25: Induction path detector, 26: Calculation Part 27: Output part 28: Signal processing circuit 29: Deviation distance arithmetic circuit 30: Database 31: Rotation correction arithmetic circuit 32: Programmable logic controller 33: Rotational speed adjustment circuit 34, 35, 36 37: driven wheel

Claims (5)

床面上を移動可能な台車部と、該台車部に搭載され、該台車部を該床面に形成された誘導路に沿って移動させる移動指令を該台車部に入力する自動運転操作部とを備えた無人搬送台車において、
前記自動運転操作部には、移動中の前記台車部の前記誘導路に対する台車ずれ距離を順次求めて出力する台車ずれ検出手段と、
前記台車ずれ距離を取得し、該台車ずれ距離を修正しながら前記台車部を前記誘導路に沿って移動させる台車運転制御手段とが設けられ、
前記台車運転制御手段は、前記台車部を移動及び停止させる際に、該台車部に設けられた複数の駆動車輪のそれぞれの回転を制御する回転駆動信号を出力する台車移動指令ユニットと、
前記台車ずれ距離から該台車ずれ距離の修正に必要な前記複数の駆動車輪のそれぞれの回転修正量をスライディングモード制御により求めて回転修正信号として出力する軌道修正指令ユニットと、
前記回転駆動信号と前記回転修正信号を組み合わせて形成した回転指令信号を前記複数の駆動車輪のそれぞれの回転駆動源に入力する駆動源制御ユニットとを有することを特徴とする無人搬送台車。
A carriage unit movable on a floor surface, and an automatic operation operation unit mounted on the carriage unit and inputting to the carriage unit a movement command for moving the carriage unit along a guideway formed on the floor surface; In an unmanned transport carriage equipped with
The automatic driving operation unit comprises a carriage displacement detection means for sequentially obtaining and outputting a carriage displacement distance of the carriage portion being moved relative to the guide path;
A truck operation control unit configured to move the truck unit along the guide path while acquiring the truck shift distance and correcting the truck shift distance;
The carriage operation control unit outputs a rotational drive signal for controlling rotation of each of a plurality of driving wheels provided on the carriage when the carriage is moved and stopped;
A trajectory correction command unit which obtains rotation correction amounts of the plurality of drive wheels necessary for correcting the carriage displacement distance from the carriage displacement distance by sliding mode control, and outputs them as a rotation correction signal;
And a drive source control unit configured to input a rotation command signal formed by combining the rotation drive signal and the rotation correction signal to the rotation drive sources of the plurality of drive wheels.
請求項1記載の無人搬送台車において、前記スライディングモード制御の切り替え線は、前記誘導路による誘導方向と前記台車部の移動方向との間の台車ずれ角度及び前記台車ずれ距離により決定されることを特徴とする無人搬送台車。 The unmanned transfer carriage according to claim 1, wherein the switching line of the sliding mode control is determined by a bogie deviation angle between the guiding direction by the guiding path and the movement direction of the bogie part and the bogie deviation distance. An unmanned transport truck featuring. 請求項2記載の無人搬送台車において、前記駆動車輪は前記台車部の幅方向の左右両側に設けられ、前記回転修正信号は左右の前記駆動車輪に回転速度差を生じさせる指令であることを特徴とする無人搬送台車。 The unmanned transfer carriage according to claim 2, wherein the drive wheels are provided on both left and right sides in the width direction of the carriage portion, and the rotation correction signal is a command to generate a rotational speed difference between the left and right drive wheels. An unmanned transport carriage. 請求項3記載の無人搬送台車において、前記誘導路は磁気テープからなり、前記台車ずれ検出手段は、前記台車部の下部に前記床面に対向して該台車部の幅方向に沿って隙間を設けて配置された複数の磁気センサと、前記各磁気センサが前記磁気テープを検知した際に出力されるアナログ検知信号から前記磁気テープの幅方向中心位置と前記台車部の幅方向中心位置の中心間距離を求める演算部と、該中心間距離を前記台車ずれ距離として出力する出力部とを有することを特徴とする無人搬送台車。 4. The unmanned transfer carriage according to claim 3, wherein the guide path is made of magnetic tape, and the carriage displacement detection means is disposed at a lower portion of the carriage facing the floor surface and a gap along the width direction of the carriage. A plurality of magnetic sensors provided and arranged, and a central position in the width direction of the magnetic tape and a central position in the width direction of the carriage from an analog detection signal output when each magnetic sensor detects the magnetic tape An unmanned carrier according to claim 1, further comprising: an operation unit for obtaining an inter-distance, and an output unit for outputting the center-to-center distance as the truck offset distance. 請求項4記載の無人搬送台車において、前記演算部は、前記アナログ検知信号をデジタル化する信号処理回路と、該信号処理回路より出力される処理信号から前記中心間距離を求めるデジタルシグナルプロセッサを備えたずれ距離演算回路とを有し、
前記軌道修正指令ユニットは、前記台車ずれ検出手段より出力される前記台車ずれ距離から更に前記台車ずれ角度を求めて左右の前記駆動車輪の前記回転速度差を演算するデジタルシグナルプロセッサを備えた回転修正演算回路を有し、
前記台車移動指令ユニットは、前記誘導路に沿って前記台車部を移動させる際の左右の前記駆動車輪の前記回転駆動信号を形成して出力するプログラマブルロジックコントローラを有していることを特徴とする無人搬送台車。
5. The unmanned transfer carriage according to claim 4, wherein the operation unit includes a signal processing circuit that digitizes the analog detection signal, and a digital signal processor that obtains the center-to-center distance from a processing signal output from the signal processing circuit. And a distance shift calculation circuit,
The trajectory correction instruction unit further includes a digital signal processor for calculating the rotational speed difference between the left and right drive wheels by further obtaining the carriage displacement angle from the carriage displacement distance output from the carriage displacement detection means. Has an arithmetic circuit,
The carriage movement command unit has a programmable logic controller that forms and outputs the rotational drive signals of the drive wheels on the left and right when moving the carriage along the guide path. Unmanned transport carriage.
JP2017079565A 2017-04-13 2017-04-13 Unmanned transport truck Pending JP2018177002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017079565A JP2018177002A (en) 2017-04-13 2017-04-13 Unmanned transport truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079565A JP2018177002A (en) 2017-04-13 2017-04-13 Unmanned transport truck

Publications (1)

Publication Number Publication Date
JP2018177002A true JP2018177002A (en) 2018-11-15

Family

ID=64282365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079565A Pending JP2018177002A (en) 2017-04-13 2017-04-13 Unmanned transport truck

Country Status (1)

Country Link
JP (1) JP2018177002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904866A (en) * 2021-01-28 2021-06-04 西安建筑科技大学 Inspection robot warehousing charging control method and system and outdoor inspection robot
CN112945235A (en) * 2021-01-29 2021-06-11 天津市科睿思奇智控技术有限公司 Method for angle detection and safety protection of translation machine based on magnetic field detection
KR102377972B1 (en) * 2020-10-26 2022-03-25 한국생산기술연구원 A moving stage path control device for performances that can control the moving stage's moving path using magnetic tracking
CN114735016A (en) * 2021-01-07 2022-07-12 长沙中车智驭新能源科技有限公司 Vehicle control method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377972B1 (en) * 2020-10-26 2022-03-25 한국생산기술연구원 A moving stage path control device for performances that can control the moving stage's moving path using magnetic tracking
CN114735016A (en) * 2021-01-07 2022-07-12 长沙中车智驭新能源科技有限公司 Vehicle control method and device
CN112904866A (en) * 2021-01-28 2021-06-04 西安建筑科技大学 Inspection robot warehousing charging control method and system and outdoor inspection robot
CN112945235A (en) * 2021-01-29 2021-06-11 天津市科睿思奇智控技术有限公司 Method for angle detection and safety protection of translation machine based on magnetic field detection

Similar Documents

Publication Publication Date Title
JP2018177002A (en) Unmanned transport truck
CN108473132B (en) Parking assistance system, parking assistance method, and program
US20080133102A1 (en) Running carriage, method of controlling the same, and running carriage system
JP6599420B2 (en) Automated guided vehicle
CA3017833A1 (en) Automatic guided vehicle
WO2010150580A1 (en) Travel control device for unmanned conveyance vehicle
JP5689278B2 (en) Control method of automatic guided vehicle
TWI732906B (en) Mobile robot and control method
JP2018194937A (en) Travel control device and travel control method of unmanned carrier
JP2007213356A (en) Automated guided facility
JP4984831B2 (en) Automated guided vehicle and control method thereof
JP6264541B2 (en) Approach control method and automatic guided equipment for automatic guided vehicle
WO2016072186A1 (en) Location detecting device, control method, and autonomous vehicle
JP2001005525A (en) Unmanned carriage system
JP2000132229A (en) Travel controlling method for movable body
WO2019082502A1 (en) Control system for mobile robot, and control method for mobile robot
JP5390360B2 (en) Automated guided vehicle
JP3846828B2 (en) Steering angle control device for moving body
JP3846829B2 (en) Steering angle control device for moving body
JP6085063B1 (en) Sensor arrangement structure for self-propelled transport vehicles
JPS62288909A (en) Distance measuring instrument for unattended carriage
JPH09269820A (en) Vehicle guiding device
Hang et al. A Principle of Trajectory Planning for an Autonomous Vehicle
JPS633313A (en) Measuring device for traveled distance of unmanned carrier
JP2005330076A (en) Combined system of moving shelf and unmanned forklift