JP6258561B1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6258561B1
JP6258561B1 JP2017521166A JP2017521166A JP6258561B1 JP 6258561 B1 JP6258561 B1 JP 6258561B1 JP 2017521166 A JP2017521166 A JP 2017521166A JP 2017521166 A JP2017521166 A JP 2017521166A JP 6258561 B1 JP6258561 B1 JP 6258561B1
Authority
JP
Japan
Prior art keywords
conductor
region
overvoltage protection
protection diode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017521166A
Other languages
Japanese (ja)
Other versions
JPWO2017203671A1 (en
Inventor
涼平 小谷
涼平 小谷
松原 寿樹
寿樹 松原
石塚 信隆
信隆 石塚
雅人 三川
雅人 三川
浩 押野
浩 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Application granted granted Critical
Publication of JP6258561B1 publication Critical patent/JP6258561B1/en
Publication of JPWO2017203671A1 publication Critical patent/JPWO2017203671A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Abstract

【課題】耐圧の低下を抑制し、信頼性を向上させることが可能な半導体装置を提供する。【解決手段】実施形態の半導体装置1では、逆バイアス印加状態において絶縁膜4近傍の拡散層3が空乏化するように導体部6,7の端部が過電圧保護ダイオード5に電気的に接続され、および/または、逆バイアス印加状態において絶縁膜4近傍の周辺半導体領域10が空乏化するように導体部8,9の端部が過電圧保護ダイオード5に電気的に接続されている。A semiconductor device capable of suppressing a decrease in breakdown voltage and improving reliability is provided. In the semiconductor device according to the embodiment, the end portions of the conductor portions are electrically connected to the overvoltage protection diode so that the diffusion layer near the insulating film is depleted in the reverse bias applied state. And / or the ends of the conductor portions 8 and 9 are electrically connected to the overvoltage protection diode 5 so that the peripheral semiconductor region 10 in the vicinity of the insulating film 4 is depleted in the reverse bias applied state.

Description

本発明は、半導体装置に関する。   The present invention relates to a semiconductor device.

従来、いわゆるMOS(Metal−Oxide−Semiconductor)構造を有する半導体装置が知られている。このMOS構造を有する半導体装置(以下「MOS型半導体装置」という。)には、例えば、IGBT(Insulated Gate Bipolar Transistor)や、MOSFET(MOS Field Effect Transistor)がある。   Conventionally, a semiconductor device having a so-called MOS (Metal-Oxide-Semiconductor) structure is known. Examples of the semiconductor device having the MOS structure (hereinafter referred to as “MOS type semiconductor device”) include an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (MOS Field Effect Transistor).

従来、MOS型半導体装置では過電圧保護対策として、直列接続されたツェナーダイオードが設けられる。具体的には、MOS型半導体装置の耐圧よりも低い電圧でブレークダウンするように設計されたツェナーダイオードをコレクタ−ゲート間に設けている(例えば特許文献1参照)。   Conventionally, in a MOS type semiconductor device, a Zener diode connected in series is provided as an overvoltage protection measure. Specifically, a Zener diode designed to break down at a voltage lower than the breakdown voltage of the MOS type semiconductor device is provided between the collector and the gate (see, for example, Patent Document 1).

MOS型半導体装置では、耐圧を確保するために半導体基板の周縁部に耐圧領域を設け、この耐圧領域に沿って導体部(フィールドプレートとも呼ばれる。)を形成する。この導体部は、半導体基板上に形成された絶縁膜の上に設けられる。これにより、耐圧領域の表面電位を安定化させて半導体装置の信頼性を向上させている。   In the MOS type semiconductor device, a withstand voltage region is provided in the peripheral portion of the semiconductor substrate in order to ensure a withstand voltage, and a conductor portion (also referred to as a field plate) is formed along the withstand voltage region. This conductor portion is provided on an insulating film formed on the semiconductor substrate. This stabilizes the surface potential of the withstand voltage region and improves the reliability of the semiconductor device.

特開2009−111304号公報JP 2009-111304 A

ところで、上記の半導体装置において、導体部と半導体基板との間に介在するシリコン酸化膜等の絶縁膜中には、Naイオン等の可動イオンが含まれる。このため、例えばIGBTのコレクタ電極を高電位に接続し且つエミッタ電極を接地した場合、絶縁膜中の可動イオンが移動することによって、半導体装置の耐圧が局所的に低下するおそれがあった。   By the way, in the semiconductor device described above, movable ions such as Na ions are contained in an insulating film such as a silicon oxide film interposed between the conductor portion and the semiconductor substrate. For this reason, for example, when the collector electrode of the IGBT is connected to a high potential and the emitter electrode is grounded, there is a possibility that the withstand voltage of the semiconductor device may locally decrease due to the movement of movable ions in the insulating film.

そこで、本発明は、耐圧の低下を抑制し、信頼性を向上させることが可能な半導体装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide a semiconductor device capable of suppressing a decrease in breakdown voltage and improving reliability.

本発明に係る半導体装置は、
半導体基板の一方の主面と他方の主面との間に主電流が流れる半導体装置であって、
前記半導体基板の前記一方の主面には、活性領域と、前記活性領域を取り囲み、前記半導体基板の周縁部を含む耐圧領域とが設けられ、
前記半導体装置は、
前記耐圧領域の前記一方の主面に選択的に形成され、前記活性領域を取り囲む第2導電型の拡散層と、
前記拡散層上、および当該拡散層の外側に位置する第1導電型の周辺半導体領域上に形成された絶縁膜と、
前記活性領域側から前記半導体基板の周縁部へ向かって前記絶縁膜上に交互に隣接配置された第1導電型の半導体層と第2導電型の半導体層とを有する過電圧保護ダイオードと、
前記絶縁膜上に前記耐圧領域に沿って形成された第1の導体部および第2の導体部と、を備え、
前記第1の導体部は、前記絶縁膜を介して前記拡散層の上方に配置され、前記第2の導体部は、前記絶縁膜を介して前記周辺半導体領域の上方に配置されており、
逆バイアス印加状態において前記絶縁膜近傍の前記拡散層が空乏化するように前記第1の導体部の端部が前記過電圧保護ダイオードに電気的に接続され、および/または、前記逆バイアス印加状態において前記絶縁膜近傍の前記周辺半導体領域が空乏化するように前記第2の導体部の端部が前記過電圧保護ダイオードに電気的に接続されていることを特徴とする。
A semiconductor device according to the present invention includes:
A semiconductor device in which a main current flows between one main surface and the other main surface of a semiconductor substrate,
The one main surface of the semiconductor substrate is provided with an active region and a breakdown voltage region that surrounds the active region and includes a peripheral portion of the semiconductor substrate,
The semiconductor device includes:
A second conductivity type diffusion layer selectively formed on the one main surface of the breakdown voltage region and surrounding the active region;
An insulating film formed on the diffusion layer and on the peripheral semiconductor region of the first conductivity type located outside the diffusion layer;
An overvoltage protection diode having a first conductive type semiconductor layer and a second conductive type semiconductor layer alternately disposed adjacent to each other on the insulating film from the active region side toward a peripheral edge of the semiconductor substrate;
A first conductor portion and a second conductor portion formed on the insulating film along the withstand voltage region;
The first conductor portion is disposed above the diffusion layer via the insulating film, and the second conductor portion is disposed above the peripheral semiconductor region via the insulating film,
The end portion of the first conductor portion is electrically connected to the overvoltage protection diode so that the diffusion layer in the vicinity of the insulating film is depleted in the reverse bias applied state, and / or in the reverse bias applied state. An end portion of the second conductor portion is electrically connected to the overvoltage protection diode so that the peripheral semiconductor region in the vicinity of the insulating film is depleted.

また、前記半導体装置において、
前記第1導電型がN型であり、前記第2導電型がP型であり、
前記第1の導体部の端部は、前記逆バイアス印加状態において前記第1の導体部の電位が自身の直下における前記拡散層の電位よりも高くなるように前記過電圧保護ダイオードの側面の第1の部位に電気的に接続され、
前記第2の導体部の端部は、前記逆バイアス印加状態において前記第2の導体部の電位が自身の直下における前記周辺半導体領域の電位よりも低くなるように前記過電圧保護ダイオードの前記側面の第2の部位に電気的に接続されているようにしてもよい。
In the semiconductor device,
The first conductivity type is N-type, the second conductivity type is P-type,
The end portion of the first conductor portion is a first side surface of the overvoltage protection diode so that the potential of the first conductor portion is higher than the potential of the diffusion layer immediately below the first conductor portion when the reverse bias is applied. Is electrically connected to
The end portion of the second conductor portion is formed on the side surface of the overvoltage protection diode so that the potential of the second conductor portion is lower than the potential of the peripheral semiconductor region immediately below the second conductor portion when the reverse bias is applied. It may be electrically connected to the second part.

また、前記半導体装置において、
前記第1の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記半導体基板の側端側に寄るように設けられているようにしてもよい。
In the semiconductor device,
The first conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
The third conductor constituent part may be formed narrower than the width of the other end of the second conductor constituent part and provided so as to approach the side end side of the semiconductor substrate. .

また、前記半導体装置において、
前記第2の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記活性領域側に寄るように設けられているようにしてもよい。
In the semiconductor device,
The second conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
The third conductor constituent portion may be formed narrower than the other end of the second conductor constituent portion and provided so as to be closer to the active region side.

また、前記半導体装置において、
前記第2の導体構成部は、前記過電圧保護ダイオードに近づくにつれて太くなるようにしてもよい。
In the semiconductor device,
The second conductor component may become thicker as it approaches the overvoltage protection diode.

また、前記半導体装置において、
前記第1導電型がP型であり、前記第2導電型がN型であり、
前記第1の導体部の端部は、前記逆バイアス印加状態において前記第1の導体部の電位が自身の直下における前記拡散層の電位よりも低くなるように前記過電圧保護ダイオードの側面の第1の部位に電気的に接続され、
前記第2の導体部の端部は、前記逆バイアス印加状態において前記第2の導体部の電位が自身の直下における前記周辺半導体領域の電位よりも高くなるように前記過電圧保護ダイオードの前記側面の第2の部位に電気的に接続されているようにしてもよい。
In the semiconductor device,
The first conductivity type is P-type, the second conductivity type is N-type,
The end portion of the first conductor portion is a first side surface of the overvoltage protection diode so that the potential of the first conductor portion is lower than the potential of the diffusion layer immediately below the first conductor portion when the reverse bias is applied. Is electrically connected to
The end portion of the second conductor portion is formed on the side surface of the overvoltage protection diode so that the potential of the second conductor portion is higher than the potential of the peripheral semiconductor region immediately below the second conductor portion when the reverse bias is applied. It may be electrically connected to the second part.

また、前記半導体装置において、
前記第1の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記活性領域側に寄るように設けられているようにしてもよい。
In the semiconductor device,
The first conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
The third conductor constituent portion may be formed narrower than the other end of the second conductor constituent portion and provided so as to be closer to the active region side.

また、前記半導体装置において、
前記第2の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記半導体基板の側端側に寄るように設けられているようにしてもよい。
In the semiconductor device,
The second conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
The third conductor constituent part may be formed narrower than the width of the other end of the second conductor constituent part and provided so as to approach the side end side of the semiconductor substrate. .

また、前記半導体装置において、
前記第2の導体構成部は、前記過電圧保護ダイオードに近づくにつれて太くなるようにしてもよい。
In the semiconductor device,
The second conductor component may become thicker as it approaches the overvoltage protection diode.

また、前記半導体装置において、
前記半導体基板はシリコン基板であり、前記絶縁膜はシリコン酸化膜であるようにしてもよい。
In the semiconductor device,
The semiconductor substrate may be a silicon substrate, and the insulating film may be a silicon oxide film.

また、前記半導体装置において、
前記第1の導体部および/または前記第2の導体部は、隣接する前記第1導電型の半導体層と前記第2導電型の半導体層の接合境界を跨ぐようにして前記過電圧保護ダイオードに接続されていてもよい。
In the semiconductor device,
The first conductor portion and / or the second conductor portion is connected to the overvoltage protection diode so as to straddle a junction boundary between the adjacent first conductive type semiconductor layer and the second conductive type semiconductor layer. May be.

また、前記半導体装置において、
前記拡散層中に形成された第1導電型の拡散領域と、
前記拡散領域上に形成されたエミッタ電極と、
前記過電圧保護ダイオード上に形成されたゲート電極と、
前記半導体基板の前記他方の主面に形成された第2導電型のコレクタ領域と、
前記コレクタ領域上に形成されたコレクタ電極と、
をさらに備えてもよい。
In the semiconductor device,
A diffusion region of a first conductivity type formed in the diffusion layer;
An emitter electrode formed on the diffusion region;
A gate electrode formed on the overvoltage protection diode;
A second conductivity type collector region formed on the other main surface of the semiconductor substrate;
A collector electrode formed on the collector region;
May be further provided.

また、前記半導体装置において、
前記拡散層中に形成された第1導電型の拡散領域と、
前記拡散領域上に形成されたエミッタ電極と、
前記過電圧保護ダイオード上に形成されたゲート電極と、
前記半導体基板の前記他方の主面に形成された第1導電型のドレイン領域と、
前記ドレイン領域上に形成され、前記ドレイン領域とショットキー障壁を形成するコレクタ電極と、
をさらに備えることを特徴とする請求項1〜10のいずれかに記載の半導体装置。
In the semiconductor device,
A diffusion region of a first conductivity type formed in the diffusion layer;
An emitter electrode formed on the diffusion region;
A gate electrode formed on the overvoltage protection diode;
A drain region of a first conductivity type formed on the other main surface of the semiconductor substrate;
A collector electrode formed on the drain region and forming a Schottky barrier with the drain region;
The semiconductor device according to claim 1, further comprising:

また、前記半導体装置において、
前記拡散層中に形成された第1導電型の拡散領域と、
前記拡散領域上に形成されたソース電極と、
前記過電圧保護ダイオード上に形成されたゲート電極と、
前記半導体基板の前記他方の主面に形成された第1導電型のドレイン領域と、
前記ドレイン領域上に形成されたドレイン電極と、
をさらに備えてもよい。
In the semiconductor device,
A diffusion region of a first conductivity type formed in the diffusion layer;
A source electrode formed on the diffusion region;
A gate electrode formed on the overvoltage protection diode;
A drain region of a first conductivity type formed on the other main surface of the semiconductor substrate;
A drain electrode formed on the drain region;
May be further provided.

また、前記半導体装置において、
前記耐圧領域の前記一方の主面に選択的に形成され、前記拡散層を取り囲む1本または複数本の第2導電型のガードリングをさらに備えてもよい。
In the semiconductor device,
One or a plurality of second-conductivity type guard rings that are selectively formed on the one main surface of the breakdown voltage region and surround the diffusion layer may be further provided.

本発明では、逆バイアス印加状態において絶縁膜近傍の拡散層が空乏化するように第1の導体部の端部が過電圧保護ダイオードの側面に電気的に接続され、および/または、逆バイアス印加状態において絶縁膜近傍の周辺半導体領域が空乏化するように第2の導体部の端部が過電圧保護ダイオードの側面に電気的に接続されている。これにより、逆バイアス印加時においては、空乏化した半導体領域の不純物の電荷によって上記絶縁膜中に分極電荷が生じる。この分極電荷に、絶縁膜中の可動イオンがトラップされるため、可動イオンの移動が抑制されることになる。よって、本発明によれば、逆バイアス印加時における耐圧の低下を抑制し、信頼性を向上させることができる。   In the present invention, the end portion of the first conductor portion is electrically connected to the side surface of the overvoltage protection diode so that the diffusion layer near the insulating film is depleted in the reverse bias application state, and / or the reverse bias application state. In FIG. 2, the end portion of the second conductor portion is electrically connected to the side surface of the overvoltage protection diode so that the peripheral semiconductor region in the vicinity of the insulating film is depleted. As a result, when a reverse bias is applied, polarization charges are generated in the insulating film by charges of impurities in the depleted semiconductor region. Since the movable ions in the insulating film are trapped by this polarization charge, the movement of the movable ions is suppressed. Therefore, according to the present invention, it is possible to suppress a decrease in breakdown voltage during reverse bias application and improve reliability.

第1の実施形態に係る半導体装置1(IGBT)の平面図である。1 is a plan view of a semiconductor device 1 (IGBT) according to a first embodiment. 図1のI−I線に沿う断面図である。It is sectional drawing which follows the II line | wire of FIG. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire of FIG. 導体部6,7,8,9と過電圧保護ダイオード5との間の接続領域を拡大した平面模式図である。3 is a schematic plan view in which a connection region between conductor portions 6, 7, 8, 9 and an overvoltage protection diode 5 is enlarged. FIG. 逆バイアス印加状態における各領域の電位の一例を示す図である。It is a figure which shows an example of the electric potential of each area | region in a reverse bias application state. 実施形態に係る導体部31〜35と過電圧保護ダイオード5の一部を示す平面図である。It is a top view which shows a part of conductor parts 31-35 and the overvoltage protection diode 5 which concern on embodiment. 図6Aの領域Rを拡大した平面図である。It is the top view to which the area | region R of FIG. 6A was expanded. 2本のガードリング25が設けられた半導体装置1の断面図である。1 is a cross-sectional view of a semiconductor device 1 provided with two guard rings 25. FIG. 拡散層3の導電型がN型、周辺半導体領域10の導電型がP型になった場合における、逆バイアス印加状態における各領域の電位の一例を示す図である。It is a figure which shows an example of the electric potential of each area | region in a reverse bias application state when the conductivity type of the diffused layer 3 becomes N type and the conductivity type of the peripheral semiconductor region 10 becomes P type. 第2の実施形態に係る半導体装置1A(縦型MOSFET)の断面図である。FIG. 6 is a cross-sectional view of a semiconductor device 1A (vertical MOSFET) according to a second embodiment. 第1の実施形態の変形例に係る半導体装置1B(IGBT)の断面図である。It is sectional drawing of the semiconductor device 1B (IGBT) which concerns on the modification of 1st Embodiment.

以下、図面を参照しつつ本発明の実施形態に係る半導体装置について説明する。   A semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings.

(第1の実施形態)
本発明の第1の実施形態について説明する。第1の実施形態に係る半導体装置1は、IGBTである。
(First embodiment)
A first embodiment of the present invention will be described. The semiconductor device 1 according to the first embodiment is an IGBT.

半導体装置1では、半導体基板2の上面2a(一方の主面)と下面2b(他方の主面)との間に主電流が流れる。なお、半導体基板2は、本実施形態ではシリコン基板である。ただし、本発明はこれに限るものではなく、その他の半導体基板(例えばSiC基板、GaN基板等)であってもよい。また、半導体基板2の導電型は、本実施形態ではN型であるが、これに限定されない。   In the semiconductor device 1, a main current flows between the upper surface 2 a (one main surface) and the lower surface 2 b (the other main surface) of the semiconductor substrate 2. The semiconductor substrate 2 is a silicon substrate in this embodiment. However, the present invention is not limited to this, and other semiconductor substrates (for example, SiC substrates, GaN substrates, etc.) may be used. Moreover, although the conductivity type of the semiconductor substrate 2 is N type in this embodiment, it is not limited to this.

図1に示すように、半導体基板2の上面2aには、主電流が流れる活性領域Aと、この活性領域Aを取り囲む耐圧領域Bとが設けられている。耐圧領域Bは、半導体基板2の周縁部を含む。ここで、「周縁部」とは、半導体基板2の側面を含む、半導体基板2の周縁の部分のことである。なお、図1では、絶縁膜15、表面保護膜16、エミッタ電極21、ゲート電極22、ストッパ電極24は図示していない。   As shown in FIG. 1, an active region A in which a main current flows and a breakdown voltage region B surrounding the active region A are provided on the upper surface 2 a of the semiconductor substrate 2. The breakdown voltage region B includes the peripheral edge of the semiconductor substrate 2. Here, the “peripheral portion” is a peripheral portion of the semiconductor substrate 2 including the side surface of the semiconductor substrate 2. In FIG. 1, the insulating film 15, the surface protective film 16, the emitter electrode 21, the gate electrode 22, and the stopper electrode 24 are not shown.

図1〜図3に示すように、半導体装置1は、P型の拡散層3と、絶縁膜4と、過電圧保護ダイオード5と、導体部6,7,8,9と、P型のコレクタ領域12と、N型の拡散領域13と、N型のストッパ領域14と、エミッタ電極21と、ゲート電極22と、コレクタ電極23と、ストッパ電極24とを備えている。なお、半導体基板2の上面2aには、ゲートパット(図示せず)が設けられる。   As shown in FIGS. 1 to 3, the semiconductor device 1 includes a P-type diffusion layer 3, an insulating film 4, an overvoltage protection diode 5, conductor portions 6, 7, 8 and 9, and a P-type collector region. 12, an N type diffusion region 13, an N type stopper region 14, an emitter electrode 21, a gate electrode 22, a collector electrode 23, and a stopper electrode 24. A gate pad (not shown) is provided on the upper surface 2 a of the semiconductor substrate 2.

拡散層3は、耐圧領域Bの上面2aに選択的に形成されており、活性領域Aを取り囲んでいる。この拡散層3は、p型ベース領域とも呼ばれる。なお、図1の境界P1とP2で囲まれた領域がp型ベース領域である。境界P2が活性領域Aと耐圧領域Bの境界となっている。なお、拡散層3の深さは、例えば2μm〜10μmである。拡散層3の不純物濃度は、例えば1×1014cm−3〜1×1016cm−3である。The diffusion layer 3 is selectively formed on the upper surface 2 a of the breakdown voltage region B and surrounds the active region A. This diffusion layer 3 is also called a p-type base region. Note that a region surrounded by the boundaries P1 and P2 in FIG. 1 is a p-type base region. The boundary P2 is the boundary between the active region A and the withstand voltage region B. The depth of the diffusion layer 3 is, for example, 2 μm to 10 μm. The impurity concentration of the diffusion layer 3 is, for example, 1 × 10 14 cm −3 to 1 × 10 16 cm −3 .

絶縁膜4は、図2に示すように、拡散層3上、および周辺半導体領域10上に形成されている。ここで、周辺半導体領域10は、拡散層3の外側に位置するN型の半導体領域である。この周辺半導体領域10の不純物濃度は、例えば1×1013cm−3〜1×1015cm−3である。As shown in FIG. 2, the insulating film 4 is formed on the diffusion layer 3 and the peripheral semiconductor region 10. Here, the peripheral semiconductor region 10 is an N-type semiconductor region located outside the diffusion layer 3. The impurity concentration of the peripheral semiconductor region 10 is, for example, 1 × 10 13 cm −3 to 1 × 10 15 cm −3 .

絶縁膜4は、例えばフィールド酸化膜である。本実施形態では、絶縁膜4は、シリコン酸化膜(SiO膜)である。絶縁膜4の厚さは、例えば200nm〜2000nmである。The insulating film 4 is a field oxide film, for example. In the present embodiment, the insulating film 4 is a silicon oxide film (SiO 2 film). The thickness of the insulating film 4 is, for example, 200 nm to 2000 nm.

過電圧保護ダイオード5は、活性領域A側から半導体基板2の周縁部へ向かって絶縁膜4上に交互に隣接配置されたN型の半導体層5aとP型の半導体層5bとを有する。この過電圧保護ダイオード5は、複数のツェナーダイオードが直列接続されたものである。   The overvoltage protection diode 5 includes N-type semiconductor layers 5a and P-type semiconductor layers 5b that are alternately disposed adjacently on the insulating film 4 from the active region A side toward the peripheral edge of the semiconductor substrate 2. The overvoltage protection diode 5 is formed by connecting a plurality of Zener diodes in series.

拡散領域13は、拡散層3中に形成されたN型の半導体領域である。図2に示すように、この拡散領域13上にエミッタ電極21が形成されている。なお、拡散領域13の不純物濃度は、例えば1×1019cm−3〜1×1021cm−3である。The diffusion region 13 is an N-type semiconductor region formed in the diffusion layer 3. As shown in FIG. 2, an emitter electrode 21 is formed on the diffusion region 13. The impurity concentration of the diffusion region 13 is, for example, 1 × 10 19 cm −3 to 1 × 10 21 cm −3 .

N型のストッパ領域14は、半導体基板2の側端における上面2aに形成されている。ストッパ領域14の不純物濃度は周辺半導体領域10よりも高い。ストッパ領域14上に、ストッパ電極24が形成されている。このストッパ電極24は、過電圧保護ダイオード5の他端に電気的に接続されている。   The N-type stopper region 14 is formed on the upper surface 2 a at the side end of the semiconductor substrate 2. The impurity concentration of the stopper region 14 is higher than that of the peripheral semiconductor region 10. A stopper electrode 24 is formed on the stopper region 14. The stopper electrode 24 is electrically connected to the other end of the overvoltage protection diode 5.

ゲート電極22は、絶縁膜4を介して拡散層3の上方に設けられている。このゲート電極22は、本実施形態では、過電圧保護ダイオード5上に形成されている。より詳しくは、図2に示すように、ゲート電極22は過電圧保護ダイオード5の活性領域A側の一端に電気的に接続されている。   The gate electrode 22 is provided above the diffusion layer 3 with the insulating film 4 interposed therebetween. The gate electrode 22 is formed on the overvoltage protection diode 5 in this embodiment. More specifically, as shown in FIG. 2, the gate electrode 22 is electrically connected to one end of the overvoltage protection diode 5 on the active region A side.

P型のコレクタ領域12は、半導体基板2の下面2bに形成されている。このコレクタ領域12の不純物濃度は、例えば1×1017cm−3〜1×1019cm−3である。図2に示すように、コレクタ領域12上にコレクタ電極23が形成されている。なお、コレクタ領域12の上にN型のバッファ領域11が設けられてもよい。このバッファ領域11の不純物濃度は、例えば1×1016cm−3〜1×1018cm−3である。The P-type collector region 12 is formed on the lower surface 2 b of the semiconductor substrate 2. The impurity concentration of the collector region 12 is, for example, 1 × 10 17 cm −3 to 1 × 10 19 cm −3 . As shown in FIG. 2, a collector electrode 23 is formed on the collector region 12. Note that an N-type buffer region 11 may be provided on the collector region 12. The impurity concentration of the buffer region 11 is, for example, 1 × 10 16 cm −3 to 1 × 10 18 cm −3 .

また、図1および図2に示すように、半導体装置1は、過電圧保護ダイオード5を被覆する絶縁膜15と、半導体装置1の上面2a側全体を被覆する表面保護膜16とをさらに備えている。絶縁膜15は、例えばBPSG(Boron Phosphorous Silicate Glass)膜である。表面保護膜16は、図2に示すように、半導体基板2の上面2a側全体を被覆している。表面保護膜16は、例えばポリイミド膜である。   As shown in FIGS. 1 and 2, the semiconductor device 1 further includes an insulating film 15 that covers the overvoltage protection diode 5 and a surface protective film 16 that covers the entire upper surface 2 a side of the semiconductor device 1. . The insulating film 15 is, for example, a BPSG (Boron Phosphorous Silicate Glass) film. As shown in FIG. 2, the surface protective film 16 covers the entire upper surface 2 a side of the semiconductor substrate 2. The surface protective film 16 is a polyimide film, for example.

次に、耐圧領域Bに設けられた導体部6,7,8,9について詳しく説明する。   Next, the conductor parts 6, 7, 8, and 9 provided in the withstand voltage region B will be described in detail.

図1に示すように、導体部6,7(第1の導体部)および導体部8,9(第2の導体部)は、絶縁膜4上に耐圧領域Bに沿って形成されている。導体部6,7,8,9(より正確には、導体構成部6a,7a,8a,9a)は、互いに平行に形成されている。導体部6,7,8,9は、例えばポリシリコンまたはアルミニウム等から構成される。なお、導体部の本数は4本に限るものではない。   As shown in FIG. 1, the conductor portions 6 and 7 (first conductor portion) and the conductor portions 8 and 9 (second conductor portion) are formed on the insulating film 4 along the breakdown voltage region B. The conductor portions 6, 7, 8, 9 (more precisely, the conductor constituent portions 6a, 7a, 8a, 9a) are formed in parallel to each other. The conductor parts 6, 7, 8, 9 are made of, for example, polysilicon or aluminum. Note that the number of conductor portions is not limited to four.

図3に示すように、導体部6,7は、絶縁膜4を介して拡散層3の上方に配置されており、導体部8,9は、絶縁膜4を介して周辺半導体領域10の上方に配置されている。   As shown in FIG. 3, the conductor portions 6 and 7 are disposed above the diffusion layer 3 via the insulating film 4, and the conductor portions 8 and 9 are located above the peripheral semiconductor region 10 via the insulating film 4. Is arranged.

図4に示すように、導体部6,7,8,9は、導体構成部6a,7a,8a,9a(第1の導体構成部)と、導体構成部6b,7b,8b,9b(第2の導体構成部)と、導体構成部6c,7c,8c,9c(第3の導体構成部)とを有している。なお、図4は、導体部6,7,8,9の概略構成を説明するための模式図であり、図1の平面図と対応するものではない。   As shown in FIG. 4, the conductor parts 6, 7, 8, and 9 are composed of conductor constituent parts 6a, 7a, 8a, and 9a (first conductor constituent parts) and conductor constituent parts 6b, 7b, 8b, and 9b (first conductor constituent parts). 2 conductor constituent parts) and conductor constituent parts 6c, 7c, 8c, 9c (third conductor constituent parts). 4 is a schematic diagram for explaining a schematic configuration of the conductor portions 6, 7, 8, and 9, and does not correspond to the plan view of FIG.

導体構成部6a,7a,8a,9aは、導体部6,7,8,9のうち、半導体基板2の周縁部(側端)に沿って延在する部分である。導体構成部6b,7b,8b,9bは、導体構成部6a,7a,8a,9aに一端が接続され、過電圧保護ダイオード5の近傍まで延在している。導体構成部6c,7c,8c,9cは、導体構成部6b,7b,8b,9bと過電圧保護ダイオード5を電気的に接続する。   The conductor constituent portions 6 a, 7 a, 8 a, and 9 a are portions extending along the peripheral edge (side end) of the semiconductor substrate 2 among the conductor portions 6, 7, 8, and 9. The conductor constituent parts 6b, 7b, 8b, 9b are connected at one end to the conductor constituent parts 6a, 7a, 8a, 9a and extend to the vicinity of the overvoltage protection diode 5. The conductor constituent parts 6c, 7c, 8c, 9c electrically connect the conductor constituent parts 6b, 7b, 8b, 9b and the overvoltage protection diode 5.

図4に示すように、導体構成部6b,7b,8b,9bは、導体構成部6a,7a,8a,9aよりも幅広に形成されている。また、導体構成部6c,7c,8c,9cは、導体構成部6b,7b,8b,9bの他端(過電圧保護ダイオード5側の端部)の幅よりも幅狭に形成されている。そして、導体構成部6c,7c,8c,9cは、拡散層3と周辺半導体領域10間のpn接合境界P1側に寄るように設けられている。すなわち、図4において、導体構成部6c、7cは右側に寄るように設けられ、導体構成部8c,9cは左側に寄るように設けられている。より一般的には、導体構成部6c,7cは半導体基板2の側端側(高電位側)に寄るように設けられ、導体構成部8c,9cは、半導体基板2の活性領域A側(低電位側)に寄るように設けられている。   As shown in FIG. 4, the conductor constituent portions 6b, 7b, 8b, 9b are formed wider than the conductor constituent portions 6a, 7a, 8a, 9a. The conductor constituent parts 6c, 7c, 8c, 9c are formed to be narrower than the width of the other end (end part on the overvoltage protection diode 5 side) of the conductor constituent parts 6b, 7b, 8b, 9b. The conductor constituent portions 6 c, 7 c, 8 c, and 9 c are provided so as to approach the pn junction boundary P 1 side between the diffusion layer 3 and the peripheral semiconductor region 10. That is, in FIG. 4, the conductor constituent parts 6c and 7c are provided so as to approach the right side, and the conductor constituent parts 8c and 9c are provided so as to approach the left side. More generally, the conductor constituent portions 6c and 7c are provided so as to approach the side end side (high potential side) of the semiconductor substrate 2, and the conductor constituent portions 8c and 9c are provided on the active region A side (low side) of the semiconductor substrate 2. (Potential side).

次に、図5を参照して、上記半導体装置1の逆バイアス印加状態における各領域の電位について具体的に説明する。ここで、「逆バイアス印加状態」は、第1の実施形態では、コレクタ電極23が高電位(例えば直流電源の正極)に接続され、エミッタ電極21が接地され、ゲート電極22にIGBTがオンしない程度の低電圧が印加された状態のことである。また、図5中の数値は、コレクタ電極23に400Vの高電位を接続し、エミッタ電極21を接地し、ゲート電極22に10〜20VのOFF電圧を印加した場合の例を示している。   Next, with reference to FIG. 5, the potential of each region in the reverse bias application state of the semiconductor device 1 will be specifically described. Here, in the “reverse bias applied state”, in the first embodiment, the collector electrode 23 is connected to a high potential (for example, the positive electrode of the DC power supply), the emitter electrode 21 is grounded, and the IGBT is not turned on to the gate electrode 22. This is a state in which a low voltage of about a level is applied. The numerical values in FIG. 5 show an example in which a high potential of 400 V is connected to the collector electrode 23, the emitter electrode 21 is grounded, and an OFF voltage of 10 to 20 V is applied to the gate electrode 22.

逆バイアス印加状態において、図5に示すように、絶縁膜4近傍の拡散層3が空乏化するように、導体部6,7の端部は過電圧保護ダイオード5の側面に電気的に接続されている。より具体的には、逆バイアス印加状態において導体部6,7の電位が自身の直下における拡散層3の電位よりも高くなるように、導体部6,7の端部は過電圧保護ダイオード5の側面の第1の部位に電気的に接続されている。これは、導体構成部6c、7cがpn接合境界P1側(すなわち、高電位側)に寄るように設けられていることに対応する。   In the reverse bias applied state, as shown in FIG. 5, the end portions of the conductor portions 6 and 7 are electrically connected to the side surface of the overvoltage protection diode 5 so that the diffusion layer 3 in the vicinity of the insulating film 4 is depleted. Yes. More specifically, the end portions of the conductor portions 6 and 7 are side surfaces of the overvoltage protection diode 5 so that the potentials of the conductor portions 6 and 7 are higher than the potential of the diffusion layer 3 immediately below the reverse bias application state. Is electrically connected to the first portion of the. This corresponds to the conductor constituent portions 6c and 7c being provided so as to approach the pn junction boundary P1 side (that is, the high potential side).

同様に、逆バイアス印加状態において絶縁膜4近傍の周辺半導体領域10が空乏化するように、導体部8,9の端部は過電圧保護ダイオード5の側面に電気的に接続されている。より具体的には、逆バイアス印加状態において導体部8,9の電位が自身の直下における周辺半導体領域10の電位よりも低くなるように、導体部8,9の端部は過電圧保護ダイオード5の当該側面の第2の部位に電気的に接続されている。これは、導体構成部8c、9cがpn接合境界P1側(すなわち、低電位側)に寄るように設けられていることに対応する。   Similarly, the end portions of the conductor portions 8 and 9 are electrically connected to the side surface of the overvoltage protection diode 5 so that the peripheral semiconductor region 10 near the insulating film 4 is depleted in the reverse bias applied state. More specifically, the end portions of the conductor portions 8 and 9 are connected to the overvoltage protection diode 5 so that the potentials of the conductor portions 8 and 9 are lower than the potential of the peripheral semiconductor region 10 immediately under the reverse bias applied state. It is electrically connected to the second part of the side surface. This corresponds to the conductor components 8c and 9c being provided so as to be closer to the pn junction boundary P1 side (that is, the low potential side).

上記のように導体部6,7,8,9の端部が過電圧保護ダイオード5に接続されることにより、図5のように絶縁膜4の近傍に空乏領域が発生する。   By connecting the end portions of the conductor portions 6, 7, 8, 9 to the overvoltage protection diode 5 as described above, a depletion region is generated in the vicinity of the insulating film 4 as shown in FIG.

すなわち、導体構成部6aの電位(125V)は、導体構成部6aの直下における拡散層3の電位(100V)より高いため、絶縁膜4近傍におけるP型の拡散層3が空乏化する。同様に、導体構成部7aの電位(225V)は、導体構成部7aの直下における拡散層3の電位(200V)より高いため、絶縁膜4近傍の拡散層3が空乏化する。そして、このように空乏化した半導体領域における不純物の電荷(すなわち、アクセプタの負電荷)によって、絶縁膜4中に正の分極電荷が生じる。   That is, since the potential (125V) of the conductor component 6a is higher than the potential (100V) of the diffusion layer 3 immediately below the conductor component 6a, the P-type diffusion layer 3 in the vicinity of the insulating film 4 is depleted. Similarly, since the potential (225V) of the conductor component 7a is higher than the potential (200V) of the diffusion layer 3 immediately below the conductor component 7a, the diffusion layer 3 near the insulating film 4 is depleted. Then, a positive polarization charge is generated in the insulating film 4 by the charge of the impurity in the semiconductor region thus depleted (that is, the negative charge of the acceptor).

導体構成部8aの電位(275V)は、導体構成部8aの直下における周辺半導体領域10の電位(300V)より低いため、絶縁膜4近傍におけるN型の周辺半導体領域10が空乏化する。同様に、導体構成部9aの電位(375V)は、導体構成部9aの直下における周辺半導体領域10の電位(400V)より低いため、絶縁膜4近傍の周辺半導体領域10が空乏化する。そして、このように空乏化した半導体領域における不純物の電荷(すなわち、ドナーの正電荷)によって、絶縁膜4中に負の分極電荷が生じる。   Since the potential (275V) of the conductor constituent portion 8a is lower than the potential (300V) of the peripheral semiconductor region 10 immediately below the conductor constituent portion 8a, the N-type peripheral semiconductor region 10 in the vicinity of the insulating film 4 is depleted. Similarly, since the potential (375 V) of the conductor component 9a is lower than the potential (400 V) of the peripheral semiconductor region 10 immediately below the conductor component 9a, the peripheral semiconductor region 10 near the insulating film 4 is depleted. Then, a negative polarization charge is generated in the insulating film 4 due to the charge of the impurity (that is, the positive charge of the donor) in the semiconductor region thus depleted.

上記のようにして絶縁膜4中に分極電荷が生じる。この分極電荷に、絶縁膜4中のNaイオン等の可動イオンがトラップされるため、可動イオンの移動が抑制されることになる。これにより、本実施形態によれば、耐圧の低下を抑制し、信頼性を向上させることができる半導体装置1を提供することができる。   As described above, polarization charges are generated in the insulating film 4. Since the movable ions such as Na ions in the insulating film 4 are trapped by this polarization charge, the movement of the movable ions is suppressed. Thereby, according to this embodiment, the semiconductor device 1 which can suppress the fall of a pressure | voltage resistance and can improve reliability can be provided.

上記のように、導体部6,7は、導体構成部6b,7bにより過電圧保護ダイオード5の高電位側(半導体基板2の側端側)に変位して接続され、導体部8,9は、導体構成部8b,9bにより過電圧保護ダイオード5の低電位側(活性領域A側)に変位して接続される。   As described above, the conductor parts 6 and 7 are displaced and connected to the high potential side (side end side of the semiconductor substrate 2) of the overvoltage protection diode 5 by the conductor constituent parts 6b and 7b, and the conductor parts 8 and 9 are The conductor components 8b and 9b are displaced and connected to the low potential side (active region A side) of the overvoltage protection diode 5.

なお、導体部6,7,8,9の全てが上記構成を有することは必須ではなく、必要に応じて導体部6,7,8,9のうち少なくともいずれか一つが上記構成を有するようにしてもよい。   Note that it is not essential that all of the conductor portions 6, 7, 8, 9 have the above-described configuration, and at least one of the conductor portions 6, 7, 8, 9 has the above-described configuration as necessary. May be.

また、導体部の形状について、図4で説明したものの他にも様々なものが想定可能である。例えば、図6Aでは、5本の導体部、すなわち、導体部31,32,33(第1の導体部)および導体部34,35(第2の導体部)が図示されている。これら導体部31,32,33,34,35は、導体構成部31a,32a,33a,34a,35a(第1の導体構成部)と、導体構成部31b,32b,33b,34b,35b(第2の導体構成部)と、導体構成部31c,32c,33c,34c,35c(第3の導体構成部)とを有する。   In addition to the shape described in FIG. 4, various shapes of the conductor portion can be assumed. For example, in FIG. 6A, five conductor portions, that is, conductor portions 31, 32, 33 (first conductor portion) and conductor portions 34, 35 (second conductor portion) are illustrated. The conductor portions 31, 32, 33, 34, and 35 are composed of the conductor constituent portions 31a, 32a, 33a, 34a, and 35a (first conductor constituent portions) and the conductor constituent portions 31b, 32b, 33b, 34b, and 35b (first portion). 2 conductor constituent parts) and conductor constituent parts 31c, 32c, 33c, 34c, 35c (third conductor constituent parts).

図6Aに示すように、導体構成部31b,32b,33b,34b,35bは、活性領域Aに近づきつつ過電圧保護ダイオード5の近傍まで延在している。換言すれば、導体構成部31b,32b,33b,34b,35bは、過電圧保護ダイオード5から遠ざかるにつれて半導体基板2の側端に寄るように設けられている。これにより、導体構成部31a,32a,33a,34a,35a間の距離を短くして活性領域Aの面積を広く確保しつつ、図5で説明したのと同様に、逆バイアス印加状態における空乏化領域を形成することができる。   As shown in FIG. 6A, the conductor constituent portions 31b, 32b, 33b, 34b, and 35b extend to the vicinity of the overvoltage protection diode 5 while approaching the active region A. In other words, the conductor constituent portions 31 b, 32 b, 33 b, 34 b, and 35 b are provided so as to approach the side end of the semiconductor substrate 2 as the distance from the overvoltage protection diode 5 increases. As a result, the distance between the conductor constituent portions 31a, 32a, 33a, 34a, and 35a is shortened to secure a large area of the active region A, and the depletion in the reverse bias applied state is performed as described with reference to FIG. Regions can be formed.

また、導体構成部31b,32b,33b,34b,35bは、図6Aに示すように、過電圧保護ダイオード5に近づくにつれて太くなるように形成されている。これにより、過電圧保護ダイオード5の延在方向(図6Aの上下方向)に導体構成部31c,32c,33c,34c,35cとの接続点から離れるにつれて、逆バイアス印加状態における電位差が大きくなる。電位差とは、導体部6,7の電位と直下の拡散層3の電位との差、あるいは、逆バイアス印加状態における導体部8,9の電位と直下の周辺半導体領域10の電位との差のことである。   Further, the conductor constituent portions 31b, 32b, 33b, 34b, and 35b are formed so as to become thicker as they approach the overvoltage protection diode 5, as shown in FIG. 6A. As a result, the potential difference in the reverse bias applied state increases as the distance from the connection point with the conductor components 31c, 32c, 33c, 34c, and 35c increases in the extending direction of the overvoltage protection diode 5 (vertical direction in FIG. 6A). The potential difference is the difference between the potential of the conductor portions 6 and 7 and the potential of the diffusion layer 3 immediately below, or the difference between the potential of the conductor portions 8 and 9 and the potential of the peripheral semiconductor region 10 immediately below in the reverse bias applied state. That is.

例えば、図6Bにおいて、導体構成部31bの端点E1における電位差は導体構成部31c側の端点E2における電位差よりも大きくなるため、絶縁膜4中に分極電荷が大きくなって可動イオンの移動をより効果的に抑制することができる。   For example, in FIG. 6B, since the potential difference at the end point E1 of the conductor constituting portion 31b is larger than the potential difference at the end point E2 on the conductor constituting portion 31c side, the polarization charge increases in the insulating film 4 and the movement of mobile ions becomes more effective. Can be suppressed.

図6Aおよび図6Bに示すように、導体構成部31c〜35cは、過電圧保護ダイオード5の半導体層5aまたは半導体層5bに接続されている。例えば導体構成部31c〜35cがポリシリコン等の半導体から構成される場合、導体構成部31c〜35cは、半導体層5aおよび半導体層5bのうち、自身の導電型と同じ導電型の半導体層に接続されている。また、導体構成部31c〜35cは、互いに異なる導電型であってもよい。   As illustrated in FIGS. 6A and 6B, the conductor constituent portions 31 c to 35 c are connected to the semiconductor layer 5 a or the semiconductor layer 5 b of the overvoltage protection diode 5. For example, when the conductor constituent portions 31c to 35c are made of a semiconductor such as polysilicon, the conductor constituent portions 31c to 35c are connected to a semiconductor layer having the same conductivity type as that of the semiconductor layer 5a and the semiconductor layer 5b. Has been. Also, the conductor constituent portions 31c to 35c may have different conductivity types.

なお、導体部31,32,33および/または導体部34,35は、隣接する半導体層5aと半導体層5bの接合境界を跨ぐようにして過電圧保護ダイオード5に接続されてもよい。すなわち、導体部31〜35は、隣接する半導体層5aと半導体層5bの両方に接続されてもよい。ここで、隣接する半導体層5aと半導体層5bの接合境界を跨ぐとは、隣接する2つの半導体層を跨ぐ場合に限らず、隣接する3つ以上の半導体層(例えば、隣接する半導体層5a、半導体層5bおよび半導体層5a)を跨ぐ場合も含まれる。このように導体部31〜35は少なくとも一部分で自身の同じ導電型の半導体層に接続することで、導体部31〜35の下方に位置する半導体領域の表層部分を空乏化させることが可能である。   The conductor portions 31, 32, 33 and / or the conductor portions 34, 35 may be connected to the overvoltage protection diode 5 so as to straddle the junction boundary between the adjacent semiconductor layers 5a and 5b. That is, the conductor portions 31 to 35 may be connected to both the adjacent semiconductor layer 5a and the semiconductor layer 5b. Here, straddling the junction boundary between the adjacent semiconductor layers 5a and 5b is not limited to straddling two adjacent semiconductor layers, but three or more adjacent semiconductor layers (for example, adjacent semiconductor layers 5a, 5a, The case of straddling the semiconductor layer 5b and the semiconductor layer 5a) is also included. In this way, the conductor portions 31 to 35 are at least partially connected to the semiconductor layer of the same conductivity type, so that the surface layer portion of the semiconductor region located below the conductor portions 31 to 35 can be depleted. .

また、半導体装置1には、図7に示すように、高耐圧化のために、P型のガードリング25が拡散層3を取り囲むように設けられていてもよい。このガードリング25は、耐圧領域Bの上面2aに選択的に形成されている。ガードリングの本数は、2本に限らず、1本または3本以上であってもよい。ガードリング25の上方に導体部が配置される場合、当該導体部は過電圧保護ダイオード5のうち高電位側に変位した部位に電気的に接続される。   In addition, as shown in FIG. 7, a P-type guard ring 25 may be provided in the semiconductor device 1 so as to surround the diffusion layer 3 in order to increase the breakdown voltage. The guard ring 25 is selectively formed on the upper surface 2a of the breakdown voltage region B. The number of guard rings is not limited to two, and may be one or three or more. When the conductor portion is disposed above the guard ring 25, the conductor portion is electrically connected to a portion of the overvoltage protection diode 5 that is displaced to the high potential side.

また、半導体装置1の各半導体領域の導電型は上記したものと逆であってもよい。すなわち、拡散層3がN型、周辺半導体領域10がP型であってもよい。この場合、図8に示すように、逆バイアス印加状態において導体部6,7の電位が自身の直下における拡散層3の電位よりも低くなるように、導体部6,7の端部は過電圧保護ダイオード5の側面の第1の部位に電気的に接続される。同様に、逆バイアス印加状態において導体部8,9の電位が自身の直下における周辺半導体領域10の電位よりも高くなるように、導体部8,9の端部は過電圧保護ダイオード5の当該側面の第2の部位に電気的に接続される。このことは、導体構成部6c,7c,8c,9cはそれぞれ、pn接合境界P1から遠ざかるように設けられることを意味する。   Further, the conductivity type of each semiconductor region of the semiconductor device 1 may be opposite to that described above. That is, the diffusion layer 3 may be N-type and the peripheral semiconductor region 10 may be P-type. In this case, as shown in FIG. 8, the end portions of the conductor portions 6 and 7 are overvoltage protected so that the potential of the conductor portions 6 and 7 is lower than the potential of the diffusion layer 3 immediately below the reverse bias applied state. It is electrically connected to the first part on the side surface of the diode 5. Similarly, the end portions of the conductor portions 8 and 9 are formed on the side surfaces of the overvoltage protection diode 5 so that the potentials of the conductor portions 8 and 9 are higher than the potential of the peripheral semiconductor region 10 immediately under the reverse bias applied state. It is electrically connected to the second part. This means that the conductor constituent parts 6c, 7c, 8c, 9c are provided so as to be away from the pn junction boundary P1.

したがって、一般的に言えば、P型半導体領域の上方に位置する導体部は、過電圧保護ダイオード5のうち高電位側に変位した部位に電気的に接続され、N型半導体領域の上方に位置する導体部は、過電圧保護ダイオード5のうち低電位側に変位した部位に電気的に接続される。これにより、逆バイアス印加状態において、導体部の下方に位置する半導体領域の表層部分を空乏化させることができる。   Therefore, generally speaking, the conductor portion located above the P-type semiconductor region is electrically connected to a portion of the overvoltage protection diode 5 displaced to the high potential side, and located above the N-type semiconductor region. The conductor portion is electrically connected to a portion of the overvoltage protection diode 5 that is displaced to the low potential side. Thereby, in the reverse bias applied state, the surface layer portion of the semiconductor region located below the conductor portion can be depleted.

上記のように、本実施形態では、導体部6,7,8,9の過電圧保護ダイオード5への接続先を直下の半導体層の導電型に応じて変えることで、絶縁膜4近傍の周辺半導体領域10が空乏化するように積極的に導体部6,7,8,9の電位を制御する。これにより、絶縁膜4の可動イオンの移動を十分に抑制することができる。   As described above, in the present embodiment, the connection destination of the conductor portions 6, 7, 8, 9 to the overvoltage protection diode 5 is changed according to the conductivity type of the semiconductor layer immediately below, thereby allowing the peripheral semiconductor in the vicinity of the insulating film 4. The potentials of the conductor portions 6, 7, 8, and 9 are positively controlled so that the region 10 is depleted. Thereby, the movement of the movable ions of the insulating film 4 can be sufficiently suppressed.

なお、IGBTの構成は上記の半導体装置1に限らない。例えば、変形例に係る半導体装置1Bは、図10に示すように、P型のコレクタ領域12に代えてN型のドレイン領域12Bを有し、かつ、このドレイン領域12Bとショットキー障壁を形成するコレクタ電極23を有するものであってもよい。この場合、コレクタ電極23は、白金、モリブデン等からなるバリアメタルを有する。   The configuration of the IGBT is not limited to the semiconductor device 1 described above. For example, as shown in FIG. 10, the semiconductor device 1B according to the modification has an N-type drain region 12B instead of the P-type collector region 12, and forms a Schottky barrier with the drain region 12B. It may have a collector electrode 23. In this case, the collector electrode 23 has a barrier metal made of platinum, molybdenum or the like.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。第2の実施形態に係る半導体装置1Aは、縦型MOSFETである。半導体装置1Aの平面図は、図1と同様である。図9は、半導体装置1Aの断面図であり、第1の実施形態で説明した図2に対応する。なお、図9において、第1の実施形態と同じ構成要素には同じ符号を付している。以下、第1の実施形態との相違点を中心に説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The semiconductor device 1A according to the second embodiment is a vertical MOSFET. A plan view of the semiconductor device 1A is the same as FIG. FIG. 9 is a cross-sectional view of the semiconductor device 1A and corresponds to FIG. 2 described in the first embodiment. In FIG. 9, the same components as those in the first embodiment are denoted by the same reference numerals. Hereinafter, a description will be given focusing on differences from the first embodiment.

半導体装置1Aは、P型の拡散層3と、絶縁膜4と、過電圧保護ダイオード5と、導体部6,7,8,9と、N型のドレイン領域12Aと、N型の拡散領域13と、N型のストッパ領域14と、ソース電極21Aと、ゲート電極22と、ドレイン電極23Aと、ストッパ電極24とを備えている。ドレイン領域12Aは、半導体基板2の下面2bに形成されており、このドレイン領域12A上にドレイン電極23Aが形成されている。また、ソース電極21Aは、拡散領域13上に形成されている。   The semiconductor device 1A includes a P-type diffusion layer 3, an insulating film 4, an overvoltage protection diode 5, conductor portions 6, 7, 8, and 9, an N-type drain region 12A, and an N-type diffusion region 13. , An N-type stopper region 14, a source electrode 21A, a gate electrode 22, a drain electrode 23A, and a stopper electrode 24. The drain region 12A is formed on the lower surface 2b of the semiconductor substrate 2, and the drain electrode 23A is formed on the drain region 12A. Further, the source electrode 21 </ b> A is formed on the diffusion region 13.

半導体装置1Aにおいて、導体部6,7の端部は逆バイアス印加状態において絶縁膜4近傍の拡散層3が空乏化するように過電圧保護ダイオード5の側面に電気的に接続されており、また、導体部8,9の端部は絶縁膜4近傍の周辺半導体領域10が空乏化するように過電圧保護ダイオード5の側面に電気的に接続されている。なお、第2の実施形態において、「逆バイアス印加状態」は、ドレイン電極23Aが高電位(例えば直流電源の正極)に接続され、ソース電極21Aが接地され、ゲート電極22に縦型MOSFETがオンしない程度の低電圧が印加された状態のことである。   In the semiconductor device 1A, the end portions of the conductor portions 6 and 7 are electrically connected to the side surface of the overvoltage protection diode 5 so that the diffusion layer 3 in the vicinity of the insulating film 4 is depleted in the reverse bias applied state. The end portions of the conductor portions 8 and 9 are electrically connected to the side surface of the overvoltage protection diode 5 so that the peripheral semiconductor region 10 near the insulating film 4 is depleted. In the second embodiment, in the “reverse bias applied state”, the drain electrode 23A is connected to a high potential (for example, the positive electrode of a DC power supply), the source electrode 21A is grounded, and the vertical MOSFET is turned on to the gate electrode 22. This is a state in which a low voltage is applied to such an extent that it does not occur.

第2の実施形態によれば、第1の実施形態の場合と同様の作用が得られるため、耐圧の低下を抑制し、信頼性を向上させることができる半導体装置1Aを提供することができる。   According to the second embodiment, since the same operation as in the case of the first embodiment can be obtained, it is possible to provide the semiconductor device 1A that can suppress the decrease in breakdown voltage and improve the reliability.

上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。   Based on the above description, those skilled in the art may be able to conceive additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the individual embodiments described above. . You may combine suitably the component covering different embodiment. Various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.

1,1A,1B 半導体装置
2 半導体基板
2a 上面
2b 下面
3 拡散層
4 絶縁膜
5 過電圧保護ダイオード
5a,5b 半導体層
6,7,8,9,31,32,33,34,35 導体部
6a,7a,8a,9a,6b,7b,8b,9b,6c,7c,8c,9c 導体構成部
10 周辺半導体領域
11 バッファ領域
12 コレクタ領域
12A,12B ドレイン領域
13 拡散領域
14 ストッパ領域
15 絶縁膜
16 表面保護膜
21 エミッタ電極
21A ソース電極
22 ゲート電極
23 コレクタ電極
23A ドレイン電極
24 ストッパ電極
25 ガードリング
A 活性領域
B 耐圧領域
E1,E2 端点
P1,P2 (拡散層3の)境界
R 領域
1, 1A, 1B Semiconductor device 2 Semiconductor substrate 2a Upper surface 2b Lower surface 3 Diffusion layer 4 Insulating film 5 Overvoltage protection diode 5a, 5b Semiconductor layers 6, 7, 8, 9, 31, 32, 33, 34, 35 Conductor portion 6a, 7a, 8a, 9a, 6b, 7b, 8b, 9b, 6c, 7c, 8c, 9c Conductor component 10 Peripheral semiconductor region 11 Buffer region 12 Collector region 12A, 12B Drain region 13 Diffusion region 14 Stopper region 15 Insulating film 16 Surface Protective film 21 Emitter electrode 21A Source electrode 22 Gate electrode 23 Collector electrode 23A Drain electrode 24 Stopper electrode 25 Guard ring A Active region B Withstand voltage region E1, E2 End point P1, P2 Boundary R region (of diffusion layer 3)

Claims (14)

半導体基板の一方の主面と他方の主面との間に主電流が流れる半導体装置であって、
前記半導体基板の前記一方の主面には、活性領域と、前記活性領域を取り囲み、前記半導体基板の周縁部を含む耐圧領域とが設けられ、
前記半導体装置は、
前記耐圧領域の前記一方の主面に選択的に形成され、前記活性領域を取り囲む第2導電型の拡散層と、
前記拡散層上、および当該拡散層の外側に位置する第1導電型の周辺半導体領域上に形成された絶縁膜と、
前記活性領域側から前記半導体基板の周縁部へ向かって前記絶縁膜上に交互に隣接配置された第1導電型の半導体層と第2導電型の半導体層とを有する過電圧保護ダイオードと、
前記絶縁膜上に前記耐圧領域に沿って形成された第1の導体部および第2の導体部と、を備え、
前記第1の導体部は、前記絶縁膜を介して前記拡散層の上方に配置され、前記第2の導体部は、前記絶縁膜を介して前記周辺半導体領域の上方に配置されており、
逆バイアス印加状態において前記絶縁膜近傍の前記拡散層が空乏化するように前記第1の導体部の端部が前記過電圧保護ダイオードに電気的に接続され、
前記第1導電型がN型であり、前記第2導電型がP型であり、
前記第1の導体部の端部は、前記逆バイアス印加状態において前記第1の導体部の電位が自身の直下における前記拡散層の電位よりも高くなるように前記過電圧保護ダイオードの側面の第1の部位に電気的に接続され、
前記第2の導体部の端部は、前記逆バイアス印加状態において前記第2の導体部の電位が自身の直下における前記周辺半導体領域の電位よりも低くなるように前記過電圧保護ダイオードの前記側面の第2の部位に電気的に接続されていることを特徴とする半導体装置。
A semiconductor device in which a main current flows between one main surface and the other main surface of a semiconductor substrate,
The one main surface of the semiconductor substrate is provided with an active region and a breakdown voltage region that surrounds the active region and includes a peripheral portion of the semiconductor substrate,
The semiconductor device includes:
A second conductivity type diffusion layer selectively formed on the one main surface of the breakdown voltage region and surrounding the active region;
An insulating film formed on the diffusion layer and on the peripheral semiconductor region of the first conductivity type located outside the diffusion layer;
An overvoltage protection diode having a first conductive type semiconductor layer and a second conductive type semiconductor layer alternately disposed adjacent to each other on the insulating film from the active region side toward a peripheral edge of the semiconductor substrate;
A first conductor portion and a second conductor portion formed on the insulating film along the withstand voltage region;
The first conductor portion is disposed above the diffusion layer via the insulating film, and the second conductor portion is disposed above the peripheral semiconductor region via the insulating film,
An end portion of the first conductor portion is electrically connected to the overvoltage protection diode so that the diffusion layer in the vicinity of the insulating film is depleted in a reverse bias application state,
The first conductivity type is N-type, the second conductivity type is P-type,
The end portion of the first conductor portion is a first side surface of the overvoltage protection diode so that the potential of the first conductor portion is higher than the potential of the diffusion layer immediately below the first conductor portion when the reverse bias is applied. Is electrically connected to
The end portion of the second conductor portion is formed on the side surface of the overvoltage protection diode so that the potential of the second conductor portion is lower than the potential of the peripheral semiconductor region immediately below the second conductor portion when the reverse bias is applied. A semiconductor device, wherein the semiconductor device is electrically connected to the second part .
前記第1の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記半導体基板の側端側に寄るように設けられていることを特徴とする請求項1に記載の半導体装置。
The first conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
The third conductor component is formed narrower than the other end of the second conductor component, and is provided so as to be closer to the side end of the semiconductor substrate. The semiconductor device according to claim 1 .
前記第2の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記活性領域側に寄るように設けられていることを特徴とする請求項1に記載の半導体装置。
The second conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
It said third conductor arrangement portion, claim, characterized in that it said than the second width of the other end of the conductor arrangement portion is formed in a narrow, and provided so as to stop at the active region side 1 A semiconductor device according to 1.
前記第2の導体構成部は、前記過電圧保護ダイオードに近づくにつれて太くなることを特徴とする請求項2または3に記載の半導体装置。 4. The semiconductor device according to claim 2, wherein the second conductor constituent portion becomes thicker as it approaches the overvoltage protection diode. 5. 半導体基板の一方の主面と他方の主面との間に主電流が流れる半導体装置であって、
前記半導体基板の前記一方の主面には、活性領域と、前記活性領域を取り囲み、前記半導体基板の周縁部を含む耐圧領域とが設けられ、
前記半導体装置は、
前記耐圧領域の前記一方の主面に選択的に形成され、前記活性領域を取り囲む第2導電型の拡散層と、
前記拡散層上、および当該拡散層の外側に位置する第1導電型の周辺半導体領域上に形成された絶縁膜と、
前記活性領域側から前記半導体基板の周縁部へ向かって前記絶縁膜上に交互に隣接配置された第1導電型の半導体層と第2導電型の半導体層とを有する過電圧保護ダイオードと、
前記絶縁膜上に前記耐圧領域に沿って形成された第1の導体部および第2の導体部と、を備え、
前記第1の導体部は、前記絶縁膜を介して前記拡散層の上方に配置され、前記第2の導体部は、前記絶縁膜を介して前記周辺半導体領域の上方に配置されており、
逆バイアス印加状態において前記絶縁膜近傍の前記拡散層が空乏化するように前記第1の導体部の端部が前記過電圧保護ダイオードに電気的に接続され、
前記第1導電型がP型であり、前記第2導電型がN型であり、
前記第1の導体部の端部は、前記逆バイアス印加状態において前記第1の導体部の電位が自身の直下における前記拡散層の電位よりも低くなるように前記過電圧保護ダイオードの側面の第1の部位に電気的に接続され、
前記第2の導体部の端部は、前記逆バイアス印加状態において前記第2の導体部の電位が自身の直下における前記周辺半導体領域の電位よりも高くなるように前記過電圧保護ダイオードの前記側面の第2の部位に電気的に接続されていることを特徴とする半導体装置。
A semiconductor device in which a main current flows between one main surface and the other main surface of a semiconductor substrate,
The one main surface of the semiconductor substrate is provided with an active region and a breakdown voltage region that surrounds the active region and includes a peripheral portion of the semiconductor substrate,
The semiconductor device includes:
A second conductivity type diffusion layer selectively formed on the one main surface of the breakdown voltage region and surrounding the active region;
An insulating film formed on the diffusion layer and on the peripheral semiconductor region of the first conductivity type located outside the diffusion layer;
An overvoltage protection diode having a first conductive type semiconductor layer and a second conductive type semiconductor layer alternately disposed adjacent to each other on the insulating film from the active region side toward a peripheral edge of the semiconductor substrate;
A first conductor portion and a second conductor portion formed on the insulating film along the withstand voltage region;
The first conductor portion is disposed above the diffusion layer via the insulating film, and the second conductor portion is disposed above the peripheral semiconductor region via the insulating film,
An end portion of the first conductor portion is electrically connected to the overvoltage protection diode so that the diffusion layer in the vicinity of the insulating film is depleted in a reverse bias application state,
The first conductivity type is P-type, the second conductivity type is N-type,
The end portion of the first conductor portion is a first side surface of the overvoltage protection diode so that the potential of the first conductor portion is lower than the potential of the diffusion layer immediately below the first conductor portion when the reverse bias is applied. Is electrically connected to
The end portion of the second conductor portion is formed on the side surface of the overvoltage protection diode so that the potential of the second conductor portion is higher than the potential of the peripheral semiconductor region immediately below the second conductor portion when the reverse bias is applied. A semiconductor device, wherein the semiconductor device is electrically connected to the second part.
前記第1の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記活性領域側に寄るように設けられていることを特徴とする請求項5に記載の半導体装置。
The first conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
It said third conductor arrangement portion, claim, characterized in that the width is formed narrower, and provided so as to stop at the active region side than the width of the other end of the second conductor arrangement portion 5 A semiconductor device according to 1.
前記第2の導体部は、
前記半導体基板の周縁部に沿って延在する第1の導体構成部と、
前記第1の導体構成部に一端が接続され、前記過電圧保護ダイオードの近傍まで延在する第2の導体構成部と、
前記第2の導体構成部と前記過電圧保護ダイオードを電気的に接続する第3の導体構成部と、を有し、
前記第2の導体構成部は、前記第1の導体構成部よりも幅広に形成され、
前記第3の導体構成部は、前記第2の導体構成部の他端の幅よりも幅狭に形成され、かつ前記半導体基板の側端側に寄るように設けられていることを特徴とする請求項5に記載の半導体装置。
The second conductor portion is
A first conductor component extending along a peripheral edge of the semiconductor substrate;
A second conductor component having one end connected to the first conductor component and extending to the vicinity of the overvoltage protection diode;
A second conductor component that electrically connects the second conductor component and the overvoltage protection diode;
The second conductor component is formed wider than the first conductor component,
The third conductor component is formed narrower than the other end of the second conductor component, and is provided so as to be closer to the side end of the semiconductor substrate. The semiconductor device according to claim 5 .
前記第2の導体構成部は、前記過電圧保護ダイオードに近づくにつれて太くなることを特徴とする請求項6または7に記載の半導体装置。 The semiconductor device according to claim 6, wherein the second conductor constituent portion becomes thicker as it approaches the overvoltage protection diode. 前記半導体基板はシリコン基板であり、前記絶縁膜はシリコン酸化膜であることを特徴とする請求項1〜8のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor substrate is a silicon substrate, and the insulating film is a silicon oxide film. 前記第1の導体部および/または前記第2の導体部は、隣接する前記第1導電型の半導体層と前記第2導電型の半導体層の接合境界を跨ぐようにして前記過電圧保護ダイオードに接続されていることを特徴とする請求項1〜9のいずれかに記載の半導体装置。 The first conductor portion and / or the second conductor portion is connected to the overvoltage protection diode so as to straddle a junction boundary between the adjacent first conductive type semiconductor layer and the second conductive type semiconductor layer. The semiconductor device according to claim 1 , wherein the semiconductor device is formed. 前記拡散層中に形成された第1導電型の拡散領域と、
前記拡散領域上に形成されたエミッタ電極と、
前記過電圧保護ダイオード上に形成されたゲート電極と、
前記半導体基板の前記他方の主面に形成された第2導電型のコレクタ領域と、
前記コレクタ領域上に形成されたコレクタ電極と、
をさらに備えることを特徴とする請求項1〜10のいずれかに記載の半導体装置。
A diffusion region of a first conductivity type formed in the diffusion layer;
An emitter electrode formed on the diffusion region;
A gate electrode formed on the overvoltage protection diode;
A second conductivity type collector region formed on the other main surface of the semiconductor substrate;
A collector electrode formed on the collector region;
The semiconductor device according to claim 1 , further comprising:
前記拡散層中に形成された第1導電型の拡散領域と、
前記拡散領域上に形成されたエミッタ電極と、
前記過電圧保護ダイオード上に形成されたゲート電極と、
前記半導体基板の前記他方の主面に形成された第1導電型のドレイン領域と、
前記ドレイン領域上に形成され、前記ドレイン領域とショットキー障壁を形成するコレクタ電極と、
をさらに備えることを特徴とする請求項1〜10のいずれかに記載の半導体装置。
A diffusion region of a first conductivity type formed in the diffusion layer;
An emitter electrode formed on the diffusion region;
A gate electrode formed on the overvoltage protection diode;
A drain region of a first conductivity type formed on the other main surface of the semiconductor substrate;
A collector electrode formed on the drain region and forming a Schottky barrier with the drain region;
The semiconductor device according to claim 1 , further comprising:
前記拡散層中に形成された第1導電型の拡散領域と、
前記拡散領域上に形成されたソース電極と、
前記過電圧保護ダイオード上に形成されたゲート電極と、
前記半導体基板の前記他方の主面に形成された第1導電型のドレイン領域と、
前記ドレイン領域上に形成されたドレイン電極と、
をさらに備えることを特徴とする請求項1〜10のいずれかに記載の半導体装置。
A diffusion region of a first conductivity type formed in the diffusion layer;
A source electrode formed on the diffusion region;
A gate electrode formed on the overvoltage protection diode;
A drain region of a first conductivity type formed on the other main surface of the semiconductor substrate;
A drain electrode formed on the drain region;
The semiconductor device according to claim 1 , further comprising:
前記耐圧領域の前記一方の主面に選択的に形成され、前記拡散層を取り囲む1本または複数本の第2導電型のガードリングをさらに備えることを特徴とする請求項1〜13のいずれかに記載の半導体装置。 14. The semiconductor device according to claim 1 , further comprising one or a plurality of second conductivity type guard rings that are selectively formed on the one main surface of the breakdown voltage region and surround the diffusion layer . A semiconductor device according to 1.
JP2017521166A 2016-05-26 2016-05-26 Semiconductor device Active JP6258561B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065645 WO2017203671A1 (en) 2016-05-26 2016-05-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JP6258561B1 true JP6258561B1 (en) 2018-01-10
JPWO2017203671A1 JPWO2017203671A1 (en) 2018-06-07

Family

ID=59683994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521166A Active JP6258561B1 (en) 2016-05-26 2016-05-26 Semiconductor device

Country Status (5)

Country Link
US (1) US10199483B2 (en)
JP (1) JP6258561B1 (en)
CN (1) CN107710408B (en)
NL (1) NL2018982B1 (en)
WO (1) WO2017203671A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580906B1 (en) * 2018-10-01 2020-03-03 Nxp B.V. Semiconductor device comprising a PN junction diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188381A (en) * 2001-12-21 2003-07-04 Denso Corp Semiconductor device
US6762440B1 (en) * 2000-01-18 2004-07-13 Infineon Technologies Ag Semiconductor component and corresponding test method
JP2005217152A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Semiconductor device
JP2014187071A (en) * 2013-03-21 2014-10-02 Shindengen Electric Mfg Co Ltd Igbt and method for manufacturing igbt

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3046749C2 (en) 1979-12-10 1986-01-16 Sharp K.K., Osaka MOS transistor for high operating voltages
JPS5683076A (en) 1979-12-10 1981-07-07 Sharp Corp High tension mos field-effect transistor
GB9207860D0 (en) 1992-04-09 1992-05-27 Philips Electronics Uk Ltd A semiconductor component
US5589408A (en) * 1995-07-05 1996-12-31 Motorola, Inc. Method of forming an alloyed drain field effect transistor and device formed
JP4140232B2 (en) * 2001-12-07 2008-08-27 株式会社デンソー Semiconductor device
JP2004296819A (en) 2003-03-27 2004-10-21 Shindengen Electric Mfg Co Ltd Semiconductor device
JP4731816B2 (en) * 2004-01-26 2011-07-27 三菱電機株式会社 Semiconductor device
JP4935192B2 (en) * 2006-05-31 2012-05-23 三菱電機株式会社 Semiconductor device
JP2008177328A (en) * 2007-01-18 2008-07-31 Denso Corp Semiconductor device and manufacturing method thereof
JP5271515B2 (en) * 2007-07-13 2013-08-21 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2009111304A (en) 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Overvoltage protective function built-in mos semiconductor apparatus and method of manufacturing the same
JP5182766B2 (en) * 2009-12-16 2013-04-17 三菱電機株式会社 High voltage semiconductor device
US9245984B2 (en) * 2013-01-31 2016-01-26 Infineon Technologies Ag Reverse blocking semiconductor device, semiconductor device with local emitter efficiency modification and method of manufacturing a reverse blocking semiconductor device
WO2014142331A1 (en) * 2013-03-14 2014-09-18 富士電機株式会社 Semiconductor device
JP6649102B2 (en) * 2016-02-05 2020-02-19 ルネサスエレクトロニクス株式会社 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762440B1 (en) * 2000-01-18 2004-07-13 Infineon Technologies Ag Semiconductor component and corresponding test method
JP2003188381A (en) * 2001-12-21 2003-07-04 Denso Corp Semiconductor device
JP2005217152A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Semiconductor device
JP2014187071A (en) * 2013-03-21 2014-10-02 Shindengen Electric Mfg Co Ltd Igbt and method for manufacturing igbt

Also Published As

Publication number Publication date
WO2017203671A1 (en) 2017-11-30
NL2018982A (en) 2017-11-27
NL2018982B1 (en) 2018-02-16
JPWO2017203671A1 (en) 2018-06-07
US20180204935A1 (en) 2018-07-19
US10199483B2 (en) 2019-02-05
CN107710408B (en) 2021-06-18
CN107710408A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
JP5863574B2 (en) Semiconductor device
JP5477681B2 (en) Semiconductor device
JP6392133B2 (en) Semiconductor device
JP5517688B2 (en) Semiconductor device
JP5701913B2 (en) Semiconductor device
JP2013149761A (en) Semiconductor device
JP6739372B2 (en) Semiconductor device
US10276654B2 (en) Semiconductor device with parallel PN structures
JP2018026450A (en) Semiconductor device
JP7250473B2 (en) semiconductor equipment
TWI416732B (en) Semiconductor device
JP5694285B2 (en) Semiconductor device
JP5685991B2 (en) Semiconductor device
JP6258561B1 (en) Semiconductor device
JP6408405B2 (en) Semiconductor device
US20210376142A1 (en) Wide-gap semiconductor device
JP6301551B1 (en) Semiconductor device
US10566420B2 (en) Semiconductor device
JP2023136028A (en) Semiconductor device
JP2016171279A (en) Semiconductor device
JP2016162783A (en) Semiconductor device
JP5774744B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6258561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150