JP6257407B2 - 赤外線式ガスセンサ - Google Patents

赤外線式ガスセンサ Download PDF

Info

Publication number
JP6257407B2
JP6257407B2 JP2014062540A JP2014062540A JP6257407B2 JP 6257407 B2 JP6257407 B2 JP 6257407B2 JP 2014062540 A JP2014062540 A JP 2014062540A JP 2014062540 A JP2014062540 A JP 2014062540A JP 6257407 B2 JP6257407 B2 JP 6257407B2
Authority
JP
Japan
Prior art keywords
mirror
detector
light source
infrared
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014062540A
Other languages
English (en)
Other versions
JP2015184211A (ja
Inventor
由規 小澤
由規 小澤
章 宮藤
章 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014062540A priority Critical patent/JP6257407B2/ja
Publication of JP2015184211A publication Critical patent/JP2015184211A/ja
Application granted granted Critical
Publication of JP6257407B2 publication Critical patent/JP6257407B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、赤外線を放射する光源と、被検出ガスによる特定波長の赤外線の吸収特性を検出する検出器とを同一のケース内に備え、当該ケース内に被検出ガスが導入されるように構成され、前記検出器によって被検出ガスの濃度が検出される赤外線式ガス検出器に関する。
従来、例えば特許文献1に開示されるように、赤外線光源と、赤外線を検出する赤外線センサ(検出器)と、赤外線光源に対して対向配置され、反射した赤外線を赤外線センサに入射させる凹面反射鏡と、を同一のケース内に備える赤外線式ガスセンサが知られている。このガス検出器は、凹面反射鏡に対向させて赤外線光源が設けられ、この光源から放射された赤外線の反射光が集束する位置に赤外線センサが設けられる。さらに、赤外線光源及び赤外線センサと凹面反射鏡との間に、被測定ガスを含むガスを流入させることで、ガスによる赤外線吸収の度合い(吸光度)を測定し、測定した吸光度をもって被測定ガスを検出するように構成されている。
特許文献1に示すような、吸光度を用いたガスの検出方法では、その検出感度は、被測定ガスに含まれる分子(例えば、一酸化炭素など)の「吸収係数」と、被測定ガス中を通過する距離である「光路長」によって決定される。このため、検出感度を向上させるには、吸収係数が大きくなる波長を用いる、または、光路長を長くとる、といった方法が有効である。
光路長を長くとる構成としては、特許文献2に、円筒状の導光路を複数回屈曲させ、導光路の一方の端部に光源を、他方の端部に検出器を配置する構成が開示されている。
特開2005−208009号公報 特開2005−337875号公報
特許文献1に示すような赤外線式ガス検出器において、より高感度を実現するためには、光路長を長くとることが重要となる。しかしながら、特許文献1に示されるガスセンサの場合、赤外線光源及び赤外線センサと凹面反射鏡との距離を大きくする必要があり、ガスセンサが大型化する。
また、特許文献2に開示の構成では、光源と検出器とが物理的に離れた箇所に配置されるため、これらを動作させるための電気回路の占有場所が増え、ガスセンサ全体としては、小型化が難しい。また、特許文献2に開示の構成では、ガスセンサ内への被検出ガスの導入は、導光路に設けられた細孔から行う構成となっており、被検出ガスが自然吸気では導入され難しい。このため、例えば、室内において希薄な被検出ガスを検出する用途に用いるには、不向きである。
本発明は上記問題点に鑑み、光源と検出器との光路長を長くし高感度とするとともに、ガスセンサ全体の寸法を小型化できる赤外線式ガスセンサを実現することを目的とする。また、さらなる目的としては、赤外線式ガスセンサの小型化に加え、自然吸気であっても被検出ガスが導入され易い構造の赤外線式ガスセンサを実現することを目的とする。
上記目的を達成するため、本願発明に係る赤外線式ガスセンサの特徴構成は、赤外線を放射する光源と、被検出ガスによる特定波長の赤外線の吸収特性を検出する検出器とを同一のケース内に備え、当該ケース内に被検出ガスが導入されるように構成され、前記検出器によって被検出ガスの濃度が検出される赤外線式ガスセンサであって、
前記光源と、前記検出器とが同一の平面基板上に実装され、
前記光源及び前記検出器に対して対向して配置され、前記赤外線を反射する第1ミラーと、
前記光源及び前記検出器の間で、かつ、前記第1ミラーと対向して配置され、前記赤外線を反射する第2ミラーと、
前記光源から放射された赤外線を、前記第1ミラー、前記第2ミラー、前記第1ミラーの順で反射させて、前記検出器へと導く光路管と、を備え、
前記光源から前記検出器に至る赤外線の光路を渡って、前記第1ミラーと前記第2ミラーとの間に、前記被検出ガスが導入される被検出ガス導入部を備え
前記第1ミラー及び前記第2ミラーが、平面状に形成されるとともに、平行に配置され
前記光路管が、前記赤外線を反射する反射部材を用いて、端部が、前記光源、前記第1ミラー、前記第2ミラー、及び前記検出器に開放された筒状に形成された点にある。
上記特徴構成により、光源と検出器とを同一の平面基板上に実装するため、光源及び検出器の位置を確定できるとともに、両者を動作させるための電気回路を小型化することが可能となる。また、第1ミラーと第2ミラーとの間で複数回反射を行うため、同一の光路長であれば、ミラーを用いて1回反射させる場合に比べ、第1ミラーと光源及び検出器との距離を小さくすることが可能であり、光路長を長くとり易くとなる。すなわち、光源と検出器との光路長を長くし高感度とするとともに、ガスセンサ全体の寸法を小型化できる赤外線式ガスセンサを実現できる。
また、上記特徴構成によれば、平面形状のミラーで反射させることから反射光は一定の直進性を備える。よって、例えば、第1ミラー、第2ミラー、第1ミラーの順で反射させて、検出器へと導くにあたり、反射光の光路が一部交差するように構成しても、検出器まで赤外線を到達させることが可能となる。また、光路管の内面を反射部材とすることで、光源から放射された赤外線のうち光軸から離れる方向に散乱した光を集光することが可能となるため、光源から放射された赤外線が検出器へと集光された時の集光効率を改善することができる。すなわち、光路管の体面積を抑えるとともに、検出感度を改善した赤外線式ガスセンサを実現できる。加えて、主要な光学素子が、2枚の平面ミラーのみで済むため、ガスセンサの製造コストを抑えることができる。
加えて、前記光路管が、前記光源と前記第2ミラーとの間、前記第2ミラーと前記検出
器との間、及び前記第1ミラーにおいて赤外線が1度目に反射する箇所と2度目に反射す
る箇所との間に、前記平面基板に直交する方向に突出する突起部と、を備える構成とする
と好適である。
上記特徴構成によれば、突出部によって、光源から第2ミラー側など、光軸から大きく離れた方向へ赤外線が放射されることを防ぐことができる。よって、光路から外れた赤外線が検出器に到達することを抑えることができるため、検出感度を改善することができる。すなわち、光路管の体面積を抑えたまま、検出感度を改善した赤外線式ガスセンサを実現できる。
また、上記目的を達成するため、本願発明に係る赤外線式ガスセンサの特徴構成は、赤外線を放射する光源と、被検出ガスによる特定波長の赤外線の吸収特性を検出する検出器とを同一のケース内に備え、当該ケース内に被検出ガスが導入されるように構成され、前記検出器によって被検出ガスの濃度が検出される赤外線式ガスセンサであって、
前記光源と、前記検出器とが同一の平面基板上に実装され、
前記光源及び前記検出器に対して対向して配置され、前記赤外線を反射する第1ミラーと、
前記光源及び前記検出器の間で、かつ、前記第1ミラーと対向して配置され、前記赤外線を反射する第2ミラーと、
前記光源から放射された赤外線を、前記第1ミラー、前記第2ミラー、前記第1ミラーの順で反射させて、前記検出器へと導く光路管と、を備え、
前記光源から前記検出器に至る赤外線の光路を渡って、前記第1ミラーと前記第2ミラーとの間に、前記被検出ガスが導入される被検出ガス導入部を備え、
前記光路管が、前記光源と前記第2ミラーとの間、前記第2ミラーと前記検出器との間、及び前記第1ミラーにおいて赤外線が1度目に反射する箇所と2度目に反射する箇所との間に、前記平面基板に直交する方向に突出する突起部と、を備える点にある。
上記特徴構成により、光源と検出器とを同一の平面基板上に実装するため、光源及び検
出器の位置を確定できるとともに、両者を動作させるための電気回路を小型化することが
可能となる。また、第1ミラーと第2ミラーとの間で複数回反射を行うため、同一の光路
長であれば、ミラーを用いて1回反射させる場合に比べ、第1ミラーと光源及び検出器と
の距離を小さくすることが可能であり、光路長を長くとり易くとなる。すなわち、光源と
検出器との光路長を長くし高感度とするとともに、ガスセンサ全体の寸法を小型化できる
赤外線式ガスセンサを実現できる。
また、上記特徴構成によれば、突出部によって、光源から第2ミラー側など、光軸から大きく離れた方向へ赤外線が放射されることを防ぐことができる。よって、光路から外れた赤外線が検出器に到達することを抑えることができるため、検出感度を改善することができる。すなわち、光路管の体面積を抑えたまま、検出感度を改善した赤外線式ガスセンサを実現できる。
さらに、前記光路管が、前記平面基板と前記第1ミラーとの間に渡って、前記平面基板と平行な方向に前記被検出ガスを流通させるための貫通孔を備え、前記貫通孔の内部を前記被検出ガス導入部とした構成とすると好適である。
上記特徴構成によれば、貫通孔を、平面基板と前記第1ミラーとの間に設けることで、被検出ガスの自然吸気を行い易くできる。よって、赤外線式ガスセンサの小型化に加え、自然吸気であっても被検出ガスが導入され易い構造の赤外線式ガスセンサを実現できる。
また、前記検出器が、検出面に互いに異なる波長域を検出可能に構成された2つの受光素子を備え、
前記第2ミラーの中心位置から前記平面基板に直交する方向に延びる直線に対して、
前記2つの受光素子の中心位置と前記光源の中心位置とが線対称に配置され、
前記光源から放射される赤外線の光軸位置での前記第1ミラー上に位置する一対の反射位置も、前記直線に対して線対称に配置される構成とすると好適である。
上記特徴構成によれば、光源から放射された赤外線を、2つの受光素子において、均等に受光することができる。ガスセンサ全体の寸法を小型化できる赤外線式ガスセンサを好適に実現できる。
また、前記光路管が、前記光源の周辺部及び前記検出器の周辺部において、端部に近づくほど絞られた構成とすると好適である。
上記特徴構成によれば、光源から放射された赤外線を、効率的に検出器の周辺部まで到達させるとともに、検出器の周辺部に到達した赤外線を、効率的に検出器で受光することができる。すなわち、検出感度に優れた赤外線式ガスセンサを実現できる。
さらに、前記被検出ガスとして、一酸化炭素を用いる構成とすると好適である。
ガスセンサの概略構成図 検出器の概略図 ガスセンサの検出原理の説明図 ガスセンサの光学系 光路管の平面図 ガスセンサの検知精度比較図
以下、本発明の実施形態に係るガスセンサSについて図面を用いて説明する。ガスセンサSは、図1に示すように、赤外線を放射する光源Srと、被検出ガスGによる特定波長の赤外線の吸収特性を検出する検出器Dtとを備える。光源Sr及び検出器Dtは、図1に示すように、ケース2内に配置され、ケース2内に被検出ガスGを含むガスが自然吸気により導入されるように構成される(図3参照)。
ガスセンサSは、ケース2に被検出ガスGを含むガスが導入された状態で、光源Srから赤外線を放射し、検出器Dtによって被検出ガスGの濃度が検出されるように構成される。ガスセンサSは、被検出ガスGとして、空気中の一酸化炭素を検出するように構成される。ガスセンサSは、例えば一般家庭などの施設内における一酸化炭素ガスの検知センサとして用いられる。
〔検出器Dtの構成〕
検出器Dtは、図2に示すように、検出面に互いに異なる波長域を検出可能に構成された2つの受光素子Seを備える。具体的には、円筒状の金属筒からなる本体部20を備える。本体部20の下部にはリード線21を備え、本体部20の上面には、互いに異なる波長域をバイパスする光学フィルタ(23a、23b)を備える。光学フィルタ23a、23bは、本体部20の上面の中心位置Dtoに対して、点対称となるように配置される。光学フィルタ23a、23bの下部には受光素子Seが設けられる。本実施形態においては、受光素子Seとして焦電型センサを用いる。より具体的には、Pyreos社製のPY−ITV−DuAL−TO39を用いる。光学フィルタ23a、23bはそれぞれ、中心波長が4.64μm、3.91μmである。
検出器Dtの計測原理について説明する。検出器Dtは、一方の受光素子Seが出力した信号を検出用信号とし、他方をレファレンス用信号としている。本実施形態においては、中心波長が4.64μmとなる受光素子Seの出力信号を検出用信号、3.91μmとなる受光素子Seの出力信号をレファレンス用信号とする。
光源Srからの赤外線を受光した際に検出される信号の様子を図3に示す。図3(a)は、光源Srに入力される電圧を示し、図3(b)は受光素子Seの出力信号を示す。検出用信号の立ち上がり時における所定範囲R1と、立ち下がり時における所定範囲R2との、それぞれの範囲内の積分値を取得する。所定範囲R1及びR2は、同じ時間幅に設定される。本実施形態においては、光源Srはパルス駆動され、1回の放射時間は1000msであり、所定範囲R1及びR2の幅は650msに設定される。
所定範囲R1における、レファレンス用信号の積分値をRef1、検出用信号の積分値をGas1とし、所定範囲R2における、レファレンス用信号の積分値をRef2、検出用信号の積分値をGas2とすると、以下の計算式により求まるRatioの値から、被検出ガスGを検出することが可能となる。なお、Ratioの値は、被検出ガスGの濃度が高いほど、小さくなる。
Ratio=(Gas2−Gas1)/(Ref2−Ref1)
〔ガスセンサの光学系〕
図4を用いて、ガスセンサSの光学系を説明する。ガスセンサSは、光源Sr及び検出器Dtに対して対向して配置され、赤外線を反射する第1ミラーM1と、光源Sr及び検出器Dtの間で、かつ、第1ミラーM1と対向して配置され、赤外線を反射する第2ミラーM2とを備える。第1ミラーM1及び第2ミラーM2は、反射面が平面状に形成される。また、第1ミラーM1及び第2ミラーM2は、第1ミラーM1及び第2ミラーM2の反射面が平行となるように配置される。また、第1ミラーM1及び第2ミラーM2と平行となるように、光源Sr及び検出器Dtが実装された基板3も配置される。
以下では、第1ミラーM1及び第2ミラーM2の反射面の延長方向を第1方向D1とし、第1方向D1と垂直な方向を第2方向D2と呼ぶ。第2方向D2は、ガスセンサSにおいて、ガスの流通方向に相当する。
ガスセンサSは、光源Srから放射された赤外線が、第1ミラーM1、第2ミラーM2、第1ミラーM1の順で反射させて、検出器Dtへと導かれるように構成される。より具体的には、図1に示すように、ガスセンサSは、光源Srから検出器Dtへと赤外線を導くように構成された光路管1を備える。光路管1の形状について、詳しくは後述する。
光路管1を光源Srから検出器Dtへと導かれる赤外線の光軸を、図4において矢印で示す。ガスセンサSにおいて、2つの受光素子Seの中心位置Dtoと、光源Srの中心位置とが、第2ミラーM2の中心位置M2oから第2方向D2に延びる直線M2Aに対して、線対称に配置される。また、光源Srから放射される赤外線の光軸位置での第1ミラーM1上に位置する一対の反射位置r1、r2も、直線M2Aに対して線対称に配置される。
〔ガスセンサの構成〕
図1に示すように、光源Srと、検出器Dtとが同一の平面基板3上に実装される。また、ガスセンサSは、光路管上部1a及び光路管下部1bの2つを組み合わせて、光源Srから放射された赤外線を、第1ミラーM1、第2ミラーM2、第1ミラーM1の順で反射させて、検出器Dtへと導く光路管1を形成するように構成される。
図5に、光路管1を形成する光路管下部1bを示す。図中、光軸Aを破線で示す。図示するように、光路管1は、赤外線を反射する反射部材を用いて、端部が開放された筒状に形成される。より具体的には、光路管1は、光源Sr、第1ミラーM1、第2ミラーM2及び検出器Dtと対向する面が開放された形状となる。筒状光路管1は、上下対称な光路管上部1aと光路管下部1bとを組み合わせることで形成される。光路管1は、円筒を略W字状に屈曲させたような形状に形成される。光路管1の光路は、第1ミラーM1及び第2ミラーM2で反射する前の光路と、反射後の光路が一部交差させて構成される。このような構成により、光路管1の第2方向D2方向の寸法を小さくすることができる。
光路管1(光路管上部1a及び光路管下部1b)は、合成樹脂により形成される。本実施形態においては、ABS樹脂を用いる。光路管1の内面は、反射部材として金属被膜により、覆われる。具体的には、銅及びニッケルによるメッキを行う。
光路管上部1a及び光路管下部1bには、図5に示すように、第1方向D1方向に突出し、第2方向D2にスリット状の溝を備えた基板固定部12を備える。光路管上部1a及び光路管下部1bは、基板固定部12の溝に、基板3が挿入され、基板3に実装された光源Sr及び検出器Dtが光路の端部に位置するように、光源挿入孔13及び検出器挿入孔14が形成される。光路管1は、光路管下部1bに基板3を挿入後、光路管上部1aを積載し、光路管上部1a及び光路管下部1bの周囲に設けられた固定用孔Hを介して、ボルトなどの固定具で固定されることで、形成される。
第1ミラーM1及び第2ミラーM2は、光路管上部1a及び光路管下部1bに設けられた溝部に嵌めることで第1方向D1及び第2方向D2に固定される。
光路管1は、光源Srと第2ミラーM2との間、第2ミラーM2と検出器Dtとの間、及び第1ミラーM1において赤外線が1度目に反射する箇所(反射位置r1)と2度目に反射する箇所(反射位置r2)との間に、第2方向D2に突出する突起部11a〜11c、を備える。突起部11a〜11cは、図面奥行き方向に見て、第2方向D2方向に突出する三角形状に形成される
光路管1は、光源Srから検出器Dtに至る赤外線の光路を渡って、第1ミラーM1と第2ミラーM2との間に、被検出ガスGが導入される被検出ガス導入部を備える。具体的には、光路管1は、平面基板3と第1ミラーM1との間に渡って、第1方向D1に被検出ガスGを流通させるための貫通孔17を備える。具体的には、光路管上部1a及び光路管下部1bの第1方向D1方向の両端部において、凹部17a、17bを備えている。凹部17a、17bは、光路管上部1aと光路管下部1bとを組み合わせた状態で、第1方向D1方向に貫通する貫通孔となる。凹部17a及び17bは、第2方向D2方向の幅が、第1ミラーM1及び第2ミラーM2の間に収まるように形成される。
より具体的には、第2方向D2方向の第2ミラーM2側の端部は、第1突起部11a及び第3突起部11cの第2方向D2方向頂点位置より、第1ミラーM1側に形成される。第1ミラーM1側の端部は、第2突起部11bの第2方向D2方向頂点位置より、第2ミラーM2側に形成される。
光路管1は、光源Srの周辺部(光源周辺部15)及び検出器Dtの周辺部(検出器周辺部16)において端部に近づくほど絞られた形状となる。具体的には、光源周辺部15は、光源Srの位置を焦点とした放物面状に形成する。光源周辺部15の第1方向D1一端部は、第1突起部11aにより形成される。このような構成とすることで、光源Srから放射される赤外線を平行光とすることができる。
また、検出器周辺部16は、検出器Dtの中心位置Dtoを焦点とする放物面状に形成する。検出器周辺部16の第1方向D1方向一端部は、第3突起部11cにより形成される。このような構成とすることで、検出器Dtの2つの受光素子Seに対して、均等に赤外線を入射させることができる。
ガスセンサSは、ケース2内に、光路管1、第1ミラーM1、第2ミラーM2、及び光源Sr及び検出器Dtが実装された基板3が収まるように構成される。具体的には、ケース2は、ケース上部2a及びケース下部2bから構成される。ケース2は、貫通孔17が接する面に、空気の流通を可能とするよう複数の貫通孔を備える。
ガスセンサSの組み立て方法について、具体的には、まずケース下部2bに光路管下部1bが固定され、基板3、第1ミラーM1、及び第2ミラーM2が取り付けられる。さらに、光路管下部1b上に光路管上部1aが固定され貫通孔17とケース2との間にフィルタ枠Fが配置される。ここで、フィルタ枠Fは、エアフィルタを固定するための枠体である。最後に、ケース上部2aを取り付け、ガスセンサSが完成する。
本実施形態に係るガスセンサSの性能評価を行った結果を図6に示す。図6において、濃度[ppm]を記載の範囲は、当該濃度で一酸化炭素を光路管1中に導入した状態での出力を、「Air」と記載の範囲は、大気中での出力を示す。当該濃度図6(a)に、本実施形態に係るガスセンサSの性能評価結果を、図6(b)に、本実施形態に係るガスセンサSと同様の光源Sr及び検出器Dtを用い、一枚の平面ミラーを用いて略V字の光路を作製した場合の性能評価結果を示す。被検出ガスGは、一酸化炭素とした。図6(a)の場合、光路長は400mm、図6(b)の場合、光路長は200mmである。
図に示すように、一枚の平面ミラーを用いた場合には、一酸化炭素の検知性能を評価した後、一酸化炭素濃度を0とした状態に戻した際、Ratioが初期状態より低くなるという問題があった。この原因は、光源Srの発する熱により、検出器Dtが加熱され、出力が不安定になっているものと推測される。一方、本実施形態に係るガスセンサSでは、Ratioの値が、一酸化炭素の検知性能を評価前と後で変化していない。この結果から、第2ミラーM2や突起部11a及び11cにより、光源Srと検出器Dtとの間を隔てたことで、検出器Dtの加熱を抑えられていると考えられる。以上より、本実施形態に係るガスセンサSでは、検知性能を安定させることができた。
〔別実施形態〕
(1)上記実施形態においては、第1ミラーM1及び第2ミラーM2を平面状に形成する場合の一例を示したが、光路管1内の光軸が略W字状に屈曲させたような形状となるならば、例えば凹面形状のような他の形状を用いても構わない。
(2)上記実施形態においては、光路管1の内面に赤外線を反射する反射部材を用いる場合の例を示したが、反射部材を用いない構成としても構わない。
(3)上記実施形態においては、突起部11a〜11cを備える場合の構成を示したが、備えない構成としても構わない。
(4)上記実施形態においては、ガス導入部として第1方向D1の貫通孔17を備える場合の一例を示したが、第1方向D1の貫通孔17を備えず、例えば、光路管1の上面に複数の貫通孔を備える構成としても構わない。
(5)上記実施形態においては、光源周辺部15及び検出器周辺部16が端部に近づくほど絞られた形状とする場合の一例を示したが、端部においても円筒状のままとしても構わない。
赤外線を放射する光源と、被検出ガスによる特定波長の赤外線の吸収特性を検出する検出器とを同一のケース内に備え、当該ケース内に被検出ガスが導入されるように構成され、前記検出器によって被検出ガスの濃度が検出される赤外線式ガスセンサとして利用可能である。
1 :光路管
2 :ケース
3 :平面基板
3 :基板
11a :突起部
11b :突起部
11c :突起部
17 :貫通孔
A :光軸
Dt :検出器
Dto :中心位置
G :被検出ガス
M1 :第1ミラー
M2 :第2ミラー
M2o :中心位置
S :ガスセンサ
Se :受光素子
Sr :光源
r1 :反射位置
r2 :反射位置

Claims (7)

  1. 赤外線を放射する光源と、被検出ガスによる特定波長の赤外線の吸収特性を検出する検出器とを同一のケース内に備え、当該ケース内に被検出ガスが導入されるように構成され、前記検出器によって被検出ガスの濃度が検出される赤外線式ガスセンサであって、
    前記光源と、前記検出器とが同一の平面基板上に実装され、
    前記光源及び前記検出器に対して対向して配置され、前記赤外線を反射する第1ミラーと、
    前記光源及び前記検出器の間で、かつ、前記第1ミラーと対向して配置され、前記赤外線を反射する第2ミラーと、
    前記光源から放射された赤外線を、前記第1ミラー、前記第2ミラー、前記第1ミラーの順で反射させて、前記検出器へと導く光路管と、を備え、
    前記光源から前記検出器に至る赤外線の光路を渡って、前記第1ミラーと前記第2ミラーとの間に、前記被検出ガスが導入される被検出ガス導入部を備え
    前記第1ミラー及び前記第2ミラーが、平面状に形成されるとともに、平行に配置され
    前記光路管が、前記赤外線を反射する反射部材を用いて、端部が、前記光源、前記第1ミラー、前記第2ミラー、及び前記検出器に開放された筒状に形成された赤外線式ガスセンサ。
  2. 前記光路管が、前記光源と前記第2ミラーとの間、前記第2ミラーと前記検出器との間、及び前記第1ミラーにおいて赤外線が1度目に反射する箇所と2度目に反射する箇所との間に、前記平面基板に直交する方向に突出する突起部と、を備える請求項1に記載の赤外線式ガスセンサ。
  3. 赤外線を放射する光源と、被検出ガスによる特定波長の赤外線の吸収特性を検出する検出器とを同一のケース内に備え、当該ケース内に被検出ガスが導入されるように構成され、前記検出器によって被検出ガスの濃度が検出される赤外線式ガスセンサであって、
    前記光源と、前記検出器とが同一の平面基板上に実装され、
    前記光源及び前記検出器に対して対向して配置され、前記赤外線を反射する第1ミラーと、
    前記光源及び前記検出器の間で、かつ、前記第1ミラーと対向して配置され、前記赤外線を反射する第2ミラーと、
    前記光源から放射された赤外線を、前記第1ミラー、前記第2ミラー、前記第1ミラーの順で反射させて、前記検出器へと導く光路管と、を備え、
    前記光源から前記検出器に至る赤外線の光路を渡って、前記第1ミラーと前記第2ミラーとの間に、前記被検出ガスが導入される被検出ガス導入部を備え、
    前記光路管が、前記光源と前記第2ミラーとの間、前記第2ミラーと前記検出器との間、及び前記第1ミラーにおいて赤外線が1度目に反射する箇所と2度目に反射する箇所との間に、前記平面基板に直交する方向に突出する突起部と、を備える赤外線式ガスセンサ。
  4. 前記光路管が、前記平面基板と前記第1ミラーとの間に渡って、前記平面基板と平行な方向に前記被検出ガスを流通させるための貫通孔を備え、前記貫通孔の内部を前記被検出ガス導入部とした請求項1〜3のいずれか一項に記載の赤外線式ガスセンサ。
  5. 前記検出器が、検出面に互いに異なる波長域を検出可能に構成された2つの受光素子を備え、
    前記第2ミラーの中心位置から前記平面基板に直交する方向に延びる直線に対して、
    前記2つの受光素子の中心位置と前記光源の中心位置とが線対称に配置され、
    前記光源から放射される赤外線の光軸位置での前記第1ミラー上に位置する一対の反射位置も、前記直線に対して線対称に配置される請求項1〜4のいずれか一項に記載の赤外線式ガスセンサ。
  6. 前記光路管が、前記光源の周辺部及び前記検出器の周辺部において、端部に近づくほど絞られた請求項1〜5のいずれか一項に記載の赤外線式ガスセンサ。
  7. 前記被検出ガスとして、一酸化炭素を用いる請求項1〜6のいずれか一項に記載の赤外線式ガスセンサ。
JP2014062540A 2014-03-25 2014-03-25 赤外線式ガスセンサ Active JP6257407B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062540A JP6257407B2 (ja) 2014-03-25 2014-03-25 赤外線式ガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062540A JP6257407B2 (ja) 2014-03-25 2014-03-25 赤外線式ガスセンサ

Publications (2)

Publication Number Publication Date
JP2015184211A JP2015184211A (ja) 2015-10-22
JP6257407B2 true JP6257407B2 (ja) 2018-01-10

Family

ID=54350890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062540A Active JP6257407B2 (ja) 2014-03-25 2014-03-25 赤外線式ガスセンサ

Country Status (1)

Country Link
JP (1) JP6257407B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530652B2 (ja) * 2015-07-01 2019-06-12 旭化成エレクトロニクス株式会社 受発光装置
KR20180021956A (ko) * 2016-08-22 2018-03-06 (주)트루아이즈 포물 반사체를 이용한 광 도파관 및 이를 구비하는 적외선 가스 센서
US10161859B2 (en) 2016-10-27 2018-12-25 Honeywell International Inc. Planar reflective ring
JP2018084523A (ja) * 2016-11-25 2018-05-31 株式会社島津製作所 ガス濃度測定装置
JP2018115994A (ja) * 2017-01-19 2018-07-26 株式会社島津製作所 ガス濃度測定装置
KR101907393B1 (ko) * 2017-06-29 2018-10-15 한국교통대학교산학협력단 소수성 박막을 증착한 비분산적외선 이산화탄소 가스센서
KR102073064B1 (ko) * 2019-10-10 2020-02-04 (주)세성 비분산 근적외선 가스측정장치
US11644417B2 (en) 2020-03-11 2023-05-09 Asahi Kasei Microdevices Corporation Gas detection apparatus
US11474031B2 (en) 2020-03-16 2022-10-18 Asahi Kasei Microdevices Corporation Gas detection apparatus
US11662305B2 (en) 2020-03-31 2023-05-30 Asahi Kasei Microdevices Corporation Gas detection apparatus
KR102408640B1 (ko) * 2021-05-17 2022-06-14 (주)세성 멀티 가스 누출 경보기용 플라스틱 가스셀

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164939A (en) * 1980-05-23 1981-12-18 Yamatake Honeywell Co Ltd Light source device of infrared analyzer
JP3059661B2 (ja) * 1995-03-15 2000-07-04 アンリツ株式会社 ガス濃度測定装置
JP4239799B2 (ja) * 2003-11-25 2009-03-18 パナソニック電工株式会社 分光式特定成分センサ
EP1695066A4 (en) * 2003-12-12 2010-02-17 Elt Inc GAS SENSOR
JP2005337875A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd ガスセンサ
JP5374297B2 (ja) * 2009-06-25 2013-12-25 パナソニック株式会社 赤外線式ガス検知器および赤外線式ガス計測装置
US20120190997A1 (en) * 2011-01-21 2012-07-26 Carefusion 2200, Inc. Main stream gas analyzing device

Also Published As

Publication number Publication date
JP2015184211A (ja) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6257407B2 (ja) 赤外線式ガスセンサ
JP7129809B2 (ja) 光学フィルタ及び分光器
JP4726954B2 (ja) ガスセンサーのための光空洞
KR102491854B1 (ko) 분광기
CA2787221C (en) Gas sensor with radiation guide
KR101088360B1 (ko) 복수의 독립된 광 경로를 갖는 광 도파관 및 그를 이용한 ndir 가스 센서
JP6294312B2 (ja) レーザパワーセンサ
US10222595B2 (en) Compact folded optical multipass system
CN110383043B (zh) 光学气体传感器
CN109564153B (zh) 用于气体的吸收测量的测量装置
TW201245692A (en) Gaseous substance detecting apparatus
EP2772749B1 (en) Detector
KR101108497B1 (ko) 적외선 가스 센서
JP2015137910A (ja) 挿入型ガス濃度測定装置
KR100781968B1 (ko) 광경로 길이를 변경할 수 있는 비분산 적외선 가스 농도측정장치
JP2006275632A (ja) 分光式ガスセンサ
KR102223821B1 (ko) 다종 가스 측정 장치
JP2005337875A (ja) ガスセンサ
KR102103767B1 (ko) 가스 센서용 광 공동 및 그를 이용한 가스센서
KR101412212B1 (ko) 광 도파관
JP2005337879A (ja) ガスセンサ
KR101935016B1 (ko) 다중 내부 반사를 이용한 광학적 가스 센서
JP2006275641A (ja) 分光式ガスセンサ
JP6330909B2 (ja) 熱型赤外線センサおよびガス測定装置
US11137282B2 (en) Optical concentration measurement device comprising a light receiving unit with a rectangular light receiving surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6257407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150