JP6252182B2 - Manganese oxide reduction method in converter - Google Patents

Manganese oxide reduction method in converter Download PDF

Info

Publication number
JP6252182B2
JP6252182B2 JP2014002566A JP2014002566A JP6252182B2 JP 6252182 B2 JP6252182 B2 JP 6252182B2 JP 2014002566 A JP2014002566 A JP 2014002566A JP 2014002566 A JP2014002566 A JP 2014002566A JP 6252182 B2 JP6252182 B2 JP 6252182B2
Authority
JP
Japan
Prior art keywords
manganese
converter
temperature
blowing
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014002566A
Other languages
Japanese (ja)
Other versions
JP2015131980A (en
Inventor
健夫 井本
健夫 井本
小川 雄司
雄司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014002566A priority Critical patent/JP6252182B2/en
Publication of JP2015131980A publication Critical patent/JP2015131980A/en
Application granted granted Critical
Publication of JP6252182B2 publication Critical patent/JP6252182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、溶銑から溶鋼を製造する転炉操業において、酸素吹錬による脱炭反応と溶鉄中の炭素によるマンガン酸化物の還元反応の両方を1回の処理で行う、含マンガン溶鋼製造技術に関する。   The present invention relates to a manganese-containing molten steel production technique in which in a converter operation for producing molten steel from hot metal, both decarburization reaction by oxygen blowing and reduction reaction of manganese oxide by carbon in molten iron are performed in a single treatment. .

鋼中のマンガン成分は、鋼の靭性向上や、鋳片の偏析防止などのために添加される有用元素で、含マンガン鋼の多くは、フェロマンガンやメタリックマンガンのような金属マンガンを二次精錬の取鍋工程にて添加して成分調整が行われた後に、鋳造、圧延工程を経由して製造される。   Manganese components in steel are useful elements added to improve the toughness of steel and prevent segregation of slabs. Many manganese-containing steels are secondarily refined from manganese metal such as ferromanganese and metallic manganese. It is manufactured through a casting and rolling process after the ingredients are adjusted in the ladle process.

これらのマンガンは、天然資源としてはマンガン鉱石などの酸化物状態で存在するために、合金用の金属マンガンの購入価格は、マンガン鉱石よりも非常に高価である。
そのため、非特許文献1に詳しく記載されているような、転炉吹錬中の溶鉄温度では酸化マンガンが炭素還元可能であることから、転炉内に安価なマンガン鉱石を添加して、吹錬中に還元させて含マンガン溶鋼を製造して、二次精錬で使用する金属マンガン使用量を削減する操業が実施されている。
Since these manganeses exist as oxides such as manganese ore as natural resources, the purchase price of metal manganese for alloys is much higher than that of manganese ore.
Therefore, as described in detail in Non-Patent Document 1, manganese oxide can be carbon-reduced at the molten iron temperature during converter blowing, so that an inexpensive manganese ore is added to the converter and blown. Operations are being carried out to reduce the amount of manganese metal used in secondary refining by reducing it into manganese-containing molten steel.

また、非特許文献2に詳しく記載されているように、天然産出のマンガン鉱石は融点が1550℃程度であることから、融点低下品(例えば焼結品)を添加して転炉吹錬の早い時期(低温域)で反応性の良い滓化状態にして還元効率を高める研究が行われている。   In addition, as described in detail in Non-Patent Document 2, the naturally produced manganese ore has a melting point of about 1550 ° C., so that a low melting point product (for example, a sintered product) is added and the converter is blown quickly. Research is being carried out to increase the reduction efficiency by making the hatched state with good reactivity at the time (low temperature range).

更に、鋼中炭素によるマンガン還元反応は、吸熱反応であることから、高温ほど還元が有利に進行することは良く知られており脱炭精錬完了した高温の溶鋼で酸素上吹き無しに撹拌して還元反応を進行させる手段(特許文献1)や、高温での炭素還元を長時間維持して高Mn溶銑を製造する手段(特許文献2)などが提案されている。   Furthermore, since the manganese reduction reaction by carbon in steel is an endothermic reaction, it is well known that the reduction proceeds more favorably at higher temperatures, and the decarburized and refined high-temperature molten steel is stirred without oxygen top blowing. Means for proceeding the reduction reaction (Patent Document 1), means for producing a high Mn hot metal by maintaining carbon reduction at a high temperature for a long time (Patent Document 2), and the like have been proposed.

田畑芳明 ら:鉄と鋼,Vol.76(1990),p1916.Yoshiaki Tabata et al .: Iron and Steel, Vol.76 (1990), p1916. 金子敏行 ら:鉄と鋼,Vol.79(1993),p941.Toshiyuki Kaneko et al .: Iron and Steel, Vol. 79 (1993), p941. 日刊工業新聞社:製鋼反応の推奨平衡値(1968).Nikkan Kogyo Shimbun: Recommended equilibrium value of steelmaking reaction (1968). 内田晋 ら:鉄と鋼,Vol.77(1991),p490.Satoshi Uchida et al .: Iron and Steel, Vol. 77 (1991), p490.

特開2000−096117号公報JP 2000-096117 A 特開昭61−272345号公報JP-A-61-272345

しかし、非特許文献1に記載の操業で得られている実績は、同文献の1920頁Fig.8記載のように、吹止温度は1630〜1670℃で得られたマンガン濃度は1wt%に満たない(0.6〜0.9 wt %)溶鋼が得られる程度であり、また、非特許文献2に記載の技術でも、焼結品を用いてもマンガン鉱石単体添加より還元向上効果は認められているが、同文献の947頁Fig.16に記載のように、得られた鋼中マンガン濃度は0.8 wt %以下であった。
一般に、厚板材などに求められる製品中のマンガン含有量は1〜3質量%(mass%と記載する場合もある)である場合が多く、マンガン鉱石をより多く還元可能な技術の要求は極めて高いものである。
However, the results obtained in the operation described in Non-Patent Document 1 show that the manganese concentration obtained at 1630-1670 ° C is less than 1 wt% as shown in Fig. 8 on page 1920 of the same document. (0.6 to 0.9 wt%) molten steel is obtained, and even with the technique described in Non-Patent Document 2, even if a sintered product is used, a reduction improvement effect is recognized from the addition of manganese ore alone, As described in Fig. 16 on page 947 of the same document, the manganese concentration in the obtained steel was 0.8 wt% or less.
In general, the manganese content in products required for thick plates is often 1 to 3% by mass (may be described as mass%), and the demand for technology that can reduce more manganese ore is extremely high. Is.

さらに、高温域でのマンガン還元を有利に進行させるための特許文献1記載の手段では、マンガン還元を実施するためにリンシングによって還元時間延長を図っているが、同文献の図5記載のように、リンシング開始時の温度は1680℃以上であり、この程度の温度での操業は、転炉耐火物に対しては損耗の激しい状態であり、耐火物寿命の極端な低下を招いたり、非吹錬時に実施する炉補頻度が増加して高生産性が維持できないという深刻な課題を含むものであった。
また、マンガン鉱石を大量に還元するためには、特許文献2のように、高温で十分な炭素濃度を確保して、長時間の吹錬を行う溶融還元技術はあるが、このときに得られる溶鉄には炭素が7%程度含有されていることからそのまま二次精錬工程で製品にできるものではない。
Furthermore, in the means described in Patent Document 1 for favorably proceeding the manganese reduction in a high temperature range, the reduction time is extended by rinsing in order to carry out the manganese reduction, but as shown in FIG. The temperature at the start of rinsing is 1680 ° C or higher, and operation at such a temperature is severely worn for the converter refractory, leading to an extreme decrease in the refractory life or non-blowing. It included a serious problem that the frequency of furnace replacement performed during smelting increased and high productivity could not be maintained.
In addition, in order to reduce manganese ore in large quantities, there is a smelting reduction technique in which sufficient carbon concentration is ensured at a high temperature and long-time blowing is performed, as in Patent Document 2, which is obtained at this time. Since molten iron contains about 7% carbon, it cannot be made into a product in the secondary refining process.

本発明は、上記従来技術の問題点を踏まえ、溶銑から溶鋼を製造する転炉操業時に、酸化マンガン還元を行う際に、大量のマンガン還元が可能でかつ、耐火物寿命に影響のある高温状態にさらすことない、効率の良い操業方法の提供を目的とする。   The present invention is based on the above-mentioned problems of the prior art, during a converter operation for producing molten steel from hot metal, when performing manganese oxide reduction, a large amount of manganese can be reduced, and a high temperature state that affects the refractory life The purpose is to provide an efficient operation method that does not expose to

本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、マンガン鉱石などの安価な酸化マンガンを転炉吹錬で効果的に還元添加できる手段を見出した。その要旨は以下のとおりである。   The inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, the inventors have found a means by which inexpensive manganese oxide such as manganese ore can be effectively reduced and added by converter blowing. The summary is as follows.

(1) 炭素濃度が2.5質量%以上で温度が1400℃以下の溶銑から溶鋼を製造する転炉の脱炭処理において、溶鉄に酸化マンガン含有添加物を添加するとともに、炭素濃度が0.1質量%以上で溶鉄温度が1500℃以上1650℃未満の時期に、送酸速度を脱炭処理中の平均送酸速度よりも低下させ、低下させた時間を合計で1分以上とし、吹止め温度を1650℃未満とすることを特徴とする転炉における酸化マンガン還元方法。
(2) 送酸速度を脱炭処理中の平均送酸速よりも低下させた際の送酸速度が0〜100Nm/h・tであることを特徴とする前記(1)に属する転炉における酸化マンガン還元方法。
(3) 溶鉄温度が1450℃に達するまでに溶鉄に酸化マンガン含有添加物を添加することを特徴とする前記(1)又は(2)に属する転炉における酸化マンガン還元方法。
(4) 送酸速度を脱炭処理中の平均送酸速度よりも低下させた際の、炉内スラグに酸化マンガンとして含有されるマンガン濃度が20質量%以上であることを特徴とする前記(1)、(2)、(3)のいずれかに属する転炉における酸化マンガン還元方法。
(1) In a decarburization process of a converter for producing molten steel from hot metal having a carbon concentration of 2.5% by mass or more and a temperature of 1400 ° C. or less, a manganese oxide-containing additive is added to the molten iron, and the carbon concentration is set to 0.1%. When the molten iron temperature is 1% by mass or more and the temperature is 1500 ° C. or higher and lower than 1650 ° C., the acid feeding rate is decreased from the average acid feeding rate during the decarburization treatment, and the reduced time is set to 1 minute or more in total. A method for reducing manganese oxide in a converter, wherein the temperature is less than 1650 ° C.
(2) The converter belonging to (1) above, wherein the acid feed rate is 0 to 100 Nm 3 / h · t when the acid feed rate is lower than the average acid feed rate during the decarburization treatment. Manganese oxide reduction method.
(3) The manganese oxide reduction method in a converter belonging to (1) or (2) above, wherein a manganese oxide-containing additive is added to the molten iron until the molten iron temperature reaches 1450 ° C.
(4) The manganese concentration contained in the furnace slag as manganese oxide is 20% by mass or more when the acid feed rate is lower than the average acid feed rate during the decarburization treatment. A method for reducing manganese oxide in a converter belonging to any one of 1), (2), and (3).

本発明によれば、マンガン鉱石などの安価な酸化マンガンを転炉吹錬で効果的に還元添加でき、その工業的な利用価値は極めて高いものである。   According to the present invention, inexpensive manganese oxide such as manganese ore can be effectively reduced and added by converter blowing, and its industrial utility value is extremely high.

上底吹き転炉による本発明の実施を模式的に示す図である。It is a figure which shows typically implementation of this invention by an upper bottom blow converter.

本発明の転炉での酸化マンガン還元添加方法(以下「本発明方法」という)の実施形態を、図1に基づいて説明する。なお、本発明方法は、ここに示す実施形態に限られるものではなく、上吹き転炉、Q−BOP、AODなどの各種転炉型精錬設備にて適宜実施できるものである。   An embodiment of a method for reducing and adding manganese oxide in a converter of the present invention (hereinafter referred to as “method of the present invention”) will be described with reference to FIG. In addition, this invention method is not restricted to embodiment shown here, It can implement suitably with various converter type | mold refining facilities, such as a top blow converter, Q-BOP, and AOD.

転炉内には、溶鉄1とスラグ2が挿入され、上吹きランス3より酸素4が供給される。底吹き羽口5からは、撹拌ガス6(撹拌ガスには、窒素、炭酸ガス、酸素、アルゴンなどが適宜用いられる)が吹き込まれている。転炉は、耐火物7(マグネシアカーボンなど適宜)を内張りした鉄皮8で構成されている。ホッパー9より、炉口から炉内に副材10が添加される。サブランス11は、測温、サンプリング(メタル及び/又はスラグ)、CDセンサー(メタル凝固点測定に基づくオンラインバッチ[C]測定)機能を有している。   Molten iron 1 and slag 2 are inserted into the converter, and oxygen 4 is supplied from an upper blowing lance 3. A stirring gas 6 (nitrogen, carbon dioxide, oxygen, argon, or the like is appropriately used as the stirring gas) is blown from the bottom blowing tuyere 5. The converter is composed of an iron skin 8 lined with a refractory 7 (such as magnesia carbon as appropriate). A secondary material 10 is added from the hopper 9 into the furnace through the furnace port. The sub lance 11 has temperature measurement, sampling (metal and / or slag), and CD sensor (online batch [C] measurement based on metal freezing point measurement) functions.

転炉による溶銑から溶鋼を製造する脱炭処理は、一般的な転炉では、炉内容積に応じた溶銑量(炉容比:炉内体積/溶鉄体積=5〜9程度)が挿入され、現状では、多孔ランス採用などの技術導入によって、溶鉄1tあたりの平均送酸速度は200〜300Nm3/hでの高速吹錬で所定成分の溶鋼に脱炭するまでの吹錬時間は10〜20分が一般的となっている。 In the decarburization process for producing molten steel from molten iron by a converter, in a general converter, the amount of molten iron corresponding to the furnace volume (furnace capacity ratio: volume in the furnace / volume of molten iron = about 5 to 9) is inserted, At present, due to the introduction of technologies such as the adoption of porous lances, the average acid feed rate per 1 ton of molten iron is 200 to 300 Nm 3 / h, and the blowing time until decarburization to molten steel of the specified component is 10 to 20 Minutes are common.

ここで、脱炭前の溶銑は、高炉から出銑される溶銑(一般的に溶鉄中炭素濃度:[C]≧4mass%)のみならず、溶銑予備処理やラップ配合によって炭素濃度の低下したものも対象となる。
溶銑と溶鋼の定義は、一般的には[C]で区分され、その濃度は文献によって異なる。本発明の説明では、鋳物銑などに用いられる脱炭吹錬を必要としない高炭素濃度と、軸受け材料などに用いられる脱炭吹錬を必要とする高炭素鋼を区分する意味で、[C]>2mass%の溶鉄を溶銑とし、[C]≦2mass%の溶鉄を溶鋼として扱う。
また、本発明は、一般の低合金鋼のみならず、20mass%以上の鉄以外の合金成分を含んだ特殊高Ni製品の製造などにも適用できることから、溶鉄は、鉄を50mass%以上含有する溶融金属として規定する。
Here, the hot metal before decarburization includes not only hot metal discharged from the blast furnace (generally carbon concentration in molten iron: [C] ≥ 4 mass%), but also a carbon concentration lowered by hot metal pretreatment and lapping. Is also a target.
The definition of hot metal and molten steel is generally classified by [C], and the concentration varies depending on the literature. In the description of the present invention, in order to distinguish between high carbon concentration that does not require decarburization blown used for cast iron and the like, and high carbon steel that requires decarburization blown used for bearing materials and the like, [C ]> 2 mass% molten iron is treated as molten iron, and [C] ≦ 2 mass% molten iron is treated as molten steel.
In addition, since the present invention can be applied not only to general low alloy steels but also to the production of special high Ni products containing alloy components other than 20 mass% of iron, the molten iron contains 50 mass% or more of iron. Specified as molten metal.

本発明で、炭素濃度が2.5mass%以上で温度が1400℃以下の溶銑を対象としたのは、溶銑から溶鋼を製造することを目的とした転炉における脱炭吹錬前の溶銑の炭素濃度および、温度がこの範囲であり、本発明の実施には適した範囲であることに付け加え、炭素濃度が2.5%未満である場合には、次工程以降から要求される、吹止温度確保に加えて、マンガン還元のための熱源の炭素が不足して、還元操業のためには吹錬中の炭材添加などのコスト作業負荷が加わることが多くなること、また、高温溶銑では燐分配が低下することから、初期温度が1400℃を超える溶銑では、処理前の溶銑[P]が高位にばらつく場合が多く、マンガン還元と同時に進行する復燐のための高[P]による成分外れなどの操業障害が発生しやすいためである。   In the present invention, for the hot metal having a carbon concentration of 2.5 mass% or more and a temperature of 1400 ° C. or less, the carbon concentration of the hot metal before decarburization blowing in the converter for the purpose of producing molten steel from the hot metal In addition, the temperature is within this range, and in addition to being within the range suitable for the practice of the present invention, when the carbon concentration is less than 2.5%, ensuring the blowing temperature required from the next step onward. In addition, there is a shortage of carbon as a heat source for manganese reduction, which adds to the cost burden such as the addition of carbonaceous materials during blowing operation for reduction operation, and phosphorus distribution in high temperature hot metal Therefore, in hot metal with an initial temperature exceeding 1400 ° C, the hot metal [P] before processing often varies to a high level, and component removal due to high [P] for rephosphorization that proceeds simultaneously with manganese reduction, etc. This is because it is likely to cause operational troubles.

まず、現状の転炉マンガン還元操業について説明する。
吹錬中の鋼中へのマンガン還元反応は、代表的には下記(1)式で進行する。
(MnO)+CMn+CO↑ ・・・(1)
但し、(MnO):スラグ中のMnOを示し、CMn:メタル中のC、Mnを示す。
First, the current converter manganese reduction operation will be described.
The manganese reduction reaction into the steel being blown typically proceeds according to the following formula (1).
(MnO) + CMn + CO ↑ (1)
However, (MnO): MnO in the slag, C , Mn : C , Mn in the metal.

このため、鋼中にマンガンを還元添加するにはMnO源が必要となる。MnO源としては、MnO等の酸化マンガンを含有する前チャージのキャリーオーバースラグなども利用できるが、還元量としては限定されるため、マンガン鉱石などの酸化マンガン含有物をホッパーから炉内に添加供給することで、有効なマンガン還元操業が実施できる。この際、酸化マンガン添加は、粉体のものをキャリヤーガスと共に上吹きランスや底吹き羽口などから炉内に供給しても差支えない。   For this reason, a MnO source is required to reduce and add manganese to the steel. As the MnO source, carry-over slag of precharge containing manganese oxide such as MnO can be used, but since the reduction amount is limited, manganese oxide-containing materials such as manganese ore are added and supplied from the hopper to the furnace By doing so, an effective manganese reduction operation can be carried out. At this time, manganese oxide may be added to the furnace with powder from the top blowing lance or bottom blowing tuyere together with the carrier gas.

上記(1)式のマンガン還元の平衡定数Kは、例えば非特許文献3に記載されているような既知の熱力学的なデータより、温度Tの関数として一義的に定義できる。
すなわち(1)式の標準自由エネルギー変化:ΔG゜は下記(2)式で表されるので、マンガン還元の平衡定数Kは下記(3)式の通りとなる。
MnO+CMn+CO(g) ・・・(1)
△G゜=+266020−167.64T ・・・(2)
K=(aMn・PCO)/(aMnO・a)=exp(‐31997/T‐20.164) ・・・(3)
ここで、Tは溶銑温度、PCOは炉内のCO分圧、aMnはスラグ中のMn活量、aMnOはスラグ中の酸化マンガン(MnO)活量、aはスラグ中のC活量である。
The equilibrium constant K for manganese reduction in the above formula (1) can be uniquely defined as a function of the temperature T from known thermodynamic data as described in Non-Patent Document 3, for example.
That is, since the standard free energy change (ΔG °) in the equation (1) is expressed by the following equation (2), the equilibrium constant K for manganese reduction is as shown in the following equation (3).
MnO + CMn + CO (g) (1)
△ G ° = + 266020−167.64T (2)
K = (a Mn · P CO ) / (a MnO · a C ) = exp (−31997 / T−20.164) (3)
Here, T is the hot metal temperature, P CO CO partial pressure of the furnace, a Mn is Mn activity in the slag, a MnO manganese oxide (MnO) activity in the slag, a C is C activity in the slag Amount.

従って、溶鋼中のマンガン濃度(aMnとほぼ比例する)を高めるには、一定の温度即ちKが一定の条件で、
1)スラグ中のマンガン酸化物濃度を確保する:高aMnOの維持
2)溶鋼中の炭素濃度を確保する:高aの維持
の2点が重要であり、1)については、レススラグ吹錬でのMn鉱石添加操業、2)については、[C]≧0.1mass%の確保が重要ということは、前述の、非特許文献1、2にも記載されている。
Therefore, in order to increase the manganese concentration in the molten steel (which is approximately proportional to a Mn ), a constant temperature, that is, K is constant,
1) to ensure the manganese oxide concentration in the slag: ensuring the carbon concentration of maintaining 2) in the molten steel of a high a MnO: it is important to two points the maintenance of high a c, 1) for, Resusuragu blowing As for the operation of adding Mn ore at 2), the fact that it is important to ensure [C] ≧ 0.1 mass% is also described in Non-Patent Documents 1 and 2 mentioned above.

ここで、大気圧で操業される転炉では、Pco≧1atmであれば平衡aMnに達するまでは、気体相側のCO物質移動は雰囲気ガス濃度に左右されずに速やかに進行することは、当該技術者では容易に考察でき、そのための手段として、特許文献1、2に記載されているように、炉内温度を高位にしてKの値を高くする操業が指向されてきた。 Here, in the converter operated at atmospheric pressure, if Pco ≧ 1 atm, the CO mass transfer on the gas phase side proceeds rapidly without being influenced by the atmospheric gas concentration until the equilibrium a Mn is reached. The engineer can easily consider this, and as a means for that purpose, as described in Patent Documents 1 and 2, an operation has been directed to increase the K value by increasing the furnace temperature.

上記のような知見に基づいて現状の転炉マンガン還元操業は行われているが、前記の要解決課題である、大量のマンガン還元を実施するためには、転炉操業では極めて障害になる1650℃以上での高温での処理を長時間実施することが要求されており、発明者らは、転炉での脱炭と酸化マンガン還元反応を炉体に対するダメージの無いような温度と操業時間延長が問題にならないような操業技術確立のために鋭意調査研究を行った。   Based on the above knowledge, the current converter manganese reduction operation is performed, but in order to carry out a large amount of manganese reduction, which is the above-mentioned problem to be solved, the converter operation is extremely hindered. It is required to carry out treatment at a high temperature of ℃ or higher for a long time, and the inventors have extended the temperature and operation time so that the decarburization and manganese oxide reduction reaction in the converter does not damage the furnace body. In order to establish an operation technology that does not become a problem, intensive research was conducted.

本調査研究において、最も重要な課題となったのは、(3)式中のaMnO(スラグ中の酸化マンガン活量)の正確な評価の点である。各種モデル計算によってスラグ中のMnO活量は計算可能であるが、既存の計算評価手法は、実験値に基づいて決定したパラメータを利用し、それをモデル化して評価するものである。
例えば、非特許文献4中Fig.2でも明らかなように、単純なCaO−MnO二元系のaMnOでもモデル計算と実測値で大きな違いがある。ここでは、この実験温度も、製鋼温度よりも低い1400℃の結果であり、更に、マンガン鉱石中に存在する酸化マンガンはMnOが主成分であることが確認されており、スラグ中で、4価、2価が混在する遷移金属であるマンガンの正確なイオン挙動が明らかになっていないという大きな問題点がある。
The most important issue in this research was the accurate evaluation of aMnO (manganese oxide activity in slag) in the formula (3). Although the MnO activity in the slag can be calculated by various model calculations, the existing calculation evaluation method uses parameters determined based on experimental values and models them for evaluation.
For example, as is apparent from Fig. 2 in Non-Patent Document 4, even a simple CaO-MnO binary aMnO has a large difference between the model calculation and the actual measurement value. Here, this experimental temperature is also a result of 1400 ° C., which is lower than the steelmaking temperature. Further, it has been confirmed that manganese oxide present in the manganese ore is mainly composed of MnO 2. There is a big problem that the exact ionic behavior of manganese, which is a transition metal in which valence and divalence are mixed, has not been clarified.

従って、発明者らは、酸化マンガンを含む各種スラグ(マンガン鉱石あるいはMnO試薬を転炉スラグなどと配合して種々組成に変更したスラグ)と炭素含有溶鉄との界面で生じる還元挙動を詳細に調査した。
その際、鋼中炭素濃度が0.1〜3mass%の領域において、転炉スラグと酸化マンガンが共存するときのマンガン還元速度の調査と実験炉内観察を、大気圧雰囲気の実験炉によって種々実施し、1500℃を超えた条件で、スラグメタル界面からCOガスと考えられるボイリングが発生し、かつ、極めて速やかにMn還元反応が進行することを明確にすることができた。
Therefore, the inventors investigated in detail the reduction behavior that occurs at the interface between various slag containing manganese oxide (slag that has been changed to various compositions by combining manganese ore or MnO reagent with converter slag, etc.) and molten iron containing carbon. did.
At that time, in the region where the carbon concentration in the steel is 0.1 to 3 mass%, various investigations of the manganese reduction rate and observation in the experimental furnace when the converter slag and manganese oxide coexist are carried out variously by the experimental furnace in the atmospheric pressure atmosphere, Under conditions exceeding 1500 ° C., it was clarified that boiling considered to be CO gas was generated from the slag metal interface and that the Mn reduction reaction proceeded very rapidly.

このCOガスボイリングは、(3)式のPCOが雰囲気の1atmを超える状態であるために発生しており、気体側のCO物質移動が反応律速に関与しない臨界条件であることを示している。特に、スラグ中の酸化マンガンとして含まれるマンガン含有率が20mass%(スラグを粉砕、磁選したサンプルを蛍光X線分析法にて定量した値)を超える場合に、特に著しく、還元反応が速やかに進行することと、鋼中炭素濃度が0.1mass%未満では、還元反応が著しく停滞することも確認できた。 The CO gas boiling shows that has occurred, the CO mass transfer of the gas side is a critical condition which does not participate in the reaction rate for a state of greater than 1atm of equation (3) P CO atmosphere . In particular, when the manganese content contained as manganese oxide in the slag exceeds 20 mass% (a value obtained by quantifying a sample obtained by pulverizing and magnetically selecting the slag and quantifying it with a fluorescent X-ray analysis method), the reduction reaction proceeds particularly rapidly. It was also confirmed that when the carbon concentration in the steel was less than 0.1 mass%, the reduction reaction was significantly stagnant.

従って、転炉でのマンガン還元を有利に進行させるためには、従来技術で示されているような1650℃程度の高温吹止温度値自体が還元率に大きな影響を及ぼしているのではないと考えることができる。一定送酸速度の転炉操業においては、連続的に温度が上昇し、上昇速度は放散熱の温度依存性や酸化反応物質によって変化はするものの、送酸速度一定の場合の溶鉄温度上昇は時間に比例することは一般的な操業経験から良く知られたことである。本発明の効果は、このような温度上昇による効果ではなく、今回の調査研究で明らかになった1500℃以上の望ましい温度に達した以降から吹止までの吹錬時間が延長されている効果に相当するものであることが、以下の、実機の操業データ解析例などからも裏付けることができた。   Therefore, in order to proceed the manganese reduction in the converter advantageously, the high temperature blowing temperature value of about 1650 ° C. as shown in the prior art does not have a great influence on the reduction rate. Can think. In converter operation at a constant acid feed rate, the temperature rises continuously, and the rate of rise varies depending on the temperature dependence of the dissipated heat and the oxidation reactants. Is well known from general operational experience. The effect of the present invention is not the effect due to such a temperature rise, but the effect that the blowing time from reaching the desired temperature of 1500 ° C. or higher, which has been clarified in this research, to the blowing stop is extended. It was supported by the following example of actual operation data analysis.

すなわち、270t/ch転炉で70000Nm3/hの送酸条件(全送酸時間は15〜17分中)では、吹錬開始以降、1500℃に達した以降の吹止までの吹錬時間は、1630℃吹止(条件1)では4.3分に対して、1680℃吹止(条件2)では、6.0分(28%延長)である。条件1と条件2のマンガン還元量を比較したところ、条件2の条件1に対するマンガン還元量増加が3割程度であり、1500℃以上での反応時間増加率とマンガン還元量増加率はほぼ等しくなることを知見した。 That is, under the condition of 70,000 Nm 3 / h of acid feeding in a 270 t / ch converter (total acid feeding time is 15 to 17 minutes), after the start of blowing, the blowing time from reaching 1500 ° C. until blowing is The 1630 ° C blowing (condition 1) is 4.3 minutes, while the 1680 ° C blowing (condition 2) is 6.0 minutes (28% extension). Comparing the amount of manganese reduction in condition 1 and condition 2, the increase in manganese reduction with respect to condition 1 in condition 2 is about 30%, and the rate of increase in reaction time at 1500 ° C or higher is almost equal to the rate of increase in manganese reduction. I found out.

上記知見より、転炉での脱炭と酸化マンガン還元反応を効率的に実施するためには、1)マンガン還元速度が遅い1500℃までは、脱炭と昇温を短時間に行うための高速送酸を行い、2)マンガン還元速度が速い1500℃を超えた領域では長時間の還元時間を確保するために送酸速度を低下させて、炭素濃度の低下抑制と転炉の吹止温度を耐火物ダメージの小さい温度域で吹錬を完了する、ことによって無駄な処理時間の延長なく良好な還元特性が享受できることを見出した。   Based on the above findings, in order to efficiently carry out decarburization and manganese oxide reduction reaction in the converter, 1) high speed for quick decarburization and temperature rise up to 1500 ° C where manganese reduction rate is slow 2) In the region where the manganese reduction rate is higher than 1500 ° C, the oxygen reduction rate is reduced to ensure a long reduction time, and the carbon concentration is reduced and the converter blow-off temperature is reduced. It has been found that by completing the blowing in a temperature range where the refractory damage is small, it is possible to enjoy good reduction characteristics without extending wasteful treatment time.

ここで、送酸速度を低下する条件としては、上記記載の通り、炭素による還元力が極端に低下する[C]:0.1mass%よりも高炭素濃度でなければ、マンガン還元を進行させることができず、また、1650℃以上の温度で送酸速度を低下させても、1650℃という温度自体がマグカーボンなど転炉レンガに大きなダメージを与える範囲であることから、[C]:0.1mass%以上かつ1650℃未満の規定を設けた。
吹止温度も転炉レンガに大きなダメージを与えないために1650℃未満とする。
また、送酸速度を低下する条件として1500℃以上としたのは、上記のように1500℃以上の条件がマンガン還元を進行させる温度として極めて望ましいことと、1500℃未満で送酸速度を低下させると吹錬時間が長くなってしまい、生産性が低下することによる。
Here, as a condition for reducing the acid delivery rate, as described above, the reducing power by carbon is extremely reduced [C]: If the carbon concentration is not higher than 0.1 mass%, the manganese reduction may proceed. In addition, even if the acid feed rate is reduced at a temperature of 1650 ° C or higher, the temperature of 1650 ° C itself is a range that causes great damage to converter bricks such as magcarbon. [C]: 0.1 mass% Above and below 1650 ° C were established.
The blowing temperature is also set to less than 1650 ° C so as not to damage the converter bricks.
Moreover, the condition for reducing the acid delivery rate to 1500 ° C. or higher is that, as described above, the condition of 1500 ° C. or higher is extremely desirable as the temperature for promoting manganese reduction, and the acid delivery rate is reduced at less than 1500 ° C. This is because the blowing time becomes longer and the productivity is lowered.

従来の脱炭吹錬では、スロッピング発生回避、サブランス測定時の安定測定のための送酸速度の一時的低減、鉄分酸化ロスを回避するといった一部の目的を除いて、送酸速度は高位を維持する操業が行われる。そのため、現状の高速吹錬の吹錬開始から吹錬終了までの10〜20分の間に、還元反応が極めて有利に進行する[C]≧0.1mass%かつ、溶鉄温度が1500℃以上であるのは、全吹錬時間の3割程度の限られた時間であり、上記記載の良好な、耐火物ダメージが小さく、かつ、マンガン還元が有利に進行する温度、炭素濃度域は、全吹錬時間の20〜30%程度である。
これに対し、本発明では、上記の得られた知見に基づき、脱炭吹錬中に送酸速度を低下させ、良好な還元条件の時間を意図的に延長させるものである。このような良好な還元条件の時間の意図的な延長によって、従来操業では困難であったマンガン還元量(溶鋼中のマンガン濃度で1mass%以上の溶鋼を耐火物ダメージなどの操業悪影響を伴うことなく得ることが出来る。
ここで、平均送酸速度は下記(4)式にて規定する。
平均送酸速度(Nm3/h・t)=
吹錬開始〜終了炉内吹込O2量(Nm3)/(溶鉄量(t)×送酸時間(分)/60) ・・・(4)
In conventional decarburization blowing, the acid delivery rate is high except for some purposes such as avoiding slopping, temporarily reducing the acid delivery rate for stable measurement during sublance measurement, and avoiding iron oxidation loss. Operation to maintain is performed. Therefore, the reduction reaction progresses in an extremely advantageous manner within 10 to 20 minutes from the start of the current high-speed blowing to the end of the blowing [C] ≧ 0.1 mass% and the molten iron temperature is 1500 ° C. or higher. Is a limited time of about 30% of the total blowing time, and the temperature and carbon concentration range where the good refractory damage described above is small and manganese reduction proceeds favorably are all blown. About 20-30% of the time.
On the other hand, in this invention, based on said acquired knowledge, an acid sending speed | rate is reduced during decarburization blowing and the time of favorable reduction conditions is extended intentionally. By intentionally extending the time of such good reduction conditions, the amount of manganese reduction that was difficult in conventional operations (molten steel with a manganese concentration of 1 mass% or more in molten steel without adverse effects such as refractory damage) Can be obtained.
Here, the average acid feed rate is defined by the following equation (4).
Average acid feed rate (Nm 3 / h · t) =
Blowing start to finish furnace injection O 2 amount (Nm 3 ) / (Amount of molten iron (t) × acid sending time (min) / 60) (4)

また、平均送酸速度よりも送酸速度を低下させて良好な状態の還元時間延長を行う場合、低下させた時間が合計で1分未満の短時間である場合には、従来操業よりも有利なMn還元率を得ることできなかったため、1分以上の維持を必要条件と規定した。
後に記載するが、発明者らの操業実験による知見から、特に経済的な効果が著しい[Mn]2mass%以上の鋼を転炉での還元操業で得るためには、2分以上の送酸低下操業にて実施できることも明らかになっている。
In addition, when extending the reduction time in a good state by lowering the acid delivery rate from the average acid delivery rate, if the reduced time is less than 1 minute in total, it is more advantageous than conventional operation. Since a sufficient Mn reduction rate could not be obtained, the maintenance of 1 minute or more was defined as a necessary condition.
As will be described later, in order to obtain steel with a remarkable economic effect of [Mn] 2 mass% or more by reduction operation in a converter, it is possible to reduce the acid supply by 2 minutes or more, based on the findings of the inventors' experiments. It has also become clear that it can be implemented in operation.

本発明による有利なMn還元率を得る条件の維持時間の上限は規定しない。経済的な優位性の確保出来る範囲内で行えば良い。例えば、3mass%レベルの高Mn添加のために、送酸速度を低下させて、マンガン還元と脱炭で必要な[C](0.1mass%以上)を維持するために炭材添加を実施して吹錬延長操業を実施することはできるが、延長時間が60分を超える場合には、脱炭処理を目的とした転炉の生産性の低下による不利益よりも、特許文献2記載のようなマンガン還元専用炉使用時と比較した場合の経済的な利益が勝っているとは言えないことが予想される。   The upper limit of the maintenance time for obtaining an advantageous Mn reduction rate according to the present invention is not specified. What is necessary is just to perform within the range which can ensure economical advantage. For example, for high Mn addition at 3 mass% level, reduce the acid feed rate, and add carbonaceous material to maintain [C] (0.1 mass% or more) necessary for manganese reduction and decarburization. Blowing extension operation can be carried out, but when the extension time exceeds 60 minutes, the disadvantage of the reduction in productivity of the converter for the purpose of decarburization is described as described in Patent Document 2. It is expected that the economic benefits compared to using a manganese reduction furnace cannot be said to be winning.

平均送酸速度以下に低下した後の送酸量は、上限の100Nm3/h・t以下が望ましい。これは、現状の国内外の転炉での平均送酸速度が、上記の270t/ch転炉で70000Nm/hの送酸条件(260Nm3/h・t)に見られるように、200〜300Nm3/h・tであり、送酸速度を100Nm3/h・t以下とすることで、脱炭速度と温度上昇速度を低下させて効率の良いMn還元操業には非常に適している範囲であるからである。下限は0Nm3/h・tを含む。これは、短時間のリンシングでも温度低下などによる影響が低い場合や、ダイナミックコントロールなどの予想にて冷却材添加が必要な過剰温度操業時の対応の場合の条件が、本発明の効果を得るのに適しているためである。 The amount of acid delivered after the average acid delivery rate has fallen below the upper limit is desirably 100 Nm 3 / h · t or less. This means that the average acid feed rate in current converters in Japan and overseas can be seen in the range of 200 to 270 Nm 3 / h in the above 270 t / ch converter (260 Nm 3 / h · t). It is 300Nm 3 / h · t, and it is very suitable for efficient Mn reduction operation by reducing the decarburization rate and temperature rise rate by setting the acid feed rate to 100Nm 3 / h · t or less. Because. The lower limit includes 0 Nm 3 / h · t. This is because the effect of the present invention is obtained when conditions such as a short-term rinsing are less affected by a temperature drop, or when an excessive temperature operation that requires the addition of a coolant is expected for dynamic control or the like. It is because it is suitable for.

また、前チャージからのキャリーオーバースラグ中酸化マンガン以外に、マンガン酸化物の添加を行う場合の添加方法は、吹錬前に、スクラップとの同時に添加、溶銑挿入完了後または、吹錬中の適宜のタイミングのホッパーからの炉内添加などで良いが、良好な還元特性が見られる1500℃までの間にマンガン酸化物および、周囲のスラグ温度が可熱昇温する時間2分程度必要で、転炉吹錬では、溶鋼温度50℃上昇する時間に相当することから、マンガン酸化物の添加は溶鉄温度が1450℃以下の領域で実施することが望ましい。   In addition to the manganese oxide in the carry over slag from the previous charge, the addition method in the case of adding manganese oxide is as follows: before blowing, simultaneously with scrap, after completion of hot metal insertion or during blowing However, it takes about 2 minutes to heat the manganese oxide and surrounding slag temperature up to 1500 ° C where good reduction characteristics can be seen. In furnace blowing, it corresponds to the time for the molten steel temperature to rise by 50 ° C, so it is desirable to add manganese oxide in the region where the molten iron temperature is 1450 ° C or lower.

更に、上記研究検討結果より明らかになったように、スラグ中の酸化物として含有されるマンガン濃度が20mass%以上で特に良好な還元特性が得られることから、送酸速度を低下させ、0〜100Nm3/h・tに変更するときの、炉内スラグに酸化マンガンとして含有されるマンガン濃度が20mass%以上であることが望ましい。マンガン濃度は、例えば、送酸変更タイミングのスラグを吹錬中にサブランスなどで採取して、磁選して蛍光X線分析などで測定し、その測定結果に基づき、適宜条件選定と確認が可能である。 Furthermore, as has been clarified from the results of the above research and study, the manganese concentration contained as an oxide in the slag is 20 mass% or more, and particularly good reduction characteristics can be obtained. When changing to 100 Nm 3 / h · t, the manganese concentration contained in the furnace slag as manganese oxide is preferably 20 mass% or more. The manganese concentration can be selected and confirmed as appropriate based on the measurement results, for example, by collecting the slag at the timing of changing the acid delivery with a sublance during blowing, magnetically selecting it, and measuring it with fluorescent X-ray analysis. is there.

次に、本発明を実施例に基づいて更に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, the present invention will be further described based on examples, but the conditions in the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention. It is not limited to the example conditions. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

実施例の実験基本操業は、容量270tの上底吹き転炉を用い、初期温度1240〜1300℃、[C]が3.7〜4.1%の溶銑の吹錬を実施し、不可避的不純物(mass%)は、[Si]<0.08、[Mn]<0.1、[P]<0.03、[S]<0.01であった。
酸化マンガンとして、Mn品位47%のマンガン鉱石をホッパーより14.3t(還元率100%時△[Mn]=2.5mass%)を添加して吹錬を実施することを基本条件としたが、比較のため、マンガン鉱石と転炉滓混合品も使用した。また、処理中の炭素濃度変更水準を変更することを目的に、適宜吹錬開始前〜吹錬開始2分に適宜、コークス(加炭目的)および鉄鉱石(炭素濃度低減目的)添加などを実施した。
The experimental basic operation of the example uses an upper-bottom blowing converter with a capacity of 270 tons, blasting hot metal with an initial temperature of 1240-1300 ° C and [C] of 3.7-4.1%, unavoidable impurities (mass%) [Si] <0.08, [Mn] <0.1, [P] <0.03, and [S] <0.01.
As a basic condition, manganese ore with Mn grade 47% as manganese oxide was blown by adding 14.3 t (reduction rate 100% △ [Mn] = 2.5 mass%) from the hopper. Therefore, a mixture of manganese ore and converter slag was also used. Also, for the purpose of changing the carbon concentration change level during processing, coke (for carburizing purposes) and iron ore (for reducing carbon concentration) are added as appropriate before the start of blowing and 2 minutes after the start of blowing. did.

吹錬開始時の送酸速度は70000Nm3/h(260Nm3/h・t)として、初期の送酸開始の溶銑温度と送酸実績、およびサブランス測定から、吹錬中の[C]と溶鉄温度を推定し、実験水準の目標において送酸速度を変更して吹止直後にサブランスでの測温、サンプリングにて吹錬後の温度、成分(メタル、スラグ)の比較評価を行った。
尚、上記の吹錬開始の送酸速度(70000Nm3/h)が、上記(4)式で規定した平均送酸速度となる。
The oxygen feed rate at the start of blowing is 70000 Nm 3 / h (260 Nm 3 / h · t). From the hot metal temperature at the beginning of feeding and the actual results of feeding, and the sublance measurement, [C] and molten iron during blowing The temperature was estimated, and the acid feed rate was changed at the target of the experimental level. Immediately after blowing, the temperature was measured with a sub lance, and the temperature after blowing and the components (metal, slag) were comparatively evaluated by sampling.
Note that the above-mentioned acid feed rate (70000 Nm 3 / h) at the start of blowing is the average acid feed rate defined by the above equation (4).

本発明の特徴である、平均送酸速度から送酸速度を低下させた状態で、かつ、[C]≧0.1mass%、1500℃〜1650℃未満の適正条件の時間(送酸速度低下後適正時間)は、サブランス測定と送酸量などの操業条件から求められるダイナミック制御システムによる[C]、温度連続算定モデル指示値にて、その範囲を満足する時間を求めた。
二点間のサブランス測定値([C]、温度)とダイナミックコントロール指示値比較の予備試験にて、本手法による送酸速度低下後適正条件時間の測定誤差は10秒未満であることが確認されている。
Characteristic of the present invention, in a state where the acid delivery rate is reduced from the average acid delivery rate, and [C] ≧ 0.1 mass%, the time under appropriate conditions of 1500 ° C. to less than 1650 ° C. Time) was determined by [C] using the dynamic control system obtained from the operating conditions such as the sublance measurement and the amount of acid delivered, and the temperature continuous calculation model indicated value.
Preliminary tests comparing the sublance measurement value ([C], temperature) between two points and the dynamic control indication value confirmed that the measurement error of the appropriate condition time after the decrease in the acid delivery rate by this method was less than 10 seconds. ing.

実験結果を表1に示す。
本発明1、2はマンガン鉱石を吹錬開始前に添加(送酸変更後流量水準変更)、本発明3は吹錬中(メタル温度1420℃で添加)したものであるが、いずれも2mass%を超える吹止[Mn]実績が得られ、良好であった。
本発明4は、送酸変更後の送酸流量を30000Nm3/h(111Nm3/h・t)としたものであるが、本発明1とほぼ同様良好な還元特性が確認できた。
本発明5は、マンガン鉱石添加を吹錬開始後、溶鉄温度が1463℃時に実施したものであるが送酸速度変更時にサブランスよるスラグ採取(プローブ外周に設けた金属板に付着採取する構造)で付着スラグが採取できなかった。これは、マンガン鉱石添加後から送酸速度変更までにマンガン鉱石添加によってスラグ固化が発生して採取できなかったものと考えられ、吹止[Mn]は1.5mass%と本発明1~3よりは低めであった。
The experimental results are shown in Table 1.
Inventions 1 and 2 add manganese ore before the start of blowing (flow rate change after changing the acid feed), and Invention 3 is added during blowing (added at a metal temperature of 1420 ° C), both of which are 2 mass%. Blow [Mn] results exceeding 1, were obtained and good.
The present invention 4 has an acid flow rate of 30000 Nm 3 / h (111 Nm 3 / h · t) after changing the acid feed, and good reduction characteristics were confirmed in substantially the same manner as in the first invention.
The present invention 5 is the one in which the addition of manganese ore was performed when the molten iron temperature was 1463 ° C. after the start of blowing, but the slag was collected by sublance when the acid feed rate was changed (structure to adhere and collect on the metal plate provided on the outer periphery of the probe). Adhesive slag could not be collected. This is thought to be because slag solidification occurred due to the addition of manganese ore from the addition of manganese ore to the change in the acid feed rate, and it was not possible to collect it, and the blowing [Mn] was 1.5 mass%, which is more than the present inventions 1 to 3. It was low.

本発明6は、マンガン鉱石と転炉滓(2:1)の混合品を添加したものであるが、送酸速度低下時のスラグ中のマンガン濃度は15.8mass%で、還元力が低下したため、マンガン還元率は低めであった。
本発明7は、送酸速度低下を40000Nm3/h(148Nm3/h・t)として、望ましい還元時間を1.5分確保しているが、送酸速度低下から吹止めまでの時間がやや短いため、還元率もやや低めで吹止Mnは1.4mass%であった。
Invention 6 is a mixture of manganese ore and converter slag (2: 1) added, but the manganese concentration in the slag when the acid feed rate was reduced was 15.8 mass%, and the reducing power was reduced. Manganese reduction rate was low.
In the present invention 7, the decrease in the acid delivery rate is set to 40000 Nm 3 / h (148 Nm 3 / h · t), and a desirable reduction time is secured for 1.5 minutes, but the time from the decrease in the acid delivery rate to the blowing is somewhat short. The reduction rate was slightly lower and the blown Mn was 1.4 mass%.

比較例1は、マンガン鉱石を投入して、通常の脱炭吹錬と同じ送酸速度(70000Nm3/h一定)で操業したものであるが、吹止[Mn]は0.8mass%と低位であった。
比較例2は、本発明1とほぼ同じ条件で送酸速度低下のタイミングを早めて1410℃にて変更したものであるが、吹錬時間延長しているものの、1500℃の臨界温度以下での時間延長であったため、吹止[Mn]は本発明1と有意差の無いものであり、処理時間延長によって、二次精錬工程での処理時間不足の生産影響が発生した。
比較例3は、送酸変更後の適正時間を規定時間以下になる操業データであるが、適正時間が0.9分と規定の1分に満たない条件であり、通常吹錬の比較例1と還元率に大きな差異は見られなかった。
In Comparative Example 1, manganese ore was introduced and operated at the same acid feed rate (70000Nm 3 / h constant) as in normal decarburization blowing, but the blowing stop [Mn] was as low as 0.8 mass%. there were.
In Comparative Example 2, the timing of decreasing the acid delivery rate was changed at 1410 ° C under almost the same conditions as in the present invention 1, but the blowing time was extended, but at a critical temperature of 1500 ° C or lower. Since the time was extended, the blown stop [Mn] was not significantly different from that of the present invention 1, and the production time was insufficient due to the processing time extension in the secondary refining process.
Comparative Example 3 is the operation data in which the appropriate time after changing the acid feed is less than the specified time, but the appropriate time is 0.9 minutes and less than the specified 1 minute. There was no significant difference in rates.

比較例4は、送酸変更タイミングを1655℃にしたものであるが、マンガン還元は良好であったが、吹止温度が1688℃となり、転炉のスラグラインの溶損が激しく、次チャージの処理を遅らせて、溶射炉補修作業を実施する必要があり、生産に障害を与えるものであった。
比較例5は、送酸変更時の炭素濃度を0.08mass%で実施した結果であったが、炭素濃度不足によって吹止[Mn]は0.2mass%と不十分であった。
In Comparative Example 4, the timing for changing the acid supply was set to 1655 ° C. Manganese reduction was good, but the blowing temperature was 1688 ° C, and the slag line of the converter was severely damaged, and the next charge It was necessary to delay the treatment and carry out repairing work for the thermal spraying furnace, which hindered production.
Although the comparative example 5 was the result of having implemented carbon concentration at the time of a change of acid delivery with 0.08 mass%, blowing stop [Mn] was insufficient with 0.2 mass% by carbon shortage.

Figure 0006252182
Figure 0006252182

Figure 0006252182
Figure 0006252182

前述したように、本発明によれば、鉄鋼製品の特性向上に重要であるマンガンを転炉吹錬中に安価なマンガン酸化物の炭素還元によって、操業時間の延長耐火物溶損などの生産障害を伴うことなく、高位の[Mn]溶鋼を製造でき、経済的かつ、操業的には容易で、工業的価値が極めて大きく、鉄鋼産業において利用可能性が大きいものである。   As described above, according to the present invention, it is important to improve the characteristics of steel products. Manganese, which is important for improving the properties of steel products, is reduced in carbon during the converter smelting of manganese oxide. Therefore, high-order [Mn] molten steel can be produced, it is economical and easy to operate, has extremely high industrial value, and is highly usable in the steel industry.

1 溶鉄
2 スラグ
3 上吹きランス
4 酸素
5 底吹き羽口
6 撹拌ガス
7 耐火物
8 鉄皮
9 ホッパー
10 副材
11 サブランス
DESCRIPTION OF SYMBOLS 1 Molten iron 2 Slag 3 Top blowing lance 4 Oxygen 5 Bottom blowing tuyere 6 Stirring gas 7 Refractory 8 Iron skin 9 Hopper 10 Secondary material 11 Sublance

Claims (4)

炭素濃度が2.5質量%以上で温度が1400℃以下の溶銑から溶鋼を製造する転炉の脱炭処理において、溶鉄に酸化マンガン含有添加物を添加するとともに、炭素濃度が0.1質量%以上で溶鉄温度が1500℃以上1650℃未満の時期に、送酸速度を脱炭処理中の平均送酸速度よりも低下させ、低下させた時間を合計で1分以上とし、吹止温度を1650℃未満とすることを特徴とする転炉における酸化マンガン還元方法。
In the decarburization process of a converter for producing molten steel from hot metal having a carbon concentration of 2.5% by mass or more and a temperature of 1400 ° C. or less, a manganese oxide-containing additive is added to the molten iron, and the carbon concentration is 0.1% by mass. As described above, at a time when the molten iron temperature is 1500 ° C. or more and less than 1650 ° C., the acid feed rate is decreased from the average acid feed rate during the decarburization treatment, and the reduced time is set to 1 minute or more in total, and the blowing temperature is set to 1650 A method for reducing manganese oxide in a converter, characterized by being less than ° C.
送酸速度を脱炭処理中の平均送酸速よりも低下させた際の送酸速度が0〜100Nm/h・tであることを特徴とする請求項1に記載の転炉における酸化マンガン還元方法。
2. The manganese oxide in the converter according to claim 1, wherein the acid feed rate is 0 to 100 Nm 3 / h · t when the acid feed rate is lower than the average acid feed rate during the decarburization treatment. Reduction method.
溶鉄温度が1450℃に達するまでに溶鉄に酸化マンガン含有添加物を添加することを特徴とする請求項1又は2に記載の転炉における酸化マンガン還元方法。
The method for reducing manganese oxide in a converter according to claim 1 or 2, wherein a manganese oxide-containing additive is added to the molten iron until the molten iron temperature reaches 1450 ° C.
送酸速度を脱炭処理中の平均送酸速度よりも低下させた際の、炉内スラグに酸化マンガンとして含有されるマンガン濃度が20質量%以上であることを特徴とする請求項1〜3のいずれか1項に記載の転炉における酸化マンガン還元方法。   The manganese concentration contained as manganese oxide in the slag in the furnace when the acid feed rate is reduced below the average acid feed rate during the decarburization treatment is 20% by mass or more. The method for reducing manganese oxide in a converter according to any one of the above.
JP2014002566A 2014-01-09 2014-01-09 Manganese oxide reduction method in converter Active JP6252182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002566A JP6252182B2 (en) 2014-01-09 2014-01-09 Manganese oxide reduction method in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014002566A JP6252182B2 (en) 2014-01-09 2014-01-09 Manganese oxide reduction method in converter

Publications (2)

Publication Number Publication Date
JP2015131980A JP2015131980A (en) 2015-07-23
JP6252182B2 true JP6252182B2 (en) 2017-12-27

Family

ID=53899433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002566A Active JP6252182B2 (en) 2014-01-09 2014-01-09 Manganese oxide reduction method in converter

Country Status (1)

Country Link
JP (1) JP6252182B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713110A (en) * 1980-06-28 1982-01-23 Kawasaki Steel Corp Dephosphorization treatment of molten iron
JPS6254010A (en) * 1985-09-03 1987-03-09 Nippon Steel Corp Manufacture of high-manganese steel by refining
JPH01184216A (en) * 1988-01-18 1989-07-21 Sumitomo Metal Ind Ltd Manufacture of high mn steel by refining
JPH01312021A (en) * 1988-06-13 1989-12-15 Sumitomo Metal Ind Ltd Method for increasing mn content in molten steel in converter
JPH03115519A (en) * 1989-09-28 1991-05-16 Kawasaki Steel Corp Production of stainless steel
JP3577066B2 (en) * 2001-09-28 2004-10-13 日本酸素株式会社 Burner lance and refining method
JP2003193121A (en) * 2001-12-28 2003-07-09 Jfe Engineering Kk Method for refining molten iron
JP4311097B2 (en) * 2003-06-27 2009-08-12 Jfeスチール株式会社 Method for preventing slag flow in converter

Also Published As

Publication number Publication date
JP2015131980A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
CN108330245A (en) A kind of high-purity smelting process of stainless steel
CN111411300A (en) Method for producing nickel-based steel by using high-phosphorus molten iron
JP2015218338A (en) Molten iron refining method by converter type refining furnace
CN103468866A (en) Refining technology for molten medium-high carbon steel
US3615348A (en) Stainless steel melting practice
JP2016044323A (en) METHOD FOR CONTROLLING Ti CONCENTRATION IN STEEL
CN101948979B (en) Method for producing industrial pure iron
Wang et al. Development and prospects of molten steel deoxidation in steelmaking process
JP4311097B2 (en) Method for preventing slag flow in converter
JP6252182B2 (en) Manganese oxide reduction method in converter
CN101565792B (en) Method for smelting boron steel
CN114892066A (en) Production method of steel for low-carbon electrode
RU2566230C2 (en) Method of processing in oxygen converter of low-siliceous vanadium-bearing molten metal
JP2003049216A (en) Method for producing molten steel
JP2019218580A (en) Dephosphorization process for molten steel
CN103938107A (en) F91 high-heat-resistant steel and smelting method thereof
US1812941A (en) Manufacture of stainless iron
CN115232894B (en) Method for extracting pure iron from iron oxide hot slag by utilizing AOD furnace or ladle
CN102181606B (en) Production method of rare earth aluminum manganese calcium iron alloy
JP2011208172A (en) Decarburize-refining method in converter using iron-scrap as iron source
CN101948980A (en) Method for producing industrial pure iron
JP3717625B2 (en) Electric arc furnace slag reduction method
JPH1161221A (en) Method for melting low manganese steel
RU2140458C1 (en) Vanadium cast iron conversion method
JP6658246B2 (en) Slag dilution method using refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350