JPH01184216A - Manufacture of high mn steel by refining - Google Patents

Manufacture of high mn steel by refining

Info

Publication number
JPH01184216A
JPH01184216A JP805488A JP805488A JPH01184216A JP H01184216 A JPH01184216 A JP H01184216A JP 805488 A JP805488 A JP 805488A JP 805488 A JP805488 A JP 805488A JP H01184216 A JPH01184216 A JP H01184216A
Authority
JP
Japan
Prior art keywords
ore
blowing
steel
yield
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP805488A
Other languages
Japanese (ja)
Inventor
Shohei Korogi
興梠 昌平
Yoshiyasu Shirota
城田 良康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP805488A priority Critical patent/JPH01184216A/en
Publication of JPH01184216A publication Critical patent/JPH01184216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To efficiently manufacture high Mn steel and to attain a high yield of Mn when Mn ore is added to dephosphorized molten pig iron and this pig iron is refined by blowing in a converter to manufacture high Mn steel, by specifying the time of addition of the Mn ore and the diameter. CONSTITUTION:When Mn ore is added to dephosphorized molten pig iron and this pig iron is refined by blowing in a converter to manufacture high Mn steel, the Mn ore is added before refining or within 30% of the total refining time after the beginning of refining and the diameter of the Mn ore is regulated to 1.5-100mm. High Mn steel is efficiently manufactured and the yield of Mn can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、効率よく、しかもMn歩留の良好な転炉吹
錬による高Mn鋼の溶製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing high-Mn steel by converter blowing efficiently and with a good Mn yield.

(従来技術およびその課題) 近年、建造物の高層化あるいは機械装置等の軽量化の指
向がいたって強く、これらの構成素材である鋼材として
、薄肉ですむ高強度鋼が求められている。
(Prior Art and its Problems) In recent years, there has been a strong trend toward building taller buildings and reducing the weight of mechanical devices, etc., and high-strength steel that can be used as a constituent material for these structures is in demand.

このような特性を有する鋼材として、高Mn鋼が他の合
金鋼に比べて有望である。というのは、Mn源が他の合
金源よりかなり豊富に有り、しかも、最近の製銑、製鋼
技術の進歩によって高価なFe−Mn合金(フェロマン
ガン)の替わりに安価なMn1石が使用できるようにな
り、比較的低コストで製造できるようになったからであ
る。
As a steel material having such characteristics, high Mn steel is more promising than other alloy steels. This is because Mn sources are much more abundant than other alloy sources, and recent advances in ironmaking and steelmaking technology have made it possible to use inexpensive Mn1 stone instead of the expensive Fe-Mn alloy (ferromanganese). This is because it has become possible to manufacture it at relatively low cost.

例えば、本出願人が特開昭55−91914号公報にお
いて開示したのもMn鉱石を使用する高Mn鋼の製造方
法の一つである。
For example, the present applicant disclosed in Japanese Patent Application Laid-Open No. 55-91914 is one of the methods for producing high Mn steel using Mn ore.

前記公報の方法は転炉に注銑する前の溶銑に造滓剤と酸
素ガスを加えて脱燐し、この脱燐された溶銑を転炉内で
造滓剤を使用することなく吹錬し、吹錬中にMn鉱石を
添加する方法である。
The method disclosed in the above publication is to dephosphorize hot metal by adding a slag-forming agent and oxygen gas to the hot metal before pouring it into a converter, and then blowing the dephosphorized hot metal in the converter without using a slag-forming agent. , a method in which Mn ore is added during blowing.

すなはち、脱燐溶銑にMn鉱石を加えて吹錬すると、次
式のようにMn鉱石中のMnOの還元が行われる。
In other words, when Mn ore is added to dephosphorized hot metal and blown, MnO in the Mn ore is reduced as shown in the following equation.

MnO十C=Mn+ CO この還元反応においては、溶鋼上に存在するスラグは極
く僅かであるからMnOの活量が著しく大きくなり、C
濃度が低くても溶鋼中のMn分が著しく高くなり得るの
である。そして、造滓剤を添加しないので鋼浴の温度が
上昇し、Mn鉱石に他にFeO、SiO□等の酸化物を
含有していても還元反応が妨げられることなく進行し、
高Mnfiが溶製できるのである。
MnO+C=Mn+CO In this reduction reaction, since the amount of slag present on the molten steel is extremely small, the activity of MnO increases significantly, and C
Even if the concentration is low, the Mn content in molten steel can become significantly high. Since no slag-forming agent is added, the temperature of the steel bath increases, and even if the Mn ore contains other oxides such as FeO and SiO□, the reduction reaction proceeds unhindered.
High Mnfi can be produced.

以上のように、脱燐溶銑とMn鉱石の使用によって高M
nfiが低コストで製造できるようになった。
As mentioned above, high Mn can be obtained by using dephosphorized hot metal and Mn ore.
NFI can now be manufactured at low cost.

しかしながら、本発明者等の実操業から得た経験によれ
ば、溶鋼Mn分の上昇のためにMn鉱石の添加量を増や
して行くとMn歩留が低下する問題が生し、高Mn1i
の転炉溶製を行う上で大きな障害となることが明らかに
なった。
However, according to the experience gained from actual operations by the present inventors, increasing the amount of Mn ore added to increase the Mn content of molten steel causes a problem in which the Mn yield decreases, and high Mn1i
It has become clear that this is a major obstacle in converter melting.

(課題を解決するための手段) そこで、本発明者等は上記課題を解決するため、試験研
究を続けた結果、従来のようにMn鉱石の添加量を増加
すると、スラグにMn鉱石が溶は残るようになり、これ
力QIn歩留低下の原因になっている、との事実を確認
したのである。
(Means for Solving the Problems) Therefore, in order to solve the above problems, the present inventors continued experimental research and found that when the amount of Mn ore added is increased as in the past, Mn ore does not dissolve in the slag. It has been confirmed that this is the cause of the decrease in QIn yield.

第1図は転炉にMn鉱石を添加する量を変えてMnの物
質収支を調べた結果を示したものであるが、この図から
Mn鉱石を増量して行くと、Mn不明分が増加している
事が認められる。
Figure 1 shows the results of examining the mass balance of Mn by changing the amount of Mn ore added to the converter. From this figure, it can be seen that as the amount of Mn ore is increased, the unknown amount of Mn increases. It is recognized that

そこで、MnOの融点が1700°Cと高いことら、第
1図に示されたMn不明分は未溶解のMn鉱石であろう
、と推定し、スラグを採取してEPMA分析を行ったと
ころ、第2図に示すようにMn濃化部が観察され、未溶
解のMn鉱石が存在することが分かったのである。
Therefore, since the melting point of MnO is as high as 1700°C, we assumed that the unknown Mn content shown in Figure 1 was undissolved Mn ore, and when we collected slag and conducted EPMA analysis, we found that As shown in FIG. 2, Mn-enriched areas were observed, indicating the presence of undissolved Mn ore.

以上のことから、転炉にMn鉱石を添加してMn歩留が
良く、高Mniを溶製するには、Mn鉱石の溶は残りを
防止することが不可欠であるとの考えに到り、本発明を
するに到ったのである。
From the above, we came to the conclusion that in order to add Mn ore to the converter and melt it with a good Mn yield and high Mni, it is essential to prevent the melting of Mn ore from remaining. This led us to the present invention.

すなわち、この発明は、予め脱燐した溶銑にMn鉱石を
添加し、転炉吹錬により高Mn鋼を溶製するに当たり、
Mn鉱石の添加を吹錬開始前または吹錬開始から全吹錬
時間の30%以内に行うと共に、前記MnK石の粒度を
1.5〜100mmとする高Mnmの溶製方法である。
That is, this invention adds Mn ore to pre-dephosphorized hot metal and melts high Mn steel by converter blowing.
This is a high-Mnm melting method in which the Mn ore is added before the start of blowing or within 30% of the total blowing time after the start of blowing, and the particle size of the MnK ore is set to 1.5 to 100 mm.

この本発明において最も重要な点は、 (1)Mn鉱石の添加時期を吹錬開始前または吹錬開始
から全吹錬時間の30%以内に行うこと。
The most important points in this invention are: (1) Mn ore should be added before the start of blowing or within 30% of the total blowing time from the start of blowing.

(2)M n鉱石の粒度を1.5〜100mmにするこ
と、である。
(2) The particle size of the Mn ore is 1.5 to 100 mm.

以下その限定理由を説明する。The reason for this limitation will be explained below.

(1) Mn鉱石の添加時期について 前述のように、Mn鉱石の溶は残りを無くし高Mn歩留
を達成するには、Mn鉱石の添加を早い時期に行い残余
の時間を溶解に当てる必要がある。Mn鉱石の添加時間
が遅れると溶解時間が不足し、高し1Mn歩留を確保す
ることが出来ない。
(1) Regarding the timing of addition of Mn ore As mentioned above, in order to eliminate the remaining Mn ore and achieve a high Mn yield, it is necessary to add Mn ore early and use the remaining time for dissolution. be. If the addition time of Mn ore is delayed, the dissolution time is insufficient and a high 1Mn yield cannot be ensured.

第3図はMn鉱石の添加時期とMn歩留との関係を示し
たものである。同図中(a)はMn鉱石の添加を吹錬を
始める前に行った場合、(b)は吹錬開始から全吹錬時
間の30χまでの間に添加した場合、(C)(d)(e
)(f)は、それぞれ吹錬開始から30〜60χ、60
〜80χ、90〜100χの間に添加した場合を示して
し)る。同図から分かるように、吹錬開始前と吹錬開始
から30χまでの間に添加した場合に、Mn歩留が70
%以上に達している。従って本発明におし)では、Mn
鉱石添加時期を吹錬開始前および全吹錬時間の30%以
内に行うようにするのである。
FIG. 3 shows the relationship between the timing of addition of Mn ore and the Mn yield. In the figure, (a) shows the case where Mn ore is added before the start of blowing, (b) shows the case where it is added between the start of blowing and the total blowing time of 30χ, (C) and (d). (e
)(f) are 30 to 60χ and 60 from the start of blowing, respectively.
- 80χ and cases where it is added between 90 and 100χ). As can be seen from the figure, when Mn is added before the start of blowing and up to 30χ after the start of blowing, the Mn yield is 70
% or more. Therefore, in the present invention), Mn
The ore is added before the start of blowing and within 30% of the total blowing time.

なお、Mn歩留(χ)とは、 で表せる値である。In addition, Mn yield (χ) is It is a value that can be expressed as

(2)M n鉱石の粒度について Mn鉱石溶解率および添加率はMn粒度に大きく支配さ
れ、適性な粒度でないとMn歩留が向上できない。第4
図にMn鉱石の粒度とMn鉱石の溶解率(A線)及び炉
内添加率(B線)を示す。A線から分かるように、粒度
が100mmまでは溶解率はほぼ一定であるが100m
mを越えると急速に低下している。
(2) Particle size of Mn ore The Mn ore dissolution rate and addition rate are largely controlled by the Mn particle size, and the Mn yield cannot be improved unless the particle size is appropriate. Fourth
The figure shows the particle size of Mn ore, the dissolution rate of Mn ore (A line), and the in-furnace addition rate (B line). As can be seen from line A, the dissolution rate is almost constant up to a particle size of 100 mm;
When it exceeds m, it decreases rapidly.

また、Mn鉱石の添加率は(B線)で示されることから
分かるように、粒度が1.5mm以上でないと高添加率
は達成できない。それは粒度が小さいと精錬により発生
するCOガスの気流によって炉外に持ち出されるからで
ある。
Furthermore, as can be seen from the addition rate of Mn ore (line B), a high addition rate cannot be achieved unless the particle size is 1.5 mm or more. This is because if the particle size is small, it will be carried out of the furnace by the stream of CO gas generated during refining.

なお、Mn鉱石の添加率(χ)は、 で表すものとした。(係数0.495はMn鉱石中のM
nの割合) 従って、溶解率および炉内添加率を同時に高効率とする
には、Mn鉱石の粒度を1.5から100mmにする必
要がある。
Note that the addition rate (χ) of Mn ore is expressed as follows. (The coefficient 0.495 is M in Mn ore.
(ratio of n) Therefore, in order to simultaneously achieve high efficiency in melting rate and in-furnace addition rate, it is necessary to adjust the particle size of Mn ore to 1.5 to 100 mm.

(実施例) 溶銑予備処理により脱燐した第1表に示す成分と第2表
に示す組成のMn鉱石を準備した。先ず、溶銑を250
トン上底吹き転炉に装入すると共に、粒度を30〜60
mm I、こ調整したMn鉱石を第3表に示すように時
期を変えて添加し、Mn歩留の変化を間第1表 第3表中テスト1およびテスト2は本発明例であり、テ
スト1はMn鉱石を吹錬前に添加した場合、テスト2は
吹錬開始から全吹錬時間の30%以内に添加した場合で
ある。テスト3.4.5および6は本発明から外れた場
合の比較例である。第3表にテスト結果を示しているが
、これから分かるように、本発明例のテスト1および2
は75χの高いMn歩留が得られている。これに対し、
比較例のテスト3.4.5.6は何れも65%以下であ
り、Mn鉱石の添加時期が吹錬開始から遅れるにつれる
で、Mn歩留は象、激に低下している。
(Example) Mn ore having the components shown in Table 1 and the composition shown in Table 2 which were dephosphorized by hot metal pretreatment were prepared. First, add 250 molten metal
Particle size is 30~60 while charging to top and bottom blowing converter.
The adjusted Mn ore was added at different times as shown in Table 3, and the changes in Mn yield were measured. Test 1 is a case where Mn ore is added before blowing, and Test 2 is a case where Mn ore is added within 30% of the total blowing time from the start of blowing. Tests 3.4.5 and 6 are comparative examples outside the invention. Test results are shown in Table 3, and as can be seen, Tests 1 and 2 of the present invention example
A high Mn yield of 75χ was obtained. In contrast,
Tests 3, 4, 5, and 6 of the comparative example were all below 65%, and as the time of addition of Mn ore was delayed from the start of blowing, the Mn yield significantly decreased.

次いで、Mn鉱石の粒度による効果をテストした。第5
図はMnの粒度条件が異なる場合のMn歩留を示してい
る。同図中テストAは本発明で定める粒度に満たない場
合の比較例、テストB、 C、Dは本発明で定める範囲
の粒度の場合、テストE、 Fは本発明の粒度を越えた
場合の比較例である。
Next, the effect of the particle size of Mn ore was tested. Fifth
The figure shows the Mn yield when the Mn particle size conditions are different. In the figure, test A is a comparative example when the particle size is less than the particle size defined by the present invention, tests B, C, and D are comparative examples when the particle size is within the range defined by the present invention, and tests E and F are comparative examples when the particle size is beyond the particle size defined by the present invention. This is a comparative example.

このテスト結果によれば、テストAは粒度が小さいため
、炉内COガスにより炉外へ飛散し、Mn歩留が低くな
っている。また、本発明の粒度範囲を越えたテス)E、
Fは溶鋼中C濃度〔C〕が0.4χでもMn歩留はせい
ぜい70%位であるが、(C)が0.4%以上になると
Mn歩留はMn鉱石の溶は残りによって逆に低下してい
る。
According to the test results, since the particle size of test A was small, the particles were scattered outside the furnace by the CO gas inside the furnace, resulting in a low Mn yield. In addition, test) E which exceeds the particle size range of the present invention,
Even if the C concentration [C] in molten steel is 0.4χ, the Mn yield will be around 70% at most, but if (C) exceeds 0.4%, the Mn yield will be reversed due to the remaining Mn ore dissolution. It is declining.

これに対し、本発明のB、C,Dは〔C〕が低い場合で
も歩留は70〜80χあるが、(C)が高くなるにつれ
て歩留もだんだんと高くなり90〜98χにも達成して
いる。
On the other hand, B, C, and D of the present invention have a yield of 70 to 80χ even when [C] is low, but as (C) increases, the yield gradually increases and reaches 90 to 98χ. ing.

(発明の効果) 以上説明したように、この発明によれば、高Mn鋼を溶
製するに当たり、転炉にMn鉱石を添加する時期とMn
鉱石の粒度を特定の範囲とすることによって、効率よく
高Mn高の溶製が行えるとともに高いMn歩留が達成す
ることができ、産業上貢献するところが大である。
(Effects of the Invention) As explained above, according to the present invention, when melting high Mn steel, the timing of adding Mn ore to the converter and the Mn
By setting the grain size of the ore within a specific range, it is possible to efficiently perform melting with a high Mn content and to achieve a high Mn yield, which greatly contributes to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転炉精練におけるMn鉱石添加量とMn鉱石の
物質収支との関係を示す図、 第2図はスラグ中のMn分布を調査したEPMA検査結
果を示す図、 第3図はMn鉱石添加時期とMn歩留との関係を示す図
、 第4図はMn鉱石の粒度とMn鉱石溶解度およびMn鉱
石の炉内添加率との関係を示す図、 第5図はMn鉱石粒度範囲によってMn歩留が変化する
ことを示す図、である。 出願人  住友金属工業株式会社 代理人  弁理士 穂 上 照 忠 (ほか1名) 第1図 第2図 第3図 第4図 Mn偏石添77111111呉月 第5図 EC]  (%)
Figure 1 is a diagram showing the relationship between the amount of Mn ore added in converter smelting and the material balance of Mn ore. Figure 2 is a diagram showing the EPMA test results for investigating the Mn distribution in slag. Figure 3 is Mn ore. Figure 4 shows the relationship between Mn ore particle size, Mn ore solubility, and Mn ore addition rate in the furnace. Figure 5 shows the relationship between Mn ore particle size and Mn yield. FIG. 3 is a diagram showing that the yield changes. Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Terutada Hogami (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4 Mn Bakekizoe 77111111 Kuretsu Figure 5 EC] (%)

Claims (1)

【特許請求の範囲】[Claims]  予め脱燐した溶銑にMn鉱石を添加し、転炉吹錬して
高Mn鋼を溶製するに当たり、Mn鉱石の添加を吹錬開
始前または吹錬開始から全吹錬時間の30%以内に行う
と共に、前記Mn鉱石の粒度を1.5〜100mmとす
ることを特徴とする高Mn鋼の溶製方法。
When melting high Mn steel by adding Mn ore to pre-dephosphorized hot metal and blowing it in a converter, add Mn ore before the start of blowing or within 30% of the total blowing time from the start of blowing. A method for producing high Mn steel, characterized in that the grain size of the Mn ore is 1.5 to 100 mm.
JP805488A 1988-01-18 1988-01-18 Manufacture of high mn steel by refining Pending JPH01184216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP805488A JPH01184216A (en) 1988-01-18 1988-01-18 Manufacture of high mn steel by refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP805488A JPH01184216A (en) 1988-01-18 1988-01-18 Manufacture of high mn steel by refining

Publications (1)

Publication Number Publication Date
JPH01184216A true JPH01184216A (en) 1989-07-21

Family

ID=11682618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP805488A Pending JPH01184216A (en) 1988-01-18 1988-01-18 Manufacture of high mn steel by refining

Country Status (1)

Country Link
JP (1) JPH01184216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131980A (en) * 2014-01-09 2015-07-23 新日鐵住金株式会社 Method of reducing manganese oxide in converter
CN107746906A (en) * 2017-10-20 2018-03-02 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of technique for carrying out pneumatic steelmaking deoxidation alloying using high-manganese pig iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131980A (en) * 2014-01-09 2015-07-23 新日鐵住金株式会社 Method of reducing manganese oxide in converter
CN107746906A (en) * 2017-10-20 2018-03-02 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of technique for carrying out pneumatic steelmaking deoxidation alloying using high-manganese pig iron

Similar Documents

Publication Publication Date Title
CN108148941B (en) Smelting method of ultra-low boron steel
JPH01184216A (en) Manufacture of high mn steel by refining
JP4311097B2 (en) Method for preventing slag flow in converter
US4090869A (en) Process of manufacturing alloy steels in a continuously charged arc furnace
JPS587691B2 (en) Steel manufacturing method
JPH0297611A (en) Method for melting cold iron source
JP3230112B2 (en) Low oxygen steel smelting method
JP3230066B2 (en) Manufacturing method of molten steel for continuous casting
JPH05302109A (en) Method for pre-treating molten iron
JPS61143505A (en) Refining method of high alloy steel
JPH03100140A (en) Method for producing medium or low carbon ferro-manganese
SU1104165A1 (en) Charge for obtaining synthetic slag
JPH0551616A (en) Production of low-s, low-p molten iron
CN115537501A (en) Slagging method for adding fluorite and refining pellets in LF (ladle furnace)
CN113462847A (en) Control method for ultralow titanium content of ultralow-carbon high-aluminum steel
Chen et al. Effect of Melting and Refining with DC-arc on the Yield of Alloy Element
KR101252551B1 (en) method of utilizing Mn ore for EAF operation
SU1121299A1 (en) Method for making steel
RU2095425C1 (en) Method for steel refining
SU1018977A1 (en) Method for producing steel
JPH01142011A (en) Method for executing mn-rise refining in molten steel in converter
CN113265503A (en) Method for judging converter double-slag once-dumping temperature by using converter dust removal system
Móger et al. Optimizing Steel-Making Secondary Metallurgy Slag at ISD DUNAFERR Zrt
RU94031233A (en) Process for producing vanadium-microalloyed balanced steel
JPS6191318A (en) Operating method of ladle refining furnace