JPS6254010A - Manufacture of high-manganese steel by refining - Google Patents

Manufacture of high-manganese steel by refining

Info

Publication number
JPS6254010A
JPS6254010A JP19308185A JP19308185A JPS6254010A JP S6254010 A JPS6254010 A JP S6254010A JP 19308185 A JP19308185 A JP 19308185A JP 19308185 A JP19308185 A JP 19308185A JP S6254010 A JPS6254010 A JP S6254010A
Authority
JP
Japan
Prior art keywords
steel
manganese
blowing
molten steel
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19308185A
Other languages
Japanese (ja)
Other versions
JPH0215602B2 (en
Inventor
Yasushi Takashima
靖 高島
Masashi Yoshida
正志 吉田
Hiromi Ishii
博美 石井
Kazuhiro Kinoshita
和宏 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19308185A priority Critical patent/JPS6254010A/en
Publication of JPS6254010A publication Critical patent/JPS6254010A/en
Publication of JPH0215602B2 publication Critical patent/JPH0215602B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To carry out refining by blowing at the high level of Mn in a steel bath when a high-Mn steel is manufactured by refining in a top and bottom blowing converter, by preferentially oxidizing and removing C while inhibiting the oxidation of Mn. CONSTITUTION:Mn ore is added to a steel bath in a top and bottom blowing converter by >=10kg per 1 ton molten steel and the steel bath is refined at 1,550-1,750 deg.C by blowing gas from the bottom by >=0.05Nm<3>/min per 1 ton molten steel and oxygen from the top by <=4Nm<3>/min per 1 ton molten steel. At this time, oxygen is blown so as to regulate RI value defined by the formula to 5-10. A high-Mn steel contg. >=0.5wt% Mn is manufactured by the refining. In the formula, [Mn] is the concn. (%) of Mn in the steel bath, [C] is the concn. (%) of C in the steel bath and KO2 is the amount (Nm<3>/min/ton) of oxygen blown from the top.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高マンガン含有鋼の溶製方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing high manganese-containing steel.

[従来の技術] 上底吹転炉による高マンガン鋼の溶製方法としては、マ
ンガンを考慮することなく通常の脱炭吹錬を行い、その
後マンガン合金鉄を添加してマンガン成分を調整するの
が一般的である。しかしこの方法では、吹錬末期の[M
nlが低く多量のマンガン合金鉄を使用し経済的でない
。高品質の鋼材の製造を目的に、転炉の装入物に、マン
ガン鉱石やマンガン合金鉄を加えて吹錬した例もあるが
[Prior art] The method for melting high manganese steel using a top-bottom blowing converter is to carry out normal decarburization blowing without considering manganese, and then add manganese alloy iron to adjust the manganese content. is common. However, with this method, [M
It is not economical because nl is low and a large amount of manganese alloy iron is used. In some cases, manganese ore and manganese alloy iron were added to the charge of the converter for the purpose of producing high-quality steel materials.

吹錬中のマンガンの損失量は大きく、又吹錬末期の[M
nl値も不安定であった。転炉を含む広範囲な精錬炉で
の[C]の優先酸化を示す理論式として (2Qo、/  (2Qo、+Qd))  (QO,/
(W/l))  但し、QO□は酸素流量、Qdは稀釈
ガス流量、Wは溶鋼基、tは均一混合時間、−に式で定
義されるl5COなる変数の報告例(鉄と鋼 78−3
169)があるが、これは上底吹転炉で、[Mnlに対
し[C]を優先的に酸化させる定量的な吹錬方法を示す
ものではない。
The loss of manganese during blowing is large, and the loss of manganese at the end of blowing is large.
The nl value was also unstable. The theoretical formula showing the preferential oxidation of [C] in a wide range of refining furnaces including converters is (2Qo, / (2Qo, +Qd)) (QO, /
(W/l)) However, QO□ is the oxygen flow rate, Qd is the dilution gas flow rate, W is the molten steel base, t is the uniform mixing time, - is an example of reporting the variable 15CO defined by the formula (Iron and Steel 78- 3
169), but this does not indicate a quantitative blowing method in which [C] is oxidized preferentially over [Mnl] in a top-bottom blowing converter.

[発明が解決しようとする問題点] 本発明は、上底吹転炉で溶鋼を吹錬する際の、[Mnl
や[C]の推移と上部からの吹酸量との相互関係を定穢
化することを目的としている。更に具体的には、上底吹
転炉で高マンガン鋼を溶脱するに際して、マンガン鉱石
を炉内に装入し、脱炭を行いつつ、マンガン鉱石を還元
する吹錬方法に関するものである。
[Problems to be Solved by the Invention] The present invention solves the problem of [Mnl
The purpose of this study is to determine the interrelationship between the changes in [C] and the amount of blown acid from the top. More specifically, the present invention relates to a blowing method in which manganese ore is charged into the furnace and decarburized while reducing the manganese ore when high manganese steel is leached in a top-bottom blowing converter.

[問題点を解決するための手段] 本発明は、上底吹転炉で、底吹ガス流量を溶鋼トン当り
0.05Nrn’/分以上とし、溶鋼トン当り10kg
以上のマンガン鉱石を使用し、1550〜1750℃の
温度範囲の鋼浴に、上部からの吹酸量KO2(Nm3/
分/溶鋼トン)が、4.0以下で且つ次式で定義される
RIが5〜10になるように吹込み、マンガンを0.5
重量%以上含有する高マンガン鋼を溶製する方法である
[Means for Solving the Problems] The present invention provides a top-bottom blowing converter with a bottom-blowing gas flow rate of 0.05 Nrn'/min or more per ton of molten steel, and a flow rate of 10 kg per ton of molten steel.
Using the above manganese ore, the amount of blown acid KO2 (Nm3/Nm3/
min./ton of molten steel) is 4.0 or less and RI defined by the following formula is 5 to 10, and manganese is 0.5
This is a method of producing high manganese steel containing at least % by weight of manganese.

RI = ([Mnl / [C] ) X KO。RI = ([Mnl / [C]) X KO.

但し、   [Mnlは鋼浴中のマンガンの濃度%[C
]は鋼浴中の炭素の濃度% KOtは上部からの吹酸量 (以下[M nコ、[C] 、KO2,及びRIとそれ
ぞれ表示する)更に詳しくは、使用する溶銑は、通常の
イ°6炉銑や脱珪、脱リン等の予備処理を行った高炉銑
を使用する。予備処理を行った高炉銑の場合は、夕景の
スラグで吹錬ができるため、マンガン鉱石の還元が一層
容易である。底吹ガス流量は、溶鋼トン当り0.05〜
0.2ONm3/分が適当である。マンガン鉱石の使用
は、受銑の前に装入してもよいし、受銑後に使用しても
よい。RIの値は、転炉の生産負荷状況や操業条件に適
合するように、5〜10の範囲で選定すればよい。上部
ランスからの吹酸は1選定したRI値と、n4浴の[C
]及び[M n ]を前式に代入して得られたKO2に
を吹き込む。 −ヒ記以外は、通常の方法で吹錬を行う
However, [Mnl is the concentration % of manganese in the steel bath [C
] is the concentration of carbon in the steel bath (%); KOt is the amount of blown acid from the top (hereinafter expressed as [Mnco, [C], KO2, and RI, respectively); more specifically, the hot metal used is the normal iron Use °6 furnace pig iron or blast furnace pig iron that has undergone preliminary treatment such as desiliconization and dephosphorization. In the case of pre-treated blast furnace pig iron, the manganese ore can be reduced more easily because it can be blown with the slag of the sunset. Bottom blowing gas flow rate is 0.05~ per ton of molten steel
0.2ONm3/min is suitable. Manganese ore may be charged before or after receiving the pig iron. The value of RI may be selected within the range of 5 to 10 to suit the production load and operating conditions of the converter. The blowing acid from the upper lance has the selected RI value and [C
] and [M n ] into the above equation and inject into KO2 obtained. -Except for the above, perform the blowing in the usual way.

[作用コ 本発明を上底吹転炉により、底吹ガス流量を溶鋼トン当
り0.05Nrri’/分以上としたのは転炉内の鋼浴
の活発な攪拌運動を確保するためである。
[Operation] The reason why the present invention uses a top-bottom blowing converter and the bottom-blowing gas flow rate is set to 0.05 Nrri'/min or more per ton of molten steel is to ensure active stirring of the steel bath in the converter.

マンガン鉱石の使用量を、溶鋼トン当り10kg以上と
し、溶鋼温度を1550〜1750℃の範囲とし、上部
からの吹酸gKo2の上限を4.0としたが、これ等は
本発明を実施する通常の状態を示したものである。RI
を5〜10のt!囲で選定することとしたが、第1図に
吹止[Mnlとの関係を図示した。即ち第1図は、17
0トンおよび280トンの上底吹転炉で、マンガン鉱石
を溶鋼トン当り37〜80kg使用し、RI値を変えて
[C]が0.05〜0.50%になる迄吹錬した場合の
、吹止時の[Mnlを示したものである。第1図から明
らかなごとく、RIが大きくなる程吹止[Mnlが低い
値を示すことをみい出した。RIが5以下となる範囲は
、吹酸にが少なく、従って吹錬時間が長くなり実用的で
ない。溶製する鋼種として、マンガンを0.5電歇%以
上含有する高マンガン鋼としたが、これは本発明が有利
な通常の対象鋼種を示したものである。
The amount of manganese ore used was 10 kg or more per ton of molten steel, the molten steel temperature was in the range of 1550 to 1750°C, and the upper limit of gKo2 of blown acid from the top was 4.0. This shows the state of R.I.
5-10 t! Figure 1 shows the relationship with Mnl. That is, in Figure 1, 17
0 ton and 280 ton top-bottom blowing converters, using 37 to 80 kg of manganese ore per ton of molten steel, changing the RI value and blowing until [C] becomes 0.05 to 0.50%. , shows [Mnl at the end of blowing. As is clear from FIG. 1, it was found that the larger the RI, the lower the blowout [Mnl]. A range in which the RI is 5 or less results in less blowing acid and therefore requires a longer blowing time, which is not practical. The steel type to be melted is a high manganese steel containing 0.5% or more of manganese, which is a typical target steel type to which the present invention is advantageous.

[実施例コ (1)170トンの上底吹転炉で、底吹ガス流量を溶鋼
トン当りO,1ONrrI″/分に保ち、溶銑予備処理
により、[Sil 0.05%、[PI3゜015%に
調整した溶銑170トンとマンガン鉱石7.4トンの鋼
浴を、RI値が10となるKO。
[Example (1) In a 170-ton top-bottom blowing converter, the bottom-blowing gas flow rate was maintained at 0.1 ONrrI''/min per ton of molten steel, and the hot metal pretreatment was carried out to achieve [Sil 0.05%, [PI3゜015 KO with a steel bath of 170 tons of hot metal and 7.4 tons of manganese ore adjusted to a RI value of 10.

敏で吹酸を行い、[C]が0.5%に達して吹止めた。Acid blowing was carried out with a sieve, and the blowing was stopped when [C] reached 0.5%.

吹止時の[Mnlは1.2%で、マンガン鉱石の還元率
は78%であった。
At the time of blow-off, [Mnl was 1.2%, and the reduction rate of manganese ore was 78%.

(2)280トンの上底吹転炉で、底吹ガス流量を0.
1ONrn’/)−27分に保ち、溶銑予備処理により
、[Sil O,05%、[P] 0.015%に調整
した溶銑280トンとマンガン鉱石11トンの装入を行
い、RI値が5となるKOJIで吹酸し、[C] 0.
095%で吹止めた。吹止時の[Mnlは0.9%で、
マンガン鉱石の還元率は65%であった。
(2) A 280-ton top-bottom blowing converter with a bottom-blowing gas flow rate of 0.
1ONrn'/)-27 minutes, and 280 tons of hot metal adjusted to [Sil O, 05%, [P] 0.015% by hot metal pretreatment and 11 tons of manganese ore were charged, and the RI value was 5. Blow acid with KOJI to give [C] 0.
It stopped blowing at 095%. At the end of the blow, [Mnl is 0.9%,
The reduction rate of manganese ore was 65%.

[発明の効果] 本発明は、上底吹転炉で、[Mnlの酸化を防止しつつ
、[C]を優先的に酸化除去する吹酸方法の研究を基礎
とするものであるが、本発明の結果、上底吹転炉で高マ
ンガン鋼を溶製するに際して、マンガン鉱石を炉内に装
入し、脱炭を行いつつマンガン鉱石を還元し、従ってフ
ェロマンガンの使用址を節減できる。安定した新吹錬方
法が可能となった。
[Effects of the Invention] The present invention is based on research on a blowing acid method that preferentially oxidizes and removes [C] while preventing the oxidation of [Mnl] in a top-bottom blowing converter. As a result of the invention, when melting high manganese steel in a top-bottom blowing converter, manganese ore is charged into the furnace and the manganese ore is reduced while being decarburized, thereby reducing the amount of ferromanganese used. A new stable blowing method has become possible.

本発明は、上記のごとくマンガンの酸化還元を律する、
[C]と吹酸量の関係に基ずくものであり、従って、本
発明の対象ではないが、高品質の鋼材の製造を目的に、
フェロマンガン等を装入した鋼浴を吹錬する際に、マン
ガン損失を少なくする吹酸方法としても使用出来る。又
本発明は、鋼浴を高マンガンレベルに維持して吹錬を行
うため、高品質の溶鋼を製造する吹錬方法としても適切
である。
The present invention governs the redox of manganese as described above.
It is based on the relationship between [C] and the amount of blown acid, and therefore is not a subject of the present invention, but for the purpose of manufacturing high quality steel materials,
It can also be used as an acid blowing method to reduce manganese loss when blowing a steel bath charged with ferromanganese or the like. Furthermore, the present invention is suitable as a blowing method for producing high-quality molten steel because blowing is performed while maintaining a high manganese level in the steel bath.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、上底吹転炉でのRI値と吹止[M n ]の
関係を示す図である。
FIG. 1 is a diagram showing the relationship between the RI value and the blow-off [M n ] in a top-bottom blowing converter.

Claims (1)

【特許請求の範囲】 上底吹転炉で底吹ガス流量を溶鋼トン当り0.05Nm
^3/分以上とし、溶鋼トン当り10kg以上のマンガ
ン鉱石を使用し、1550〜1750℃の温度範囲の鋼
浴に、上部からの吹酸量KO_2(Nm^3/分/溶鋼
トン)が、4.0以下で且つ次式で定義されるRIの値
が5〜10になるように吹込み、マンガンを0.5重量
%以上含有する高マンガン鋼を溶製する、上底吹転炉に
よる高マンガン鋼の溶製方法。 RI=([Mn]/[C])×KO_2 但し、[Mn]は鋼浴中のマンガンの濃度%[C]は鋼
浴中の炭素の濃度% KO_2は上部からの吹酸量とする。
[Claims] The bottom blowing gas flow rate in the top and bottom blowing converter is 0.05 Nm per ton of molten steel.
^3/min or more, manganese ore of 10 kg or more per ton of molten steel is used, and the amount of blown acid KO_2 (Nm^3/min/ton of molten steel) from the top of the steel bath is in the temperature range of 1550 to 1750°C. A top-bottom blowing converter is used to melt high manganese steel containing 0.5% by weight or more of manganese by blowing so that the RI value defined by the following formula is 4.0 or less and 5 to 10. Method for producing high manganese steel. RI=([Mn]/[C])×KO_2 However, [Mn] is the concentration % of manganese in the steel bath. [C] is the concentration % of carbon in the steel bath. KO_2 is the amount of blown acid from the top.
JP19308185A 1985-09-03 1985-09-03 Manufacture of high-manganese steel by refining Granted JPS6254010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19308185A JPS6254010A (en) 1985-09-03 1985-09-03 Manufacture of high-manganese steel by refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19308185A JPS6254010A (en) 1985-09-03 1985-09-03 Manufacture of high-manganese steel by refining

Publications (2)

Publication Number Publication Date
JPS6254010A true JPS6254010A (en) 1987-03-09
JPH0215602B2 JPH0215602B2 (en) 1990-04-12

Family

ID=16301902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19308185A Granted JPS6254010A (en) 1985-09-03 1985-09-03 Manufacture of high-manganese steel by refining

Country Status (1)

Country Link
JP (1) JPS6254010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131980A (en) * 2014-01-09 2015-07-23 新日鐵住金株式会社 Method of reducing manganese oxide in converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131980A (en) * 2014-01-09 2015-07-23 新日鐵住金株式会社 Method of reducing manganese oxide in converter

Also Published As

Publication number Publication date
JPH0215602B2 (en) 1990-04-12

Similar Documents

Publication Publication Date Title
WO2018123808A1 (en) Medium-carbon or low-carbon ferromanganese production method and medium-carbon or low-carbon ferromanganese
US4165234A (en) Process for producing ferrovanadium alloys
JPH044388B2 (en)
JPH0136525B2 (en)
JPS6254010A (en) Manufacture of high-manganese steel by refining
JPS6358203B2 (en)
JPH0477046B2 (en)
JPH07179920A (en) Production of molten steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2587286B2 (en) Steelmaking method
JPH1161221A (en) Method for melting low manganese steel
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JPH0421727B2 (en)
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPS62107013A (en) Production of high-chromium alloy steel
JPH10102120A (en) Steelmaking method
JPH11323422A (en) Melting method of molybdenum-containing molten steel
JPH04224612A (en) Method for refining in converter
JPH03120307A (en) Steelmaking method
JPH05247512A (en) Method for dephosphorizing molten iron
CN115247222A (en) Control method for preparing 4N-grade high-purity iron and ultralow manganese through pyrogenic process purification
JPS5938319A (en) Method for refining high chromium steel
JPS6214603B2 (en)
CN116694847A (en) Method for producing low manganese molten steel by converter process
JPS63206446A (en) Production of middle-and low-carbon ferromanganese

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term