JP6249227B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP6249227B2
JP6249227B2 JP2014056066A JP2014056066A JP6249227B2 JP 6249227 B2 JP6249227 B2 JP 6249227B2 JP 2014056066 A JP2014056066 A JP 2014056066A JP 2014056066 A JP2014056066 A JP 2014056066A JP 6249227 B2 JP6249227 B2 JP 6249227B2
Authority
JP
Japan
Prior art keywords
rankine cycle
condenser
fluid
rankine
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014056066A
Other languages
Japanese (ja)
Other versions
JP2015178788A (en
Inventor
真嘉 金丸
真嘉 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2014056066A priority Critical patent/JP6249227B2/en
Publication of JP2015178788A publication Critical patent/JP2015178788A/en
Application granted granted Critical
Publication of JP6249227B2 publication Critical patent/JP6249227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数のランキンサイクルを用いて、流体を加熱して昇温する加熱システムに関するものである。   The present invention relates to a heating system that uses a plurality of Rankine cycles to heat a fluid and raise the temperature.

従来、下記特許文献1に開示されるように、蒸発器(6)、膨張機(7)、凝縮器(9)および循環ポンプ(10)を備えたランキンサイクル(2)が知られている。ランキンサイクル(2)の作動流体は、蒸発器(6)において熱源水(5)から吸熱して気化し、膨張機(7)を回転させて被動機としての発電機(3)を駆動し、凝縮器(9)において冷却水(8)に放熱して液化する。そして、作動流体は、再び、循環ポンプ(10)により、蒸発器(6)へ送られる。   Conventionally, as disclosed in Patent Document 1 below, a Rankine cycle (2) including an evaporator (6), an expander (7), a condenser (9), and a circulation pump (10) is known. The working fluid of the Rankine cycle (2) is vaporized by absorbing heat from the heat source water (5) in the evaporator (6), and rotates the expander (7) to drive the generator (3) as a driven machine. In the condenser (9), heat is radiated to the cooling water (8) and liquefied. Then, the working fluid is again sent to the evaporator (6) by the circulation pump (10).

特開2013−100971号公報JP 2013-100811 A

ランキンサイクルを単独で用いた場合、膨張機において取り出せる仕事量には限界がある。特に、蒸発器においてランキンサイクルの作動流体を加熱する与熱流体が一定温度(典型的には蒸発器において与熱流体が潜熱を放出して一定温度)であり、凝縮器においてランキンサイクルの作動流体で加熱される受熱流体を昇温(凝縮器において受熱流体が顕熱を取得)する場合、一つのランキンサイクルを用いただけでは、取り出せる仕事量に限界があった。   When the Rankine cycle is used alone, there is a limit to the amount of work that can be taken out by the expander. In particular, the heating fluid that heats the Rankine cycle working fluid in the evaporator has a constant temperature (typically, the heating fluid releases latent heat in the evaporator and the constant temperature), and the Rankine cycle working fluid in the condenser. When raising the temperature of the heat receiving fluid heated by (the heat receiving fluid acquires sensible heat in the condenser), there is a limit to the amount of work that can be taken out using only one Rankine cycle.

そこで、本発明が解決しようとする課題は、蒸発器において一定温度の与熱流体により作動流体が加熱され、凝縮器において受熱流体を加熱して昇温する加熱システムにおいて、被動機へ取り出せる仕事量を増加させることにある。   Therefore, the problem to be solved by the present invention is that the working fluid is heated by the heated fluid at a constant temperature in the evaporator, and the work volume that can be taken out to the driven machine in the heating system that heats the received fluid in the condenser and raises the temperature. Is to increase.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、並列に設置された複数のランキンサイクルを備え、前記複数のランキンサイクルは、各最上段の蒸発器において、一定温度の与熱流体により作動流体が加熱され、各最下段の凝縮器に受熱流体が順に通され、この受熱流体が通される順に段数が少なくなるよう構成され、受熱流体が最後に通されるランキンサイクルは、単段または複数段とされ、最上段のランキンサイクル同士が一つのランキンサイクルにまとめられ、最上段から一つ下段のランキンサイクル同士が一つのランキンサイクルにまとめられというように、並列に対応する段同士が一つにまとめられ、各まとめられたランキンサイクルは、第一凝縮器と第二凝縮器とを備え、各第一凝縮器は、一つ下段のランキンサイクルの蒸発器を兼ねており、各第二凝縮器に受熱流体が順に通されることを特徴とする加熱システムである。 The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 includes a plurality of Rankine cycles installed in parallel, and the plurality of Rankine cycles are provided in each uppermost evaporator. The working fluid is heated by the heating fluid at a constant temperature, and the heat receiving fluid is sequentially passed through the lowermost condensers, and the number of stages is decreased in the order in which the heat receiving fluid is passed. Rankine cycles passed through are single-stage or multi-stage, the top Rankine cycles are combined into one Rankine cycle, and one Rankine cycle from the top to the bottom is combined into one Rankine cycle. In addition, the stages corresponding to each other in parallel are grouped together, and each grouped Rankine cycle includes a first condenser and a second condenser, and each first condenser has one Also it serves as the evaporator stage of the Rankine cycle, a heating system heat fluid in the second condenser characterized in that it is passed sequentially.

請求項1に記載の発明によれば、並列に設置された複数のランキンサイクルについて、並列に対応する段同士を一つにまとめることで、加熱システム全体の構成を簡略化することができる。According to invention of Claim 1, about the several Rankine cycle installed in parallel, the structure of the whole heating system can be simplified by putting together the stage corresponding to parallel in one.

請求項2に記載の発明は、前記各最上段の蒸発器において、与熱流体は潜熱を放出し、前記各最下段の凝縮器において、受熱流体は顕熱を取得することを特徴とする請求項1に記載の加熱システムである。 According to a second aspect of the invention, before Symbol respective uppermost evaporator, Azukanetsu fluid releases latent heat, the each bottom of the condenser, the heat receiving fluid and acquires the sensible heat The heating system according to claim 1.

請求項2に記載の発明によれば、与熱流体は、潜熱を放出するので、ランキンサイクルの作動流体を安定して加熱することができる。 According to the invention described in claim 2, given the thermal fluid will release latent heat, it is possible to stably heat the working fluid of the Rankine cycle.

請求項3に記載の発明は、隣接する上下のランキンサイクルは、下段の蒸発器を兼ねる上段の前記第一凝縮器が、作動流体同士を混ぜることなく熱交換する間接熱交換器であるか、上段の前記第二凝縮器からの作動流体を気液分離して気相部が下段の膨張機に接続されると共に液相部が上段のポンプに接続される気液分離器であることを特徴とする請求項1または請求項2に記載の加熱システムである。 In the invention according to claim 3 , the upper and lower Rankine cycles adjacent to each other are indirect heat exchangers in which the upper first condenser also serving as a lower evaporator exchanges heat without mixing working fluids, The working fluid from the second condenser at the upper stage is gas-liquid separated, and the gas phase part is connected to the lower expander and the liquid phase part is connected to the upper pump. The heating system according to claim 1 or 2 .

請求項3に記載の発明によれば、間接熱交換器または気液分離器を用いて、上下に隣接するランキンサイクルを接続することができる。 According to invention of Claim 3 , the Rankine cycle which adjoins up and down can be connected using an indirect heat exchanger or a gas-liquid separator.

さらに、請求項4に記載の発明は、隣接する上下のランキンサイクルは、前記第一凝縮器の設置を省略する代わりに、上段の第二凝縮器と下段の膨張機とが接続される一方、下段のポンプと上段のポンプとを接続するか、これらポンプを一つのポンプとして構成されることを特徴とする請求項1または請求項2に記載の加熱システムである。 Furthermore, in the invention according to claim 4 , in the adjacent upper and lower Rankine cycles, instead of omitting the installation of the first condenser, the upper second condenser and the lower expander are connected, The heating system according to claim 1 or 2 , wherein the lower pump and the upper pump are connected, or these pumps are configured as one pump.

請求項4に記載の発明によれば、上下のランキンサイクルを一つにまとめることで、加熱システム全体の構成をさらに簡略化することができる。 According to invention of Claim 4 , the structure of the whole heating system can be further simplified by putting together an upper and lower Rankine cycle into one.

本発明によれば、蒸発器において一定温度の与熱流体により作動流体が加熱され、凝縮器において受熱流体を加熱して昇温する加熱システムにおいて、被動機へ取り出せる仕事量を増加させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the working fluid is heated by the heating fluid of fixed temperature in an evaporator, and the work amount which can be taken out to a driven machine can be increased in the heating system which heats a receiving fluid in a condenser and heats up. .

本発明の加熱システムの実施例1を示す概略図である。It is the schematic which shows Example 1 of the heating system of this invention. 実施例1の加熱システムのT−S線図であり、縦軸が温度T、横軸がエントロピSを示している。It is a TS diagram of the heating system of Example 1, the vertical axis shows temperature T and the horizontal axis shows entropy S. 本発明の加熱システムの実施例2を示す概略図である。It is the schematic which shows Example 2 of the heating system of this invention. 実施例2の加熱システムのT−S線図であり、縦軸が温度T、横軸がエントロピSを示している。It is a TS diagram of the heating system of Example 2, the vertical axis | shaft shows the temperature T and the horizontal axis shows the entropy S. 本発明の加熱システムの実施例3を示す概略図である。It is the schematic which shows Example 3 of the heating system of this invention. 本発明の加熱システムの実施例4を示す概略図である。It is the schematic which shows Example 4 of the heating system of this invention. 本発明の加熱システムを蒸気駆動装置で実現した状態を示す概略図である。It is the schematic which shows the state which implement | achieved the heating system of this invention with the steam drive device.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。但し、本発明の加熱システムは、下記各実施例に限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、適宜に変更可能である。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the heating system of the present invention is not limited to the following examples, and can be appropriately changed without departing from the gist of the claims.

図1は、本発明の加熱システム1の実施例1を示す概略図である。また、図2は、本実施例1の加熱システム1のT−S線図であり、縦軸が温度T、横軸がエントロピSを示している。   FIG. 1 is a schematic diagram showing Example 1 of the heating system 1 of the present invention. FIG. 2 is a TS diagram of the heating system 1 according to the first embodiment, in which the vertical axis indicates the temperature T and the horizontal axis indicates the entropy S.

本実施例の加熱システム1は、第一ランキンサイクル2と第二ランキンサイクル3とを備える。   The heating system 1 of the present embodiment includes a first Rankine cycle 2 and a second Rankine cycle 3.

第一ランキンサイクル2は、本実施例では単段のランキンサイクルから構成される。具体的には、第一ランキンサイクル2は、給水ポンプ4、蒸発器5、膨張機6および凝縮器7が順次環状に接続されて構成され、この回路内には作動流体が相変化を伴って循環される。なお、作動流体は、たとえば水または冷媒である。   The first Rankine cycle 2 is composed of a single-rank Rankine cycle in this embodiment. Specifically, the first Rankine cycle 2 is configured by sequentially connecting a water supply pump 4, an evaporator 5, an expander 6 and a condenser 7 in a ring shape, and the working fluid is accompanied by a phase change in this circuit. Circulated. The working fluid is, for example, water or a refrigerant.

給水ポンプ4は、凝縮器7にて液化した作動流体を、蒸発器5へ供給する。   The feed water pump 4 supplies the working fluid liquefied by the condenser 7 to the evaporator 5.

蒸発器5は、作動流体を与熱流体で加熱して気化する。つまり、蒸発器5は、作動流体と与熱流体との間接熱交換器であり、与熱流体の熱で作動流体を加熱して蒸気とする。なお、図1において、流路8に、与熱流体が通される。   The evaporator 5 evaporates by heating the working fluid with the heating fluid. That is, the evaporator 5 is an indirect heat exchanger between the working fluid and the heating fluid, and the working fluid is heated to steam by the heat of the heating fluid. In FIG. 1, the heating fluid is passed through the flow path 8.

膨張機6は、蒸発器5にて気化した作動流体が通され、作動流体の圧力と温度を低下させる。膨張機6は、特に問わないが、たとえば、タービン、スクリュ式膨張機またはスクロール式膨張機である。膨張機6は、典型的には、蒸発器5からの作動流体で回転され、被動機(図示省略)を稼働させる。被動機は、特に問わないが、典型的には発電機または圧縮機(たとえば空気圧縮機)である。   The expander 6 is passed through the working fluid vaporized by the evaporator 5 and reduces the pressure and temperature of the working fluid. The expander 6 is not particularly limited, and is, for example, a turbine, a screw expander, or a scroll expander. The expander 6 is typically rotated by the working fluid from the evaporator 5 and operates a driven machine (not shown). The driven machine is not particularly limited, but is typically a generator or a compressor (for example, an air compressor).

凝縮器7は、作動流体を受熱流体で冷却して液化する。つまり、凝縮器7は、作動流体と受熱流体との間接熱交換器であり、作動流体を受熱流体で冷却して凝縮させる。この際、受熱流体は、作動流体の熱で加熱されて昇温する。なお、図1において、流路9に、受熱流体が通される。   The condenser 7 cools and liquefies the working fluid with the heat receiving fluid. That is, the condenser 7 is an indirect heat exchanger between the working fluid and the heat receiving fluid, and cools the working fluid with the heat receiving fluid to condense. At this time, the heat receiving fluid is heated by the heat of the working fluid to raise the temperature. In FIG. 1, the heat receiving fluid is passed through the flow path 9.

蒸発器5において作動流体を加熱する与熱流体は、本実施例では一定温度である。典型的には、与熱流体は、蒸発器5において潜熱を放出する。つまり、与熱流体は蒸気(たとえば水蒸気)であり、蒸発器5において凝縮して、その凝縮潜熱で作動流体を一定温度(飽和温度)で加熱する。但し、与熱流体が大量に存在しその温度変化を無視できる場合、与熱流体は、蒸発器5において顕熱を放出してもよい。   The heating fluid that heats the working fluid in the evaporator 5 has a constant temperature in this embodiment. Typically, the heated fluid releases latent heat in the evaporator 5. That is, the heating fluid is steam (for example, water vapor), is condensed in the evaporator 5, and the working fluid is heated at a constant temperature (saturation temperature) by the latent heat of condensation. However, when there is a large amount of the heating fluid and the temperature change can be ignored, the heating fluid may release sensible heat in the evaporator 5.

凝縮器7において作動流体で加熱される受熱流体は、作動流体で加熱され昇温される。つまり、受熱流体は、凝縮器7において顕熱を取得する。たとえば、受熱流体は水であり、凝縮器7において作動流体により加熱され、温水として導出される。   The heat receiving fluid heated by the working fluid in the condenser 7 is heated by the working fluid and heated. That is, the heat receiving fluid acquires sensible heat in the condenser 7. For example, the heat receiving fluid is water, heated by the working fluid in the condenser 7 and led out as hot water.

第二ランキンサイクル3は、本実施例では上下二段のランキンサイクルから構成される。具体的には、高温側の上段ランキンサイクル3Aと、低温側の下段ランキンサイクル3Bとから構成される。第二ランキンサイクル3を構成する上下各段のランキンサイクル3A,3Bは、基本的には前述した単段の第一ランキンサイクル2と同様の構成である。つまり、給水ポンプ10A,10B、蒸発器11A,11B、膨張機12A,12Bおよび凝縮器13A,13Bが順次環状に接続されて構成される。本実施例では、上下のランキンサイクル3A,3Bは、互いの作動流体を混ぜることなく熱交換する間接熱交換器14で接続されており、この間接熱交換器14が、上段ランキンサイクル3Aの凝縮器13Aと下段ランキンサイクル3Bの蒸発器11Bを兼ねる。第二ランキンサイクル3は、上段ランキンサイクル3Aの蒸発器11Aにおいて、作動流体が一定温度の与熱流体で加熱され、下段ランキンサイクル3Bの凝縮器13Bにおいて、作動流体で受熱流体を加熱して昇温する。なお、上段ランキンサイクル3Aと下段ランキンサイクル3Bとを接続する熱交換器は、各ランキンサイクル3A,3Bの作動流体同士を混ぜることなく熱交換する間接熱交換器14としたが、場合により、作動流体同士を直接に接触させて熱交換する直接熱交換器としてもよい。   In the present embodiment, the second Rankine cycle 3 is composed of two upper and lower Rankine cycles. Specifically, the upper Rankine cycle 3A on the high temperature side and the lower Rankine cycle 3B on the low temperature side are configured. The upper and lower Rankine cycles 3A and 3B constituting the second Rankine cycle 3 have basically the same configuration as the single-rank first Rankine cycle 2 described above. That is, the feed water pumps 10A and 10B, the evaporators 11A and 11B, the expanders 12A and 12B, and the condensers 13A and 13B are sequentially connected in a ring shape. In this embodiment, the upper and lower Rankine cycles 3A and 3B are connected by an indirect heat exchanger 14 that exchanges heat without mixing each other's working fluid, and this indirect heat exchanger 14 is condensed in the upper Rankine cycle 3A. It also serves as the evaporator 13A and the evaporator 11B of the lower Rankine cycle 3B. In the second Rankine cycle 3, the working fluid is heated by a heated fluid having a constant temperature in the evaporator 11 </ b> A of the upper Rankine cycle 3 </ b> A, and the heat receiving fluid is heated by the working fluid in the condenser 13 </ b> B of the lower Rankine cycle 3 </ b> B. Warm up. The heat exchanger connecting the upper Rankine cycle 3A and the lower Rankine cycle 3B is the indirect heat exchanger 14 that exchanges heat without mixing the working fluids of the Rankine cycles 3A and 3B. It is good also as a direct heat exchanger which makes fluid contact directly and heat-exchanges.

与熱流体は、図示例では、第一ランキンサイクル2の蒸発器5に通された後、第二ランキンサイクル3の上段の蒸発器11Aに通されるが、これとは逆に、第二ランキンサイクル3の上段の蒸発器11Aに通された後、第一ランキンサイクル2の蒸発器5に通されてもよい。あるいは、与熱流体は、第一ランキンサイクル2の蒸発器5と第二ランキンサイクル3の上段の蒸発器11Aとに並列に通されてもよい。いずれにしても、本実施例では、第一ランキンサイクル2の蒸発器5と第二ランキンサイクル3の上段の蒸発器11Aとにおいて、各ランキンサイクル2,3の作動流体が、一定温度の与熱流体により加熱される。   In the illustrated example, the heated fluid is passed through the evaporator 5 of the first Rankine cycle 2 and then to the upper evaporator 11A of the second Rankine cycle 3, but conversely, the second Rankine cycle is passed. After passing through the upper evaporator 11 </ b> A of the cycle 3, it may be passed through the evaporator 5 of the first Rankine cycle 2. Alternatively, the heating fluid may be passed through the evaporator 5 of the first Rankine cycle 2 and the upper evaporator 11A of the second Rankine cycle 3 in parallel. In any case, in this embodiment, in the evaporator 5 of the first Rankine cycle 2 and the upper evaporator 11A of the second Rankine cycle 3, the working fluid of each Rankine cycle 2 and 3 is heated at a constant temperature. Heated by fluid.

受熱流体は、第二ランキンサイクル3の下段の凝縮器13Bに通された後、第一ランキンサイクル2の凝縮器7に通される。受熱流体は、各ランキンサイクル3,2の凝縮器13B,7を順に通されることで、順次加熱され昇温される。   The heat receiving fluid passes through the lower condenser 13 </ b> B of the second Rankine cycle 3, and then passes through the condenser 7 of the first Rankine cycle 2. The heat receiving fluid is sequentially heated and heated by passing through the condensers 13B and 7 of the Rankine cycles 3 and 2 in order.

なお、第一ランキンサイクル2の膨張機6、および第二ランキンサイクル3の各膨張機12A,12Bでは、たとえば発電機や空気圧縮機などの被動機を稼働させるが、この際、各膨張機6,12A,12Bからの動力をまとめて一つの(つまり共通の)被動機を稼働させてもよいし、各膨張機6,12A,12Bにおいて被動機を個別に稼働させてもよい。   The expander 6 in the first Rankine cycle 2 and the expanders 12A and 12B in the second Rankine cycle 3 operate driven machines such as a generator and an air compressor. At this time, each expander 6 , 12A, 12B may be combined to operate one (that is, a common) driven machine, or each expander 6, 12A, 12B may be operated individually.

ところで、典型的には、第二ランキンサイクル3の上段の凝縮器13Aにおける作動流体の温度および圧力は、第一ランキンサイクル2の凝縮器7における作動流体の温度および圧力と、同等(同一または設定範囲内)とされるのがよい。つまり、第二ランキンサイクル3の上段ランキンサイクル3Aと、第一ランキンサイクル2とは、作動流体を含めて同一の構成とするのがよい。   By the way, typically, the temperature and pressure of the working fluid in the upper condenser 13A of the second Rankine cycle 3 are equivalent (same or set) to the temperature and pressure of the working fluid in the condenser 7 of the first Rankine cycle 2. Within the range). That is, it is preferable that the upper Rankine cycle 3A of the second Rankine cycle 3 and the first Rankine cycle 2 have the same configuration including the working fluid.

後述するように、第二ランキンサイクル3は、並列に設置された複数のランキンサイクルから構成されてもよいが、その場合も、並列に設置された複数のランキンサイクルは、最上段から数えて順次対応する段のランキンサイクルにおいて、凝縮器における作動流体の温度および圧力が同等とされるのがよい。たとえば、単段の第一ランキンサイクル、二段の第二ランキンサイクル、および三段の第三ランキンサイクルを並列に備える加熱システムの場合、各最上段のランキンサイクル同士は、凝縮器における作動流体の温度および圧力が同等とされ、第二ランキンサイクルの下段と第三ランキンサイクルの中段のランキンサイクル同士は、凝縮器における作動流体の温度および圧力が同等とされるのがよい。   As will be described later, the second Rankine cycle 3 may be composed of a plurality of Rankine cycles installed in parallel. In this case, however, the plurality of Rankine cycles installed in parallel are sequentially counted from the uppermost stage. In the corresponding stage Rankine cycle, the temperature and pressure of the working fluid in the condenser should be equal. For example, in the case of a heating system comprising a single first Rankine cycle, two second Rankine cycles, and a third third Rankine cycle in parallel, each uppermost Rankine cycle is connected to the working fluid in the condenser. The temperature and pressure are made equal, and the temperature and pressure of the working fluid in the condenser are preferably made equal between the lower Rankine cycle of the second Rankine cycle and the middle Rankine cycle of the third Rankine cycle.

本実施例の加熱システム1は、図2に示すように、T−S線図において、三つの略台形として示される。三つの略台形の内、右上の略台形が第一ランキンサイクル2を示し、左上の略台形が第二ランキンサイクル3の上段ランキンサイクル3Aを示し、左下の略台形が第二ランキンサイクル3の下段ランキンサイクル3Bを示す。そして、各ランキンサイクル2,3A,3Bにおいて、作動流体は、a1−b1、a2H−b2H、a2L−b2L間で給水ポンプ4,10A,10Bによる断熱圧縮、b1−b1´−c1、b2H−b2H´−c2H、b2L−b2L´−c2L間で蒸発器5,11A,11Bによる等圧加熱、c1−d1、c2H−d2H、c2L−d2L間で膨張機6,12A,12Bによる断熱膨張、d1−a1、d2H−a2H、d2L−a2L間で凝縮器7,13A,13Bによる等圧冷却される。なお、図から明らかなとおり、好ましくは、a1=d2H=c2Lの関係にある。さらに、典型的には、S3=(S1+S2)/2の関係にある。   As shown in FIG. 2, the heating system 1 of the present embodiment is shown as three substantially trapezoids in the TS diagram. Of the three substantially trapezoids, the upper right approximate trapezoid indicates the first Rankine cycle 2, the upper left approximately trapezoid indicates the upper Rankine cycle 3 </ b> A of the second Rankine cycle 3, and the lower left approximately trapezoid indicates the lower rank of the second Rankine cycle 3. Rankine cycle 3B is shown. In each Rankine cycle 2, 3A, 3B, the working fluid is adiabatic compression between the a1-b1, a2H-b2H, a2L-b2L by the feed pumps 4, 10A, 10B, b1-b1'-c1, b2H-b2H. '-C2H, b2L-b2L'-c2L, isobaric heating by evaporators 5, 11A, 11B, adiabatic expansion by expanders 6, 12A, 12B between c1-d1, c2H-d2H, c2L-d2L, d1- The a1, d2H-a2H and d2L-a2L are cooled at the same pressure by the condensers 7, 13A, 13B. As is clear from the figure, the relationship is preferably a1 = d2H = c2L. Further, typically, there is a relationship of S3 = (S1 + S2) / 2.

また、蒸発器5,11Aにおいて作動流体に熱を与える与熱流体が一定温度T2であり、凝縮器13B,7において作動流体から熱を受ける受熱流体をT1LからT1Hまで昇温し、膨張機6,12A,12Bにおいて被動機(たとえば発電機)を稼働して仕事を取り出すことができる。詳細は実施例2において説明するが、本実施例の加熱システム1によれば、左下の略台形の分だけ、従来技術よりも仕事を取り出すことができる。   In addition, the heating fluid that gives heat to the working fluid in the evaporators 5 and 11A is a constant temperature T2, and the heat receiving fluid that receives heat from the working fluid in the condensers 13B and 7 is heated from T1L to T1H, and the expander 6 , 12A, 12B, a driven machine (for example, a generator) can be operated to take out work. Although details will be described in the second embodiment, according to the heating system 1 of the present embodiment, work can be taken out as compared with the prior art by the amount of a substantially trapezoid in the lower left.

次に、本実施例1の変形例について説明する。
上記実施例では、第一ランキンサイクル2を単段のランキンサイクルから構成し、第二ランキンサイクル3を上下二段のランキンサイクル3A,3Bから構成したが、第二ランキンサイクル3が第一ランキンサイクル2よりも段数が多い限り、各ランキンサイクル2,3の段数は適宜に変更可能である。いずれにしても、第一ランキンサイクル2の最上段の蒸発器5と、第二ランキンサイクル3の最上段の蒸発器11Aとにおいて、一定温度の与熱流体により作動流体が加熱される。また、第二ランキンサイクル3の最下段の凝縮器13Bと、第一ランキンサイクル2の最下段の凝縮器7とに、受熱流体が順に通され、各ランキンサイクル2,3の作動流体が冷却される一方、受熱流体を加熱して昇温する。特に、各最上段の蒸発器5,11Aにおいて、与熱流体は潜熱を放出し、各最下段の凝縮器13B,7において、受熱流体は顕熱を取得するのがよい。
Next, a modification of the first embodiment will be described.
In the above embodiment, the first Rankine cycle 2 is composed of a single Rankine cycle, and the second Rankine cycle 3 is composed of two upper and lower Rankine cycles 3A and 3B. As long as the number of stages is greater than 2, the number of stages of each Rankine cycle 2 and 3 can be changed as appropriate. In any case, in the uppermost evaporator 5 of the first Rankine cycle 2 and the uppermost evaporator 11A of the second Rankine cycle 3, the working fluid is heated by the heating fluid having a constant temperature. Further, the heat receiving fluid is sequentially passed through the lowermost condenser 13B of the second Rankine cycle 3 and the lowermost condenser 7 of the first Rankine cycle 2, and the working fluid of each Rankine cycle 2 and 3 is cooled. Meanwhile, the temperature of the heat receiving fluid is increased by heating. In particular, in each of the uppermost evaporators 5 and 11A, the heated fluid releases latent heat, and in each of the lowermost condensers 13B and 7, the heat receiving fluid should acquire sensible heat.

また、前記実施例において、第二ランキンサイクル3は、並列に設置された複数のランキンサイクルから構成されてもよい。言い換えれば、前記実施例において、第一ランキンサイクル2や第二ランキンサイクル3に加えて、第三ランキンサイクルを設けてもよい他、さらに第四ランキンサイクル、第五ランキンサイクル、…というように、全体としてn個(n≧2)のランキンサイクルを並列に設置してもよい。この場合も、このn個のランキンサイクルは、各最上段の蒸発器において、一定温度の与熱流体により作動流体が加熱され、各最下段の凝縮器に受熱流体が順に通されて昇温され、この受熱流体が通される順に段数が少なくなるよう(好ましくは一段ずつ少なくなるよう)構成される。   Moreover, in the said Example, the 2nd Rankine cycle 3 may be comprised from the several Rankine cycle installed in parallel. In other words, in the embodiment, in addition to the first Rankine cycle 2 and the second Rankine cycle 3, a third Rankine cycle may be provided, a fourth Rankine cycle, a fifth Rankine cycle, and so on. As a whole, n (n ≧ 2) Rankine cycles may be installed in parallel. Also in this case, in the n Rankine cycles, the working fluid is heated by the heating fluid at a constant temperature in each uppermost evaporator, and the heat receiving fluid is sequentially passed through each lowermost condenser to be heated. The number of stages is reduced in order in which the heat receiving fluid is passed (preferably so as to be reduced step by step).

図3は、本発明の加熱システム1の実施例2を示す概略図である。また、図4は、本実施例2の加熱システムのT−S線図であり、縦軸が温度T、横軸がエントロピSを示している。   FIG. 3 is a schematic diagram showing Example 2 of the heating system 1 of the present invention. FIG. 4 is a TS diagram of the heating system according to the second embodiment, in which the vertical axis indicates the temperature T and the horizontal axis indicates the entropy S.

本実施例2の加熱システム1は、基本的には前記実施例1およびその変形例と同様である。そこで、以下において、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   The heating system 1 of the second embodiment is basically the same as that of the first embodiment and its modification. Therefore, in the following, the difference between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例2の加熱システム1は、前記実施例1において、第一ランキンサイクル2と、第二ランキンサイクル3の上段ランキンサイクル3Aとを、一つのランキンサイクルとしてまとめたものに相当する。そして、全体としては、上下二段のランキンサイクルから構成される。   The heating system 1 according to the second embodiment corresponds to a combination of the first Rankine cycle 2 and the upper Rankine cycle 3A of the second Rankine cycle 3 as one Rankine cycle in the first embodiment. And as a whole, it is composed of a two-stage Rankine cycle.

上段ランキンサイクル3Aは、第一凝縮器15と第二凝縮器16とを備える。第一凝縮器15は、本実施例では、上段ランキンサイクル3Aの作動流体と下段ランキンサイクル3Bの作動流体との間接熱交換器であり、上段ランキンサイクル3Aの凝縮器13Aと下段ランキンサイクル3Bの蒸発器11Bとを兼ねている。一方、第二凝縮器16は、上段ランキンサイクル3Aの作動流体と受熱流体との間接熱交換器である。受熱流体は、下段ランキンサイクル3Bの凝縮器13Bに通された後、上段ランキンサイクル3Aの第二凝縮器16に通されて、順に加熱され昇温される。その他の構成は、前記実施例1と同様であるため、説明を省略する。   The upper Rankine cycle 3 </ b> A includes a first condenser 15 and a second condenser 16. In this embodiment, the first condenser 15 is an indirect heat exchanger between the working fluid of the upper Rankine cycle 3A and the working fluid of the lower Rankine cycle 3B, and the condenser 13A and the lower Rankine cycle 3B of the upper Rankine cycle 3A. It also serves as the evaporator 11B. On the other hand, the second condenser 16 is an indirect heat exchanger between the working fluid and the heat receiving fluid of the upper Rankine cycle 3A. The heat receiving fluid is passed through the condenser 13B of the lower Rankine cycle 3B and then passed through the second condenser 16 of the upper Rankine cycle 3A, and is heated and heated in order. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

本実施例の加熱システム1は、図4に示すように、T−S線図において、二つの略台形として示される。二つの略台形の内、実線で示される上側の略台形が上段ランキンサイクル3Aを示し、二点鎖線で示される下側の略台形が下段ランキンサイクル3Bを示す。   As shown in FIG. 4, the heating system 1 of the present embodiment is shown as two substantially trapezoids in the TS diagram. Of the two approximate trapezoids, the upper approximate trapezoid indicated by the solid line indicates the upper Rankine cycle 3A, and the lower approximate trapezoid indicated by the two-dot chain line indicates the lower Rankine cycle 3B.

図4のT−S線図に基づき、本発明の加熱システム1のメリットについて説明する。ここでは、蒸発器11Aにおいて作動流体に熱を与える与熱流体が一定温度T2であり、凝縮器13B,16において作動流体から熱を受ける受熱流体をT1LからT1Hまで昇温し、膨張機12A,12Bにおいて被動機(たとえば発電機)を稼働して仕事を取り出す場合を考える。   The merit of the heating system 1 of this invention is demonstrated based on the TS diagram of FIG. Here, the heating fluid that gives heat to the working fluid in the evaporator 11A is a constant temperature T2, and the heat receiving fluid that receives heat from the working fluid in the condensers 13B and 16 is heated from T1L to T1H, and the expanders 12A, 12A, Consider a case where a driven machine (for example, a generator) is operated at 12B to extract work.

図中、実線で示すサイクルは、従来のランキンサイクルである。周知のとおり、理想状態では、作動流体は、a−b間で給水ポンプによる断熱圧縮、b−b´−c間で蒸発器による等圧加熱、c−d間で膨張機による断熱膨張、d−a間で凝縮器による等圧冷却される。また、与熱流体の状態を示す水平線L2、および受熱流体の状態を示す傾斜線L1は、物質に応じて定まり既知である。   In the figure, a cycle indicated by a solid line is a conventional Rankine cycle. As is well known, in an ideal state, the working fluid is adiabatic compression by a feed pump between a and b, isobaric heating by an evaporator between b and b 'and c, adiabatic expansion by an expander between cd and d. -A isobaric cooling by a condenser between -a. Moreover, the horizontal line L2 which shows the state of a heating fluid, and the inclined line L1 which shows the state of a heat receiving fluid are decided according to a substance, and are known.

さて、ランキンサイクルの作動流体は、与熱流体との熱交換で加熱される関係上、与熱流体の温度T2よりも高くはできない。そのため、ランキンサイクルの作動流体の蒸発温度は、理論上、T2が限界である。もちろん、実際には、与熱流体と作動流体との間の熱交換には所定の温度差が必要であるから、作動流体の蒸発温度は、与熱流体の温度T2よりも低くなる。   Now, the working fluid of the Rankine cycle cannot be higher than the temperature T2 of the heating fluid because it is heated by heat exchange with the heating fluid. Therefore, theoretically, the evaporation temperature of the working fluid in the Rankine cycle is limited to T2. Of course, in practice, a predetermined temperature difference is required for heat exchange between the heating fluid and the working fluid, and therefore, the evaporation temperature of the working fluid is lower than the temperature T2 of the heating fluid.

一方、膨張機において、断熱熱落差があるほど、仕事量を取り出すことができる。しかし、ランキンサイクルの作動流体は、受熱流体との熱交換で冷却される関係上、受熱流体の凝縮器出口温度(加熱目標温度)T1Hよりも低くはできない。そのため、ランキンサイクルの作動流体の凝縮温度は、理論上、T1Hが限界である。もちろん、実際には、受熱流体と作動流体との熱交換には所定の温度差が必要であるから、作動流体の凝縮温度は、受熱流体の凝縮器出口温度T1Hよりも高くなる。   On the other hand, in an expander, work can be taken out so that there is a heat insulation heat drop. However, the working fluid of the Rankine cycle cannot be lower than the condenser outlet temperature (heating target temperature) T1H of the heat receiving fluid because it is cooled by heat exchange with the heat receiving fluid. Therefore, theoretically, the condensation temperature of the working fluid in the Rankine cycle is limited to T1H. Of course, in practice, a predetermined temperature difference is required for heat exchange between the heat receiving fluid and the working fluid, and therefore, the condensation temperature of the working fluid is higher than the condenser outlet temperature T1H of the heat receiving fluid.

また、ランキンサイクルで囲まれた面積は、仕事量であるから、最大限に仕事を引き出すには、T−S線図上で可能な限り大きくランキンサイクルを組むのが好適である。このようなことから、従来、実線で示すように、ランキンサイクルが組まれる。   In addition, since the area surrounded by the Rankine cycle is the work amount, it is preferable to build the Rankine cycle as large as possible on the TS diagram in order to extract the work to the maximum. For this reason, a Rankine cycle is conventionally constructed as shown by a solid line.

一方、本発明では、この実線で示す従来のランキンサイクルに、さらに二点鎖線で示すランキンサイクルを付加したものに相当する。従って、この付加したランキンサイクルに相当する分だけ、さらに仕事を取り出すことができる。たとえば、膨張機で発電機を稼働させる場合、システム全体の発電効率を向上することができる。   On the other hand, in this invention, it corresponds to what added the Rankine cycle shown with a dashed-two dotted line to the conventional Rankine cycle shown with this continuous line. Therefore, more work can be taken out by the amount corresponding to the added Rankine cycle. For example, when operating a generator with an expander, the power generation efficiency of the whole system can be improved.

次に、本実施例2の変形例について説明する。
前記実施例1の変形例で述べたように、加熱システム1を構成するランキンサイクルの段数は、二段に限らず、三段以上とすることもできる。その場合も、各段のランキンサイクルには、最下段を除き、凝縮器として第一凝縮器15と第二凝縮器16とを設け、第一凝縮器15を用いて上下のランキンサイクルを接続し、受熱流体を、最下段の凝縮器13Bに通した後、下段から上段へ向けて各第二凝縮器16に順に通して昇温すればよい。言い換えれば、次のような構成と等価である。
Next, a modification of the second embodiment will be described.
As described in the modification of the first embodiment, the number of Rankine cycles constituting the heating system 1 is not limited to two but may be three or more. In this case, the Rankine cycle of each stage is provided with the first condenser 15 and the second condenser 16 as condensers except for the lowermost stage, and the upper and lower Rankine cycles are connected using the first condenser 15. The heat receiving fluid may be passed through the second condenser 16 in order from the lower stage to the upper stage after passing through the lowermost condenser 13 </ b> B. In other words, it is equivalent to the following configuration.

すなわち、前記実施例1の変形例で述べたように、前記実施例1において第二ランキンサイクル3は、並列に設置された複数のランキンサイクルから構成されてもよいが、並列に設置された複数のランキンサイクルは、最上段のランキンサイクル同士が一つのランキンサイクルにまとめられ、最上段から一つ下段のランキンサイクル同士が一つのランキンサイクルにまとめられというように、並列に対応する段同士が一つにまとめられてもよい。そして、各まとめられたランキンサイクルは、最下段を除き、第一凝縮器15と第二凝縮器16とを備え、各第一凝縮器15は、一つ下段のランキンサイクルの蒸発器を兼ねており、各第二凝縮器16に受熱流体が順に通される。   That is, as described in the modification of the first embodiment, the second Rankine cycle 3 in the first embodiment may be configured by a plurality of Rankine cycles installed in parallel. In the Rankine cycle, the uppermost Rankine cycles are combined into one Rankine cycle, and the Rankine cycles that are one lower from the uppermost stage are combined into one Rankine cycle. May be grouped together. Each combined Rankine cycle includes a first condenser 15 and a second condenser 16 except for the lowest stage, and each first condenser 15 also serves as an evaporator of one lower Rankine cycle. The heat receiving fluid is sequentially passed through each second condenser 16.

図5は、本発明の加熱システム1の実施例3を示す概略図である。
本実施例3の加熱システム1は、基本的には前記実施例2およびその変形例と同様である。そこで、以下において、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。
FIG. 5 is a schematic diagram showing Example 3 of the heating system 1 of the present invention.
The heating system 1 of the third embodiment is basically the same as that of the second embodiment and its modification. Therefore, in the following, the difference between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

前記実施例2では、上段ランキンサイクル3Aと下段ランキンサイクル3Bとを接続する第一凝縮器15は、各ランキンサイクル3A,3Bの作動流体同士を混ぜることなく熱交換する間接熱交換器14としたが、本実施例3では、上段の第二凝縮器16からの作動流体を気液分離して気相部が下段の膨張機12Bに接続されると共に液相部が上段のポンプ10Aに接続される気液分離器17とされる。   In Example 2, the first condenser 15 that connects the upper Rankine cycle 3A and the lower Rankine cycle 3B is an indirect heat exchanger 14 that exchanges heat without mixing the working fluids of the Rankine cycles 3A and 3B. However, in the third embodiment, the working fluid from the upper second condenser 16 is gas-liquid separated so that the gas phase portion is connected to the lower expander 12B and the liquid phase portion is connected to the upper pump 10A. Gas-liquid separator 17.

具体的には、図5から明らかなとおり、上段ランキンサイクル3Aの作動流体は、上段膨張機12Aから第二凝縮器16を通された後、第一凝縮器15を構成する気液分離器(中空タンク)17へ吐出される。気液分離器17の気相部の作動流体は、下段ランキンサイクル3Bの膨張機12Bへ送られる。一方、気液分離器17の液相部の作動流体は、上段ランキンサイクル3Aの給水ポンプ10Aへ送られる。下段ランキンサイクル3Bの給水ポンプ10Bからの作動流体は、気液分離器17に供給されるか、気液分離器17から上段ランキンサイクル3Aの給水ポンプ10Aへの管路に合流される。   Specifically, as is clear from FIG. 5, the working fluid of the upper Rankine cycle 3 </ b> A is passed through the second condenser 16 from the upper stage expander 12 </ b> A and then the gas-liquid separator ( A hollow tank) 17 is discharged. The working fluid in the gas phase portion of the gas-liquid separator 17 is sent to the expander 12B of the lower Rankine cycle 3B. On the other hand, the working fluid in the liquid phase portion of the gas-liquid separator 17 is sent to the feed water pump 10A of the upper Rankine cycle 3A. The working fluid from the feed water pump 10B of the lower Rankine cycle 3B is supplied to the gas-liquid separator 17 or joined to the pipeline from the gas-liquid separator 17 to the feed water pump 10A of the upper Rankine cycle 3A.

本実施例3においても、加熱システム1を構成するランキンサイクルの段数は、二段に限らず、三段以上とすることもできる。その場合も、各段のランキンサイクルには、最下段を除き、凝縮器として第一凝縮器15と第二凝縮器16とを設け、第一凝縮器15を用いて上下のランキンサイクルを接続し、受熱流体を、最下段の凝縮器に通した後、下段から上段へ向けて各第二凝縮器16に順に通して昇温すればよい。そして、第一凝縮器15として、図5に示すような気液分離器17を用いることができる。但し、一部の段において、気液分離器17ではなく、図3に示すような間接熱交換器14を用いてもよい。   Also in the third embodiment, the number of Rankine cycles constituting the heating system 1 is not limited to two but can be three or more. In this case, the Rankine cycle of each stage is provided with the first condenser 15 and the second condenser 16 as condensers except for the lowermost stage, and the upper and lower Rankine cycles are connected using the first condenser 15. The heat receiving fluid may be passed through the second condenser 16 in order from the lower stage to the upper stage after passing through the lowermost condenser, and the temperature may be increased. A gas-liquid separator 17 as shown in FIG. 5 can be used as the first condenser 15. However, in some stages, an indirect heat exchanger 14 as shown in FIG. 3 may be used instead of the gas-liquid separator 17.

図6は、本発明の加熱システム1の実施例4を示す概略図である。
本実施例4の加熱システム1は、基本的には前記実施例2およびその変形例と同様である。そこで、以下において、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。
FIG. 6 is a schematic view showing Example 4 of the heating system 1 of the present invention.
The heating system 1 of the fourth embodiment is basically the same as that of the second embodiment and its modification. Therefore, in the following, the difference between the two will be mainly described, and corresponding portions will be described with the same reference numerals.

本実施例4の加熱システム1では、前記実施例2と比較して、隣接する上下のランキンサイクル3A,3Bは、第一凝縮器15の設置を省略する代わりに、上段の第二凝縮器16と下段の膨張機12Bとが接続される一方、下段の給水ポンプ10Bと上段の給水ポンプ10Aとを直列に接続するか、これら給水ポンプ10A,10Bを一つの給水ポンプ10として構成される。図示例の場合、作動流体は、給水ポンプ10、上段の蒸発器11A、上段の膨張機12A、上段の凝縮器7(第二凝縮器16)、下段の膨張機12B、および下段の凝縮器13Bを順に循環する。   In the heating system 1 of the fourth embodiment, the upper and lower Rankine cycles 3A and 3B adjacent to the upper and lower Rankine cycles 3A and 3B, instead of omitting the installation of the first condenser 15, are compared with the second embodiment. Are connected to the lower expander 12B, and the lower feed pump 10B and the upper feed pump 10A are connected in series, or these feed pumps 10A and 10B are configured as one feed pump 10. In the illustrated example, the working fluid is the feed water pump 10, the upper evaporator 11A, the upper expander 12A, the upper condenser 7 (second condenser 16), the lower expander 12B, and the lower condenser 13B. In order.

本実施例4においても、加熱システム1を構成するランキンサイクルの段数は、二段に限らず、三段以上とすることもできる。その場合において、隣接する上下のランキンサイクル同士の接続に関し、上段の凝縮器7(第二凝縮器16)の出口側と下段の膨張機12Bの入口側とを接続する一方、最下段の凝縮器13Bの出口側と最上段の蒸発器11Aの入口側とを給水ポンプ10で接続すればよい。   Also in the fourth embodiment, the number of Rankine cycles constituting the heating system 1 is not limited to two but can be three or more. In that case, regarding the connection between adjacent upper and lower Rankine cycles, the outlet side of the upper condenser 7 (second condenser 16) and the inlet side of the lower expander 12B are connected while the lowermost condenser. What is necessary is just to connect the exit side of 13B, and the inlet side of the evaporator 11A of the uppermost stage with the water supply pump 10. FIG.

ところで、前記各実施例およびその変形例において、第一ランキンサイクル2および/または第二ランキンサイクル3は、それを構成する各ランキンサイクルに代えて、図7に示すように、蒸気駆動装置18が設けられてもよい。蒸気駆動装置18とは、ランキンサイクルの膨張機と同様に、蒸気の力で被動機を稼働させる機械である。図示例では、一段の蒸気駆動装置18と、二段の蒸気駆動装置18とが並列に設けられて構成されるが、さらに三段以上の蒸気駆動装置18を並列に設けてもよい。いずれの蒸気駆動装置18にも、図において上方から蒸気が噴き込まれ、下方へ吐出する。最下段の蒸気駆動装置18にて使用後の蒸気は、受熱流体と間接熱交換して凝縮するか、受熱流体が流れる管路内に噴き込まれる。そして、受熱流体との間接熱交換により凝縮した作動流体、または作動流体が噴き込まれて昇温された受熱流体は、たとえばボイラの給水タンクへ供給して用いることができる。   By the way, in each said Example and its modification, the 1st Rankine cycle 2 and / or the 2nd Rankine cycle 3 are replaced with each Rankine cycle which comprises it, as shown in FIG. It may be provided. The steam drive device 18 is a machine that operates the driven machine with the power of steam, like the expander of the Rankine cycle. In the illustrated example, a single-stage steam drive device 18 and a two-stage steam drive device 18 are provided in parallel. However, three or more stages of steam drive devices 18 may be provided in parallel. In any of the steam driving devices 18, steam is injected from above in the drawing and discharged downward. The steam after use in the lowermost steam driving device 18 is condensed by indirect heat exchange with the heat receiving fluid, or is injected into a conduit through which the heat receiving fluid flows. Then, the working fluid condensed by indirect heat exchange with the heat receiving fluid, or the heat receiving fluid heated by injection of the working fluid can be supplied to a water supply tank of a boiler, for example.

ボイラからの蒸気を蒸気駆動装置18に供給して被動機を駆動し、蒸気駆動装置18で使用後の蒸気のドレンをボイラへ戻す蒸気システムを観察すると、水はボイラで蒸気化され、その蒸気で蒸気駆動装置18を回転させ、蒸気のドレンは給水ポンプを介してボイラへ戻される。つまり、ランキンサイクルの作動流体と同様の作用を行っており、ランキンサイクルに代えて蒸気駆動装置18を用いることができることになる。言い換えれば、第一ランキンサイクル2および/または第二ランキンサイクル3は、それを構成する各ランキンサイクル(一部または全部のランキンサイクル)に代えて、蒸気駆動装置18を用いることができることになる。なお、作動流体として、水以外を用いてもよい。   When steam from the boiler is supplied to the steam driving device 18 to drive the driven machine and the steam driving device 18 observes a steam system that returns the drain of used steam to the boiler, water is vaporized in the boiler, and the steam Then, the steam driving device 18 is rotated, and the steam drain is returned to the boiler via the feed water pump. That is, the same action as the working fluid of the Rankine cycle is performed, and the steam driving device 18 can be used instead of the Rankine cycle. In other words, the first Rankine cycle 2 and / or the second Rankine cycle 3 can use the steam drive unit 18 instead of each Rankine cycle (part or all Rankine cycles) constituting the first Rankine cycle 2 and / or the second Rankine cycle 3. A working fluid other than water may be used.

1 加熱システム
2 第一ランキンサイクル
3 第二ランキンサイクル
3A 上段ランキンサイクル
3B 下段ランキンサイクル
4 給水ポンプ
5 蒸発器
6 膨張機
7 凝縮器
8 与熱流体の流路
9 受熱流体の流路
10A,10B 給水ポンプ
11A,11B 蒸発器
12A,12B 膨張機
13A,13B 凝縮器
14 間接熱交換器
15 第一凝縮器
16 第二凝縮器
17 気液分離器
18 蒸気駆動装置
DESCRIPTION OF SYMBOLS 1 Heating system 2 1st Rankine cycle 3 2nd Rankine cycle 3A Upper Rankine cycle 3B Lower Rankine cycle 4 Water supply pump 5 Evaporator 6 Expander 7 Condenser 8 Heated fluid flow path 9 Receiving fluid flow path 10A, 10B Feed water Pump 11A, 11B Evaporator 12A, 12B Expander 13A, 13B Condenser 14 Indirect heat exchanger 15 First condenser 16 Second condenser 17 Gas-liquid separator 18 Steam drive device

Claims (4)

並列に設置された複数のランキンサイクルを備え、
前記複数のランキンサイクルは、
各最上段の蒸発器において、一定温度の与熱流体により作動流体が加熱され、
各最下段の凝縮器に受熱流体が順に通され、この受熱流体が通される順に段数が少なくなるよう構成され、
受熱流体が最後に通されるランキンサイクルは、単段または複数段とされ、
最上段のランキンサイクル同士が一つのランキンサイクルにまとめられ、最上段から一つ下段のランキンサイクル同士が一つのランキンサイクルにまとめられというように、並列に対応する段同士が一つにまとめられ、
各まとめられたランキンサイクルは、第一凝縮器と第二凝縮器とを備え、
各第一凝縮器は、一つ下段のランキンサイクルの蒸発器を兼ねており、
各第二凝縮器に受熱流体が順に通される
ことを特徴とする加熱システム。
With multiple Rankine cycles installed in parallel,
The plurality of Rankine cycles are:
In each uppermost evaporator, the working fluid is heated by a constant temperature heating fluid,
The heat receiving fluid is sequentially passed through the lowermost condensers, and the number of stages is reduced in the order in which the heat receiving fluid is passed,
The Rankine cycle through which the heat receiving fluid is passed last is a single stage or multiple stages,
The uppermost Rankine cycles are grouped together into one Rankine cycle, and the Rankine cycles one lower from the uppermost stage are grouped into one Rankine cycle.
Each combined Rankine cycle comprises a first condenser and a second condenser,
Each first condenser also serves as the evaporator of the lower Rankine cycle,
A heating system, wherein a heat receiving fluid is passed through each second condenser in turn .
記各最上段の蒸発器において、与熱流体は潜熱を放出し、
前記各最下段の凝縮器において、受熱流体は顕熱を取得する
ことを特徴とする請求項1に記載の加熱システム。
Prior Symbol respective uppermost evaporator, Azukanetsu fluid releases latent heat,
The heating system according to claim 1, wherein the heat receiving fluid acquires sensible heat in each of the lowermost condensers.
隣接する上下のランキンサイクルは、下段の蒸発器を兼ねる上段の前記第一凝縮器が、作動流体同士を混ぜることなく熱交換する間接熱交換器であるか、上段の前記第二凝縮器からの作動流体を気液分離して気相部が下段の膨張機に接続されると共に液相部が上段のポンプに接続される気液分離器である
ことを特徴とする請求項1または請求項2に記載の加熱システム。
In the adjacent upper and lower Rankine cycle, the upper first condenser also serving as the lower evaporator is an indirect heat exchanger that exchanges heat without mixing working fluids, or from the second upper condenser. claim, characterized in that the gas phase portion of the working fluid by gas-liquid separation is a gas-liquid separator the liquid phase portion is connected to the upper pump is connected to the lower expander 1 or claim 2 The heating system described in.
隣接する上下のランキンサイクルは、前記第一凝縮器の設置を省略する代わりに、上段の第二凝縮器と下段の膨張機とが接続される一方、下段のポンプと上段のポンプとを接続するか、これらポンプを一つのポンプとして構成される
ことを特徴とする請求項1または請求項2に記載の加熱システム。
In the adjacent upper and lower Rankine cycles, instead of omitting the installation of the first condenser, the upper second condenser and the lower expander are connected, while the lower pump and the upper pump are connected. Or these pumps are comprised as one pump. The heating system of Claim 1 or Claim 2 characterized by the above-mentioned.
JP2014056066A 2014-03-19 2014-03-19 Heating system Active JP6249227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056066A JP6249227B2 (en) 2014-03-19 2014-03-19 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056066A JP6249227B2 (en) 2014-03-19 2014-03-19 Heating system

Publications (2)

Publication Number Publication Date
JP2015178788A JP2015178788A (en) 2015-10-08
JP6249227B2 true JP6249227B2 (en) 2017-12-20

Family

ID=54263009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056066A Active JP6249227B2 (en) 2014-03-19 2014-03-19 Heating system

Country Status (1)

Country Link
JP (1) JP6249227B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ591526A (en) * 2008-08-19 2013-05-31 Waste Heat Solutions Llc Solar thermal power generation using first and second working fluids which are independently variable or of different temperature in a rankine cycle
US20110119419A1 (en) * 2009-11-13 2011-05-19 Donald William Chapelle Apparatus and Method for Polling Addresses of One or More Slave Devices in a Communications System
UA95425C2 (en) * 2010-10-22 2011-07-25 Игорь Михайлович Виршубский Method and installation for production of energy and re-gasification of liquefied natural gas
US9816402B2 (en) * 2011-01-28 2017-11-14 Johnson Controls Technology Company Heat recovery system series arrangements
JP5740790B2 (en) * 2011-03-31 2015-07-01 三浦工業株式会社 Steam generation system

Also Published As

Publication number Publication date
JP2015178788A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP5958819B2 (en) Heat pump system and cooling system using the same
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
JP5862133B2 (en) Steam power cycle system
JP5339193B2 (en) Exhaust gas heat recovery device
CN101796355A (en) Thermally activated high efficiency heat pump
JP5845590B2 (en) Heat pump steam generator
RU2015130837A (en) Rankine cycle system and corresponding method
CN102414522A (en) Transcritical thermally activated cooling, heating and refrigerating system
JP5633731B2 (en) Heat pump steam generator
JP2015210033A (en) Steam generation heat pump
JP6040666B2 (en) Heat pump system
JP5740790B2 (en) Steam generation system
JP4887871B2 (en) Absorption refrigeration system
JP2008088892A (en) Non-azeotropic mixture medium cycle system
JP2014173742A (en) Feedwater heating system
JP5919036B2 (en) Heat pump type water heater
JP6338143B2 (en) Cooling system
JP6249227B2 (en) Heating system
JP5949383B2 (en) Steam generation system
KR101624622B1 (en) Apparatus for supplying warm water utilizing an air source heat pump
JP5239613B2 (en) Steam generation system
JP6270139B2 (en) Heating and cooling system
JP6152661B2 (en) Steam generation system
JP2018503053A5 (en)
JP5954581B2 (en) Steam generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171108

R150 Certificate of patent or registration of utility model

Ref document number: 6249227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250