JP6241677B2 - Undercoat agent for substrate with copper thin film, substrate with copper thin film and method for producing the same, and conductive film and electrode film - Google Patents

Undercoat agent for substrate with copper thin film, substrate with copper thin film and method for producing the same, and conductive film and electrode film Download PDF

Info

Publication number
JP6241677B2
JP6241677B2 JP2015074613A JP2015074613A JP6241677B2 JP 6241677 B2 JP6241677 B2 JP 6241677B2 JP 2015074613 A JP2015074613 A JP 2015074613A JP 2015074613 A JP2015074613 A JP 2015074613A JP 6241677 B2 JP6241677 B2 JP 6241677B2
Authority
JP
Japan
Prior art keywords
component
film
thin film
copper thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015074613A
Other languages
Japanese (ja)
Other versions
JP2015199947A (en
Inventor
彰寛 山崎
彰寛 山崎
東本 徹
徹 東本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2015074613A priority Critical patent/JP6241677B2/en
Publication of JP2015199947A publication Critical patent/JP2015199947A/en
Application granted granted Critical
Publication of JP6241677B2 publication Critical patent/JP6241677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Non-Insulated Conductors (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、各種基材の表面に銅薄膜を形成するために用いるアンダーコート剤、該アンダーコート剤からなる層を有する銅薄膜付基材及びその製造方法、並びに該銅薄膜付基材を用いてなる導電性フィルム及び該導電性フィルムより得られる電極フィルムに関する。   The present invention uses an undercoat agent used for forming a copper thin film on the surface of various substrates, a substrate with a copper thin film having a layer made of the undercoat agent, a method for producing the same, and the substrate with a copper thin film And an electrode film obtained from the conductive film.

銅薄膜付基材は、各種基材の表面に銅薄膜が形成されてなる物品をいい、電子材料分野においては、銅薄膜付プラスチックフィルムがITO導電性フィルムの代替品として検討されている。   A base material with a copper thin film refers to an article in which a copper thin film is formed on the surface of various base materials. In the field of electronic materials, a plastic film with a copper thin film has been studied as an alternative to an ITO conductive film.

ITO導電性フィルムは、透明性と導電性に優れるため、スマートフォンやタブレットPC等のタッチパネル用の電極フィルムとして利用されているが、インジウムが高価なレアメタルであるためコストの問題があり、またITO層が硬く脆いため曲げや変形に弱いなど加工性の点で課題がある。   ITO conductive film is excellent in transparency and conductivity, so it is used as an electrode film for touch panels such as smartphones and tablet PCs. However, since indium is an expensive rare metal, there is a problem of cost, and the ITO layer However, since it is hard and brittle, there is a problem in terms of workability such as weakness to bending and deformation.

加工性が良好な電極フィルムとしては、例えばポリチオフェン、ポリアニリン及びポリピロール等のπ共役性導電性高分子を導電層とするものが知られているが、該導電層が着色しているため、該電極フィルムは色調の点で問題がある。   As an electrode film having good workability, for example, a film having a π-conjugated conductive polymer such as polythiophene, polyaniline, and polypyrrole as a conductive layer is known. However, since the conductive layer is colored, the electrode film The film has a problem in terms of color tone.

一方、加工性に優れる導電性フィルムとしては、他にも銅薄膜付プラスチックフィルムが知られている。このものは、ITOよりも抵抗率が低い銅を導電層とするため導電性が良好であり、何より安価でもある。銅蒸着プラスチックフィルムを例えばタッチパネル等の表示機器の電極フィルムとして用いると、大画面化や曲面化が容易になるとされる。   On the other hand, as a conductive film excellent in workability, a plastic film with a copper thin film is also known. This has good conductivity because copper having a lower resistivity than ITO is used as the conductive layer, and is cheaper than anything. When a copper vapor-deposited plastic film is used as an electrode film of a display device such as a touch panel, for example, it is assumed that a large screen and a curved surface are easy.

従来の銅蒸着プラスチックフィルムは、一般的には、基材となるプラスチックフィルムにニッケルを蒸着させた後、更に銅を蒸着させることにより得られる。このニッケル蒸着層は、フィルムと銅蒸着層を密着させるためのアンカー層として機能する。そして、銅蒸着プラスチックフィルムにレジストを電極パターン状に塗工し、エッチング液(アルカリ溶液、酸性溶液)で処理した後、該レジストを除去することによって、目的とする電極フィルムが得られる。   A conventional copper vapor-deposited plastic film is generally obtained by vapor-depositing nickel on a plastic film as a substrate and then vapor-depositing copper. This nickel vapor deposition layer functions as an anchor layer for adhering the film and the copper vapor deposition layer. And after apply | coating a resist to an electrode pattern shape to a copper vapor deposition plastic film and processing with an etching liquid (an alkaline solution, an acidic solution), the target electrode film is obtained by removing this resist.

しかし、かかる銅蒸着プラスチックフィルムは、ニッケルが耐アルカリ性及び耐酸性に乏しいことから、エッチング処理後に基材フィルムから銅蒸着層が剥離したり、脱落したりする問題があった。また、該銅蒸着プラスチックフィルムは、ITO導電性フィルムと比較すると安価であるが、ニッケルが銅よりも高価であるためそのぶん割高でもあった。そこで、アンカー層としてニッケルではなく有機高分子を主成分とするアンダーコート剤を用いる方法も提案されている(特許文献1を参照)。   However, such a copper vapor-deposited plastic film has a problem that the copper vapor-deposited layer peels off or drops off from the base film after the etching process because nickel is poor in alkali resistance and acid resistance. Moreover, although this copper vapor deposition plastic film is cheap compared with an ITO electroconductive film, since nickel was more expensive than copper, it was also expensive. Therefore, a method using an undercoat agent mainly containing an organic polymer instead of nickel as an anchor layer has been proposed (see Patent Document 1).

特開平5−28835号公報JP-A-5-28835

本発明の課題は、銅薄膜付基材の製造に用いる有機高分子系のアンダーコート剤であって、プラスチック基材と銅薄膜との初期密着性のみならず、アルカリ処理後の密着性(以下、耐アルカリ密着性。)及び酸処理後の密着性(以下、耐酸密着性。)に優れるアンダーコート層を形成できるものを提供することにある。   An object of the present invention is an organic polymer-based undercoat agent used for the production of a substrate with a copper thin film, and not only the initial adhesion between the plastic substrate and the copper thin film, but also the adhesion after alkali treatment (hereinafter referred to as “the adhesive”) It is an object of the present invention to provide an undercoat layer that is excellent in adhesion resistance after alkali treatment and adhesion after acid treatment (hereinafter referred to as acid resistance adhesion).

本発明者は鋭意検討を重ねた結果、主剤として所定のアクリルコポリマーを、硬化剤としてポリイソシアネートを、添加剤として水酸基若しくはイソシアネート基と反応するアルコキシシリル化合物を含むアンダーコート剤により前記課題を解決可能であることを見出した。   As a result of extensive studies, the present inventor can solve the above problems with an undercoat agent containing a predetermined acrylic copolymer as a main agent, polyisocyanate as a curing agent, and a hydroxyl group or an alkoxysilyl compound that reacts with an isocyanate group as an additive. I found out.

即ち本発明は、水酸基含有(メタ)アクリレート(a1)及びアルキル(メタ)アクリレート(a2)を反応させてなるアクリルコポリマー(A)と、イソシアネート基を少なくとも3つ有するポリイソシアネート系硬化剤(B)と、シランカップリング剤(C)とを含有する銅薄膜付基材用アンダーコート剤に関する。   That is, the present invention provides an acrylic copolymer (A) obtained by reacting a hydroxyl group-containing (meth) acrylate (a1) and an alkyl (meth) acrylate (a2), and a polyisocyanate curing agent (B) having at least three isocyanate groups. And an undercoat agent for a copper thin film-attached substrate containing a silane coupling agent (C).

また、本発明は、基材フィルム、前記アンダーコート剤が硬化してなるアンダーコート層及び銅薄膜層を有する銅薄膜付基材にも関する。   The present invention also relates to a substrate with a copper thin film having a substrate film, an undercoat layer formed by curing the undercoat agent, and a copper thin film layer.

また、本発明は、基材の表面に、前記アンダーコート剤を塗工し、次いで該基材に熱を加えることにより硬化アンダーコート層(1)を形成し、次いで該硬化アンダーコート層(1)の上に銅薄膜層を形成することを特徴とする、銅薄膜付基材の製造方法にも関する。   Moreover, this invention applies the said undercoat agent to the surface of a base material, then forms a cured undercoat layer (1) by applying heat to the base material, and then the cured undercoat layer (1 And a method for producing a substrate with a copper thin film, characterized in that a copper thin film layer is formed thereon.

また、本発明は、前記銅薄膜付基材を用いてなる導電性フィルム、及び当該導電性フィルムより得られる電極フィルムにも関する。   Moreover, this invention relates also to the electroconductive film which uses the said base material with a copper thin film, and the electrode film obtained from the said electroconductive film.

本発明のアンダーコート剤は、基材の表面に平滑な塗膜を形成する。また、該塗膜は熱によって硬化し、基材と銅薄膜との初期密着性のみならず、耐アルカリ密着性及び耐酸密着性の双方に優れるアンダーコート層を与える。なお、本明細書においては、これらの密着性を単に「密着性」と総称することがある。   The undercoat agent of the present invention forms a smooth coating film on the surface of a substrate. Moreover, this coating film is hardened | cured with a heat | fever and gives the undercoat layer which is excellent not only in the initial adhesiveness of a base material and a copper thin film but in both alkali-proof adhesiveness and acid-resistant adhesiveness. In the present specification, these adhesions are sometimes simply referred to as “adhesion”.

本発明の銅薄膜付基材は、基材と銅蒸着膜との初期密着性耐アルカリ密着性及び耐酸密着性が良好であるため、該銅薄膜基材をエッチング液や酸性溶液で処理しても基材から銅蒸着膜が脱落し難い。該銅薄膜基材のうち、特に基材がプラスチックフィルムのものは、ITO導電性フィルムを代替する導電性フィルムとして有用である。   Since the base material with a copper thin film of the present invention has good initial adhesion between the base material and the copper vapor-deposited film, alkali resistance and acid resistance, the copper thin film base material is treated with an etching solution or an acidic solution. However, it is difficult for the copper vapor-deposited film to fall off the base material. Among the copper thin film substrates, those having a plastic film as the substrate are particularly useful as a conductive film replacing the ITO conductive film.

本発明の導電性フィルムは、各種電極フィルムとして、例えばタッチパネル、ICカード用基板、ICタグ用基板、電子ペーパー用基板、フレキシブルディスプレイ用基板等の用途に供し得る。特に、スマートフォンやタブレットPC等のタッチパネル用の電極フィルムとして好適である。   The conductive film of the present invention can be used as various electrode films for applications such as touch panels, IC card substrates, IC tag substrates, electronic paper substrates, flexible display substrates, and the like. In particular, it is suitable as an electrode film for touch panels such as smartphones and tablet PCs.

本発明の銅蒸着フィルム用アンダーコート剤(以下、単にアンダーコート剤ということがある。)は、水酸基含有(メタ)アクリレート(a1)(以下、(a1)成分ともいう。)及びアルキル(メタ)アクリレート(a2)(以下、(a2)成分ともいう。)を反応させてなるアクリルコポリマー(A)(以下、(A)成分ともいう。)と、イソシアネート基を少なくとも3つ有するポリイソシアネート系硬化剤(B)(以下、(B)成分ともいう。)と、シランカップリング剤(C)(以下、(C)成分ともいう。)とを含有する組成物である。   The undercoat agent for a copper vapor deposition film of the present invention (hereinafter sometimes simply referred to as an undercoat agent) is a hydroxyl group-containing (meth) acrylate (a1) (hereinafter also referred to as a component (a1)) and an alkyl (meth). A polyisocyanate curing agent having an acrylic copolymer (A) (hereinafter also referred to as (A) component) obtained by reacting acrylate (a2) (hereinafter also referred to as (a2) component) and at least three isocyanate groups. It is a composition containing (B) (hereinafter also referred to as component (B)) and a silane coupling agent (C) (hereinafter also referred to as component (C)).

(A)成分をなす(a1)成分としては、分子内に(メタ)アクリロイル基と少なくとも一つの水酸基とを有する化合物であれば、各種公知のものを特に制限なく使用できる。具体的には、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシブチル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸ヒドロキシシクロヘキシル、(メタ)アクリル酸4−(ヒドロキシメチル)シクロヘキシルメチル、2−ヒドロキシプロピオン酸4−(ヒドロキシメチル)シクロヘキシルメチル、(メタ)アクリル酸ヒドロキシフェニル、N−(2−ヒドロキシエチル)アクリルアミド、N−(1−メチル−2−ヒドロキシエチル)アクリルアミド等のヒドロキシ(メタ)アクリレート類等が挙げられ、これらは二種以上を組み合わせることができる。   As the component (a1) constituting the component (A), various known compounds can be used without particular limitation as long as the compound has a (meth) acryloyl group and at least one hydroxyl group in the molecule. Specifically, for example, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-methacrylic acid 3- Hydroxybutyl, 4-hydroxybutyl (meth) acrylate, hydroxycyclohexyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl 2-hydroxypropionate, ( Examples include hydroxy (meth) acrylates such as hydroxyphenyl methacrylate, N- (2-hydroxyethyl) acrylamide, N- (1-methyl-2-hydroxyethyl) acrylamide, and the like. be able to.

(a2)成分としては、分子内に(メタ)アクリロイル基とアルキルエステル基を有する化合物であれば、各種公知のものを特に制限なく使用できる。具体的には、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イコシル、(メタ)アクリル酸ドコシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロペンタニル、(メタ)アクリル酸イソボルニル等が挙げられ、これらは二種以上を組み合わせることができる。   As the component (a2), various known compounds can be used without particular limitation as long as they have a (meth) acryloyl group and an alkyl ester group in the molecule. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, (meth) acrylic Tert-butyl acid, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hexadecyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, icosyl (meth) acrylate, ( Examples include docosyl acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and the like, which can be used in combination of two or more. .

(A)成分の反応成分には、更に芳香族系ビニルモノマー、(メタ)アクリロニトリル及び(メタ)アクリルアミドからなる群より選ばれる少なくとも一種の単量体(a3)(以下、(a3)成分ともいう。)を含めることができる。   The reaction component of component (A) is at least one monomer (a3) selected from the group consisting of aromatic vinyl monomers, (meth) acrylonitrile and (meth) acrylamide (hereinafter also referred to as component (a3)). .) Can be included.

(a3)成分としては、分子内にビニル基と芳香族環を有する化合物であれば、各種公知のものを特に制限なく使用できる。具体的には、例えば、スチレン、α−メチルスチレン、t−ブチルスチレン等のスチレン類や、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸4−メチルベンジル等のアリール(メタ)アクリレート類などが挙げられ、これらは二種以上を組み合わせることができる。   As the component (a3), various known compounds can be used without particular limitation as long as they have a vinyl group and an aromatic ring in the molecule. Specifically, for example, styrenes such as styrene, α-methylstyrene, t-butylstyrene, aryl such as phenyl (meth) acrylate, benzyl (meth) acrylate, 4-methylbenzyl (meth) acrylate (Meth) acrylates and the like can be mentioned, and two or more of these can be combined.

(a4)成分としては、具体的には、例えばアクリロニトリル及び/又はメタクリロニトリルが挙げられる。   Specific examples of the component (a4) include acrylonitrile and / or methacrylonitrile.

(a5)成分としては、具体的には、例えばアクリルアミド、メタクリルアミド、N−メチロールアクリルアミド及びN−メチロールメタクリルアミド等が挙げられる。また、これらは二種以上を組み合わせることができる。   Specific examples of the component (a5) include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and the like. Moreover, these can combine 2 or more types.

(a3)成分としては、特に銅薄膜とアンダーコート層との密着性の改善効果の点より、前記(メタ)アクリロニトリル及び/又は前記(メタ)アクリルアミドが好ましい。   As the component (a3), the (meth) acrylonitrile and / or the (meth) acrylamide is particularly preferable from the viewpoint of improving the adhesion between the copper thin film and the undercoat layer.

また、本発明においては、前記(a1)成分〜(a3)成分以外のビニルモノマーとして、例えば、2,4,4−トリメチル−1−ペンテン、3−メチル−1−ブテン、3−メチル−1−ペンテン、1−ヘキセン、ビニルシクロヘキサン、2−メチルビニルシクロヘキサン等のαオレフィン類や、(メタ)アリルアルコール、4−ペンテン−1−オール、1−メチル−3−ブテン−1−オール、および5−ヘキセン−1−オール等の不飽和アルコール類、(メタ)アクリル酸、3−ブテン酸、4−ペンテン酸、5−ヘキセン酸、フマル酸、(無水)マレイン酸、イタコン酸等の不飽和カルボン酸類等を併用できる。また、これらは二種以上を組み合わせることができる。   In the present invention, as vinyl monomers other than the components (a1) to (a3), for example, 2,4,4-trimethyl-1-pentene, 3-methyl-1-butene, 3-methyl-1 Α-olefins such as pentene, 1-hexene, vinylcyclohexane, 2-methylvinylcyclohexane, (meth) allyl alcohol, 4-penten-1-ol, 1-methyl-3-buten-1-ol, and 5 -Unsaturated alcohols such as hexen-1-ol, unsaturated carboxylic acids such as (meth) acrylic acid, 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, fumaric acid, (anhydrous) maleic acid, and itaconic acid Acids can be used in combination. Moreover, these can combine 2 or more types.

前記各成分の使用量(モル%)は特に限定されないが、初期密着性、耐アルカリ密着性及び耐酸密着性のバランスの観点より、通常、以下の通りである。   The amount (mol%) of each component is not particularly limited, but is usually as follows from the viewpoint of the balance of initial adhesion, alkali resistance and acid resistance.

<(a3)成分を用いない態様>
(a1)成分:2〜25モル%程度、好ましくは5〜20モル%程度
(a2)成分:75〜98モル%程度、好ましくは80〜95モル%程度
<Aspect not using (a3) component>
(A1) component: about 2 to 25 mol%, preferably about 5 to 20 mol% (a2) component: about 75 to 98 mol%, preferably about 80 to 95 mol%

<(a3)成分を用いる態様>
(a1)成分:3〜25モル%程度、好ましくは5〜20モル%程度
(a2)成分:30〜90モル%程度、好ましくは35〜80モル%程度
(a3)成分:7〜60モル%程度、好ましくは15〜45モル%程度
<Aspect using (a3) component>
(A1) component: about 3-25 mol%, preferably about 5-20 mol% (a2) component: about 30-90 mol%, preferably about 35-80 mol% (a3) component: 7-60 mol% Degree, preferably about 15 to 45 mol%

(A)成分は、各種公知の方法で製造できる。具体的には、例えば、前記各成分を無溶剤下又は適当な有機溶剤中で、通常はラジカル重合開始剤の存在下、80〜180℃程度において、1〜10時間程度共重合反応させることにより得ることができる。該ラジカル重合開始剤としては、過酸化水素、過硫酸アンモニウム、過硫酸カリウム、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、ラウリルパーオキサイド、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート等が挙げられる。なお、その使用量は特に限定されないが、通常、(A)成分を構成する単量体の総重量に対して0.1〜2重量%程度となる範囲である。また、該有機溶剤としては後述のものを挙げることができる。   The component (A) can be produced by various known methods. Specifically, for example, by subjecting each of the above components to a copolymerization reaction in the absence of a solvent or in an appropriate organic solvent, usually in the presence of a radical polymerization initiator at about 80 to 180 ° C. for about 1 to 10 hours. Can be obtained. Examples of the radical polymerization initiator include hydrogen peroxide, ammonium persulfate, potassium persulfate, t-butyl peroxybenzoate, dicumyl peroxide, lauryl peroxide, 2,2′-azobisisobutyronitrile, dimethyl-2 , 2′-azobisisobutyrate and the like. In addition, although the usage-amount is not specifically limited, Usually, it is the range used as about 0.1 to 2 weight% with respect to the total weight of the monomer which comprises (A) component. Examples of the organic solvent include those described below.

(A)成分の物性は特に限定されないが、初期密着性及び耐アルカリ密着性の観点より、通常水酸基価が10〜150mgKOH/g程度、好ましくは20〜100mgKOH/g程度、更に好ましくは30〜80mgKOH/gである。なお、水酸基価はJIS−0070に準じて測定した値である。また、同じく初期密着性及び耐アルカリ密着性の観点より、ガラス転移温度が0〜100℃程度、好ましくは10〜40℃である。    Although the physical properties of the component (A) are not particularly limited, from the viewpoint of initial adhesion and alkali resistance, the hydroxyl value is usually about 10 to 150 mgKOH / g, preferably about 20 to 100 mgKOH / g, and more preferably 30 to 80 mgKOH. / G. The hydroxyl value is a value measured according to JIS-0070. Similarly, the glass transition temperature is about 0 to 100 ° C., preferably 10 to 40 ° C. from the viewpoint of initial adhesion and alkali resistance.

(B)成分としては、分子内にイソシアネート基を少なくとも3つ有するポリイソシアネートであれば、各種公知のものを特に制限なく使用できる。(B)成分は、(A)成分とウレタン化反応することにより、本発明のアンダーコート層に架橋構造を与える。   As the component (B), various known ones can be used without particular limitation as long as they are polyisocyanates having at least three isocyanate groups in the molecule. (B) A component gives a crosslinked structure to the undercoat layer of this invention by making a urethanation reaction with (A) component.

(B)成分の具体例としては、ジイソシアネート化合物のビウレット体、イソシアヌレート体及びアダクト体からなる群より選ばれる1種の誘導体(b1)(以下、(b1)成分。)、該(b1)成分とジオール化合物との反応物(b2)(以下、(b2)成分。)、トリイソシアネート化合物(b3)((b1)成分及び(b2)成分に該当するものを除く。)(以下、(b3)成分。)、並びにその他のポリイソシアネート化合物(以下、(b4)成分。)からなる群より選ばれる少なくとも1種が挙げられる。これらの中でも、初期密着性、耐アルカリ密着性及び耐酸密着性のバランスの観点より、特に(b1)成分が好ましい。   Specific examples of the component (B) include one derivative (b1) (hereinafter referred to as the component (b1)) selected from the group consisting of a biuret body, an isocyanurate body and an adduct body of a diisocyanate compound, the component (b1). (B2) (hereinafter referred to as component (b2)), triisocyanate compound (b3) (excluding those corresponding to components (b1) and (b2)) (hereinafter referred to as (b3) Component)) and at least one selected from the group consisting of other polyisocyanate compounds (hereinafter referred to as component (b4)). Among these, the component (b1) is particularly preferable from the viewpoint of the balance of initial adhesion, alkali resistance, and acid resistance.

(b1)成分を構成するジイソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート及びキシリレンジイソシアネート等の芳香族ジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート及びリジンジイソシアネート等の脂肪族ジイソシアネート、並びにジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,4−シクロヘキサンジイソシアネート、水添キシレンジイソシアネート及び水添トリレンジイソシアネート等の脂環式ジイソシアネートが挙げられる。   Examples of the diisocyanate compound constituting the component (b1) include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate and lysine diisocyanate, and dicyclohexylmethane. Examples thereof include alicyclic diisocyanates such as diisocyanate, isophorone diisocyanate, 1,4-cyclohexane diisocyanate, hydrogenated xylene diisocyanate, and hydrogenated tolylene diisocyanate.

なお、前記ジイソシアネート化合物のビウレット体は、下記構造式によって表される。   In addition, the biuret body of the said diisocyanate compound is represented by the following structural formula.

Figure 0006241677
(式中、Rは前記ジイソシアネート化合物の残基を表す。)
Figure 0006241677
(Wherein R 3 represents a residue of the diisocyanate compound.)

また、前記ジイソシアネート化合物のイソシアヌレート体は、下記構造式によって表される。   Moreover, the isocyanurate body of the said diisocyanate compound is represented by the following structural formula.

Figure 0006241677
(式中、Rは、前記ジイソシアネート化合物の残基を表す。)
Figure 0006241677
(In the formula, R 4 represents a residue of the diisocyanate compound.)

また、前記ジイソシアネート化合物のアダクト体は、下記構造式によって表される。   Moreover, the adduct body of the said diisocyanate compound is represented by the following structural formula.

Figure 0006241677
Figure 0006241677

(式中、Rは炭素数1〜3のアルキル基又はOCN−R−HN−C(=O)−O−CH−で示される官能基を表し、Rは前記ジイソシアネート化合物の残基を表す。) (In the formula, R 5 represents an alkyl group having 1 to 3 carbon atoms or a functional group represented by OCN—R 6 —HN—C (═O) —O—CH 2 —, and R 6 represents the remaining diisocyanate compound). Represents a group.)

(b2)成分を構成するジオール化合物、特に限定されないが、前記脂肪族ジオール類が好ましく、特にエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、オクタンジオール、ジプロピレングリコール、ポリエチレングリコール及びポリプロピレングリコール等からなる群より選ばれる一種が好適である。   (B2) A diol compound constituting the component, although not particularly limited, the aliphatic diols are preferable, particularly ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, neopentyl. One kind selected from the group consisting of glycol, 1,6-hexanediol, octanediol, dipropylene glycol, polyethylene glycol, polypropylene glycol and the like is preferable.

(b2)成分は、各種公知の方法で製造できる。具体的には、例えば、前記(b1)成分と前記ジオール化合物とを、前者のイソシアネート基(NCO’)と後者の水酸基(OH’)との当量比〔NCO’/OH’〕が通常5〜20程度、好ましくは10〜20程度となる範囲で、通常40〜80℃の下、1〜5時間程度、ウレタン化反応させることによって、得ることができる。また、得られる(b2)成分は、そのイソシアネート基当量が通常1〜10meq/g程度、好ましくは3〜6meq/g程度である。   The component (b2) can be produced by various known methods. Specifically, for example, when the component (b1) and the diol compound are used, the equivalent ratio [NCO ′ / OH ′] of the former isocyanate group (NCO ′) to the latter hydroxyl group (OH ′) is usually 5 to 5. It can be obtained by subjecting it to a urethanization reaction within a range of about 20 and preferably about 10 to 20, usually under 40 to 80 ° C. for about 1 to 5 hours. The component (b2) obtained has an isocyanate group equivalent of usually about 1 to 10 meq / g, preferably about 3 to 6 meq / g.

(b3)成分としては、例えば、トルエン−2,4,6−トリイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニール)チオホスフェート、1,6,11−ウンデカントリイソシアネート、1,3,6−ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート等のトリイソシアネート、並びに6官能のポリイソシアネート(製品名「デュラネートMHG−80B」、旭化成ケミカルズ(株)製)等が挙げられ、二種以上を組み合わせてもよい。   Examples of the component (b3) include toluene-2,4,6-triisocyanate, triphenylmethane triisocyanate, tris (isocyanate phenyl) thiophosphate, 1,6,11-undecane triisocyanate, 1,3,6- Examples include triisocyanates such as hexamethylene triisocyanate and bicycloheptane triisocyanate, and hexafunctional polyisocyanates (product name “Duranate MHG-80B”, manufactured by Asahi Kasei Chemicals Corporation), and two or more of them may be combined. .

(b4)成分としては、例えば、6官能のポリイソシアネート(製品名「デュラネートMHG−80B」、旭化成ケミカルズ(株)製)が挙げられる。   Examples of the component (b4) include hexafunctional polyisocyanate (product name “Duranate MHG-80B”, manufactured by Asahi Kasei Chemicals Corporation).

また、(B)成分の(A)成分に対する比率も特に限定されないが、初期密着性、耐アルカリ密着性及び耐酸密着性のバランスの観点より、(A)成分の水酸基と(B)成分のイソシアネート基との当量比〔NCO/OH〕が通常0.5〜5程度、好ましくは1〜2程度であるのがよい。   Further, the ratio of the component (B) to the component (A) is not particularly limited, but from the viewpoint of the balance of initial adhesion, alkali resistance and acid resistance, the hydroxyl group of the component (A) and the isocyanate of the component (B) The equivalent ratio [NCO / OH] with the group is usually about 0.5 to 5, preferably about 1 to 2.

(C)成分は、(A)成分及び/又は(B)成分と反応し、本発明のアンダーコート剤からなるアンダーコート層に有機一体的に組み込まれることによって、該層の耐酸密着性及び特に耐アルカリ密着性を向上させると考えられる。   The component (C) reacts with the component (A) and / or the component (B), and is organically integrated into the undercoat layer made of the undercoat agent of the present invention. It is considered that the alkali resistance is improved.

(C)成分としては、各種公知のシランカップリング剤が挙げられる。具体的には、一般式(1):X−Si(R(OR3−a(式(1)中、Xは、水酸基及びイソシアネート基からなる群より選ばれる一種と反応する官能基を含む基を、Rは水素又は炭素数1〜8の炭化水素基を、Rは炭素数1〜8の炭化水素基を、aは0、1又は2を示す。)で表される反応性アルコキシシリル化合物を使用できる。 (C) As a component, various well-known silane coupling agents are mentioned. Specifically, the general formula (1): X 1 -Si ( R 1) a in (OR 2) 3-a (formula (1), X 1, and one selected from the group consisting of hydroxyl and isocyanate groups (R 1 represents hydrogen or a hydrocarbon group having 1 to 8 carbon atoms, R 2 represents a hydrocarbon group having 1 to 8 carbon atoms, and a represents 0, 1 or 2). The reactive alkoxysilyl compound represented by these can be used.

前記一般式(1)のXとしては、例えば、イソシアネート基、エポキシ基、チオール基、アミノ基及び酸無水物基からなる群より選ばれる一種を含有する官能基が挙げられる。 Examples of X 1 in the general formula (1) include a functional group containing one kind selected from the group consisting of an isocyanate group, an epoxy group, a thiol group, an amino group, and an acid anhydride group.

における反応性官能基がイソシアネート基のものとしては、例えば、3−イソシアネートプロピルトリメトキシシランや、3−イソシアネートプロピルトリエトキシシラン、3−イソシアネートプロピルメチルジメトキシシラン及び3−イソシアネートプロピルメチルジエトキシシシラン等が挙げられ、二種以上を組み合わせてもよい。 Examples of the reactive functional group in X 1 that is an isocyanate group include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, and 3-isocyanatepropylmethyldiethoxysilane. Silane etc. are mentioned, You may combine 2 or more types.

における反応性官能基がエポキシ基のものとしては、例えば、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン及び3−グリシドキシプロピルトリエトキシシラン等が挙げられ、二種以上を組み合わせてもよい。 Examples of the reactive functional group in X 1 that is an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropyltrimethoxy. Silane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane and the like may be mentioned, and two or more may be combined.

における反応性官能基がチオール基のものとしては、例えば、3−メルカプトプロピルトリメトキシシランや、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン及び3−メルカプトプロピルメチルジエトキシシシラン等が挙げられ、二種以上を組み合わせてもよい。 Examples of the reactive functional group in X 1 having a thiol group include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropylmethyldiethoxysilane. Silane etc. are mentioned, You may combine 2 or more types.

における反応性官能基がアミノ基のものとしては、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン及び3−ウレイドプロピルトリアルコキシシラン等が挙げられ、二種以上を組み合わせてもよい。 Examples of the reactive functional group in X 1 that is an amino group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane and N-2- (aminoethyl) -3-aminopropyltrimethoxysilane. , 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-ureidopropyltrialkoxysilane and the like, and two or more of them may be combined.

における反応性官能基が酸無水物基のものとしては、例えば、3−トリメトキシシリルプロピルコハク酸無水物が挙げられる。 Examples of the reactive functional group for X 1 that is an acid anhydride group include 3-trimethoxysilylpropyl succinic anhydride.

(C)成分としては、初期密着性、耐アルカリ密着性及び耐酸密着性のバランスの観点より、Xにおける官能基がイソシアネート基の反応性アルコキシシリル化合物及び/又はエポキシ基の反応性アルコキシシリル化合物が好ましい。 As the component (C), from the viewpoint of a balance between initial adhesion, alkali adhesion and acid adhesion, a functional alkoxysilyl compound having an isocyanate group as a functional group in X 1 and / or a reactive alkoxysilyl compound having an epoxy group Is preferred.

なお、(C)成分の含有量は特に限定されないが、通常、(A)成分100重量部(固形分換算)に対して0〜20重量部程度、好ましくは5〜15重量部程度である。   In addition, although content of (C) component is not specifically limited, Usually, it is about 0-20 weight part with respect to 100 weight part (solid content conversion) of (A) component, Preferably it is about 5-15 weight part.

本発明のアンダーコート剤には、必要に応じて、更にウレタン化触媒(D)(以下、(D)成分。)を含めることができる。該(D)成分は、(A)成分と(B)成分の硬化反応を速やかにし、本発明のアンダーコート剤の初期密着性、耐アルカリ密着性及び耐酸密着性を向上させる。   The undercoat agent of the present invention may further contain a urethanization catalyst (D) (hereinafter referred to as component (D)) as necessary. The component (D) accelerates the curing reaction of the components (A) and (B) and improves the initial adhesion, alkali resistance, and acid resistance of the undercoat agent of the present invention.

(D)成分としては、具体的には、例えば、モノブチル錫トリス(2−エチルヘキサノエート)、モノブチル錫オキサイド、ビスマストリオクテート/2―エチルヘキサン酸、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫オキサイド、ジオクチル錫ジアセテート及びジオクチル錫バーサテート等の錫系ウレタン化触媒や、ビス(2−エチルヘキサン酸)錫、オクチル酸ビスマス等のビスマス系ウレタン化触媒や、ジアザビシクロオクタン、ジメチルシクロヘキシルアミン、テトラメチルプロピレンジアミン、エチルモルホリン、ジメチルエタノールアミン、トリエチルアミンやトリエチレンジアミン等の有機アミン系ウレタン化触媒等が挙げられ、二種以上を組み合わせてもよい。   Specific examples of the component (D) include monobutyltin tris (2-ethylhexanoate), monobutyltin oxide, bismastrioctate / 2-ethylhexanoic acid, dibutyltin dilaurate, dioctyltin dilaurate, and dioctyl. Tin urethanation catalysts such as tin distearate, dioctyl tin oxide, dioctyl tin diacetate and dioctyl tin versatate, bismuth urethanation catalysts such as bis (2-ethylhexanoic acid) tin and bismuth octylate, and diazabicyclooctane , Dimethylcyclohexylamine, tetramethylpropylenediamine, ethylmorpholine, dimethylethanolamine, organic amine-based urethanization catalysts such as triethylamine and triethylenediamine, and the like may be used in combination.

(D)成分の使用量は特に限定されないが、(A)成分、(B)成分及び(C)成分の合計100重量部(固形分換算)に対して通常0.1〜2重量部程度、好ましくは0.5〜1.5重量部である。   Although the usage-amount of (D) component is not specifically limited, About 0.1-2 weight part normally with respect to a total of 100 weight part (solid content conversion) of (A) component, (B) component, and (C) component, Preferably it is 0.5-1.5 weight part.

本発明のアンダーコート剤は、前記(A)成分、(B)成分及び(C)成分、並びに必要に応じて(D)成分を各種公知の手段で混合することにより得られる。また、混合の際、必要に応じ各種の有機溶剤(以下、(E)成分。)を希釈溶剤として使用できる。(E)成分の具体例としては、メチルエチルケトンやメチルイソブチルケトンの低級ケトン類、トルエン等の芳香族炭化水素類、エチルアルコール、プロピルアルコール等のアルコール類、プロピレングリコールモノメチルエーテルアセテート、エチルセロソルブアセテート等のエーテルエステル類、酢酸エチル、クロロホルム、ジメチルホルムアミド等が挙げられ、二種以上を組み合わせてもよい。また、(E)成分の使用量は特に限定されないが、通常、本発明のアンダーコート剤の固形分濃度が通常1〜60重量%程度となる範囲である。   The undercoat agent of the present invention can be obtained by mixing the component (A), the component (B) and the component (C), and, if necessary, the component (D) by various known means. Moreover, at the time of mixing, various organic solvents (henceforth (E) component) can be used as a dilution solvent as needed. Specific examples of the component (E) include methyl ethyl ketone and lower ketones of methyl isobutyl ketone, aromatic hydrocarbons such as toluene, alcohols such as ethyl alcohol and propyl alcohol, propylene glycol monomethyl ether acetate, and ethyl cellosolve acetate. Ether esters, ethyl acetate, chloroform, dimethylformamide and the like may be mentioned, and two or more may be combined. Moreover, although the usage-amount of (E) component is not specifically limited, Usually, the solid content density | concentration of the undercoat agent of this invention is the range used as about 1 to 60 weight% normally.

また、本発明のアンダーコート剤には、その他、例えばレベリング剤、酸化防止剤、紫外線吸収剤、無機粒子等を含めることができる。該無機粒子としては、例えば、シリカ、チタニア、アルミナ、酸化亜鉛、酸化錫、ジルコニア、ITO(インジウム錫オキサイド)、ATO(アンチモン錫オキサイド)、水酸化アルミニウム、水酸化カルシウム及び水酸化マグネシウム等の粒子が挙げられる。   In addition, the undercoat agent of the present invention can contain other leveling agents, antioxidants, ultraviolet absorbers, inorganic particles, and the like. Examples of the inorganic particles include silica, titania, alumina, zinc oxide, tin oxide, zirconia, ITO (indium tin oxide), ATO (antimony tin oxide), aluminum hydroxide, calcium hydroxide, and magnesium hydroxide. Is mentioned.

本発明の銅薄膜付基材は、各種基材、本発明のアンダーコート剤が硬化してなるアンダーコート層、及び銅薄膜層を有する積層体である。   The base material with a copper thin film of the present invention is a laminate having various base materials, an undercoat layer formed by curing the undercoat agent of the present invention, and a copper thin film layer.

基材は特に限定されず、表面に銅薄膜を形成できるものであれば、各種公知のものを使用できる。具体的には、例えば、プラスチック、金属、セルロース材、ガラス等が挙げられる。該プラスチックとしては、例えば、ポリエステル、ポリ塩化ビニル、ポリアミド、ポリイミド、ポリカーボネート、ポリエチレン及びポリプロピレン等が挙げられる。また、該セルロース材としては、例えば、紙、ナノセルロース紙及び木材等が挙げられる。   The substrate is not particularly limited, and various known materials can be used as long as a copper thin film can be formed on the surface. Specific examples include plastics, metals, cellulose materials, and glass. Examples of the plastic include polyester, polyvinyl chloride, polyamide, polyimide, polycarbonate, polyethylene, and polypropylene. Examples of the cellulose material include paper, nanocellulose paper, and wood.

基材の形状は特に限定されない。例えば球状、円柱状、直方体状、板状、フィルム状であってよい。また、基材は表面の一部又は全部が凹凸若しくは曲面であってもよい。本発明の銅薄膜付基材を導電性フィルムとして用いる場合には、基材としては、耐熱性や光学特性等の点よりプラスチックフィルムが、特にポリエステルフィルムが好ましい。また、該基材フィルムの厚みも特に限定されないが、通常50〜200μm程度である。また、アンダーコート層の厚みは特に限定されないが、通常0.1〜5μm程度である。   The shape of the substrate is not particularly limited. For example, a spherical shape, a cylindrical shape, a rectangular parallelepiped shape, a plate shape, or a film shape may be used. In addition, the substrate may be partially or entirely uneven or curved. When the substrate with a copper thin film of the present invention is used as a conductive film, the substrate is preferably a plastic film, particularly a polyester film, from the viewpoints of heat resistance and optical properties. Moreover, although the thickness of this base film is not specifically limited, Usually, it is about 50-200 micrometers. Moreover, although the thickness of an undercoat layer is not specifically limited, Usually, it is about 0.1-5 micrometers.

前記銅薄膜層としては、例えば、銅蒸着膜、銅スパッタ膜、銅CVD膜が挙げられる。本発明の銅薄膜付フィルムを電極フィルムに供する場合には、該銅薄膜としては、特に銅蒸着膜又は銅スパッタ膜が好ましい。また、該銅蒸着膜又は銅スパッタ膜の厚みは特に限定されないが、通常、0.1〜2μm程度である。   Examples of the copper thin film layer include a copper vapor deposition film, a copper sputtered film, and a copper CVD film. When using the film with a copper thin film of the present invention as an electrode film, the copper thin film is particularly preferably a copper vapor-deposited film or a copper sputtered film. Moreover, although the thickness of this copper vapor deposition film or a copper sputtered film is not specifically limited, Usually, it is about 0.1-2 micrometers.

本発明の銅薄膜付基材の製法は特に限定されないが、一般的には、前記基材の表面に、本発明に係るアンダーコート剤を塗工し、次いで該基材に熱を加えることにより硬化アンダーコート層(1)を形成し、次いで該硬化アンダーコート層(1)の上に銅薄膜層を形成する方法が挙げられる。   Although the manufacturing method of the base material with a copper thin film of the present invention is not particularly limited, generally, by applying the undercoat agent according to the present invention to the surface of the base material, and then applying heat to the base material. There is a method of forming a cured undercoat layer (1) and then forming a copper thin film layer on the cured undercoat layer (1).

塗工条件は特に限定されず、例えば塗工手段としてはスプレー、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター、ドットコーター等が挙げられ、また塗工量も特に限定されないが通常、乾燥固形分として0.01〜10g/m程度である。 Coating conditions are not particularly limited, and examples of coating means include spray, roll coater, reverse roll coater, gravure coater, knife coater, bar coater, dot coater, and the coating amount is not particularly limited. The dry solid content is about 0.01 to 10 g / m 2 .

加熱条件も特に限定されず、通常、温度80〜150℃程度で、時間が10秒〜2分程度である。この処理により(A)成分、(B)成分及び(C)成分が有機一体的に反応し、初期密着性、耐アルカリ密着性及び耐酸密着性に優れるアンダーコート層(1)を与えると考えられる。   The heating conditions are not particularly limited, and the temperature is usually about 80 to 150 ° C. and the time is about 10 seconds to 2 minutes. By this treatment, it is considered that the component (A), the component (B) and the component (C) react together in an organic manner to give an undercoat layer (1) excellent in initial adhesion, alkali adhesion resistance and acid resistance adhesion. .

本発明の電極フィルムは、本発明の導電性フィルムより得られる電子部品である。特に、本発明の導電性フィルムのうち銅蒸着プラスチックフィルム又は銅スパッタフィルムより得られる電極フィルムは、ITO導電性フィルムを用いた電極フィルムの代替品として有用である。   The electrode film of the present invention is an electronic component obtained from the conductive film of the present invention. In particular, an electrode film obtained from a copper-deposited plastic film or a copper sputtered film among the conductive films of the present invention is useful as an alternative to an electrode film using an ITO conductive film.

本発明の電極フィルムは、本発明の導電性フィルムのレジストを電極パターン状に塗工し、エッチング液(アルカリ溶液、酸性溶液)で処理した後、該レジストを除去することによって得られる。電極パターンの形状は特に限定されず、細線状、ドット状、メッシュ状、面状等が挙げられる。   The electrode film of the present invention is obtained by coating the resist of the conductive film of the present invention in an electrode pattern, treating the resist with an etching solution (alkali solution, acidic solution), and then removing the resist. The shape of the electrode pattern is not particularly limited, and examples thereof include a fine line shape, a dot shape, a mesh shape, and a planar shape.

以下、実施例及び比較例を通じて本発明を更に詳細に説明するが、本発明の範囲はこれらによって限定されるものではない。また、実施例中の「部」は重量基準を表す。また、水酸基価及び酸価はJIS−0070に準拠して測定した値である。また、ガラス転移温度は、市販の測定器具(製品名「DSC8230B」、理学電機(株)製)を用いて測定した値である。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail through an Example and a comparative example, the scope of the present invention is not limited by these. Further, “parts” in the examples represent weight standards. Moreover, a hydroxyl value and an acid value are the values measured based on JIS-0070. The glass transition temperature is a value measured using a commercially available measuring instrument (product name “DSC8230B”, manufactured by Rigaku Corporation).

製造例1
撹拌機、温度計、還流冷却管、滴下ロートおよび窒素導入管を備えた反応容器に、ヒドロキシエチルアクリレート(HEA)94.5部(約0.81モル)、メチルメタアクリレート(MMA)742.5部(約7.4モル)、ブチルアクリレート(BA)378部(約2.9モル)及びスチレン(St)135部(約1.3モル)並びにメチルエチルケトン(MEK)1452.1部を仕込み、反応系を80℃に設定した。次いで、2、2‘―アゾビス(2−メチルブチロニトリル)(ABN―E)6.75部を仕込み、80℃付近で6時間保温した。次いで、ABN―E18.9部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度が30℃及び水酸基価が35mgKOH/gのアクリルコポリマー(A−1)の溶液を得た。
Production Example 1
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen introduction tube, 94.5 parts (about 0.81 mol) of hydroxyethyl acrylate (HEA), 742.5 of methyl methacrylate (MMA) Parts (about 7.4 mol), 378 parts (about 2.9 mol) of butyl acrylate (BA) and 135 parts (about 1.3 mol) of styrene (St) and 1452.1 parts of methyl ethyl ketone (MEK) The system was set to 80 ° C. Next, 6.75 parts of 2,2′-azobis (2-methylbutyronitrile) (ABN-E) was added, and the mixture was kept warm at around 80 ° C. for 6 hours. Then, 18.9 parts of ABN-E was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature to obtain a solution of an acrylic copolymer (A-1) having a glass transition temperature of 30 ° C. and a hydroxyl value of 35 mgKOH / g.

製造例2
製造例1と同様の反応容器に、アクリロニトリル(AN)60部(約1.13モル)、HEA 51部(約0.44モル)、MMA 121.5部(約1.21モル)、及びBA 67.5部(約0.53モル)、並びに酢酸エチル約310部を仕込み、反応系を70℃に設定した。次いで、ABN―V 約3.0部を仕込み、70℃付近で6時間保温した。次いで、ABN―V 約3.0部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却し、メチルエチルケトン390.0部を混合することにより、ガラス転移温度が約30℃、水酸基価が約80mgKOH/gのアクリルコポリマー(A−2)の溶液を得た。
Production Example 2
In a reaction vessel similar to Production Example 1, 60 parts (about 1.13 mol) of acrylonitrile (AN), 51 parts (about 0.44 mol) of HEA, 121.5 parts (about 1.21 mol) of MMA, and BA 67.5 parts (about 0.53 mol) and about 310 parts of ethyl acetate were charged, and the reaction system was set to 70 ° C. Next, about 3.0 parts of ABN-V was charged and kept warm at around 70 ° C. for 6 hours. Next, about 3.0 parts of ABN-V was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature and mixed with 390.0 parts of methyl ethyl ketone to obtain a solution of an acrylic copolymer (A-2) having a glass transition temperature of about 30 ° C. and a hydroxyl value of about 80 mgKOH / g.

製造例3
製造例1と同様の反応容器に、AN 60部(約1.13モル)、アクリルアミド(AAM)15部(約0.21モル)、HEA 51部(約0.44モル)、MMA 72部(約0.72モル)、及びBA 102部(約0.80モル)、並びに酢酸エチル約450部を仕込み、反応系を70℃に設定した。次いで、ABN―V 約3.0部を仕込み、70℃付近で6時間保温した。次いで、ABN―V 約3.0部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却し、メチルエチルケトン250部を混合することにより、ガラス転移温度が約13℃、水酸基価が約80mgKOH/gのアクリルコポリマー(A−3)の溶液を得た。
Production Example 3
In the same reaction vessel as in Production Example 1, AN 60 parts (about 1.13 mol), acrylamide (AAM) 15 parts (about 0.21 mol), HEA 51 parts (about 0.44 mol), MMA 72 parts ( About 0.72 mol), and 102 parts (about 0.80 mol) of BA, and about 450 parts of ethyl acetate, and the reaction system was set to 70 ° C. Next, about 3.0 parts of ABN-V was charged and kept warm at around 70 ° C. for 6 hours. Next, about 3.0 parts of ABN-V was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, and 250 parts of methyl ethyl ketone was mixed to obtain a solution of an acrylic copolymer (A-3) having a glass transition temperature of about 13 ° C. and a hydroxyl value of about 80 mgKOH / g.

製造例4
製造例1と同様の反応容器に、HEA 94.5部(約0.81モル)、MMA 877.5部(約8.8モル)及びBA 378部(約2.9モル)並びにメチルエチルケトン1452.1部を仕込み、反応系を80℃に設定した。次いで、ABN―E 6.75部を仕込み、80℃付近で6時間保温した。次いで、ABN―E 18.9部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度が30℃及び水酸基価が35mgKOH/gのアクリルコポリマー(A−4)の溶液を得た。
Production Example 4
In a reaction vessel similar to Production Example 1, HEA 94.5 parts (about 0.81 mol), MMA 877.5 parts (about 8.8 mol) and BA 378 parts (about 2.9 mol) and methyl ethyl ketone 1452. 1 part was charged and the reaction system was set to 80 ° C. Next, 6.75 parts of ABN-E was charged and kept warm at around 80 ° C. for 6 hours. Subsequently, 18.9 parts of ABN-E was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature to obtain a solution of an acrylic copolymer (A-4) having a glass transition temperature of 30 ° C. and a hydroxyl value of 35 mgKOH / g.

<アンダーコート剤の調製>
実施例1
製造例1の(A−1)成分100部、(B)成分としてヘキサメチレンジイソシアネートのアダクト体(商品名「タケネートD110N」、三井化学(株)製)をメチルエチルケトンにて固形分30%に調整した溶液17部及び(C)成分としてイソシアネート基含有シランカップリング剤(商品名「KBE−9007」、信越シリコーン(株)製)をメチルエチルケトンにて固形分30%に調整した溶液10部をよく混合し、アンダーコート剤を調製した。
<Preparation of undercoat agent>
Example 1
100 parts of (A-1) component of Production Example 1 and hexamethylene diisocyanate adduct (trade name “Takenate D110N”, manufactured by Mitsui Chemicals, Inc.) as component (B) were adjusted to a solid content of 30% with methyl ethyl ketone. 17 parts of a solution and 10 parts of a solution prepared by adjusting an isocyanate group-containing silane coupling agent (trade name “KBE-9007”, manufactured by Shin-Etsu Silicone Co., Ltd.) to 30% solid content with methyl ethyl ketone as component (C) were mixed well. An undercoat agent was prepared.

実施例2
製造例1の(A−1)成分を100部、(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液を17部及び(C)成分としてKBE−9007をメチルエチルケトンにて固形分30%に調整した溶液20部をよく混合し、アンダーコート剤を調製した。
Example 2
100 parts of the component (A-1) in Production Example 1, 17 parts of a solution prepared by adding 30% solids of Takenate D110N with methyl ethyl ketone as the component (B), and solid KBE-9007 with methyl ethyl ketone as the component (C) An undercoat agent was prepared by thoroughly mixing 20 parts of a solution adjusted to 30%.

実施例3
製造例1の(A−1)成分を100部、(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液を17部及び(C)成分として市販のエポキシ系シランカップリング剤(商品名「サイラエース510」、日美商事(株)製)をメチルエチルケトンにて固形分30%に調整した溶液10部をよく混合し、アンダーコート剤を調製した。
Example 3
100 parts of the component (A-1) of Production Example 1, 17 parts of a solution prepared by adjusting the solid content of Takenate D110N to 30% with methyl ethyl ketone as the component (B), and a commercially available epoxy silane coupling agent as the component (C) An undercoat agent was prepared by thoroughly mixing 10 parts of a solution (trade name “Syra Ace 510”, manufactured by Nimi Shoji Co., Ltd.) adjusted to 30% solid content with methyl ethyl ketone.

実施例4
製造例1の(A−1)成分を100部、(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液を17部及び(C)成分としてサイラエース510をメチルエチルケトンにて固形分30%に調整した溶液20部をよく混合し、アンダーコート剤を調製した。
Example 4
100 parts of the component (A-1) of Production Example 1, 17 parts of a solution prepared by adjusting the solid content of Takenate D110N to 30% with methyl ethyl ketone as the component (B), and Silaace 510 as the solid content with methyl ethyl ketone as the component (C) An undercoat agent was prepared by thoroughly mixing 20 parts of a solution adjusted to 30%.

実施例5
製造例2の(A−2)成分100部、(B)成分としてヘキサメチレンジイソシアネートのビウレット体(商品名「デュラネート24A−100」、旭化成ケミカルズ(株)製)をメチルエチルケトンにて固形分30%に調整した溶液26部及びKBE−9007をメチルエチルケトンにて固形分30%に調整した溶液10部をよく混合し、アンダーコート剤を調製した。
Example 5
100 parts of component (A-2) of Production Example 2 and biuret of hexamethylene diisocyanate (trade name “Duranate 24A-100”, manufactured by Asahi Kasei Chemicals Co., Ltd.) as component (B) to a solid content of 30% with methyl ethyl ketone 26 parts of the adjusted solution and 10 parts of a solution prepared by adjusting KBE-9007 to 30% solid content with methyl ethyl ketone were mixed well to prepare an undercoat agent.

実施例6
製造例3の(A−3)成分100部、(B)成分としてヘキサメチレンジイソシアネートのヌレート体(商品名「コロネートHX」、東ソー(株)製)をメチルエチルケトンにて固形分30%に調整した溶液28部及びKBE−9007をメチルエチルケトンにて固形分30%に調整した溶液10部をよく混合し、アンダーコート剤を調製した。
Example 6
100 parts of component (A-3) of Production Example 3 and a solution obtained by adjusting a hexamethylene diisocyanate nurate (trade name “Coronate HX”, manufactured by Tosoh Corporation) as component (B) to a solid content of 30% with methyl ethyl ketone 28 parts and 10 parts of a solution prepared by adjusting KBE-9007 to 30% solid content with methyl ethyl ketone were mixed well to prepare an undercoat agent.

実施例7
製造例の(A−4)成分100部、(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液17部及び(C)成分としてイソシアネート基含有シランカップリング剤(商品名「KBE−9007」、信越シリコーン(株)製)をメチルエチルケトンにて固形分30%に調整した溶液10部をよく混合し、アンダーコート剤を調製した。
Example 7
100 parts of the component (A-4) of Production Example 4 , 17 parts of a solution in which Takenate D110N was adjusted to 30% solid content with methyl ethyl ketone as the component (B), and an isocyanate group-containing silane coupling agent (trade name) as the component (C) An undercoat agent was prepared by thoroughly mixing 10 parts of a solution prepared by adjusting “KBE-9007” (manufactured by Shin-Etsu Silicone Co., Ltd.) to a solid content of 30% with methyl ethyl ketone.

実施例8
製造例の(A−4)成分を100部、(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液を17部及び(C)成分としてKBE−9007をメチルエチルケトンにて固形分30%に調整したも溶液20部をよく混合し、アンダーコート剤を調製した。
Example 8
100 parts of the component (A-4) of Production Example 4 , 17 parts of a solution prepared by adjusting the solid content of Takenate D110N to 30% with methyl ethyl ketone as the component (B), and solid KBE-9007 with methyl ethyl ketone as the component (C) Even though it was adjusted to 30%, 20 parts of the solution was mixed well to prepare an undercoat agent.

実施例9
製造例の(A−4)成分を100部、(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液を17部及び(C)成分として市販のエポキシ系シランカップリング剤(商品名「サイラエース510」、日美商事(株)製)をメチルエチルケトンにて固形分30%に調整した溶液10部をよく混合し、アンダーコート剤を調製した。
Example 9
100 parts of the component (A-4) of Production Example 4 , 17 parts of a solution prepared by adjusting the content of Takenate D110N to 30% with methyl ethyl ketone as the component (B), and a commercially available epoxy silane coupling agent as the component (C) An undercoat agent was prepared by thoroughly mixing 10 parts of a solution (trade name “Syra Ace 510”, manufactured by Nimi Shoji Co., Ltd.) adjusted to 30% solid content with methyl ethyl ketone.

実施例10
製造例の(A−4)成分を100部、(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液を17部及び(C)成分としてサイラエース510をメチルエチルケトンにて固形分30%に調整した溶液20部をよく混合し、アンダーコート剤を調製した。
Example 10
100 parts of the component (A-4) of Production Example 4 , 17 parts of a solution prepared by adding Takenate D110N to 30% solid content with methyl ethyl ketone as the component (B), and Silaace 510 as the solid content with methyl ethyl ketone as the component (C) An undercoat agent was prepared by thoroughly mixing 20 parts of a solution adjusted to 30%.

比較例1
製造例1の(A−1)成分100部及び(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液17部をよく混合し、アンダーコート剤を調製した。
Comparative Example 1
100 parts of the component (A-1) of Production Example 1 and 17 parts of a solution in which Takenate D110N was adjusted to 30% solid content with methyl ethyl ketone as the component (B) were mixed well to prepare an undercoat agent.

比較例2
製造例の(A−4)成分100部及び(B)成分としてタケネートD110Nをメチルエチルケトンにて固形分30%に調整した溶液17部をよく混合し、アンダーコート剤を調製した。
Comparative Example 2
Underpart agent was prepared by thoroughly mixing 100 parts of component (A-4) of Production Example 4 and 17 parts of a solution in which Takenate D110N was adjusted to 30% solid content with methyl ethyl ketone as component (B).

<銅蒸着フィルムの作製>
実施例1のアンダーコート剤を市販のポリエステルフィルム(商品名「ルミラーU48」、東レ(株)製、150μm厚)に、乾燥膜厚が1.0μm程度となるようバーコーターで塗工し、130℃で1分間乾燥させた。次いで当該塗工フィルムのアンダーコート面に、市販の蒸着装置(製品名「NS−1875−Z」、西山製作所(株)製)を使用し、銅を蒸着させることにより(厚み約100nm)、銅蒸着フィルムを得た。他の実施例及び比較例のアンダーコート剤についても同様にして銅蒸着フィルムを得た。
<Preparation of copper vapor deposition film>
The undercoat agent of Example 1 was applied to a commercially available polyester film (trade name “Lumirror U48”, manufactured by Toray Industries, Inc., 150 μm thick) with a bar coater so that the dry film thickness was about 1.0 μm. Dry at 1 ° C. for 1 minute. Subsequently, by using a commercially available vapor deposition apparatus (product name “NS-1875-Z”, manufactured by Nishiyama Seisakusho Co., Ltd.) on the undercoat surface of the coating film, copper is vapor-deposited (thickness: about 100 nm). A vapor deposited film was obtained. The copper vapor deposition film was obtained similarly about the undercoat agent of another Example and a comparative example.

(初期密着性)
実施例1に係る銅蒸着フィルムの銅蒸着面にカッターナイフで100マスの碁盤目を入れ、当該銅蒸着面に粘着テープ(製品名「セロテープ(登録商標)」、ニチバン(株)製)を貼り付けた後これを垂直方向に一回引き剥がしたときの銅蒸面の外観を評価した。次いで、当該粘着テープを再び該銅蒸着面に貼り付けて垂直方向に引き剥がし、更にもう一度貼り付けて垂直方向に引き剥がしたときの銅蒸着面の外観を評価した。他の実施例及び比較例の銅蒸着フィルムについても同様にして、一回目の引き剥がしのときと、三回目の引き剥がしのときにおける銅蒸着面の外観(銅蒸着層の初期密着性)を評価した。
(Initial adhesion)
100 square grids are put on the copper vapor deposition surface of the copper vapor deposition film according to Example 1 with a cutter knife, and an adhesive tape (product name “Sero Tape (registered trademark)”, manufactured by Nichiban Co., Ltd.) is pasted on the copper vapor deposition surface. After being attached, the appearance of the copper vapor surface was evaluated when it was peeled once in the vertical direction. Next, the adhesive tape was again applied to the copper vapor deposition surface and peeled off in the vertical direction, and then the appearance of the copper vapor deposition surface when it was applied again and peeled off in the vertical direction was evaluated. Similarly, the copper vapor deposition films of other examples and comparative examples were evaluated for the appearance of the copper vapor deposition surface (initial adhesion of the copper vapor deposition layer) at the first peeling and the third peeling. did.

(耐酸密着性)
実施例1に係る銅蒸着フィルムを、40℃に加温した4%塩化水素水溶液に5分間浸漬した後、銅蒸着層の密着性を、前記同様、碁盤目試験により評価した。他の実施例及び比較例の銅蒸着フィルムについても同様にして密着性を評価した。
(Acid resistance adhesion)
After the copper vapor deposition film according to Example 1 was immersed in a 4% hydrogen chloride aqueous solution heated to 40 ° C. for 5 minutes, the adhesion of the copper vapor deposition layer was evaluated by a cross cut test as described above. The adhesion was evaluated in the same manner for the copper deposited films of other examples and comparative examples.

(耐アルカリ密着性)
実施例1に係る銅蒸着フィルムを、40℃に加温した4%水酸化ナトリウム水溶液に5分間浸漬した後、銅蒸着層の密着性を、前記同様、碁盤目試験により評価した。他の実施例及び比較例の銅蒸着フィルムについても同様にして密着性を評価した。
(Alkali resistance)
After the copper vapor deposition film according to Example 1 was immersed in a 4% aqueous sodium hydroxide solution heated to 40 ° C. for 5 minutes, the adhesion of the copper vapor deposition layer was evaluated by a cross-cut test as described above. The adhesion was evaluated in the same manner for the copper deposited films of other examples and comparative examples.

Figure 0006241677
Figure 0006241677

Figure 0006241677
Figure 0006241677

Claims (16)

水酸基含有(メタ)アクリレート(a1)及びアルキル(メタ)アクリレート(a2)を反応させてなる、水酸基価が10〜150mgKOH/gであり、かつ、ガラス転移温度が30〜100℃であるアクリルコポリマー(A)と、
イソシアネート基を少なくとも3つ有するポリイソシアネート系硬化剤(B)と、
シランカップリング剤(C)とを含有する、
銅薄膜付基材用アンダーコート剤。
Acrylic copolymer having a hydroxyl value of 10 to 150 mgKOH / g and a glass transition temperature of 30 to 100 ° C. obtained by reacting a hydroxyl group-containing (meth) acrylate (a1) and an alkyl (meth) acrylate (a2) ( A) and
A polyisocyanate curing agent (B) having at least three isocyanate groups;
Containing a silane coupling agent (C),
Undercoat agent for copper thin film base material.
(A)成分が、更に芳香族系ビニルモノマー、(メタ)アクリロニトリル及び(メタ)アクリルアミドからなる群より選ばれる少なくとも一種の単量体(a3)反応成分とするものである、請求項1のアンダーコート剤。 The component (A) further comprises at least one monomer (a3) selected from the group consisting of an aromatic vinyl monomer, (meth) acrylonitrile and (meth) acrylamide as a reaction component. Undercoat agent. (B)成分が、ジイソシアネート化合物のアダクト体、イソシアヌレート体及びビウレット体からなる群より選ばれる1種の誘導体(b1)である、請求項1〜のいずれかのアンダーコート剤。 The undercoat agent according to any one of claims 1 and 2 , wherein the component (B) is one derivative (b1) selected from the group consisting of an adduct, an isocyanurate, and a biuret of a diisocyanate compound. (A)成分に含まれる水酸基と(B)成分に含まれるイソシアネート基の当量比〔NCO/OH〕が0.2〜5である、請求項1〜のいずれかのアンダーコート剤。 The undercoat agent according to any one of claims 1 to 3 , wherein an equivalent ratio [NCO / OH] of a hydroxyl group contained in the component (A) and an isocyanate group contained in the component (B) is 0.2 to 5. (C)成分が、一般式(1):X−Si(R(OR3−a(式(1)中、Xは、水酸基及びイソシアネート基からなる群より選ばれる一種と反応する官能基を含む基を、Rは水素又は炭素数1〜8の炭化水素基を、Rは炭素数1〜8の炭化水素基を、aは0、1又は2を示す。)で表される反応性アルコキシシリル化合物である、請求項1〜のいずれかのアンダーコート剤。 One of X 1 -Si (R 1) a (OR 2) 3-a ( formula (1), X 1, selected from the group consisting of hydroxyl group and an isocyanate group: (C) component, the general formula (1) R 1 represents hydrogen or a hydrocarbon group having 1 to 8 carbon atoms, R 2 represents a hydrocarbon group having 1 to 8 carbon atoms, and a represents 0, 1 or 2. The undercoat agent in any one of Claims 1-4 which is a reactive alkoxysilyl compound represented by this. 更にウレタン化触媒(D)を含有する請求項1〜のいずれかのアンダーコート剤。 Furthermore, the undercoat agent in any one of Claims 1-5 containing a urethanization catalyst (D). (D)成分の使用量が、(A)成分100重量部(固形分換算)に対して0.1〜2重量部である、請求項のアンダーコート剤。 (D) The undercoat agent of Claim 6 whose usage-amount of a component is 0.1-2 weight part with respect to 100 weight part (solid content conversion) of (A) component. 基材フィルム、請求項1〜のいずれかのアンダーコート剤が硬化してなるアンダーコート層及び銅薄膜層を有する銅薄膜付基材。 The base film, according to claim 1 to 7 or of the undercoat layer undercoating agent obtained by curing and the copper thin film with a substrate having a copper thin film layer. 基材がプラスチックである、請求項の銅薄膜付基材。 The base material with a copper thin film according to claim 8 , wherein the base material is plastic. プラスチックがプラスチックフィルムである、請求項の銅薄膜付基材。 The substrate with a copper thin film according to claim 9 , wherein the plastic is a plastic film. プラスチックフィルムがポリエステルフィルムである、請求項10の銅薄膜付基材。 The substrate with a copper thin film according to claim 10 , wherein the plastic film is a polyester film. 銅薄膜層が銅蒸着膜又は銅スパッタ膜である、請求項11のいずれかの銅薄膜付基材。 Copper thin film layer is a copper deposition film or a copper sputtered film, or a copper thin-film substrate with claims 8-11. 基材の表面に、
請求項1〜のいずれかのアンダーコート剤を塗工し、
次いで該基材に熱を加えることにより硬化アンダーコート層(1)を形成し、
次いで該硬化アンダーコート層(1)の上に銅薄膜層を形成することを特徴とする、
銅薄膜付基材の製造方法。
On the surface of the substrate
Apply the undercoat agent according to any one of claims 1 to 7 ,
Next, a cured undercoat layer (1) is formed by applying heat to the substrate,
Next, a copper thin film layer is formed on the cured undercoat layer (1),
The manufacturing method of a base material with a copper thin film.
前記硬化アンダーコート層(1)上に銅薄膜層を形成する方法が真空蒸着法又はスパッタリング法である、請求項13の製造方法。 The manufacturing method of Claim 13 whose method of forming a copper thin film layer on the said hardening undercoat layer (1) is a vacuum evaporation method or a sputtering method. 請求項12のいずれかの銅薄膜付基材を用いてなる導電性フィルム。 Conductive film made using either of the copper thin film substrate with claims 8-12. 請求項15の導電性フィルムより得られる電極フィルム。
An electrode film obtained from the conductive film of claim 15 .
JP2015074613A 2014-03-31 2015-03-31 Undercoat agent for substrate with copper thin film, substrate with copper thin film and method for producing the same, and conductive film and electrode film Active JP6241677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074613A JP6241677B2 (en) 2014-03-31 2015-03-31 Undercoat agent for substrate with copper thin film, substrate with copper thin film and method for producing the same, and conductive film and electrode film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014071264 2014-03-31
JP2014071264 2014-03-31
JP2015074613A JP6241677B2 (en) 2014-03-31 2015-03-31 Undercoat agent for substrate with copper thin film, substrate with copper thin film and method for producing the same, and conductive film and electrode film

Publications (2)

Publication Number Publication Date
JP2015199947A JP2015199947A (en) 2015-11-12
JP6241677B2 true JP6241677B2 (en) 2017-12-06

Family

ID=54551513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074613A Active JP6241677B2 (en) 2014-03-31 2015-03-31 Undercoat agent for substrate with copper thin film, substrate with copper thin film and method for producing the same, and conductive film and electrode film

Country Status (1)

Country Link
JP (1) JP6241677B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862705B2 (en) * 2016-07-22 2021-04-21 荒川化学工業株式会社 Non-aqueous oligomer bleed inhibitor for polyester film, and oligomer bleed prevention method for polyester film
JP7102691B2 (en) * 2016-09-05 2022-07-20 荒川化学工業株式会社 Copper-clad laminate for flexible printed wiring board and flexible printed wiring board
JP6943117B2 (en) * 2016-10-07 2021-09-29 三菱ケミカル株式会社 Undercoating agent composition for metal thin film, undercoating agent for metal thin film, base film with undercoat layer and laminated film with metal thin film layer
JP7306793B2 (en) * 2017-04-20 2023-07-11 関西ペイント株式会社 Multi-component water-based undercoat paint composition and coating method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808504B2 (en) * 1990-09-12 1998-10-08 加古川プラスチックス 株式会社 Film-shaped copper-deposited substrate
JP4541655B2 (en) * 2003-03-26 2010-09-08 株式会社きもと Laminated body
JP5184166B2 (en) * 2008-03-24 2013-04-17 アイカ工業株式会社 Film for insert molding
JP5690583B2 (en) * 2010-12-28 2015-03-25 ヘンケルジャパン株式会社 Adhesive for solar battery backsheet
JP2012140494A (en) * 2010-12-28 2012-07-26 Henkel Japan Ltd Outdoor urethane adhesive
JP5003849B1 (en) * 2011-03-31 2012-08-15 東洋インキScホールディングス株式会社 Adhesive composition for laminated sheet and back surface protective sheet for solar cell

Also Published As

Publication number Publication date
JP2015199947A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
TWI661015B (en) Primer for base material with copper film, method for manufacturing base material with copper film, base material with copper film, and conductive film
TWI660015B (en) Primer for base material with copper thin film, base material with copper thin film, method for producing same, conductive film and electrode film
KR100632080B1 (en) Active energy ray-curable urethane methacrylate and active energy ray-curable composition, and uses thereof
TWI512075B (en) Composition of photohardenable transparent adhesive sheet
JP6241677B2 (en) Undercoat agent for substrate with copper thin film, substrate with copper thin film and method for producing the same, and conductive film and electrode film
US20140057102A1 (en) Touch panel
CN106010381B (en) Adhesive composition and adhesive sheet
TWI668266B (en) Adhesive composition, adhesive and adhesive sheet
JP5641321B2 (en) Undercoat agent for plastic with inorganic thin film, plastic with inorganic thin film, and decorative film for in-mold or insert molding
CN106118554B (en) Adhesive layer and adhesive film
JP2016104853A (en) Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding and decorative film for insert molding
JP6738622B2 (en) Adhesive composition and adhesive sheet
KR102063200B1 (en) Adhesive composition, adhesive sheet and optical member
TWI830005B (en) Primer for base material with metal thin film, hardened material, base material with metal thin film, manufacturing method thereof, and film
JP5285592B2 (en) Adhesive composition and optical member using the adhesive
KR102101261B1 (en) Transparent bonding film and touch screen panel
JP2015189799A (en) Curable resin composition, hard coat material and cured product
TWI839801B (en) Polyisocyanate composition, cured film, adhesive resin composition, adhesive resin sheet, and laminated film
JP2014129456A (en) Clear coating composition for metal plated plastic substrate
JP6862705B2 (en) Non-aqueous oligomer bleed inhibitor for polyester film, and oligomer bleed prevention method for polyester film
JP7343107B2 (en) Adhesive composition for heat-resistant adhesive sheet and heat-resistant adhesive sheet
JP6885074B2 (en) Adhesive for solar cell protective sheet
TWI534223B (en) Adhesive, adhesive sheet and display
KR101643046B1 (en) Conductive laminate
JP2022156488A (en) Pressure sensitive adhesive resin composition for surface-protecting film and surface-protecting film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6241677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250