JP6235265B2 - X-ray generator and X-ray inspection apparatus - Google Patents

X-ray generator and X-ray inspection apparatus Download PDF

Info

Publication number
JP6235265B2
JP6235265B2 JP2013155821A JP2013155821A JP6235265B2 JP 6235265 B2 JP6235265 B2 JP 6235265B2 JP 2013155821 A JP2013155821 A JP 2013155821A JP 2013155821 A JP2013155821 A JP 2013155821A JP 6235265 B2 JP6235265 B2 JP 6235265B2
Authority
JP
Japan
Prior art keywords
ray
heat
chamber
heat transfer
shielding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013155821A
Other languages
Japanese (ja)
Other versions
JP2015025750A (en
Inventor
淳一 森谷
淳一 森谷
直也 斎藤
直也 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2013155821A priority Critical patent/JP6235265B2/en
Publication of JP2015025750A publication Critical patent/JP2015025750A/en
Application granted granted Critical
Publication of JP6235265B2 publication Critical patent/JP6235265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、X線発生装置及びX線検査装置に関する。   The present invention relates to an X-ray generator and an X-ray inspection apparatus.

X線異物検出装置は、食肉,加工品等の食料品等被検査物にX線を照射して、照射したX線の透過量から被検査物中に金属等の異物が存在しているか否かを検出する装置である(例えば特許文献1参照)。   The X-ray foreign object detection device irradiates X-rays to an inspection object such as food such as meat and processed goods, and whether or not a foreign object such as metal exists in the inspection object from the amount of transmitted X-rays. This is a device that detects this (see, for example, Patent Document 1).

X線を照射するX線発生器は、金属製の箱体内部に設けられているX線管を絶縁油により浸漬して密封されている。X線管自体はX線照射により発熱するため、X線管から絶縁油に伝導された熱を外部に放熱させて、X線管を冷却させる必要がある。   An X-ray generator for irradiating X-rays is sealed by dipping an X-ray tube provided inside a metal box with insulating oil. Since the X-ray tube itself generates heat by X-ray irradiation, it is necessary to cool the X-ray tube by radiating the heat conducted from the X-ray tube to the insulating oil to the outside.

X線管から絶縁油に伝導された熱を外部に放熱させる手段としては、通常、X線発生器周面に貫通保持された冷却フィンが用いられ、絶縁油から熱を伝導してX線発生器の外に放熱させている。しかし、冷却フィンは通常、熱伝達特性のよいAlが用いられ、AlはX線の透過率が高いため、放熱と共にX線が漏洩することとなる。   As a means for dissipating the heat conducted from the X-ray tube to the insulating oil to the outside, a cooling fin penetrating and holding the X-ray generator peripheral surface is usually used to generate the X-ray by conducting the heat from the insulating oil. The heat is dissipated outside the container. However, Al having good heat transfer characteristics is usually used for the cooling fin, and since Al has a high X-ray transmittance, X-rays leak together with heat radiation.

そこで、特許文献1のX線異物検出装置は、X線発生器から発生する熱を外部へ導く通風路を長くし、内面で漏洩X線の吸収散乱を繰り返させている。これにより、漏洩X線を減衰させ、X線漏洩の問題を解消している。   In view of this, the X-ray foreign object detection device of Patent Document 1 lengthens the ventilation path that guides heat generated from the X-ray generator to the outside, and repeats absorption and scattering of leaked X-rays on the inner surface. Thereby, the leaked X-ray is attenuated and the problem of X-ray leakage is solved.

特開2001−318062号公報JP 2001-318062 A

しかしながら、上記のような通風路(ダクト)を長くする構成では、空気の搬送距離が長くなったり、ダクトに複数の屈曲部が必要になったりして、冷却効率が落ちる欠点がある。また、屈曲した長いダクトを設ければ装置としての小型化に不利となる。そこで、冷却効率とX線遮蔽の問題が同時に解消できるX線発生装置の開発が望まれている。   However, in the configuration in which the ventilation path (duct) as described above is lengthened, there is a drawback in that the cooling efficiency is lowered because the air transport distance becomes long or a plurality of bent portions are required in the duct. Further, if a long bent duct is provided, it is disadvantageous for downsizing the apparatus. Therefore, it is desired to develop an X-ray generator that can simultaneously solve the problems of cooling efficiency and X-ray shielding.

本発明は上記状況に鑑みてなされたもので、その目的は、冷却効率を低下させずに、X線をより確実に遮蔽できるX線発生装置及びX線検査装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an X-ray generation apparatus and an X-ray inspection apparatus that can more reliably shield X-rays without reducing cooling efficiency.

次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。
本発明の請求項1記載のX線発生装置100は、X線管8が収容されて絶縁油9の満たされた容器7の上面開口部17を塞ぐ基板12を有し、該基板12を貫通し吸熱端14が前記絶縁油9内に浸され放熱端15が前記容器7外方に突出する熱伝達部材13を備えた放熱器11と、
前記熱伝達部材13の放熱端15側を覆って前記容器7に取り付けられ、両側が送排気開口部26,26となる略コ字状に形成されて遮蔽空間25をなし、前記放熱器11を透過するX線を遮蔽する遮蔽材22及び支持材23が積層されてなる遮蔽部材18と、
前記送排気開口部26,26に送排気間隙28を介して前記遮蔽部材18に被せられるチャンバ27と、
前記両送排気開口部26,26を通る延長直線29に交差することで、開口端31から前記放熱器11の放熱側の放熱面が見えない方向で前記送排気間隙28に連通し、前記チャンバ27に接続され、前記送排気開口部26,26から前記開口端31の間でX線を吸収散乱により減衰させる一対のダクト30,30と、
を具備することを特徴とする。
Next, means for solving the above problems will be described with reference to the drawings corresponding to the embodiments.
The X-ray generator 100 according to claim 1 of the present invention has a substrate 12 that contains the X-ray tube 8 and closes the upper surface opening 17 of the container 7 filled with the insulating oil 9, and penetrates the substrate 12. A heat radiator 11 having a heat transfer member 13 in which a heat absorbing end 14 is immersed in the insulating oil 9 and a heat radiating end 15 projects outward from the container 7;
The heat transfer member 13 is attached to the container 7 so as to cover the heat radiating end 15 side, and both sides are formed in a substantially U-shape to be the air supply / exhaust openings 26, 26 to form a shielding space 25. A shielding member 18 formed by laminating a shielding material 22 that shields transmitted X-rays and a support material 23 ;
A chamber 27 covered et al is in the shielding member 18 via the exhaust gap 28 sent to the feed discharge openings 26, 26,
Said By intersecting the extension straight line 29 passing through both feed exhaust openings 26 and 26, in communication with the open end 31 to the feed discharge gap 28 in the direction of the heat dissipation surface is invisible radiation side of the radiator 11, the chamber 27, a pair of ducts 30 and 30 for attenuating X-rays by absorption and scattering between the opening and exhaust openings 26 and 26 and the opening end 31 ;
It is characterized by comprising.

このX線発生装置100では、略コ字状の遮蔽部材18にチャンバ27が連接されると、遮蔽部材18の両側の送排気開口部26,26に、送排気間隙28が接続形成される。チャンバ27によって、X線の遮蔽と、省スペースでの送排気間隙28の確保が可能となる。
チャンバ27には、両側の送排気間隙28,28にそれぞれ連通する一対のダクト30,30が接続される。ダクト30,30は、両側の送排気開口部26,26を通る延長直線29に交差することで開口端31からの放熱器11の放熱側の放熱面、すなわち熱伝達部材13の放熱端15や基板12が見えない方向で送排気間隙28に連通する。このチャンバ27及びダクト30,30により出入口の向きが変更されることで、チャンバ27内及びダクト30,30内でX線は吸収散乱を繰り返し、減衰して減少する。
遮蔽部材18の送排気開口部26,26は、連接されるチャンバ27によって広い空間の送排気間隙28に接続される。これにより、通風路として絞られず、空気搬送抵抗が増加しない。その結果、冷却効率の低下が抑制される。
In the X-ray generator 100, when the chamber 27 is connected to the substantially U-shaped shielding member 18, the air supply / exhaust gap 28 is connected to the air supply / exhaust openings 26, 26 on both sides of the shield member 18. The chamber 27 makes it possible to shield X-rays and secure the air supply / exhaust gap 28 in a space-saving manner.
The chamber 27 is connected to a pair of ducts 30, 30 communicating with the air supply / exhaust gaps 28, 28 on both sides. The ducts 30, 30 intersect the extended straight line 29 passing through the air supply / exhaust openings 26, 26 on both sides, so that the heat radiating surface on the heat radiating side of the radiator 11 from the opening end 31, that is, the heat radiating end 15 The substrate 12 communicates with the air supply / exhaust gap 28 in a direction in which the substrate 12 cannot be seen. By changing the direction of the entrance / exit by the chamber 27 and the ducts 30 and 30, X-rays repeatedly absorb and scatter in the chamber 27 and the ducts 30 and 30 and attenuate and decrease.
The air supply / exhaust openings 26 and 26 of the shielding member 18 are connected to a wide air supply / exhaust gap 28 by a chamber 27 connected thereto. Thereby, it is not restrict | squeezed as a ventilation path and air conveyance resistance does not increase. As a result, a decrease in cooling efficiency is suppressed.

本発明の請求項2記載のX線発生装置100は、請求項1記載のX線発生装置100であって、
前記一対のダクト30,30の少なくとも一方に送風ファン32が取り付けられていることを特徴とする。
The X-ray generator 100 according to claim 2 of the present invention is the X-ray generator 100 according to claim 1,
A blower fan 32 is attached to at least one of the pair of ducts 30, 30.

このX線発生装置100では、チャンバ27に接続された一対のダクト30の少なくとも一方に送風ファン32が取り付けられる。チャンバ27は、遮蔽部材18に連接されることで、遮蔽部材18の両側の送排気開口部26に接続する送排気間隙28が画成される。この送排気間隙28の一方に接続されるダクト30に送風ファン32が設けられることで、一方のダクト30から他方のダクト30への空気の強制搬送が可能となる。これにより、遮蔽部材18の内方における熱伝達部材13と通過空気との熱交換を促進させ、冷却効果を増大させることができる。   In the X-ray generator 100, the blower fan 32 is attached to at least one of the pair of ducts 30 connected to the chamber 27. The chamber 27 is connected to the shielding member 18, thereby defining an air supply / exhaust gap 28 connected to the air supply / exhaust openings 26 on both sides of the shield member 18. By providing the blower fan 32 in the duct 30 connected to one of the air supply / exhaust gaps 28, it is possible to forcibly convey air from one duct 30 to the other duct 30. As a result, heat exchange between the heat transfer member 13 and the passing air inside the shielding member 18 can be promoted, and the cooling effect can be increased.

本発明の請求項3記載のX線発生装置100は、請求項1または2記載のX線発生装置100であって、
前記基板12に複数の前記熱伝達部材13が貫通して設けられ、
前記熱伝達部材13の放熱端15と遮蔽部材側壁内面33の間隔A、及び前記熱伝達部材13と遮蔽部材天井面34の間隔Bが、隣接する前記熱伝達部材13同士の放熱端15同士の間隔Cよりも小さいことを特徴とする。
The X-ray generator 100 according to claim 3 of the present invention is the X-ray generator 100 according to claim 1 or 2,
A plurality of the heat transfer members 13 are provided through the substrate 12,
The distance A between the heat dissipating end 15 of the heat transfer member 13 and the shielding member side wall inner surface 33 and the distance B between the heat transfer member 13 and the shielding member ceiling surface 34 are between the heat dissipating ends 15 of the adjacent heat transfer members 13. It is characterized by being smaller than the interval C.

このX線発生装置100では、遮蔽部材18の内方を通過する空気が、熱伝達部材13に接触し易くなる。すなわち、熱伝達部材13と遮蔽部材側壁内面33との間隔Aや熱伝達部材13と遮蔽部材天井面34の間隔Bが広い場合に、空気が熱伝達部材13同士の間を通らずに送風抵抗の小さいその間隙Aや間隙Bを通過してしまう。これに対し、本構成では、遮蔽部材18の内方を通過する空気が、熱伝達部材13同士の間(間隙C)を優先して通過することになる。   In the X-ray generator 100, the air that passes through the inside of the shielding member 18 can easily come into contact with the heat transfer member 13. That is, when the interval A between the heat transfer member 13 and the shielding member side wall inner surface 33 and the interval B between the heat transfer member 13 and the shielding member ceiling surface 34 are wide, the air resistance does not pass between the heat transfer members 13. Pass through the gap A or the gap B with a small diameter. On the other hand, in this configuration, the air passing through the inside of the shielding member 18 preferentially passes between the heat transfer members 13 (gap C).

本発明の請求項4記載のX線検査装置200は、請求項1,2,3のいずれか1つに記載のX線発生装置100を組み込んだことを特徴とする。   An X-ray inspection apparatus 200 according to claim 4 of the present invention is characterized by incorporating the X-ray generation apparatus 100 according to any one of claims 1, 2, and 3.

このX線検査装置200では、上記の構成により小型となったX線発生装置100が組み込まれるので、X線検査装置全体の小型化が可能となる。また、チャンバ27によってX線の遮蔽性能も高められるので、装置へ近づく作業者(操作者)に対するX線量も低下させることが可能となる。さらに、チャンバ27に接続されるダクト30の向きを任意な方向に設定が可能なる。例えば、排気側のダクト30における開口端31の向きを、作業者から遠ざけたり、検査対象から遠ざけたりすることが容易となる。   In this X-ray inspection apparatus 200, since the X-ray generation apparatus 100 that has been reduced in size by the above configuration is incorporated, the entire X-ray inspection apparatus can be reduced in size. In addition, since the X-ray shielding performance is enhanced by the chamber 27, the X-ray dose for an operator (operator) approaching the apparatus can be reduced. Furthermore, the direction of the duct 30 connected to the chamber 27 can be set to an arbitrary direction. For example, it becomes easy to keep the direction of the opening end 31 in the duct 30 on the exhaust side away from the operator or away from the inspection target.

本発明に係る請求項1記載のX線発生装置によれば、チャンバを遮蔽部材に連接し、送排気間隙を介して、放熱器の放熱側の放熱面が開口端から見えない方向となってダクトが連通する構成としたので、X線の遮蔽性能が高まるとともに、ダクトの開口端位置においてのX線の漏洩が減少する効果を得られ、すなわち、X線の漏洩元となる放熱側の放熱面である熱伝達部材の放熱端及び基板の放熱側の面を開口端から見えない配置構造としたことで、X線は開口端までのダクト内やチャンバ内で減衰されることとなる。このようにX線の遮蔽性能,減衰効果が高まることにより、放熱器自体のX線遮蔽構造を簡略化或いは省略することができ、すなわち、従来の放熱器では冷却機能に加えX線遮蔽機能を付加しなければならない構成としていたが、放熱器から漏洩するX線を遮蔽材と支持材が積層してなる遮蔽部材とこの遮蔽部材に被せられるチャンバにより減少させることができることから、放熱器には容器内からのX線漏洩に対する構成を簡略或いは省略させることが可能となる。これにより放熱器の製作が容易になるとともに、製作コストも抑えることが可能となる。また、ダクトの開口端から放熱器の放熱側の放熱面が見えない構成とされるものの、この放熱面を構成する熱伝達部材の放熱端が通風部分に突出されて冷却が行なわれるとともにチャンバを介しての十分な空気の通過が行なわれ、X線を確実に遮蔽しながら冷却効率を低下させることなく放熱が行なえる効果を得られる。 According to the X-ray generator of the first aspect of the present invention, the chamber is connected to the shielding member, and the heat radiating surface on the heat radiating side of the radiator is invisible from the opening end through the air supply / exhaust gap. Since the duct communicates with each other, the X-ray shielding performance is enhanced, and the effect of reducing the X-ray leakage at the opening end position of the duct can be obtained. By adopting an arrangement structure in which the heat radiating end of the heat transfer member and the surface on the heat radiating side of the substrate are not visible from the opening end, X-rays are attenuated in the duct and the chamber up to the opening end. As described above, the X-ray shielding performance and attenuation effect are enhanced, so that the X-ray shielding structure of the radiator itself can be simplified or omitted. That is, the conventional radiator has an X-ray shielding function in addition to the cooling function. The X-ray leaked from the radiator can be reduced by a shielding member formed by laminating a shielding material and a support material and a chamber covered by the shielding member. It is possible to simplify or omit the configuration for X-ray leakage from inside the container. As a result, the radiator can be easily manufactured and the manufacturing cost can be reduced. In addition, although the heat radiating surface on the heat radiating side of the radiator is invisible from the opening end of the duct, the heat radiating end of the heat transfer member that constitutes the heat radiating surface is projected into the ventilation portion to cool the chamber and Thus, sufficient air can be passed through and heat radiation can be performed without reducing cooling efficiency while reliably blocking X-rays.

本発明に係る請求項2記載のX線発生装置によれば、送風ファンをダクトに取り付けることで、放熱器の放熱側を通過する空気量を増加させて冷却効率を高めることができる。このことから、送風ファンによる放熱器の放熱側の冷却効率を維持しつつ、ダクトのコンパクト化を図ることが可能となり、X線発生装置全体の小型化を図れる。   According to the X-ray generator of Claim 2 which concerns on this invention, by attaching a ventilation fan to a duct, the air quantity which passes the thermal radiation side of a radiator can be increased, and cooling efficiency can be improved. Therefore, it is possible to reduce the size of the duct while maintaining the cooling efficiency of the heat radiating side of the radiator by the blower fan, and the entire X-ray generator can be reduced in size.

本発明に係る請求項3記載のX線発生装置によれば、遮蔽部材の内方を通過する空気を熱伝達部材に効率よく接触させることができ、冷却効率を高めることができる。   According to the X-ray generator of the third aspect of the present invention, the air passing through the inside of the shielding member can be efficiently brought into contact with the heat transfer member, and the cooling efficiency can be increased.

本発明に係る請求項4記載のX線検査装置によれば、チャンバによってX線の遮蔽性能,減衰効果が高められるので、装置へ近づく作業者に対するX線量を低下させることが可能となる。また、ダクトの開口端を、例えば搬送路に向かないよう装置の後方向などに構成でき、検査対象に塵埃がかかることを防止できる。   According to the X-ray inspection apparatus of the fourth aspect of the present invention, the X-ray shielding performance and the attenuation effect are enhanced by the chamber, so that it is possible to reduce the X-ray dose for the worker approaching the apparatus. Further, the opening end of the duct can be configured, for example, in the rear direction of the apparatus so as not to face the conveyance path, and dust can be prevented from being applied to the inspection target.

本発明の実施形態に係るX線発生装置を備えたX線検査装置の斜視図である。It is a perspective view of the X-ray inspection apparatus provided with the X-ray generator which concerns on embodiment of this invention. 図1に示したチャンバ及びダクトの設けられたX線検査装置の斜視図である。It is a perspective view of the X-ray inspection apparatus provided with the chamber and duct shown in FIG. 図2に示したチャンバ、遮蔽部材、放熱器、及び容器の分解斜視図である。FIG. 3 is an exploded perspective view of a chamber, a shielding member, a radiator, and a container illustrated in FIG. 2. 図2に示したチャンバ及び遮蔽部材の断面図である。FIG. 3 is a cross-sectional view of the chamber and the shielding member shown in FIG. 2. 図3に示したダクトの送風ファンの設けられる開口端の分解斜視図である。It is a disassembled perspective view of the opening end in which the ventilation fan of the duct shown in FIG. 3 is provided. 放熱器の熱伝達部材と遮蔽部材側壁内面及び遮蔽部材天井面との位置関係を表す側面図である。It is a side view showing the positional relationship of the heat transfer member of a radiator, a shielding member side wall inner surface, and a shielding member ceiling surface. R部の設けられた変形例に係るチャンバの斜視図である。It is a perspective view of the chamber which concerns on the modification in which the R part was provided. 上面に送風ファンが設けられた変形例に係るダクトの斜視図である。It is a perspective view of the duct which concerns on the modification with which the ventilation fan was provided in the upper surface. チャンバに対して上向きに接続された変形例に係るダクトの斜視図である。It is a perspective view of the duct which concerns on the modification connected upward with respect to the chamber. Z字形の通風路を形成するようにチャンバに接続された変形例に係るダクトの平面図である。It is a top view of the duct which concerns on the modification connected to the chamber so that a Z-shaped ventilation path might be formed.

以下、本発明に係る実施形態を図面を参照して説明する。
図1は本発明の実施形態に係るX線発生装置を備えたX線検査装置の斜視図、図2は図1に示したチャンバ及びダクトの設けられたX線検査装置の斜視図、図3は図2に示したチャンバ、遮蔽部材、放熱器、及び容器の分解斜視図、図4は図2に示したチャンバ及び遮蔽部材の断面図、図5は図3に示したダクトの送風ファンの設けられる開口端の分解斜視図、図6は放熱器の熱伝達部材と遮蔽部材側壁内面及び遮蔽部材天井面との位置関係を表す側面図である。
本実施形態に係るX線発生装置100は、例えばX線検査装置200に好適に用いられる。X線検査装置200は、装置本体1の内部に、生肉、魚、加工食品、医薬等の被検査物を搬送するコンベア2と、搬送される被検査物を搬送路途中において異物を検出する異物検出部3と、を有している。
Embodiments according to the present invention will be described below with reference to the drawings.
1 is a perspective view of an X-ray inspection apparatus provided with an X-ray generator according to an embodiment of the present invention, FIG. 2 is a perspective view of the X-ray inspection apparatus provided with the chamber and duct shown in FIG. Is an exploded perspective view of the chamber, shielding member, radiator, and container shown in FIG. 2, FIG. 4 is a cross-sectional view of the chamber and shielding member shown in FIG. 2, and FIG. 5 is a blower fan of the duct shown in FIG. FIG. 6 is a side view showing the positional relationship between the heat transfer member of the radiator, the shield member side wall inner surface, and the shield member ceiling surface.
The X-ray generator 100 according to the present embodiment is suitably used for the X-ray inspection apparatus 200, for example. The X-ray inspection apparatus 200 includes a conveyor 2 that conveys an inspection object such as raw meat, fish, processed food, and medicine inside the apparatus main body 1 and a foreign object that detects a foreign object in the middle of the conveyance path of the inspection object to be conveyed. And a detection unit 3.

コンベア2は、不図示の駆動モータにより駆動され、搬入口4から搬入された被検査物を搬出口5へ搬出するようになっている。異物検出部3は、コンベア2の上方に設けられるX線発生装置100とコンベア2の内側に設けられるX線検出器6と、で構成されている。   The conveyor 2 is driven by a drive motor (not shown) so that the inspection object carried in from the carry-in port 4 is carried out to the carry-out port 5. The foreign object detection unit 3 includes an X-ray generator 100 provided above the conveyor 2 and an X-ray detector 6 provided inside the conveyor 2.

X線発生装置100は、容器7の内部に設けられている円筒状のX線管8を絶縁油9(図3参照)に浸した構成となっている。X線発生装置100は、高電圧発生装置(図示略)でX線管8に、10kV〜500kV程度の電圧を印加する。これにより、高電圧で加速した電子を陽極のターゲットとなる金属に衝突させてX線を発生させる。X線管8は、その長手方向が被検査物の搬送方向に直交するように設けられている。生成されたX線は、下方のX線検出器6に向けて、長手方向に沿った不図示のスリットを介して、略円錐状の検出用X線10を略三角形状のスクリーン状にして照射する。   The X-ray generator 100 has a configuration in which a cylindrical X-ray tube 8 provided inside the container 7 is immersed in insulating oil 9 (see FIG. 3). The X-ray generator 100 is a high voltage generator (not shown) and applies a voltage of about 10 kV to 500 kV to the X-ray tube 8. As a result, X-rays are generated by colliding electrons accelerated at a high voltage with a metal serving as an anode target. The X-ray tube 8 is provided so that its longitudinal direction is orthogonal to the conveyance direction of the inspection object. The generated X-rays are irradiated to the lower X-ray detector 6 in a substantially triangular screen shape with a substantially conical detection X-ray 10 through a slit (not shown) along the longitudinal direction. To do.

X線検出器6は、フォトダイオードと、フォトダイオード上に設けられたシンチレータとからなる複数のX線検出素子が用いられる。これらのX線検出素子が被検査物の搬送方向と直交する方向に並んでラインセンサ(X線センサ)が形成され、X線検査装置200は、X線発生装置100から搬送面上(コンベア2上)を搬送される被検査物にX線を照射して、透過X線を受けたX線検出器6から得られるX線透過量に基づいてこの被検査物を検査する。   The X-ray detector 6 uses a plurality of X-ray detection elements including a photodiode and a scintillator provided on the photodiode. A line sensor (X-ray sensor) is formed by arranging these X-ray detection elements in a direction orthogonal to the conveyance direction of the inspection object, and the X-ray inspection apparatus 200 is transferred from the X-ray generator 100 on the conveyance surface (conveyor 2). The inspection object conveyed above is irradiated with X-rays, and the inspection object is inspected based on the X-ray transmission amount obtained from the X-ray detector 6 that has received the transmission X-rays.

放熱器11は、図3に示す矩形状の基板12に、複数本(図では12本)の熱伝達部材である棒状の冷却フィン13を表面から裏面に、本実施形態では、上面から下面に略垂直に貫通させたものである。放熱器11の基板12は、容器開口縁16に支持されて上面開口部である容器開口17を密封する。それぞれの冷却フィン13の下端である吸熱端14は容器7に収納され、絶縁油9に浸されるようになっており、基板12の下面と吸熱端14とで吸熱側となり、また、上端である放熱端15は上方である容器7外方に突出し、基板12の上面と放熱端15とで放熱側となる。これら冷却フィン13及び基板12は、アルミニウムなどの熱伝導性の良好な素材より構成される。なお、放熱器11は、基板12に複数本の逆U字状の冷却フィンを表面から裏面に貫通させたものや、板状に形成されるものなどその他の形状としてもよい。   The radiator 11 has a rectangular substrate 12 shown in FIG. 3 and a plurality of (in the figure, 12) rod-like cooling fins 13 as heat transfer members from the front surface to the back surface, and in this embodiment, from the top surface to the bottom surface. It is penetrated substantially vertically. The substrate 12 of the radiator 11 is supported by the container opening edge 16 and seals the container opening 17 which is an upper surface opening. A heat absorbing end 14, which is the lower end of each cooling fin 13, is housed in the container 7 and immersed in the insulating oil 9. The heat absorbing end 14 is on the heat absorbing side at the lower surface of the substrate 12 and the heat absorbing end 14. A certain heat radiating end 15 protrudes outward from the upper container 7, and the upper surface of the substrate 12 and the heat radiating end 15 serve as a heat radiating side. The cooling fins 13 and the substrate 12 are made of a material having good thermal conductivity such as aluminum. The heat radiator 11 may have other shapes such as a substrate 12 having a plurality of inverted U-shaped cooling fins penetrating from the front surface to the back surface, or a plate shape.

基板12の上には、それぞれの冷却フィン13の放熱端15を覆い、これら放熱端15と基板12上面よりなる放熱側の放熱面から漏洩するX線を遮蔽するための遮蔽部材18が設けられている。遮蔽部材18は、左右側壁19,19と天井部20とで下方が開口する略コ字状に形成される。遮蔽部材18には、鉄、ステンレス鋼、鉛等のX線を透過させない金属が用いられる。本実施形態において、遮蔽部材18は、内面側から、遮蔽材22及び支持材23が積層されてなる。   On the substrate 12, a shielding member 18 is provided for covering the heat radiation ends 15 of the respective cooling fins 13 and shielding X-rays leaking from the heat radiation side heat radiation surface composed of the heat radiation ends 15 and the upper surface of the substrate 12. ing. The shielding member 18 is formed in a substantially U-shape with the left and right side walls 19, 19 and the ceiling portion 20 opening downward. The shielding member 18 is made of a metal that does not transmit X-rays, such as iron, stainless steel, and lead. In the present embodiment, the shielding member 18 is formed by laminating a shielding material 22 and a support material 23 from the inner surface side.

遮蔽部材18の両側壁19,19の下縁には鍔状の突出片24が略水平外方に形成され、突出片24は基板12上となって容器7に固定される。基板12から突出しているそれぞれの冷却フィン13の放熱端15は、略コ字状に形成された遮蔽部材18の内方の遮蔽空間25に収納される。そして、遮蔽部材18の両端は矩形状に開放されている。   On the lower edges of the side walls 19, 19 of the shielding member 18, a bowl-shaped protruding piece 24 is formed substantially horizontally outward, and the protruding piece 24 is fixed to the container 7 on the substrate 12. The heat radiating end 15 of each cooling fin 13 protruding from the substrate 12 is housed in a shielding space 25 inside the shielding member 18 formed in a substantially U shape. And both ends of the shielding member 18 are opened in a rectangular shape.

すなわち、放熱器11は、X線管8が収容されて絶縁油9の満たされた容器7の容器開口17を塞ぐ基板12を有し、この基板12に冷却フィン13が貫通し、吸熱端14は絶縁油9内に、放熱端15は遮蔽空間25内に突出する。遮蔽部材18は、冷却フィン13の放熱端15を覆って容器7に取り付けられ、両端が送排気開口部26となる。   That is, the radiator 11 has a substrate 12 that contains the X-ray tube 8 and closes the container opening 17 of the container 7 filled with the insulating oil 9. The cooling fin 13 penetrates the substrate 12, and the heat absorption end 14. Protrudes into the insulating oil 9 and the heat radiating end 15 protrudes into the shielding space 25. The shielding member 18 is attached to the container 7 so as to cover the heat radiation end 15 of the cooling fin 13, and both ends serve as the air supply / exhaust openings 26.

遮蔽部材18には、チャンバ27が設けられる。チャンバ27は、例えば基板12に対して着脱自在に固定され、遮蔽部材18を覆うように箱形状に形成される。チャンバ27は、遮蔽部材18の両送排気開口部26の外側に位置し、それぞれの送排気開口部26に連接される送排気間隙28を形成する(図4参照)。   The shielding member 18 is provided with a chamber 27. The chamber 27 is detachably fixed to the substrate 12, for example, and is formed in a box shape so as to cover the shielding member 18. The chamber 27 is located outside both the air supply / exhaust openings 26 of the shielding member 18 and forms an air supply / exhaust gap 28 connected to each air supply / exhaust opening 26 (see FIG. 4).

さらに、チャンバ27には、一対のダクト30,30が接続される。本実施形態において、ダクト30は、チャンバ27と同一素材によって、板金加工等により一体に成形される。ダクト30は、両送排気開口部26,26を通る延長直線29に交差、本実施形態では延長直線29に対し略直角方向に送排気間隙28の長手方向が位置し、その長手方向の一方である装置後方向に延設されるように位置することで、図5に示す開口端31から放熱器11の放熱側である冷却フィン13の放熱端15と基板12の上面とからなる放熱面が見えない方向で、送排気間隙28に連通している。チャンバ27及びダクト30は、例えばステンレス鋼等の金属板のみにより形成されても、X線を吸収散乱させ、漏洩X線をある程度減衰させることが可能となる。しかし、チャンバ27及びダクト30は、遮蔽部材18と同様、内面側より遮蔽材22及び支持材23が積層されてなることがより好ましい。これにより、一層確実に漏洩X線を遮蔽することができる。   Further, a pair of ducts 30 are connected to the chamber 27. In the present embodiment, the duct 30 is integrally formed of the same material as the chamber 27 by sheet metal processing or the like. The duct 30 intersects an extended straight line 29 that passes through both the feed / exhaust openings 26, 26. In this embodiment, the longitudinal direction of the feed / exhaust gap 28 is positioned substantially perpendicular to the extended straight line 29. By being positioned so as to extend in the rear direction of the device, a heat radiating surface composed of the heat radiating end 15 of the cooling fin 13 on the heat radiating side of the radiator 11 and the upper surface of the substrate 12 from the opening end 31 shown in FIG. It communicates with the air supply / exhaust gap 28 in an invisible direction. Even if the chamber 27 and the duct 30 are formed of only a metal plate such as stainless steel, for example, X-rays can be absorbed and scattered, and the leaked X-rays can be attenuated to some extent. However, like the shielding member 18, the chamber 27 and the duct 30 are more preferably formed by laminating the shielding material 22 and the support material 23 from the inner surface side. Thereby, leaky X-rays can be shielded more reliably.

また、図5に示すように、このダクト30の少なくとも一方には、送風ファン32が取り付けられている。両方のダクト30に送風ファン32が取り付けられる場合には、一方が外気を取り込む給気側となり、他方が外気に放出する排気側となる。   As shown in FIG. 5, a blower fan 32 is attached to at least one of the ducts 30. When the blower fans 32 are attached to both the ducts 30, one side is an air supply side for taking in outside air, and the other side is an exhaust side for releasing to the outside air.

なお、上記構成では、遮蔽部材18に対して、チャンバ27が被さるような遮蔽部材18と別体な構成としているが、これら遮蔽部材18とチャンバ27とは、一体に構成されていてもよく、すなわち容器7に対して、遮蔽部材18とチャンバ27、そしてダクト30が一体となって成形され着脱が可能となる構成としてもよい。   In the above configuration, the shielding member 18 is configured separately from the shielding member 18 such that the chamber 27 covers the shielding member 18, but the shielding member 18 and the chamber 27 may be configured integrally. In other words, the shielding member 18, the chamber 27, and the duct 30 may be integrally formed with the container 7 so as to be detachable.

また、図6に示すように、基板12上に複数の冷却フィン13の放熱端15が突出した放熱器11は、放熱端15と、遮蔽部材側壁内面33、遮蔽部材天井面34とが所定の位置関係で配置されている。すなわち、冷却フィン13の放熱端15と遮蔽部材側壁内面33の間隔A、及び冷却フィン13の放熱端15と遮蔽部材天井面34の間隔Bは、隣接する冷却フィン13同士の間隔Cよりも小さく設定されている。   Further, as shown in FIG. 6, the radiator 11 in which the heat radiation ends 15 of the plurality of cooling fins 13 protrude on the substrate 12 has a heat radiation end 15, a shielding member side wall inner surface 33, and a shielding member ceiling surface 34. They are arranged in a positional relationship. That is, the distance A between the heat radiation end 15 of the cooling fin 13 and the shielding member side wall inner surface 33 and the distance B between the heat radiation end 15 of the cooling fin 13 and the shielding member ceiling surface 34 are smaller than the distance C between adjacent cooling fins 13. Is set.

次に、上記構成を有するX線発生装置100、X線検査装置200の作用を説明する。
X線発生装置100では、略コ字状の遮蔽部材18にチャンバ27が連接されると、遮蔽部材18の両側の送排気開口部26に、送排気間隙28が接続形成される。チャンバ27が取り付けられることにより、X線の遮蔽と、省スペースでの送排気間隙28の確保が可能となっている。
Next, operations of the X-ray generation apparatus 100 and the X-ray inspection apparatus 200 having the above-described configurations will be described.
In the X-ray generator 100, when the chamber 27 is connected to the substantially U-shaped shielding member 18, the air supply / exhaust gap 28 is connected to the air supply / exhaust openings 26 on both sides of the shield member 18. By attaching the chamber 27, it is possible to shield X-rays and secure the space 28 for air sending and exhausting in a space-saving manner.

通常、遮蔽材22及び支持材23等が積層してなる遮蔽部材18に送排気等のためのダクトを接続するには、双方に接続継手などの構造の追加が必要となり、そのための接続スペースが少なからず必要となる。つまり、装置が大型化する。本構成では、チャンバ27を被せることにより、接続継手等を用いずに、これら、X線の遮蔽と、送排気間隙28の確保が同時に可能となる。   Usually, in order to connect a duct for air supply / exhaust etc. to the shielding member 18 formed by laminating the shielding material 22 and the support material 23 and the like, it is necessary to add a structure such as a connection joint to both sides, and there is a connection space for that Not a little necessary. That is, the apparatus becomes large. In this configuration, by covering the chamber 27, it is possible to simultaneously shield the X-rays and secure the air supply / exhaust gap 28 without using a connection joint or the like.

チャンバ27には、両側の送排気間隙28にそれぞれ連通する一対のダクト30が接続される。ダクト30は、両側の送排気開口部26を通る延長直線29に交差することで開口端31から放熱器11の放熱側である冷却フィン13の放熱端15と基板12とが見えない方向で送排気間隙28に連通する。このチャンバ27及びダクト30により出入口の向きが変更されることで、チャンバ内及びダクト内でX線は吸収散乱を繰り返し、減衰して減少する。   The chamber 27 is connected to a pair of ducts 30 communicating with the air supply / exhaust gaps 28 on both sides. The duct 30 crosses an extended straight line 29 passing through the air supply / exhaust openings 26 on both sides, so that the heat radiation end 15 of the cooling fin 13 on the heat radiation side of the radiator 11 and the substrate 12 cannot be seen from the opening end 31. It communicates with the exhaust gap 28. When the direction of the entrance / exit is changed by the chamber 27 and the duct 30, the X-rays repeatedly absorb and scatter in the chamber and the duct, and attenuate and decrease.

遮蔽部材18の送排気開口部26は、外側に被せられ連接されるチャンバ27によって広い空間の送排気間隙28に接続される。これにより、通風路が絞られず、空気搬送抵抗が増加しない。その結果、冷却効率の低下が抑制される。
このように、チャンバ27は、X線を遮蔽しながら省スペースで且つ空気搬送抵抗を増加させずに、遮蔽部材18に接続される。
The air supply / exhaust opening portion 26 of the shielding member 18 is connected to a wide space air supply / exhaust gap 28 by a chamber 27 which is covered and connected to the outside. Thereby, a ventilation path is not restrict | squeezed and air conveyance resistance does not increase. As a result, a decrease in cooling efficiency is suppressed.
In this manner, the chamber 27 is connected to the shielding member 18 while saving space and increasing the air conveyance resistance while shielding X-rays.

また、X線発生装置100では、チャンバ27に接続された一対のダクト30の少なくとも一方に送風ファン32が取り付けられる。遮蔽部材18に被せられることで、チャンバ27の内方には、遮蔽部材18の両側の送排気開口部26,26に接続する送排気間隙28,28がそれぞれ画成される。この送排気間隙28,28の一方に接続されるダクト30に送風ファン32が設けられることで、一方のダクト30から他方のダクト30への空気の強制搬送が可能となる。これにより、遮蔽部材18の内方における冷却フィン13と通過空気との熱交換を促進させ、冷却効果を増大させることができる。   In the X-ray generator 100, the blower fan 32 is attached to at least one of the pair of ducts 30 connected to the chamber 27. By covering the shielding member 18, air supply / exhaust gaps 28, 28 connected to the air supply / exhaust openings 26, 26 on both sides of the shielding member 18 are defined inside the chamber 27. By providing the blower fan 32 in the duct 30 connected to one of the air supply / exhaust gaps 28, 28, the air can be forcibly conveyed from one duct 30 to the other duct 30. Thereby, heat exchange with the cooling fin 13 and passing air in the inside of the shielding member 18 can be accelerated | stimulated, and a cooling effect can be increased.

送風ファン32の送風性能は、冷却フィン13と通過空気とが最適な熱伝達率で熱交換される送風量となるように設定される。なお、送風ファン32は、給気用、排気用のいずれでもよい。送風ファン32は、搬送空気漏洩の生じない点では空気搬送方向下流側に設ける排気用が望ましい。
このようにX線検査装置200は、チャンバ27に送風ファン32が設けられることで、放熱器11の放熱側である冷却フィン13を通過する空気量を増加させて、冷却効率を高めることができる。
The blowing performance of the blower fan 32 is set so that the cooling fin 13 and the passing air have a blown amount of heat exchanged at an optimum heat transfer rate. Note that the blower fan 32 may be either for supply or exhaust. The blower fan 32 is preferably an exhaust fan provided on the downstream side in the air conveyance direction in that no leakage of the conveyance air occurs.
As described above, the X-ray inspection apparatus 200 is provided with the blower fan 32 in the chamber 27, thereby increasing the amount of air passing through the cooling fins 13 on the heat radiation side of the radiator 11 and improving the cooling efficiency. .

さらに、X線発生装置100では、冷却フィン13と遮蔽部材側壁内面33の間隔A、及び冷却フィン13と遮蔽部材天井面34の間隔Bが、隣接する冷却フィン13の間隔Cよりも小さく設定されている。遮蔽部材18の内方を通過する空気は、冷却フィン13に接触し易くなる。すなわち、冷却フィン13と遮蔽部材側壁内面33との間隔Aが広い場合に、空気が冷却フィン13の間を通らずに送風抵抗の小さいその間隙を通過してしまう。これに対し、本構成では、遮蔽部材18の内方を通過する空気が、冷却フィン13の間を優先して通過することになる。なお、冷却フィン13と遮蔽部材側壁内面33の間隔A、及び冷却フィン13と遮蔽部材天井面34の間隔Bを小さくすることは、装置のコンパクト化にも有効となる。
その結果、通過する空気を冷却フィン13の放熱端15に効率よく接触させることができ、冷却効率を高めることができる。
Furthermore, in the X-ray generator 100, the interval A between the cooling fin 13 and the shielding member side wall inner surface 33 and the interval B between the cooling fin 13 and the shielding member ceiling surface 34 are set smaller than the interval C between the adjacent cooling fins 13. ing. Air passing through the inside of the shielding member 18 is likely to come into contact with the cooling fins 13. That is, when the space A between the cooling fin 13 and the shielding member side wall inner surface 33 is wide, the air does not pass between the cooling fins 13 and passes through the gap having a small blowing resistance. On the other hand, in this configuration, the air passing through the inside of the shielding member 18 passes between the cooling fins 13 with priority. In addition, reducing the distance A between the cooling fin 13 and the shielding member side wall inner surface 33 and the distance B between the cooling fin 13 and the shielding member ceiling surface 34 are also effective for downsizing the apparatus.
As a result, the passing air can be efficiently brought into contact with the heat radiating ends 15 of the cooling fins 13, and the cooling efficiency can be increased.

X線検査装置200は、上記の構成により小型となったX線発生装置100が組み込まれるので、X線検査装置200全体の小型化が可能となる。また、チャンバ27によってX線の遮蔽性能も高められるので、装置へ近づく作業者(操作者)に対するX線量も低下させることが可能となる。さらに、チャンバ27に接続されるダクト30の向きを任意な方向に設定が可能なる。例えば、排気側のダクト30における開口端31の向きを、作業者から遠ざけたり、検査対象から遠ざけたりすることが容易となる。   Since the X-ray inspection apparatus 200 is incorporated with the X-ray generation apparatus 100 that has been reduced in size by the above-described configuration, the entire X-ray inspection apparatus 200 can be reduced in size. In addition, since the X-ray shielding performance is enhanced by the chamber 27, the X-ray dose for an operator (operator) approaching the apparatus can be reduced. Furthermore, the direction of the duct 30 connected to the chamber 27 can be set to an arbitrary direction. For example, it becomes easy to keep the direction of the opening end 31 in the duct 30 on the exhaust side away from the operator or away from the inspection target.

以下に、上記実施形態に係るX線発生装置100の変形例を説明する。
図7はR部35の設けられた変形例に係るチャンバ37の斜視図である。
この変形例に係るチャンバ37は、チャンバ内の入隅部が湾曲面状のR部35で形成されている。例えば図7では、装置背面側から見た図であるが、ダクト30の延設方向と反対の角部分をR部としている。
このチャンバ37によれば、入隅部によって発生する搬送空気の渦を、そのR形状によって抑制し、スムースな空気の流れとなって空気搬送効率を高め、空気搬送抵抗を低減することができ、これによりチャンバ37に連接される遮蔽部材18内の冷却フィン放熱端15の冷却効果を向上させることが可能となる。また、R部35を設けることは、X線の拡散を抑制する効果も期待できる。
Below, the modification of the X-ray generator 100 which concerns on the said embodiment is demonstrated.
FIG. 7 is a perspective view of a chamber 37 according to a modification in which the R portion 35 is provided.
The chamber 37 according to this modification is formed with a curved portion R portion 35 at the corner of the chamber. For example, in FIG. 7, it is a figure seen from the apparatus back side, However, The corner | angular part opposite to the extension direction of the duct 30 is made into the R part.
According to this chamber 37, the vortex of the carrier air generated by the corners can be suppressed by its R shape, and the air carrier can be smoothly flowed to increase the air carrier efficiency and reduce the air carrier resistance. Thereby, the cooling effect of the cooling fin heat radiating end 15 in the shielding member 18 connected to the chamber 37 can be improved. Further, the provision of the R portion 35 can be expected to have an effect of suppressing X-ray diffusion.

図8は上面に送風ファン32が設けられた変形例に係るダクト40の斜視図である。
この変形例に係るダクト40は、開口端31が上方向を向いて設けられている。従って、送排気間隙28からの通風路は、左右側部である送排気間隙28にて延長直線29(図3参照)に対して水平方向90度に曲がるとともに、その下流である開口端31の内方でさらに上に90度で曲がることになる。
このダクト40によれば、スペースを増やさずに通風路の屈曲数を増やすことができ、X線をより多く吸収散乱させることができ、漏洩を減少させることができる。
FIG. 8 is a perspective view of a duct 40 according to a modification in which a blower fan 32 is provided on the upper surface.
The duct 40 according to this modification is provided with the open end 31 facing upward. Therefore, the ventilation path from the air supply / exhaust gap 28 bends in the horizontal direction 90 degrees with respect to the extended straight line 29 (see FIG. 3) at the air supply / exhaust gap 28 on the left and right side portions, and the downstream end of the opening end 31. It will turn 90 degrees further inward.
According to this duct 40, the number of bent air passages can be increased without increasing the space, more X-rays can be absorbed and scattered, and leakage can be reduced.

図9はチャンバ27に対して上向きに接続された変形例に係るダクト50の斜視図である。
この変形例に係るダクト50は、図8で示したダクト40のようにチャンバ27の側部で一旦水平方向90度に曲げず、送排気間隙28の上方へ直接90度で曲げて形成される。
このダクト50によれば、遮蔽部材18の送排気開口部26の通風路断面積と同等の開口端31を有するダクト50とすることができ、送風抵抗を小さくでき、冷却効果を高めることができる。
FIG. 9 is a perspective view of a duct 50 according to a modification connected upward with respect to the chamber 27.
The duct 50 according to this modified example is formed by bending it directly at 90 degrees above the air supply / exhaust gap 28 without being bent once at 90 degrees in the horizontal direction at the side of the chamber 27 like the duct 40 shown in FIG. .
According to this duct 50, it can be set as the duct 50 which has the opening end 31 equivalent to the ventilation path cross-sectional area of the ventilation opening 26 of the shielding member 18, can reduce ventilation resistance, and can improve a cooling effect. .

図10はZ字形の通風路を形成するようにチャンバ27に接続された変形例に係るダクト60の平面図である。
この変形例に係るダクト60は、一対のダクト60が一対の平行直線上に配置される。つまり、Z字形の通風路を形成するようにチャンバ27に接続される。
このダクト60によれば、空気搬送方向を、同一方向にしながら、前後方向にずらすことができる。
この他、ダクト60は、上下逆向きに接続されても、或いは直交方向に接続されてもよく、さらには、開口端31の向きに関してもそれぞれ向きを変えることとしても良い。このようにして、チャンバ27には、ダクト60の接続向きを適宜に設定することが容易にできる。これにより、冷却効率を低下させずに、X線の遮蔽効果を高めながら、排気空気の作業者に対する干渉や、被検査対象に対する干渉が生じないようにすることができる。
FIG. 10 is a plan view of a duct 60 according to a modification connected to the chamber 27 so as to form a Z-shaped ventilation path.
In the duct 60 according to this modification, the pair of ducts 60 are arranged on a pair of parallel straight lines. That is, it is connected to the chamber 27 so as to form a Z-shaped ventilation path.
According to this duct 60, the air conveyance direction can be shifted in the front-rear direction while keeping the same direction.
In addition, the duct 60 may be connected upside down or in an orthogonal direction, and the direction of the opening end 31 may be changed. In this way, the connection direction of the duct 60 can be easily set in the chamber 27 as appropriate. Thereby, it is possible to prevent the interference of the exhaust air with respect to the operator and the interference with the object to be inspected while improving the X-ray shielding effect without reducing the cooling efficiency.

従って、本実施形態に係るX線発生装置100によれば、冷却効率を低下させずに、X線をより確実に遮蔽できる。   Therefore, according to the X-ray generator 100 according to the present embodiment, X-rays can be more reliably shielded without lowering the cooling efficiency.

また、本実施形態に係るX線検査装置200によれば、ダクト30の開口端31が例えば搬送路に向かないようにして、検査対象に塵埃がかかることを防止できる。   In addition, according to the X-ray inspection apparatus 200 according to the present embodiment, it is possible to prevent dust from being applied to the inspection target by preventing the opening end 31 of the duct 30 from being directed toward the conveyance path, for example.

7…容器
8…X線管
9…絶縁油
11…放熱器
12…基板
13…熱伝達部材(冷却フィン)
14…吸熱端
15…放熱端
17…上面開口部(容器開口)
18…遮蔽部材
26…送排気開口部
27,37…チャンバ
28…送排気間隙
29…延長直線
30,40,50,60…ダクト
31…開口端
32…送風ファン
33…遮蔽部材側壁内面
34…遮蔽部材天井面
100…X線発生装置
200…X線検査装置
7 ... Container 8 ... X-ray tube 9 ... Insulating oil 11 ... Radiator 12 ... Substrate 13 ... Heat transfer member (cooling fin)
14 ... endothermic end 15 ... heat radiating end 17 ... upper surface opening (container opening)
DESCRIPTION OF SYMBOLS 18 ... Shield member 26 ... Supply / exhaust opening part 27, 37 ... Chamber 28 ... Supply / exhaust gap 29 ... Extension straight line 30,40,50,60 ... Duct 31 ... Open end 32 ... Blower fan 33 ... Shield member side wall inner surface 34 ... Shield Member ceiling surface 100 ... X-ray generator 200 ... X-ray inspection device

Claims (4)

X線管(8)が収容されて絶縁油(9)の満たされた容器(7)の上面開口部(17)を塞ぐ基板(12)を有し、該基板を貫通し吸熱端(14)が前記絶縁油内に浸され放熱端(15)が前記容器外方に突出する熱伝達部材(13)を備えた放熱器(11)と、
前記熱伝達部材の放熱端側を覆って前記容器に取り付けられ、両側が送排気開口部(26,26)となる略コ字状に形成されて遮蔽空間(25)をなし、前記放熱器を透過するX線を遮蔽する遮蔽材(22)及び支持材(23)が積層されてなる遮蔽部材(18)と、
前記送排気開口部に送排気間隙(28)を介して前記遮蔽部材に被せられるチャンバ(27)と、
前記両送排気開口部を通る延長直線(29)に交差することで、開口端(31)から前記放熱器の放熱側の放熱面が見えない方向で前記送排気間隙に連通し、前記チャンバに接続され、前記送排気開口部から前記開口端の間でX線を吸収散乱により減衰させる一対のダクト(30,30)と、
を具備することを特徴とするX線発生装置。
An X-ray tube (8) is housed and has a substrate (12) that closes the upper surface opening (17) of the container (7) filled with insulating oil (9), penetrates the substrate, and has an endothermic end (14). A heat radiator (11) provided with a heat transfer member (13) in which the heat radiating end (15) protrudes outward from the container.
Covering the heat radiating end side of the heat transfer member, the heat transfer member is attached to the container, and both sides are formed in a substantially U-shape to be the air supply / exhaust openings (26, 26) to form a shielding space (25), and the heat radiator A shielding member (18) formed by laminating a shielding material (22) that shields transmitted X-rays and a support material (23) ;
A chamber (27) wherein are found over the shield member via the feed discharge gap (28) in the feed discharge opening,
Wherein by intersecting the extension line (29) passing through both feed exhaust opening, and communicates with the feed discharge gap in a direction radiating surface of the heat radiation side of the radiator is not visible from the open end (31), said chamber A pair of ducts (30, 30) connected and for attenuating X-rays by absorption scattering between the opening and exhaust opening and the opening end ;
An X-ray generation apparatus comprising:
請求項1記載のX線発生装置であって、
前記一対のダクトの少なくとも一方に送風ファン(32)が取り付けられていることを特徴とするX線発生装置。
The X-ray generator according to claim 1,
An X-ray generator, wherein a blower fan (32) is attached to at least one of the pair of ducts.
請求項1または2記載のX線発生装置であって、
前記基板に複数の前記熱伝達部材が貫通して設けられ、
前記熱伝達部材の放熱端と遮蔽部材側壁内面(33)の間隔(A)、及び前記熱伝達部材と遮蔽部材天井面(34)の間隔(B)が、隣接する前記熱伝達部材の放熱端同士の間隔(C)よりも小さいことを特徴とするX線発生装置。
The X-ray generator according to claim 1 or 2,
A plurality of the heat transfer members are provided through the substrate,
The distance (A) between the heat radiating end of the heat transfer member and the shielding member side wall inner surface (33) and the distance (B) between the heat transfer member and the shielding member ceiling surface (34) are the heat radiating ends of the adjacent heat transfer members. X-ray generator characterized by being smaller than the space | interval (C) of each other.
請求項1,2,3のいずれか1つに記載のX線発生装置(100)を組み込んだことを特徴とするX線検査装置。   An X-ray inspection apparatus incorporating the X-ray generation apparatus (100) according to any one of claims 1, 2, and 3.
JP2013155821A 2013-07-26 2013-07-26 X-ray generator and X-ray inspection apparatus Active JP6235265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155821A JP6235265B2 (en) 2013-07-26 2013-07-26 X-ray generator and X-ray inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155821A JP6235265B2 (en) 2013-07-26 2013-07-26 X-ray generator and X-ray inspection apparatus

Publications (2)

Publication Number Publication Date
JP2015025750A JP2015025750A (en) 2015-02-05
JP6235265B2 true JP6235265B2 (en) 2017-11-22

Family

ID=52490518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155821A Active JP6235265B2 (en) 2013-07-26 2013-07-26 X-ray generator and X-ray inspection apparatus

Country Status (1)

Country Link
JP (1) JP6235265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147707A (en) * 2014-04-18 2016-12-23 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable resin composition comprising reactive silicone compound
JP7352848B2 (en) * 2019-05-21 2023-09-29 株式会社ロータス・サーマル・ソリューション A heat exchange structure for extracting heat from a coolant in a cooling device, and a cooling device equipped with the heat exchange structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183405A (en) * 1997-12-18 1999-07-09 Shimadzu Corp X-ray foreign matter inspection device
JP3691338B2 (en) * 2000-05-08 2005-09-07 アンリツ産機システム株式会社 X-ray foreign object detection device
JP5364302B2 (en) * 2008-06-17 2013-12-11 アンリツ産機システム株式会社 X-ray foreign object detection device

Also Published As

Publication number Publication date
JP2015025750A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP2023153248A (en) X-ray inspection device
JP2007292497A (en) X-ray inspection device
KR101923759B1 (en) Construction machine
US7589978B1 (en) Air inlet diffuser
US20130081887A1 (en) Construction machine
JP6235265B2 (en) X-ray generator and X-ray inspection apparatus
KR20090022313A (en) Display apparatus
JP2007026800A (en) X-ray generator
KR20190032186A (en) X-ray conversion target
KR101436910B1 (en) Electromagnetic shielding rack
TW201642728A (en) Rack enclosure with perforations for cooling
JP3691338B2 (en) X-ray foreign object detection device
US20020080919A1 (en) X-ray source having a liquid metal target
JP6509536B2 (en) X-ray inspection device
CN109548358A (en) Wind circulator, heat dissipation equipment and cabinet
CN209854806U (en) Engine compartment, power device and engineering machinery
US10555443B2 (en) Display device including a back cover with recess to provide cooling to a heat generating element
JP2010258263A (en) Heat dissipation mechanism of electronic apparatus
WO2019177041A1 (en) Radiation inspecting device, and baggage inspecting device
JPS58166297A (en) Cask of transporting nuclear fuel
JP7500487B2 (en) X-ray inspection equipment
JP2005233793A (en) X-ray shield structure for electron beam irradiator
JP2005173496A (en) Cooling device for light source
CN217470608U (en) Electromagnetic shielding heat dissipation mechanism and electronic equipment
JP2019007859A (en) X-ray inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171026

R150 Certificate of patent or registration of utility model

Ref document number: 6235265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250