WO2012160967A1 - X-ray generator - Google Patents

X-ray generator Download PDF

Info

Publication number
WO2012160967A1
WO2012160967A1 PCT/JP2012/061819 JP2012061819W WO2012160967A1 WO 2012160967 A1 WO2012160967 A1 WO 2012160967A1 JP 2012061819 W JP2012061819 W JP 2012061819W WO 2012160967 A1 WO2012160967 A1 WO 2012160967A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
ray generator
unit
generator characterized
filter
Prior art date
Application number
PCT/JP2012/061819
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 高敬
Original Assignee
日立アロカメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アロカメディカル株式会社 filed Critical 日立アロカメディカル株式会社
Priority to CN201280024981.2A priority Critical patent/CN103548424B/en
Publication of WO2012160967A1 publication Critical patent/WO2012160967A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/505Clinical applications involving diagnosis of bone

Definitions

  • the present invention relates to an X-ray generator, and more particularly to a heat dissipation structure in the X-ray generator.
  • the X-ray generation apparatus includes an X-ray generation unit, and the X-ray generation unit includes an X-ray generation tube and a shielding case that accommodates the X-ray generation tube.
  • the shielding case insulating oil is sealed together with the X-ray generating tube. Insulating oil exhibits an insulating action and a heat dissipation action. A high voltage is applied to the X-ray generator tube. In the X-ray generation tube, much of the injected electric energy becomes thermal energy.
  • X-rays emitted from the X-ray generation unit are usually irradiated to the subject through the filter unit.
  • X-rays that have passed through the subject are detected by an X-ray detector.
  • a high voltage and a low voltage are alternately applied to the X-ray generation tube.
  • one or more filters are selectively inserted on the X-ray beam path.
  • a filter may be inserted only during high-energy X-ray irradiation, and a dedicated filter may be inserted during high-energy X-ray irradiation and low-energy X-ray irradiation. In any case, it is necessary to periodically put in and out one or more filters.
  • a disk unit or a cylindrical unit is used as the filter unit.
  • a disk in which one or more fan filters are incorporated is used in the disk-type unit.
  • the disk rotates about an axis of rotation parallel to the X-ray beam.
  • a cylinder in which one or a plurality of curved filters are incorporated is used in the cylindrical unit (see Patent Document 3 below).
  • the cylinder rotates about a rotation axis orthogonal to the X-ray beam.
  • An object of the present invention is to provide an X-ray generator that can effectively shield scattered X-rays simultaneously with heat radiation.
  • an object of the present invention is to provide a highly practical X-ray generator.
  • An X-ray generation apparatus includes an X-ray generation source that generates an X-ray beam, and a shielding case that includes the front plate that houses the X-ray generation source and has an X-ray irradiation port.
  • the heat dissipation structure that transmits heat from the X-ray generation source is provided around the filter unit, and the cooling of the X-ray generation source can be promoted by the heat dissipation action of the heat dissipation structure.
  • the filter unit one or a plurality of filters are driven, and scattered X-rays are likely to be generated in various directions depending on the passage state of the X-ray beam in the filter unit. Many of the scattered X-rays pass through the heat dissipation structure provided around the filter unit, so that the scattered X-ray shielding effect can be expected.
  • a unit having a cylindrical filter drum is used as the filter unit, scattered X-rays are likely to be generated irregularly over a wide area. In such a case, the heat dissipation structure functions more effectively as an X-ray shielding member.
  • the heat dissipation structure includes a plurality of vertical walls standing up with respect to the front plate and at least one horizontal wall parallel to the front plate, wherein the plurality of vertical walls are attenuated by X-rays.
  • the horizontal wall is made of a material having an action, and the horizontal wall is made of a material having an X-ray attenuation action. If only a heat dissipation action is expected, a plurality of vertical walls may be provided. However, if a shielding action is also expected, it is desirable to further provide a horizontal wall, that is, the light exits in various directions such as a horizontal direction and a vertical direction.
  • a plurality of fins may be provided on the surface of the filter unit case.
  • the heat dissipation structure has a plurality of ducts, and the inside of each duct functions as an air flow passage, and air blowing means for circulating air in the plurality of ducts is provided. Air cooling can be promoted by forming an appropriate air flow by the plurality of ducts and the air blowing means.
  • a cable for supplying electric power to the X-ray generation source is inserted into a specific duct among the plurality of ducts. According to this, the electromagnetic shielding action of the heat dissipation structure can be expected. Even if the entire cable is not accommodated in the duct, leakage of electromagnetic waves can be prevented or reduced at least for a part of the cable if it is accommodated.
  • the end of the horizontal wall can be extended horizontally to function as a handle. Moreover, you may make it make the edge part of each vertical wall into a spire shape in order to promote the distribution
  • the above-described configuration can be applied to various devices using X-rays, but it is particularly preferable to apply to a bone density measuring device (bone mineral content measuring device).
  • FIG. 1 It is a block diagram which shows the bone density measuring device system provided with the X-ray generator which concerns on this invention. It is sectional drawing of an upper unit. It is a figure which shows the rotating drum in a filter unit. It is a top view of an upper unit. It is a figure which shows the modification of a structure. It is a figure which shows the other modification of a structure.
  • FIG. 1 shows a bone density measuring system provided with an X-ray generator according to the present invention.
  • This bone density measuring system is installed in a medical institution.
  • the X-ray generator according to the present invention can be applied to other systems using X-rays in addition to a bone density measuring system.
  • the bone density measuring system shown in FIG. 1 is a system for measuring the bone mineral density of bone in a subject. It is roughly divided into a measurement unit 10 and a calculation control unit 12.
  • the measurement unit 10 is a part that acquires X-ray detection data for bone mineral content calculation by X-ray irradiation and detection.
  • the arithmetic control unit 12 controls the measurement unit 10 and processes detection data.
  • the measuring unit 10 will be described in detail.
  • the measurement unit 10 includes an X-ray generation unit 14 and an upper unit 18. Specifically, the units 14 and 18 are provided in the lower part of the bed 20.
  • the X-ray generation unit is configured by combining both the X-ray generation unit 14 and the upper unit 18. The detailed configuration will be described later in detail with reference to FIGS.
  • the X-ray generation unit 14 includes an X-ray generation tube 16 in which X-rays, specifically X-rays having a fan beam shape, are generated.
  • the upper unit 18 has a filter unit and a structure (heat dissipation structure). As will be described later in detail, the structure exhibits a heat dissipation effect, a shielding effect, an electromagnetic shielding effect, and the like.
  • the subject 22 is placed on the bed 20.
  • a fan beam extending in the YZ plane is shown.
  • An X-ray detection unit 20 is provided above the subject 22.
  • the X-ray detection unit 20 includes a plurality of detection sensors.
  • the X-ray detection unit 24 outputs detection data.
  • Reference numeral 26 denotes a housing in the measurement unit.
  • the X-ray generation unit 14, the upper unit 18, and the X-ray detection unit 24 are conveyed in the horizontal direction by a scanning mechanism (not shown).
  • An X-ray generator may be provided above the subject, and an X-ray detection unit may be provided below the subject.
  • the control unit 30 controls the operation of the entire system, and particularly controls the power supply 32 and the filter unit.
  • the bone density calculation unit 28 calculates the bone density using first detection data obtained by irradiation with high energy X-rays and second detection data obtained by irradiation with low energy X-rays. A bone density image obtained thereby is output to the display unit 34.
  • the display unit 34 displays an average bone density value and the like by numerical values. Incidentally, the voltage of the power source is switched according to the irradiation with the high energy X-ray and the irradiation with the low energy X-ray, and the rotation operation of the filter is controlled.
  • FIG. 2 shows a cross section of the upper unit 18 shown in FIG.
  • the lower side is an X-ray generation unit 14.
  • the X-ray generation unit 14 has a case 38 made of a material having an X-ray shielding function, such as brass or lead.
  • the interior 40 is filled with insulating oil, and the interior 40 is provided with an X-ray generation tube 16. Insulating oil exhibits heat dissipation and insulation.
  • a slit 38 ⁇ / b> A that functions as a radiation port through which the X-ray beam 36 passes is formed in a top plate 38 ⁇ / b> B as a front plate in the case 38. It has a structure that does not allow insulating oil to flow out.
  • the top plate 38B is a member that spreads along the XY plane (that is, parallel to the XY plane).
  • the upper unit 18 includes a filter unit 42 and a structure 44. Specifically, the structure 44 is provided so as to surround the periphery of the filter unit 42.
  • the filter unit 42 has a rotary drum 46 provided therein, and the rotary drum 46 has a plurality of filter members. This will be described later with reference to FIG.
  • a filter unit case 48 is provided around the rotary drum 46, and has a side plate 48B and a top plate 48A.
  • the upper surface plate 48A is formed slightly thicker than the side surface plate 48B, and a slit 48C through which the X-ray beam 36 passes is formed at the center of the upper surface plate 48A.
  • the slit 48C functions as a collimator.
  • a plurality of fins 50 are formed on the outer surface of the side plate 48B. Thereby, the heat dissipation action of the filter unit case 48 is enhanced.
  • the filter unit case 48 is made of, for example, brass or lead, that is, a member having an X-ray shielding action.
  • the thickness of the upper surface plate 48A is sufficiently large so that scattered X-rays do not leak upward from the inside of the filter unit.
  • an arrow indicated by reference numeral 56 conceptually indicates scattered X-rays emitted in the horizontal direction from the rotating drum.
  • the rotation axis of the rotary drum is parallel to the Y direction.
  • the structure 44 includes a horizontal plate 52 and a plurality of vertical plates 54 integrated therewith.
  • the horizontal plate 52 is a member that extends along the XY plane.
  • Each vertical plate 54 is a member extending along the YZ plane.
  • a plurality of ducts 60 partitioned by a plurality of vertical plates 54 are formed below the horizontal plate 52.
  • Each duct 60 functions as an air flow path. Cables 58 are inserted through the two ducts at the right end and the left end in the duct row, respectively. These cables 58 supply electric power to two fans for circulating air.
  • the structure 44 is made of a member that shields or attenuates scattered X-rays, and is made of a metal such as lead or brass.
  • the structural body 44 may be made of a member such as aluminum. In any case, it is desirable that the structural body 44 is constituted by a member that shields or attenuates X-rays.
  • the structure 44 since the plurality of vertical plates 54 are arranged in the horizontal direction, the X-ray attenuation effect can be enhanced in the horizontal direction. Since the structure 44 includes the horizontal plate 52 having a certain large thickness, an X-ray attenuation effect in the vertical direction can also be obtained.
  • the X-ray attenuation action by the structure 44 cannot be expected, but in order to attenuate such X-rays,
  • the thickness of the two side plates present at both ends in the Y direction of the filter unit case 48 is increased. That is, in the filter unit case 48, the thickness of the upper surface plate 48A and the thickness of the two side surface plates arranged in the Y direction are increased. Conversely, the thickness of the two vertical side plates present at both ends in the X direction is thin. However, scattered X-rays that have passed through them are sufficiently attenuated by the plurality of vertical plates 54 described above.
  • the structure 44 includes the horizontal plate 52 and the plurality of vertical plates 54, and the surface area of the structure 44 is increased. Thereby, it is possible to generate a sufficient heat dissipation action in the structure 44.
  • the structure 44 is connected to the case 38 in the X-ray generation unit 14, specifically, connected to the top plate 38 ⁇ / b> B. Therefore, the heat generated in the X-ray generation tube 16 is transmitted to the case 38 through the insulating oil, and further transmitted from the case 38 to the structure 44. The heat generated by the X-ray generation tube 16 is effectively released to the outside by the heat radiation action in the structure 44. In order to further promote such a heat radiation action, a plurality of fans described later are provided.
  • FIG. 3 schematically shows the rotating drum 46.
  • the rotating drum 46 is provided in the filter unit 42 shown in FIG.
  • the rotating drum 46 includes a plurality of members 104 and 106 and a plurality of openings 102 arranged along the circumferential direction.
  • the member 104 is a filter member or a shielding member
  • the member 106 is a filter member. Filtering for generating high energy X-rays and low energy X-rays can be performed by arranging a plurality of members in the circumferential direction as described above or by providing an opening 102 between adjacent members. is there.
  • FIG. 4 shows a top view of the upper unit.
  • the upper unit includes the structure 44, and the structure 44 includes the horizontal plate 52 and the plurality of vertical plates 54.
  • a plurality of ducts 60 are formed by these plates.
  • each duct 60 is a tunnel extending in the Y direction.
  • a plurality of fans 62A and 62B are provided on one side (left side in FIG. 4) of the plurality of ducts 60, and air is forcibly sent into the plurality of ducts 60 by the fans 62A and 62B.
  • the air flow is indicated by arrows in FIG.
  • the air to be fed is also sent to a plurality of grooves formed on the upper side of the horizontal plate 52.
  • reference numeral 58 denotes a cable connected to the two fans 62A and 62B.
  • the main part of the cable 58 is drawn into a specific duct.
  • a structural part existing around the specific duct exhibits an electromagnetic shielding effect.
  • leakage of electromagnetic noise can be prevented or reduced.
  • one end of each cable 58 is connected to each fan, and the lower end of each cable 58 is drawn into the X-ray generation unit.
  • a part of a collective cable (not shown) extending from the X-ray generation unit is a fan power cable.
  • the end portion of the filter unit case in the Y direction of the filter unit 48 that is, the side plate 48D is thicker than the side plate 48B present at the end in the X direction.
  • the scattered X-rays are generated in the axial direction of the rotating drum, that is, in the Y direction, the scattered X-rays are blocked by the side plate 48D.
  • the structure 44 shown in FIG. 5 includes a horizontal plate 52 and a plurality of vertical plates 54. However, in the example shown in FIG. 5, both ends of the horizontal plate 52 in the Y direction extend in the horizontal direction.
  • the two extending portions are horizontally protruding portions, and they function as the handles 52A and 52B.
  • the X-ray generation unit 14 and the upper unit 18 are structurally connected. By grasping the pair of handle portions, the entire X-ray generation apparatus can be firmly held and transported.
  • each vertical wall 54 on the air inlet side has a tapered shape 54a, that is, the resistance when air is taken in is reduced.
  • the structure is configured by one horizontal plate and a plurality of vertical plates. However, one or a plurality of horizontal plates may be added, and more complicated in order to increase the surface area. A structure may be adopted. In any case, it is desirable to employ a structure that effectively generates heat dissipation and shielding. In the above embodiment, the structure is not provided on the upper part of the filter unit. However, the structure of the structure can be changed so that attenuation and heat dissipation are also exhibited in the portion.

Abstract

An X-ray generator provided in a bone densitometry system, etc., has a structure (44) above an X-ray generation unit (14). Specifically, the structure (44) is provided around a filter unit (42), and the structure (44) comprises one horizontal plate (52) and multiple vertical plates (54). In the event of scattered X-rays inside the filter unit (42), the scattered X-rays are shielded by the structure (44). The X-ray tube is effectively cooled due to the heat radiation function of the structure (44). The structure (44) also exerts an electromagnetic shielding function.

Description

X線発生装置X-ray generator
 本発明は、X線発生装置に関し、特に、X線発生装置における放熱構造に関する。 The present invention relates to an X-ray generator, and more particularly to a heat dissipation structure in the X-ray generator.
 X線を利用して被検者の測定を行う装置として、骨密度測定装置、X線撮影装置、CT撮影装置、等が知られている。それらの装置はX線発生装置を備える(下記特許文献1,2を参照)。X線発生装置は、X線発生ユニットを含み、そのX線発生ユニットは、X線発生管と、それを収容した遮蔽ケースと、を備える。遮蔽ケース内には、X線発生管とともに、絶縁油が封入されている。絶縁油は絶縁作用及び放熱作用を発揮するものである。X線発生管には高電圧が印加される。X線発生管においては、注入した電気エネルギーの内の多くが熱エネルギーとなってしまう。 As a device for measuring a subject using X-rays, a bone density measuring device, an X-ray imaging device, a CT imaging device, and the like are known. These devices include an X-ray generator (see Patent Documents 1 and 2 below). The X-ray generation apparatus includes an X-ray generation unit, and the X-ray generation unit includes an X-ray generation tube and a shielding case that accommodates the X-ray generation tube. In the shielding case, insulating oil is sealed together with the X-ray generating tube. Insulating oil exhibits an insulating action and a heat dissipation action. A high voltage is applied to the X-ray generator tube. In the X-ray generation tube, much of the injected electric energy becomes thermal energy.
 骨密度測定装置において、X線発生ユニットから放射されたX線は、通常、フィルタユニットを通って、被検者へ照射される。被検体を透過したX線は、X線検出器にて検出される。骨密度測定では、X線発生管に対して、高電圧と低電圧とが交互に印加される。それに合わせて、X線ビーム経路上に1又は複数のフィルタが選択的に挿入される。例えば、高エネルギーX線照射時のみフィルタが挿入される場合があり、また、高エネルギーX線照射時及び低エネルギーX線照射時のそれぞれにおいて、専用のフィルタが挿入される場合がある。いずれにしても、1又は複数のフィルタの出し入れを周期的に行う必要がある。このため、フィルタユニットとして、円盤型ユニット又は円筒型ユニットが利用される。円盤型ユニットにおいては、1又は複数の扇状フィルタが組み込まれた円盤が利用される。その円盤はX線ビームと並行な回転軸の周りにおいて回転する。円筒型ユニットにおいては、1又は複数の湾曲フィルタが組み込まれた円筒が利用される(下記特許文献3を参照)。その円筒は、X線ビームと直交する回転軸の周りで回転する。 In the bone density measuring device, X-rays emitted from the X-ray generation unit are usually irradiated to the subject through the filter unit. X-rays that have passed through the subject are detected by an X-ray detector. In bone density measurement, a high voltage and a low voltage are alternately applied to the X-ray generation tube. Accordingly, one or more filters are selectively inserted on the X-ray beam path. For example, a filter may be inserted only during high-energy X-ray irradiation, and a dedicated filter may be inserted during high-energy X-ray irradiation and low-energy X-ray irradiation. In any case, it is necessary to periodically put in and out one or more filters. For this reason, a disk unit or a cylindrical unit is used as the filter unit. In the disk-type unit, a disk in which one or more fan filters are incorporated is used. The disk rotates about an axis of rotation parallel to the X-ray beam. In the cylindrical unit, a cylinder in which one or a plurality of curved filters are incorporated is used (see Patent Document 3 below). The cylinder rotates about a rotation axis orthogonal to the X-ray beam.
特開2007-149521号公報JP 2007-149521 A 特開2007-026800号公報JP 2007-026800 A 特許第4499593号Patent No. 4499593
 上記のようなX線発生装置においては、大量の熱が発生するので、放熱を十分に行う必要がある。しかし、従来においては必ずしも十分な放熱を行えていない。X線発生ユニットの天板(被検体側の板)上にフィルタユニットが搭載される構成では、フィルタユニットにおいてX線が散乱しやすく、すなわち、そこから外部へ散乱X線が出やすい。その散乱X線をフィルタユニットのケースだけで遮蔽するためには、ケース全体を十分な厚みで構成しなければならない。X線発生装置には高電圧が印加されるために、X線発生装置では電磁ノイズが発生し易い。その電磁ノイズの漏洩を解消又は軽減することが期待される。更に、X線発生装置を容易に持ち運びできるようにすることも要望されている。以上あげた課題の内の少なくとも1つを解決することが要請される。 In the X-ray generator as described above, since a large amount of heat is generated, it is necessary to sufficiently dissipate heat. However, in the prior art, sufficient heat dissipation is not always performed. In the configuration in which the filter unit is mounted on the top plate (subject side plate) of the X-ray generation unit, X-rays are easily scattered in the filter unit, that is, scattered X-rays are easily emitted from there. In order to shield the scattered X-rays only by the case of the filter unit, the entire case must be formed with a sufficient thickness. Since a high voltage is applied to the X-ray generator, electromagnetic noise is easily generated in the X-ray generator. It is expected to eliminate or reduce the leakage of electromagnetic noise. Furthermore, it is desired to make the X-ray generator easily portable. It is required to solve at least one of the above-mentioned problems.
 本発明の目的は、放熱と同時に散乱X線の遮蔽を効果的に行えるX線発生装置を提供することにある。あるいは、本発明の目的は、実用性の高いX線発生装置を提供することにある。 An object of the present invention is to provide an X-ray generator that can effectively shield scattered X-rays simultaneously with heat radiation. Alternatively, an object of the present invention is to provide a highly practical X-ray generator.
 本発明に係るX線発生装置は、X線ビームを発生するX線発生源と、前記X線発生源を収容し且つX線照射口を有する前面板を備えた遮蔽ケースと、を有するX線発生ユニットと、前記X線発生ユニットにおける前記前面板上に設けられ、少なくとも1つのフィルタを有し、前記X線ビームの経路上に前記少なくとも1つのフィルタを挿入するフィルタユニットと、前記前面板上であって前記フィルタユニットの周囲に設けられた放熱構造体と、を含む。 An X-ray generation apparatus according to the present invention includes an X-ray generation source that generates an X-ray beam, and a shielding case that includes the front plate that houses the X-ray generation source and has an X-ray irradiation port. A generating unit, a filter unit provided on the front plate in the X-ray generating unit, having at least one filter, and inserting the at least one filter on a path of the X-ray beam; and on the front plate And a heat dissipating structure provided around the filter unit.
 上記構成によれば、フィルタユニットの周囲にX線発生源からの熱が伝わる放熱構造体が設けられ、その放熱構造体の放熱作用によってX線発生源の冷却を促進できる。フィルタユニットにおいては1又は複数のフィルタが駆動されており、フィルタユニットにおけるX線ビームの通過状態によっては散乱X線が種々の方向に生じやすくなる。そのような散乱X線の内で多くのものが、フィルタユニットの周囲に設けられた放熱構造体を通過することになるので、そこでの散乱X線の遮蔽効果を期待できる。フィルタユニットとして、円筒形のフィルタドラムを有するユニットを用いる場合には散乱X線が広域にわたって不規則に生じやすいので、そのような場合に放熱構造体がX線遮蔽部材としてより有効に機能する。 According to the above configuration, the heat dissipation structure that transmits heat from the X-ray generation source is provided around the filter unit, and the cooling of the X-ray generation source can be promoted by the heat dissipation action of the heat dissipation structure. In the filter unit, one or a plurality of filters are driven, and scattered X-rays are likely to be generated in various directions depending on the passage state of the X-ray beam in the filter unit. Many of the scattered X-rays pass through the heat dissipation structure provided around the filter unit, so that the scattered X-ray shielding effect can be expected. When a unit having a cylindrical filter drum is used as the filter unit, scattered X-rays are likely to be generated irregularly over a wide area. In such a case, the heat dissipation structure functions more effectively as an X-ray shielding member.
 望ましくは、前記放熱構造体は、前記前面板に対して起立した複数の垂直壁と、前記前面板に対して並行な少なくとも1つの水平壁と、を含み、前記複数の垂直壁がX線減弱作用を有する材料により構成され、且つ、前記水平壁がX線減弱作用を有する材料により構成される。放熱作用だけを期待する場合には単に複数の垂直壁を設けるだけでもよいが、遮蔽作用も期待する場合には更に水平壁を設けるのが望ましく、つまり水平方向及び垂直方向の様々な方向へ出る散乱X線がいずれかの遮蔽部材を横切るように放熱構造体の構造を定めるのが望ましい。放熱構造体を設けると共に、フィルタユニットのケースの全部又は一部を厚くすることにより、散乱X線の遮蔽効果をより高めることも可能である。なお、フィルタユニットケースの表面上に複数のフィンを設けるようにしてもよい。 Preferably, the heat dissipation structure includes a plurality of vertical walls standing up with respect to the front plate and at least one horizontal wall parallel to the front plate, wherein the plurality of vertical walls are attenuated by X-rays. The horizontal wall is made of a material having an action, and the horizontal wall is made of a material having an X-ray attenuation action. If only a heat dissipation action is expected, a plurality of vertical walls may be provided. However, if a shielding action is also expected, it is desirable to further provide a horizontal wall, that is, the light exits in various directions such as a horizontal direction and a vertical direction. It is desirable to determine the structure of the heat dissipation structure so that scattered X-rays cross any of the shielding members. While providing the heat dissipation structure and increasing the thickness of all or part of the case of the filter unit, the shielding effect of scattered X-rays can be further enhanced. A plurality of fins may be provided on the surface of the filter unit case.
 望ましくは、前記放熱構造体は複数のダクト(ducts)を有し、前記各ダクトの内部が空気の流通路として機能し、前記複数のダクト内で空気を流通させるための送風手段が設けられる。複数のダクトと送風手段とによって適当な空気の流れを形成して空冷を促進させることができる。望ましくは、前記複数のダクトの内の特定のダクトには前記X線発生源に電力を供給するケーブルが挿通される。これによれば放熱構造体の電磁シールド作用を期待できる。ケーブルの全部がダクト内に収容されていないとしても、そのケーブルの一部が収容されていれば少なくともその一部について電磁波の漏洩を防止又は軽減できる。 Desirably, the heat dissipation structure has a plurality of ducts, and the inside of each duct functions as an air flow passage, and air blowing means for circulating air in the plurality of ducts is provided. Air cooling can be promoted by forming an appropriate air flow by the plurality of ducts and the air blowing means. Preferably, a cable for supplying electric power to the X-ray generation source is inserted into a specific duct among the plurality of ducts. According to this, the electromagnetic shielding action of the heat dissipation structure can be expected. Even if the entire cable is not accommodated in the duct, leakage of electromagnetic waves can be prevented or reduced at least for a part of the cable if it is accommodated.
 なお、水平壁の端部を水平に延伸させてそこを取っ手として機能させることも可能である。また、空気の流通を促進させるために各垂直壁の端部を尖塔形状にするようにしてもよい。上記構成はX線を利用した各種装置に適用することが可能であるが、特に骨密度測定装置(骨塩量測定装置)に適用するのが望ましい。 It should be noted that the end of the horizontal wall can be extended horizontally to function as a handle. Moreover, you may make it make the edge part of each vertical wall into a spire shape in order to promote the distribution | circulation of air. The above-described configuration can be applied to various devices using X-rays, but it is particularly preferable to apply to a bone density measuring device (bone mineral content measuring device).
本発明に係るX線発生装置を備えた骨密度測定装置システムを示すブロック図である。It is a block diagram which shows the bone density measuring device system provided with the X-ray generator which concerns on this invention. 上部ユニットの断面図である。It is sectional drawing of an upper unit. フィルタユニット内の回転ドラムを示す図である。It is a figure which shows the rotating drum in a filter unit. 上部ユニットの上面図である。It is a top view of an upper unit. 構造体の変形例を示す図である。It is a figure which shows the modification of a structure. 構造体の他の変形例を示す図である。It is a figure which shows the other modification of a structure.
 以下、本発明の好適な実施形態を図面に基づいて説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図1には、本発明に係るX線発生装置を備えた骨密度測定システムが示されている。この骨密度測定システムは医療機関に設置されるものである。本発明に係るX線発生装置は、骨密度測定システムの他、X線を利用する他のシステムにも適用可能である。 FIG. 1 shows a bone density measuring system provided with an X-ray generator according to the present invention. This bone density measuring system is installed in a medical institution. The X-ray generator according to the present invention can be applied to other systems using X-rays in addition to a bone density measuring system.
 図1に示される骨密度測定システムは、被検者における骨の骨塩量を測定するシステムである。それは、大別して、測定部10及び演算制御部12により構成される。測定部10は、X線の照射及び検出によって、骨塩量演算用のX線検出データを取得する部分である。演算制御部12は、測定部10の制御を行うと共に、検出データを処理する部分である。 The bone density measuring system shown in FIG. 1 is a system for measuring the bone mineral density of bone in a subject. It is roughly divided into a measurement unit 10 and a calculation control unit 12. The measurement unit 10 is a part that acquires X-ray detection data for bone mineral content calculation by X-ray irradiation and detection. The arithmetic control unit 12 controls the measurement unit 10 and processes detection data.
 測定部10について詳述する。測定部10は、X線発生ユニット14及び上部ユニット18を備えている。具体的には、ベッド20の下部に、それらのユニット14,18が設けられている。X線発生ユニット14と上部ユニット18の両者を合わせてX線発生装置が構成される。その詳細な構成については後に図2乃至図4を用いて詳述する。X線発生ユニット14はX線発生管16を備えており、そこにおいて、X線、具体的にはファンビーム形状をもったX線、が生成される。上部ユニット18は、本実施形態において、フィルタユニットと構造体(放熱構造体)とを有している。構造体は、後に詳述するように、放熱作用、遮蔽作用、電磁シールド作用、等を発揮する。 The measuring unit 10 will be described in detail. The measurement unit 10 includes an X-ray generation unit 14 and an upper unit 18. Specifically, the units 14 and 18 are provided in the lower part of the bed 20. The X-ray generation unit is configured by combining both the X-ray generation unit 14 and the upper unit 18. The detailed configuration will be described later in detail with reference to FIGS. The X-ray generation unit 14 includes an X-ray generation tube 16 in which X-rays, specifically X-rays having a fan beam shape, are generated. In this embodiment, the upper unit 18 has a filter unit and a structure (heat dissipation structure). As will be described later in detail, the structure exhibits a heat dissipation effect, a shielding effect, an electromagnetic shielding effect, and the like.
 ベッド20上には被検体22が載置される。図1においては、YZ面に広がるファンビームが示されている。被検体22の上方にX線検出ユニット20が設けられている。X線検出ユニット20は、複数の検出センサにより構成されるものである。X線検出ユニット24は検出データを出力する。符号26は、測定部における筐体を示している。本実施形態において、図示されていない走査機構によって、X線発生ユニット14、上部ユニット18、及び、X線検出ユニット24が水平方向に搬送されている。被検体の上方にX線発生装置を設け、且つ、被検体の下方にX線検出ユニットを設けるようにしてもよい。 The subject 22 is placed on the bed 20. In FIG. 1, a fan beam extending in the YZ plane is shown. An X-ray detection unit 20 is provided above the subject 22. The X-ray detection unit 20 includes a plurality of detection sensors. The X-ray detection unit 24 outputs detection data. Reference numeral 26 denotes a housing in the measurement unit. In the present embodiment, the X-ray generation unit 14, the upper unit 18, and the X-ray detection unit 24 are conveyed in the horizontal direction by a scanning mechanism (not shown). An X-ray generator may be provided above the subject, and an X-ray detection unit may be provided below the subject.
 次に、演算制御部12について説明する。制御部30は、システム全体の動作を制御するものであり、特に、電源32及びフィルタユニットの制御を行っている。骨密度演算部28は、高エネルギーX線の照射により得られた第1検出データと低エネルギーX線の照射により得られた第2検出データとを利用して骨密度を演算している。それにより得られる骨密度画像が表示部34へ出力されている。表示部34には、骨密度画像の他、平均骨密度値等が数値によって表示される。ちなみに、高エネルギーX線の照射及び低エネルギーX線の照射に合わせて、電源の電圧が切り替えられており、またフィルタの回転動作が制御されている。 Next, the arithmetic control unit 12 will be described. The control unit 30 controls the operation of the entire system, and particularly controls the power supply 32 and the filter unit. The bone density calculation unit 28 calculates the bone density using first detection data obtained by irradiation with high energy X-rays and second detection data obtained by irradiation with low energy X-rays. A bone density image obtained thereby is output to the display unit 34. In addition to the bone density image, the display unit 34 displays an average bone density value and the like by numerical values. Incidentally, the voltage of the power source is switched according to the irradiation with the high energy X-ray and the irradiation with the low energy X-ray, and the rotation operation of the filter is controlled.
 図2には、図1に示した上部ユニット18の断面が示されている。その下側はX線発生ユニット14である。X線発生ユニット14は、X線の遮蔽作用を有する材料、例えば真鍮あるいは鉛、によって構成されるケース38を有する。その内部40には絶縁油が充填されており、またその内部40にはX線発生管16が設けられている。絶縁油は放熱作用及び絶縁作用を発揮するものである。ケース38における前面板としての天板38Bには、X線ビーム36を通過させる放射口として機能するスリット38Aが形成されている。それは絶縁油を流出させない構造を有している。天板38BはXY面に沿って(つまりXY面に平行に)広がる部材である。 FIG. 2 shows a cross section of the upper unit 18 shown in FIG. The lower side is an X-ray generation unit 14. The X-ray generation unit 14 has a case 38 made of a material having an X-ray shielding function, such as brass or lead. The interior 40 is filled with insulating oil, and the interior 40 is provided with an X-ray generation tube 16. Insulating oil exhibits heat dissipation and insulation. A slit 38 </ b> A that functions as a radiation port through which the X-ray beam 36 passes is formed in a top plate 38 </ b> B as a front plate in the case 38. It has a structure that does not allow insulating oil to flow out. The top plate 38B is a member that spreads along the XY plane (that is, parallel to the XY plane).
 上部ユニット18は、フィルタユニット42及び構造体44を備えている。具体的には、構造体44は、フィルタユニット42の周囲を取り囲むように設けられている。フィルタユニット42は、その内部に設けられた回転ドラム46を有し、その回転ドラム46は複数のフィルタ部材を有している。これについては後に図3を用いて説明する。回転ドラム46の周囲にはフィルタユニットケース48が設けられており、それは側面板48B及び上面板48Aを有する。上面板48Aは側面板48Bよりもやや厚く形成されており、上面板48Aの中央部には、X線ビーム36を通過させるスリット48Cが形成されている。そのスリット48Cはコリメータとして機能する。側面板48Bの外表面上には複数のフィン50が形成されている。これにより、フィルタユニットケース48の放熱作用が増強されている。フィルタユニットケース48は、例えば真鍮や鉛によって構成され、すなわちX線遮蔽作用を有する部材によって構成される。フィルタユニット42の内部から上方に散乱X線が漏洩しないように、上面板48Aの厚みが十分に大きくなっている。ちなみに符号56で示される矢印は、回転ドラムから水平方向に出た散乱X線を概念的に示したものである。回転ドラムの回転軸はY方向に平行である。 The upper unit 18 includes a filter unit 42 and a structure 44. Specifically, the structure 44 is provided so as to surround the periphery of the filter unit 42. The filter unit 42 has a rotary drum 46 provided therein, and the rotary drum 46 has a plurality of filter members. This will be described later with reference to FIG. A filter unit case 48 is provided around the rotary drum 46, and has a side plate 48B and a top plate 48A. The upper surface plate 48A is formed slightly thicker than the side surface plate 48B, and a slit 48C through which the X-ray beam 36 passes is formed at the center of the upper surface plate 48A. The slit 48C functions as a collimator. A plurality of fins 50 are formed on the outer surface of the side plate 48B. Thereby, the heat dissipation action of the filter unit case 48 is enhanced. The filter unit case 48 is made of, for example, brass or lead, that is, a member having an X-ray shielding action. The thickness of the upper surface plate 48A is sufficiently large so that scattered X-rays do not leak upward from the inside of the filter unit. Incidentally, an arrow indicated by reference numeral 56 conceptually indicates scattered X-rays emitted in the horizontal direction from the rotating drum. The rotation axis of the rotary drum is parallel to the Y direction.
 構造体44は、この図2に示す例において、水平板52と、それに一体化された複数の垂直板54と、を有している。水平板52はXY面に沿って広がる部材である。各垂直板54はそれぞれYZ面に沿って広がる部材である。水平板52の下部には複数の垂直板54によって仕切られた複数のダクト60が形成されている。各ダクト60は空気の流通路として機能する。ダクト列における右端及び左端の2つのダクトにはそれぞれケーブル58が挿通されている。それらのケーブル58は、空気を流通させるための2つのファンへ電力を供給するものである。 In the example shown in FIG. 2, the structure 44 includes a horizontal plate 52 and a plurality of vertical plates 54 integrated therewith. The horizontal plate 52 is a member that extends along the XY plane. Each vertical plate 54 is a member extending along the YZ plane. A plurality of ducts 60 partitioned by a plurality of vertical plates 54 are formed below the horizontal plate 52. Each duct 60 functions as an air flow path. Cables 58 are inserted through the two ducts at the right end and the left end in the duct row, respectively. These cables 58 supply electric power to two fans for circulating air.
 図2において、ケーブル58が挿通されているダクト60に対する電磁シールド作用が符号62で示されている。構造体44は、散乱X線を遮蔽あるいは減弱させる部材で構成され、鉛や真鍮等の金属によって構成される。もちろん、アルミニウムなどの部材によって構造体44が構成されてもよい。いずれにしてもX線の遮蔽あるいは減弱を生じさせる部材によって、構造体44を構成するのが望ましい。構造体44においては、水平方向に複数の垂直板54が並べられているので、当該水平方向においてX線の減弱作用を高められる。構造体44は、ある程度の大きな厚みを持った水平板52を有しているため、垂直方向でのX線の減弱作用も得られる。フィルタユニット42から見てY方向(すなわち図2の紙面に垂直な方向)に出るX線については構造体44によるX線の減弱作用を期待できないが、そのようなX線を減弱するために、フィルタユニットケース48のY方向の両端部に存在する2つの側面板の厚みが増大されている。すなわち、フィルタユニットケース48においては、上面板48Aの厚み及びY方向に並ぶ2つの側面板の厚みが増大されている。逆に言えば、X方向の両端に存在する2つの垂直な側面板の厚みは薄くなっている。ただし、それらを通過した散乱X線は、上述した複数の垂直板54等によって十分に減弱される。 2, the electromagnetic shielding action for the duct 60 through which the cable 58 is inserted is indicated by reference numeral 62. The structure 44 is made of a member that shields or attenuates scattered X-rays, and is made of a metal such as lead or brass. Of course, the structural body 44 may be made of a member such as aluminum. In any case, it is desirable that the structural body 44 is constituted by a member that shields or attenuates X-rays. In the structure 44, since the plurality of vertical plates 54 are arranged in the horizontal direction, the X-ray attenuation effect can be enhanced in the horizontal direction. Since the structure 44 includes the horizontal plate 52 having a certain large thickness, an X-ray attenuation effect in the vertical direction can also be obtained. For X-rays that are emitted from the filter unit 42 in the Y direction (that is, the direction perpendicular to the paper surface of FIG. 2), the X-ray attenuation action by the structure 44 cannot be expected, but in order to attenuate such X-rays, The thickness of the two side plates present at both ends in the Y direction of the filter unit case 48 is increased. That is, in the filter unit case 48, the thickness of the upper surface plate 48A and the thickness of the two side surface plates arranged in the Y direction are increased. Conversely, the thickness of the two vertical side plates present at both ends in the X direction is thin. However, scattered X-rays that have passed through them are sufficiently attenuated by the plurality of vertical plates 54 described above.
 構造体44は、上述したように、水平板52及び複数の垂直板54からなり、構造体44の表面積が増大されている。これにより、構造体44において十分な放熱作用を生じさせることが可能である。構造体44は、X線発生ユニット14におけるケース38に連結されており、具体的には、天板38Bに連結されている。よって、X線発生管16で生じた熱は、絶縁油を介してケース38に伝わり、ケース38から更に構造体44に伝わる。構造体44での放熱作用により、X線発生管16で生じた熱が効果的に外界へ放出される。そのような放熱作用をより促進させるために、後に説明する複数のファンが設けられている。 As described above, the structure 44 includes the horizontal plate 52 and the plurality of vertical plates 54, and the surface area of the structure 44 is increased. Thereby, it is possible to generate a sufficient heat dissipation action in the structure 44. The structure 44 is connected to the case 38 in the X-ray generation unit 14, specifically, connected to the top plate 38 </ b> B. Therefore, the heat generated in the X-ray generation tube 16 is transmitted to the case 38 through the insulating oil, and further transmitted from the case 38 to the structure 44. The heat generated by the X-ray generation tube 16 is effectively released to the outside by the heat radiation action in the structure 44. In order to further promote such a heat radiation action, a plurality of fans described later are provided.
 図3には、回転ドラム46が模式的に示されている。回転ドラム46は、図2に示されたフィルタユニット42内に設けられるものである。回転ドラム46は、円周方向に沿って配列された複数の部材104,106と複数の開口102とを有している。部材104はフィルタ部材又は遮蔽部材であり、部材106はフィルタ部材である。このように複数の部材を円周方向に並べることにより、あるいは、隣接する部材間に開口102を設けることにより、高エネルギーX線及び低エネルギーX線を生成するためのフィルタリングを行うことが可能である。例えば、部材104に着目した場合、特定の回転角度では部材104のエッジ104AにX線があたり、これにより散乱X線が色々な方向に生じる。それが図3において複数の矢印付き破線によって示されている。そのような散乱X線は、図2に示したように、まずフィルタユニットケース48において減弱される。更に、水平方向、特にX方向、に出る散乱X線は、構造体44によって効果的に遮蔽される。 FIG. 3 schematically shows the rotating drum 46. The rotating drum 46 is provided in the filter unit 42 shown in FIG. The rotating drum 46 includes a plurality of members 104 and 106 and a plurality of openings 102 arranged along the circumferential direction. The member 104 is a filter member or a shielding member, and the member 106 is a filter member. Filtering for generating high energy X-rays and low energy X-rays can be performed by arranging a plurality of members in the circumferential direction as described above or by providing an opening 102 between adjacent members. is there. For example, when attention is paid to the member 104, X-rays hit the edge 104A of the member 104 at a specific rotation angle, and scattered X-rays are generated in various directions. This is indicated in FIG. 3 by a plurality of broken lines with arrows. Such scattered X-rays are first attenuated in the filter unit case 48, as shown in FIG. Furthermore, scattered X-rays that exit in the horizontal direction, particularly in the X direction, are effectively shielded by the structure 44.
 図4には上部ユニットの上面図が示されている。上述したように、上部ユニットは構造体44を有し、構造体44は水平板52及び複数の垂直板54を有している。それらの板によって複数のダクト60が形成される。図4において、各ダクト60はY方向に伸長したトンネルである。複数のダクト60の一方側(図4において左側)には複数のファン62A,62Bが設けられ、それらのファン62A,62Bによって、複数のダクト60に対して強制的に空気が送り込まれている。空気の流れが図4において複数の矢印によって示されている。送り込まれる空気は、複数のダクト60の他、水平板52の上側に形成される複数の溝に対しても送られる。よって、構造体44の表面全体において放熱作用が効果的に発揮される。ちなみに符号58は2つのファン62A,62Bに接続されるケーブルを示している。そのケーブル58の主要部分が特定のダクト内に引き込まれている。その特定のダクトの周囲に存在する構造部分が電磁シールド作用を発揮する。これによって電磁ノイズの漏洩を防止又は軽減することが可能となる。ちなみに、各ケーブル58の一端が各ファンに接続され、各ケーブル58の下端はX線発生ユニットに引き込まれている。X線発生ユニットから伸びる集合ケーブル(図示せず)の一部がファン用の電源ケーブルとなっている。 FIG. 4 shows a top view of the upper unit. As described above, the upper unit includes the structure 44, and the structure 44 includes the horizontal plate 52 and the plurality of vertical plates 54. A plurality of ducts 60 are formed by these plates. In FIG. 4, each duct 60 is a tunnel extending in the Y direction. A plurality of fans 62A and 62B are provided on one side (left side in FIG. 4) of the plurality of ducts 60, and air is forcibly sent into the plurality of ducts 60 by the fans 62A and 62B. The air flow is indicated by arrows in FIG. In addition to the plurality of ducts 60, the air to be fed is also sent to a plurality of grooves formed on the upper side of the horizontal plate 52. Therefore, the heat radiation effect is effectively exhibited on the entire surface of the structure 44. Incidentally, reference numeral 58 denotes a cable connected to the two fans 62A and 62B. The main part of the cable 58 is drawn into a specific duct. A structural part existing around the specific duct exhibits an electromagnetic shielding effect. As a result, leakage of electromagnetic noise can be prevented or reduced. Incidentally, one end of each cable 58 is connected to each fan, and the lower end of each cable 58 is drawn into the X-ray generation unit. A part of a collective cable (not shown) extending from the X-ray generation unit is a fan power cable.
 図4において、フィルタユニット48におけるフィルタユニットケースのY方向の端部分すなわち側面板48Dは、X方向の端部に存在する側面板48Bよりも厚くなっている。回転ドラムの軸方向すなわちY方向に散乱X線が生じた場合にその散乱X線は側面板48Dによって遮断される。 4, the end portion of the filter unit case in the Y direction of the filter unit 48, that is, the side plate 48D is thicker than the side plate 48B present at the end in the X direction. When scattered X-rays are generated in the axial direction of the rotating drum, that is, in the Y direction, the scattered X-rays are blocked by the side plate 48D.
 図5及び図6には構造体44に関する2つの変形例が示されている。図5に示す構造体44は、図2に示した構造体と同様に、水平板52及び複数の垂直板54を備えている。ただし、図5に示す例では、水平板52のY方向の両端部が水平方向に延伸している。2つの延伸部分は水平に張り出た部分であり、それらは取っ手52A,52Bとして機能する。X線発生ユニット14と上部ユニット18は構造的に連結されている。一対の取っ手部分を掴むことにより、X線発生装置全体をしっかりと持って搬送することが可能である。 5 and 6 show two modified examples related to the structure 44. Similar to the structure shown in FIG. 2, the structure 44 shown in FIG. 5 includes a horizontal plate 52 and a plurality of vertical plates 54. However, in the example shown in FIG. 5, both ends of the horizontal plate 52 in the Y direction extend in the horizontal direction. The two extending portions are horizontally protruding portions, and they function as the handles 52A and 52B. The X-ray generation unit 14 and the upper unit 18 are structurally connected. By grasping the pair of handle portions, the entire X-ray generation apparatus can be firmly held and transported.
 図6に示す変形例においては、各垂直壁54におけるエア入口側の端部が先細形状54aとなっており、すなわち空気の取込時における抵抗が少なくなるようになっている。上述した実施形態においては、1つの水平板と複数の垂直板とによって構造体が構成されていたが、1又は複数の水平板を追加してもよいし、また表面積を増大するためにより複雑な構造を採用するようにしてもよい。いずれにしても、放熱作用と遮蔽作用が効果的に発生される構造を採用するのが望ましい。上記実施形態においてはフィルタユニットの上部には構造体が設けられていなかったが、当該部分においても減弱作用や放熱作用が発揮されるように、構造体の構造を変更することも可能である。 In the modification shown in FIG. 6, the end of each vertical wall 54 on the air inlet side has a tapered shape 54a, that is, the resistance when air is taken in is reduced. In the above-described embodiment, the structure is configured by one horizontal plate and a plurality of vertical plates. However, one or a plurality of horizontal plates may be added, and more complicated in order to increase the surface area. A structure may be adopted. In any case, it is desirable to employ a structure that effectively generates heat dissipation and shielding. In the above embodiment, the structure is not provided on the upper part of the filter unit. However, the structure of the structure can be changed so that attenuation and heat dissipation are also exhibited in the portion.

Claims (9)

  1.  X線ビームを発生するX線発生源と、前記X線発生源を収容し且つX線照射口を有する前面板を備えた遮蔽ケースと、を有するX線発生ユニットと、
     前記X線発生ユニットにおける前記前面板上に設けられ、少なくとも1つのフィルタを有し、前記X線ビームの経路上に前記少なくとも1つのフィルタを挿入するフィルタユニットと、
     前記前面板上であって前記フィルタユニットの周囲に設けられた放熱構造体と、
     を含むことを特徴とするX線発生装置。
    An X-ray generation unit comprising: an X-ray generation source that generates an X-ray beam; and a shielding case that contains the X-ray generation source and includes a front plate having an X-ray irradiation port;
    A filter unit provided on the front plate in the X-ray generation unit, having at least one filter, and inserting the at least one filter on a path of the X-ray beam;
    A heat dissipation structure provided on the front plate and around the filter unit;
    X-ray generator characterized by including.
  2.  請求項1記載の装置において、
     前記放熱構造体は、
     前記前面板に対して起立した複数の垂直壁と、
     前記前面板に対して並行な少なくとも1つの水平壁と、
     を含み、
     前記複数の垂直壁がX線減弱作用を有する材料により構成され、且つ、前記水平壁がX線減弱作用を有する材料により構成された、
     ことを特徴とするX線発生装置。
    The apparatus of claim 1.
    The heat dissipation structure is
    A plurality of vertical walls standing up against the front plate;
    At least one horizontal wall parallel to the front plate;
    Including
    The plurality of vertical walls are made of a material having an X-ray attenuation action, and the horizontal walls are made of a material having an X-ray attenuation action.
    An X-ray generator characterized by that.
  3.  請求項2記載の装置において、
     前記放熱構造体は複数のダクトを有し、
     前記各ダクトの内部が空気の流通路として機能し、
     前記複数のダクト内で空気を流通させるための送風手段が設けられた、
     ことを特徴とするX線発生装置。
    The apparatus of claim 2.
    The heat dissipation structure has a plurality of ducts,
    The inside of each duct functions as an air flow path,
    Blower means for circulating air in the plurality of ducts was provided,
    An X-ray generator characterized by that.
  4.  請求項3記載の装置において、
     前記複数のダクトの内の特定のダクトには前記X線発生源に電力を供給するケーブルが挿通された、
     ことを特徴とするX線発生装置。
    The apparatus of claim 3.
    A cable for supplying power to the X-ray generation source is inserted into a specific duct among the plurality of ducts.
    An X-ray generator characterized by that.
  5.  請求項2記載の装置において、
     前記前面板はXY面に沿って広がる部材であり、
     前記X線照射口からYZ面に沿って広がるX線ビームが出力され、
     前記各垂直壁はYZ面に沿って広がる部材であり、
     前記少なくとも1つの水平壁はXY面に沿って広がる部材である、
     ことを特徴とするX線発生装置。
    The apparatus of claim 2.
    The front plate is a member extending along the XY plane,
    An X-ray beam extending along the YZ plane is output from the X-ray irradiation port,
    Each vertical wall is a member extending along the YZ plane,
    The at least one horizontal wall is a member extending along the XY plane;
    An X-ray generator characterized by that.
  6.  請求項5記載の装置において、
     前記フィルタユニットは前記少なくとも1つのフィルタを備えY方向に平行な回転軸回りにおいて回転するドラムを含む、
     ことを特徴とするX線発生装置。
    The apparatus of claim 5.
    The filter unit includes a drum that includes the at least one filter and rotates about a rotation axis parallel to the Y direction.
    An X-ray generator characterized by that.
  7.  請求項2記載の装置において、
     前記各垂直壁が有する一方端部及び他方端部の少なくとも一方が先細形状を有する、
     ことを特徴とするX線発生装置。
    The apparatus of claim 2.
    At least one of the one end and the other end of each vertical wall has a tapered shape,
    An X-ray generator characterized by that.
  8.  請求項2記載の装置において、
     前記水平壁の一方端部及び他方端部が取っ手として機能する、
     ことを特徴とするX線発生装置。
    The apparatus of claim 2.
    One end and the other end of the horizontal wall function as a handle,
    An X-ray generator characterized by that.
  9.  請求項1記載の装置において、
     当該X線発生装置は骨密度測定システムにおいて用いられるものである、
     ことを特徴とするX線発生装置。
    The apparatus of claim 1.
    The X-ray generator is used in a bone density measuring system.
    An X-ray generator characterized by that.
PCT/JP2012/061819 2011-05-23 2012-05-09 X-ray generator WO2012160967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280024981.2A CN103548424B (en) 2011-05-23 2012-05-09 X-ray generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011114456A JP5081314B1 (en) 2011-05-23 2011-05-23 X-ray generator
JP2011-114456 2011-05-23

Publications (1)

Publication Number Publication Date
WO2012160967A1 true WO2012160967A1 (en) 2012-11-29

Family

ID=47217048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061819 WO2012160967A1 (en) 2011-05-23 2012-05-09 X-ray generator

Country Status (4)

Country Link
JP (1) JP5081314B1 (en)
CN (1) CN103548424B (en)
TW (1) TWI482535B (en)
WO (1) WO2012160967A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041002A1 (en) * 2014-12-30 2016-07-06 Nuctech Company Limited Ray filter and dual-energy x-ray inspection system
CN110849927A (en) * 2019-11-25 2020-02-28 江苏开创检测技术有限公司 X-ray tube heat dissipation mechanism of X-ray fluorescence spectrometer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089396B2 (en) * 2018-04-12 2022-06-22 浜松ホトニクス株式会社 X-ray generator
CN110123355B (en) * 2019-05-30 2023-03-31 东软医疗系统股份有限公司 Detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539104A (en) * 1978-09-12 1980-03-18 Toshiba Corp X-ray generator
JP2004134406A (en) * 2002-10-11 2004-04-30 Ge Medical Systems Global Technology Co Llc Jet cooling x-ray transmitting window
JP2006271437A (en) * 2005-03-28 2006-10-12 Aloka Co Ltd X-ray bone density measuring apparatus
JP2007026800A (en) * 2005-07-14 2007-02-01 Jobu:Kk X-ray generator
JP2010211939A (en) * 2009-03-06 2010-09-24 Toshiba Corp X-ray tube device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513193A (en) * 1991-07-02 1993-01-22 Hitachi Ltd X-ray flux forming device
JPH07284491A (en) * 1994-04-18 1995-10-31 Hitachi Medical Corp Bone density measuring device by dexa
US7042981B2 (en) * 2002-10-11 2006-05-09 General Electric Co. X-ray tube window and surrounding enclosure cooling apparatuses
JP4223863B2 (en) * 2003-05-30 2009-02-12 浜松ホトニクス株式会社 X-ray generator
JP2005276760A (en) * 2004-03-26 2005-10-06 Shimadzu Corp X-ray generating device
US7308073B2 (en) * 2005-10-20 2007-12-11 General Electric Company X-ray filter having dynamically displaceable x-ray attenuating fluid
CN102430207B (en) * 2011-09-27 2014-07-30 重庆德马光电技术有限公司 Superficial X-ray therapy system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539104A (en) * 1978-09-12 1980-03-18 Toshiba Corp X-ray generator
JP2004134406A (en) * 2002-10-11 2004-04-30 Ge Medical Systems Global Technology Co Llc Jet cooling x-ray transmitting window
JP2006271437A (en) * 2005-03-28 2006-10-12 Aloka Co Ltd X-ray bone density measuring apparatus
JP2007026800A (en) * 2005-07-14 2007-02-01 Jobu:Kk X-ray generator
JP2010211939A (en) * 2009-03-06 2010-09-24 Toshiba Corp X-ray tube device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3041002A1 (en) * 2014-12-30 2016-07-06 Nuctech Company Limited Ray filter and dual-energy x-ray inspection system
CN110849927A (en) * 2019-11-25 2020-02-28 江苏开创检测技术有限公司 X-ray tube heat dissipation mechanism of X-ray fluorescence spectrometer
CN110849927B (en) * 2019-11-25 2022-05-03 江苏开创检测技术有限公司 X-ray tube heat dissipation mechanism of X-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JP2012243663A (en) 2012-12-10
CN103548424A (en) 2014-01-29
TWI482535B (en) 2015-04-21
TW201249261A (en) 2012-12-01
JP5081314B1 (en) 2012-11-28
CN103548424B (en) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2012160967A1 (en) X-ray generator
JP6202995B2 (en) Rotating anode type X-ray tube device
US20090041181A1 (en) Cooling system for gantry-mounted components of a computed tomography system
CN103126708B (en) Air-cooled detector means and the method for cooling detector means
US20140177807A1 (en) Bremstrahlung target for intensity modulated x-ray radiation therapy and stereotactic x-ray therapy
CN106935462A (en) X-ray source, high-voltage generator, electron beam gun, rotation target assembly, rotary target and rotating vacuum seals part
JP2009268830A (en) X-ray computed tomography device
CN103907402A (en) Radiation emission device, radiation emission method, and program storage medium
WO2013125616A1 (en) X-ray ct apparatus
JP6805362B2 (en) Cooling device for X-ray generator
JP2014026964A (en) X-ray tube and operation method thereof
JP2013106946A (en) System and method for acoustic noise mitigation in computed tomography scanner
US8197136B2 (en) Tomography apparatus with an annular airflow channel with an air-diverting ventilation element
JP2015082376A (en) Neutron generator, and accelerator system for medical treatment
JP2008164548A (en) Radioactive ray imaging apparatus
JP4369386B2 (en) Soft X-ray static eliminator
JP6076470B2 (en) Particle beam irradiation room
JP2011244889A (en) X-ray bone density measuring apparatus
KR101875687B1 (en) An linear proton beam target assembly and Proton beam scanning apparatus including the same
RU2454047C2 (en) Lead screen for introduction electron accelerator
JP2013055989A (en) Charged particle radiation irradiation apparatus
CN113100804A (en) Heat abstractor and CT machine of CT detector
KR200419992Y1 (en) A sheilding device for reducing back-scatterred radiation in X-ray exposure room
TWI809851B (en) neutron capture therapy system
KR20200005688A (en) Apparatus for Reducing Scatter Radiation in Mobile X-ray Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790158

Country of ref document: EP

Kind code of ref document: A1