WO2019177041A1 - Radiation inspecting device, and baggage inspecting device - Google Patents

Radiation inspecting device, and baggage inspecting device Download PDF

Info

Publication number
WO2019177041A1
WO2019177041A1 PCT/JP2019/010329 JP2019010329W WO2019177041A1 WO 2019177041 A1 WO2019177041 A1 WO 2019177041A1 JP 2019010329 W JP2019010329 W JP 2019010329W WO 2019177041 A1 WO2019177041 A1 WO 2019177041A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
ray
sensor unit
inspection apparatus
shielding
Prior art date
Application number
PCT/JP2019/010329
Other languages
French (fr)
Japanese (ja)
Inventor
和朗 ▲高▼山
真起 高橋
Original Assignee
日本信号株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本信号株式会社 filed Critical 日本信号株式会社
Priority to CN201980018398.2A priority Critical patent/CN111886493A/en
Publication of WO2019177041A1 publication Critical patent/WO2019177041A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/10Irradiation devices with provision for relative movement of beam source and object to be irradiated

Definitions

  • the present invention relates to a radiation inspection apparatus and a baggage inspection apparatus that inspect the inside of an object using X-rays or other radiation.
  • the baggage inspection device generally irradiates baggage with X-rays using an X-ray inspection device because an internal image can be obtained without opening even a metal bag.
  • a curtain made of a material that is difficult to transmit radiation is installed at the entrance of the inspection section instead of an interlocking door, and the inspection section is not completely sealed.
  • the method is adopted.
  • Patent Document 1 in a device used for X-ray fluoroscopy for detecting damage to a steel pipe, a pair of sheet-like X-ray transmissometers are sandwiched on an X-ray transmission plate extending in parallel near the steel pipe. An X-ray scattering prevention mask main body that extends in parallel is attached to function as a slit-shaped mask.
  • Patent Document 2 includes, as a radiation inspection apparatus, an inspection room having an opening for carrying in and out an object to be inspected, and a radiation irradiation apparatus for irradiating the inspection room with radiation, and a pair of parallel in the vicinity of the radiation incident part.
  • an anti-scattering grid is disposed between a subject and a film-like photosensitive portion on the opposite side of the subject with respect to a tube generating X-rays.
  • the scattering prevention grid is for removing scattered radiation from the subject side, and includes a plurality of X-ray absorption elements having different inclination angles.
  • Patent Documents 1 and 2 removes scattered components when the subject is irradiated with X-rays
  • the apparatus disclosed in Patent Document 3 removes scattered components from which X-rays enter the photosensitive portion.
  • the X-ray scattering at the radiation sensor unit is not sufficiently considered.
  • the amount of X-ray scattering at the radiation sensor unit is very small, it is desirable to reduce the amount of X-ray leakage caused by such scattering even if the amount is small.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a radiation inspection apparatus and a baggage inspection apparatus capable of reducing leakage of radiation caused by radiation scattering at the radiation sensor unit.
  • one aspect of a radiation inspection apparatus includes a radiation source that irradiates an object to be inspected, a radiation sensor unit that receives radiation from the radiation source, and radiation on the radiation sensor unit side.
  • a radiation shielding part that extends outside the directly incident irradiation region and shields the radiation scattered by the radiation sensor part.
  • the radiation shielding unit shields the radiation scattered by the radiation sensor unit, leakage of radiation to the periphery of the radiation sensor unit due to the radiation sensor unit can be reduced. A sense of security can be enhanced.
  • the detection surface of the radiation sensor unit extends linearly in a predetermined direction, and the radiation shielding unit faces along the longitudinal direction of the detection surface outside the detection surface of the radiation sensor unit. Extend in state. In this case, it is possible to limit the spread of the scattered radiation emitted in the direction orthogonal to the longitudinal direction of the line sensor-like detection surface.
  • the radiation source and the radiation sensor unit are arranged at different height positions with respect to the vertical direction, a shielding box that houses the radiation source and the radiation sensor unit and shields radiation, and a radiation source, And a conveyance unit extending between the radiation sensor unit and a direction intersecting with the predetermined direction and extending between the entrance and the exit of the shielding box.
  • the inspection can be performed while passing the inspection object between the radiation source and the radiation sensor unit in the shielding box by the transport unit.
  • the radiation shielding portion protrudes with a predetermined width vertically downward from a base provided outside a pair of sides extending in the longitudinal direction of the detection surface of the radiation sensor portion, and extends in the longitudinal direction of the detection surface. It is a pair of strip-shaped flat members extending in parallel.
  • the maximum inclination angle of the primary scattered radiation can be set to a desired value by appropriately adjusting the shape and arrangement of the flat plate member, and the arrival area of the primary scattered X-ray can be limited.
  • the predetermined width of the pair of flat plate members is set so as to prevent radiation scattered by the radiation sensor unit from directly entering the entrance and exit of the shielding box. In this case, leakage of radiation outside the shielding box can be reliably reduced.
  • the radiation shielding unit is arranged at a plurality of locations including any one or more of the lower surface of the radiation sensor unit, the top surface of the shielding box, the wall surface of the shielding box, and the inside of the transport unit. In this case, not only the primary scattering but also the effect of comprehensively suppressing secondary and higher-order scattered X-rays is enhanced.
  • a shielding curtain is further provided on the entrance side and the exit side of the shielding box. In this case, leakage of radiation outside the shielding box can be further reliably reduced.
  • the radiation emitted from the radiation source is X-rays
  • the radiation shielding portion is formed of lead
  • one aspect of the baggage inspection apparatus includes the above-described radiation inspection apparatus and inspects baggage as an inspection object.
  • FIG. 1 is a side view conceptually showing an X-ray inspection apparatus or a baggage inspection apparatus according to a first embodiment. It is AA arrow sectional drawing of FIG. It is BB arrow sectional drawing of FIG. 2A. It is CC arrow sectional drawing of FIG. It is the expanded sectional view which looked at the radiation sensor part along the longitudinal direction. It is the expanded side view which looked at the sensor part along the transversal direction. It is a key map explaining backscattering of X-rays. It is a conceptual diagram explaining the backscattering intensity
  • An X-ray inspection apparatus 50 shown in FIG. 1 includes a belt conveyor 51 as a conveyance unit, an inspection main body 52 for confirming the contents of an object to be inspected TO conveyed by the belt conveyor 51 by X-ray irradiation, and a belt conveyor. 51, a detection unit 53 for detecting the presence of an object to be inspected conveyed to the inspection main body 52, a display device 54 for displaying an X-ray transmission image of the inspection object TO, a control unit 56 for controlling each part, A radiological examination apparatus comprising: Specifically, the X-ray inspection apparatus 50 can inspect the baggage BA as the inspection object TO and functions as the baggage inspection apparatus 100.
  • the X-ray inspection apparatus (radiation inspection apparatus) 50 detects the inspection object TO by the detection unit 53 that is a camera or the like provided on the entrance side of the inspection main body 52, and conveys the inspection object TO by the belt conveyor 51.
  • the inspection main body 52 is transported so as to be fed into the inspection main body 52, and the inspection main body 52 performs inspection to visualize the internal structure by X-ray irradiation, and the inspection object TO is carried out of the inspection main body 52 and inspected. finish.
  • a belt conveyor 51 serving as a transport unit includes a belt part 51a on which an object TO is placed and both ends on the inlet side and the outlet side of the apparatus. And a pair of roller portions 51b and 51b to which the belt portion 51a is attached and a belt portion between the pair of roller portions 51b and 51b in the transport direction D1 and in the ring-shaped belt portion 51a.
  • the belt support part 51c which is a plate-shaped part which supports the to-be-inspected object TO mounted on 51a and the belt part 51a, and the support frame 51d which supports said each part are provided.
  • roller parts 51b and 51b are driven and rotated by a mechanism (not shown) to move the upper part of the belt part 51a together with the inspection object TO in the transport direction D1 at an expected speed.
  • the belt support 51c is arranged on the plurality of elongated plate-like block members 62, 62... And the pressers arranged on the plurality of block members 62, 62. It is comprised with the board 61.
  • FIG. Each block-like member 62 is spanned between a pair of flange portions 65, 65 extending from the support frame 51d, and is detachably fixed.
  • Those arranged in the shielding box 75 are made of lead or the like, have X-ray absorption, and partially generate X-rays generated in the inspection main body 52. Shield.
  • the presser plate 61 is a plate-like member made of an X-ray transparent material such as acrylic.
  • the presser plate 61 constitutes the uppermost surface of the belt support portion 51c and suppresses the occurrence of rattling on the upper surface of the belt support portion 51c to ensure the support of the belt portion 51a by the belt support portion 51c.
  • the presser plate 61 has not only a flat upper surface but also less friction, and ensures stable and reliable conveyance of the inspection object TO placed on the belt portion 51a together with the belt portion 51a. ing.
  • a support frame 51 d that supports the belt portion 51 a and the like is covered with a cover portion 77.
  • the inspection main body 52 has passed the inspection object TO among the X-ray source 71 that irradiates the X-ray RL that is radiation to the inspection object TO that is the inspection object, and the X-ray RL from the X-ray source 71.
  • An X-ray sensor unit 72 that receives components, and a rectangular parallelepiped shielding box 75 that houses the X-ray source 71 and the X-ray sensor unit 72 therein.
  • the belt conveyor 51 serving as a transport unit extends between the X-ray source 71 and the X-ray sensor unit 72 in the y direction intersecting with the longitudinal direction of the X-ray sensor unit 72 and the entrance EN of the shielding box 75. And the exit EX.
  • the inspection can be performed while the inspection object TO is passed between the X-ray source 71 and the X-ray sensor unit 72 in the shielding box 75 by the belt conveyor 51.
  • the X-ray source 71 is a radiation source that emits an X-ray RL.
  • the X-ray source (radiation source) 71 is disposed on the lower side near the center of the shielding box 75 and irradiates the X-ray sensor RL with X-rays RL as radiation from the emission unit EA.
  • a pulse oscillation type cold cathode X-ray source is incorporated as the X-ray source 71, but it can be replaced with a CW oscillation type hot cathode X-ray source.
  • a shield 71b that suppresses the spread of the X-ray RL in the transport direction D1 or the x direction is disposed above the shield container 71a of the X-ray source 71 and below the belt conveyor 51.
  • the X-ray sensor unit 72 is a radiation sensor unit that receives the X-ray RL.
  • the X-ray sensor unit 72 is disposed on the upper side near the center of the shielding box 75 so as to face the X-ray source 71 with the belt conveyor (conveying unit) 51 interposed therebetween.
  • the X-ray sensor unit 72 arranges the light receiving elements in a line so as to extend in a direction perpendicular to the conveyance direction D1, thereby enabling line-type scanning in cooperation with conveyance by the belt conveyor 51. ing.
  • the inspection object TO passes through the region DD near the center of the shielding box 75, the inspection object is irradiated with X-rays, and based on the result received by the X-ray sensor unit 72, 3 inside the baggage BA. A dimensional inspection is made.
  • the shielding box 75 is a rectangular parallelepiped housing, and has a rectangular opening that inserts the belt conveyor 51 to convey the object TO be inspected and forms an inlet EN and an outlet EX of the object TO. is doing.
  • each wall part which comprises the shielding box 75 is formed with X-ray absorption members, such as lead, in order to suppress the X-ray leakage to the exterior.
  • Shielding curtains CN1 and CN2 are provided at the entrance EN and the exit EX of the shielding box 75.
  • the X-ray sensor unit 72 includes a light receiving element 72a, a signal processing circuit 72b, and a storage container 72c.
  • the detection surface 72j of the light receiving element 72a extends in a straight line in the x direction perpendicular to the paper surface, and has a long and narrow rectangular shape with the x direction as the longitudinal direction. Specifically, the detection surface 72j has a length about the width of the belt portion 51a of the belt conveyor 51 shown in FIG. 2A and the like, and has a width of about several mm in the y direction, for example.
  • the storage container 72c is formed of an X-ray absorbing member such as lead, and has an opening 72o in a range corresponding to the detection surface 72j of the light receiving element 72a and a transmission window 72w that closes the opening 72o.
  • a radiation shielding unit 82 is provided on the lower surface 72 u side of the X-ray sensor unit 72 in association with the X-ray sensor unit 72. That is, the radiation shielding unit 82 and the X-ray sensor unit 72 are arranged at different height positions in the vertical direction, that is, the z direction.
  • the radiation shielding part 82 is formed of an X-ray absorbing member such as lead in order to shield the X-ray RL that is the radiation scattered by the X-ray sensor part 72.
  • the radiation shielding part 82 has a pair of strip-like flat plate members 82a and 82b, and both the flat plate members 82a and 82b are in the irradiation region DR where X-rays RL as radiation from the X-ray source 71 are directly incident. It extends so as to sandwich the irradiation region DR outside. More specifically, the pair of flat members 82a and 82b extend outside the detection surface 72j of the X-ray sensor unit 72 so as to face each other along the longitudinal direction of the detection surface 72j. Thereby, the spread of the scattered radiation emitted in the y direction orthogonal to the longitudinal direction of the detection surface 72j that is a line sensor can be limited.
  • the maximum inclination angle of the primary scattered radiation can be set to a desired value, and the arrival region of the primary scattered X-rays L12 and L22. Can be limited.
  • the pair of flat plate members 82a and 82b are vertically downward from a base portion 72q of a storage container 72c provided outside a pair of sides S1 and S2 extending in the longitudinal direction of the detection surface 72j of the X-ray sensor portion 72. While projecting, it extends parallel to the x direction, which is the longitudinal direction of the detection surface 72j. As shown in FIG.
  • the width or length in the longitudinal direction or the x direction of the pair of flat plate members 82a and 82b is longer than the length in the x direction of the detection surface 72j of the X-ray sensor unit 72, and the range of the detection surface 72j. It is intended to cover.
  • the vertical width and the horizontal interval of the flat members 82a and 82b will be described.
  • the outer X-rays L11 and L21 that enter the outermost points P1 and P2 with reference to the transmission window 72w are the outermost points P1 and P2.
  • the primary scattered X-rays L12 and L22 are limited in the inclination angle of backscattering due to the arrangement of the opposite flat plate members 82a and 82b, particularly the arrangement of the lower end portion 82e.
  • the maximum inclination angle ⁇ 1 of the primary scattered X-ray L12 is the lower end portion 82e. Shielding at becomes a critical point and becomes tan ⁇ 1 (d / h).
  • the backscattering component L13 having an inclination angle larger than the maximum inclination angle ⁇ 1 becomes secondary scattered X-rays that are backscattered again on the inner surface of the flat plate member 82b, and therefore, compared with the intensity or frequency of the original X-ray RL.
  • the maximum inclination angle ⁇ 2 is tan ⁇ 1 (d / h).
  • the angle region A1 within the maximum inclination angles ⁇ 1 and ⁇ 2 described above is an arrival region of the primary scattered X-rays L12 and L22, and preferably does not have a spread that directly leaks out of the shielding box 75.
  • the primary scattered X-rays L12 and L22 are blocked by the plate-like members 82a and 82b, and the intensity or frequency of X-rays is extremely reduced. Since the propagation distance of the line becomes long, it does not matter if it has any extent in the shielding box 75.
  • the maximum spreading positions M1, M2 of the lower end of the angle region A1 are set to be inside the entrance EN and the exit EX of the shielding box 75, and the flat plate members 82a, 82b prevents the primary scattered X-rays L12 and L22 from directly entering the entrance EN and the exit EX.
  • the vertical width h of the plate-like members 82a and 82b is desirably secured to some extent from the viewpoint of restricting the angle region A1 to be narrow, but needs to be in a range that does not hinder the conveyance path of the belt conveyor 51. From the viewpoint of reducing the vertical width h of the flat members 82a and 82b, it can be said that the flat members 82a and 82b are preferably as close as possible to the outer X-rays L11 and L21.
  • the description has been made on the assumption that the outer X-rays L11 and L21 are incident on the X-ray sensor unit 72 symmetrically, but the outer X-rays L11 and L21 are incident on the X-ray sensor unit 72 asymmetrically.
  • the maximum inclination angles ⁇ 1 and ⁇ 2 may be evaluated to set the arrangement and size of the flat plate members 82a and 82b. In this case, the two flat members 82a and 82b may have different heights or vertical widths.
  • the X-ray sensor unit 72 is in the center in the shielding box 75 with respect to the transport direction D1, but the X-ray sensor unit 72 is also in a position deviated from the center in the shielding box 75.
  • the arrangement and size of the flat members 82a and 82b are individually set according to the incident positions of the outer X-rays L11 and L21. Further, the height or vertical width of the flat members 82a and 82b is constant regardless of the position in the x direction, but is not limited thereto, and may be different depending on the position in the longitudinal x direction. Good.
  • FIG. 4A is a diagram for explaining scattering of X-ray RL.
  • a forward scattering component DR1 and a backscattering component DR2 are generated in addition to the transmission component R1.
  • the ratio of the forward scattering component DR1 and the back scattering component DR2 is smaller than the transmission component R1, and generally the forward scattering component DR1 is more than the back scattering component DR2. Will also increase.
  • the scattering intensity increases as the scattering angle ⁇ r increases.
  • the intensity or frequency of the primary scattered X-rays L12 and L22 depends on the object OB and the scattering.
  • the level is, for example, 1/100 times or less of the intensity or frequency of the original X-ray RL.
  • the radiation shielding unit 82 shields the X-rays scattered by the X-ray sensor unit 72, that is, the primary scattered X-rays L12 and L22. Leakage of X-rays to the periphery of the X-ray sensor unit 72 due to the sensor unit 72 can be reduced, and a sense of security for the X-ray inspection apparatus 50 can be enhanced.
  • the X-ray inspection apparatus 50 has the same configuration as that of the first embodiment except for the radiation shielding part 82 and the surrounding structure, and therefore the detailed description of the X-ray inspection apparatus 50 as a whole. Is omitted.
  • the pair of flat plate-like members 82a and 82b constituting the radiation shielding portion 82 are inclined with respect to the vertical direction and are narrowed on the tip side.
  • the maximum inclination angle ⁇ 1 the primary scattered X-rays L12, L22 is adjusted by adjusting the arrangement of the lower end portions 82e of the flat plate members 82a, 82b.
  • ⁇ 2 can be set to a desired value, and the angle region A1 can be set to have a desired spread.
  • FIG. 5B is a modification of the radiation shielding part 82 shown in FIG. 5A, and the flat plate members 82a and 82b have a curved shape.
  • FIG. 5C is a further modification of the radiation shielding part 82 shown in FIG. 5A, and the plate-like members 182a and 182b constituting the radiation shielding part 82 are L-shaped in section and are a combination of two flat plate members. ing.
  • the third embodiment will be described with reference to FIG. Note that the X-ray inspection apparatus 50 according to the present embodiment is a partial modification of the first embodiment, and description of overlapping portions is omitted.
  • the X-ray inspection apparatus 50 has radiation shielding portions 82 arranged at a plurality of locations in the shielding box 75. Specifically, in the shielding box 75, a pair of additional flat members 182 a and 182 b extending from the lower surface 72 u of the X-ray sensor unit 72 and the shielding box 75 are disposed outside the basic flat members 82 a and 82 b. A pair of additional flat plate members 282a and 282b extending from the top surface 75a are formed.
  • the additional flat members 182 a, 182 b, 282 a, and 282 b have similar shapes but different dimensions from the basic flat members 82 a and 82 b, and are primary or scattered by the X-ray sensor unit 72.
  • a pair of additional flat plate members 382a and 382b are formed from the wall surface 75b of the shielding box 75 so as to be spanned in the x direction above the transport path.
  • the pair of flat members 382a and 382b have a role of shielding secondary and higher order scattering components from the X-ray sensor unit 72 and a role of shielding primary and higher order scattering components from the object TO. .
  • a space is provided in the transmission region SL in the belt support portion 51c of the belt conveyor 51, and a pair of additional flat plate members 482a and 482b are provided so as to sandwich the space in the conveyance path direction.
  • the pair of flat members 482a and 482b have a role of shielding primary and higher-order scattering components from the X-ray sensor unit 72 and the inspection object TO inside the belt conveyor (conveying unit) 51.
  • the X-ray RL is used for the fluoroscopic observation type inspection, but radiation other than the X-ray RL can be used.
  • the X-ray inspection apparatus 50 is not limited to the baggage inspection, and inspects various objects with X-rays or other radiation. It can be applied to.
  • the shape of the detection surface 72j of the X-ray sensor unit 72 is not limited to the illustrated example, and the aspect ratio can be variously changed.
  • the shielding curtains CN1 and CN2 can be omitted.
  • the belt conveyor (conveying unit) 51 is used.
  • the radiation shielding unit 82 shown in FIG. 3A or the like can be assembled.
  • the X-ray sensor unit 72 can be irradiated in a planar shape without using the X-ray sensor unit 72 as a line sensor type. One of the line sensor units 72 may be moved relative to the other.
  • SYMBOLS 50 ... X-ray inspection apparatus (radiation inspection apparatus), 51 ... Belt conveyor (conveyance part), 51a ... Belt part, 51b ... Roller part, 51c ... Belt support part, 51d ... Support frame, 52 ... Inspection main-body part, 54 ... Display device 56 ... Control unit 62 ... Block-shaped member 71 ... X-ray source (radiation source) 71a ... Shielding container 72 ... X-ray sensor unit (radiation sensor unit) 72a ... Light receiving element 72c ... Storage container 72j ... detection surface, 72o ... opening, 72q ... base, 72u ... bottom surface, 72w ... transmission window, 75 ... shielding box, 82 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An X-ray inspecting device 50, which is a radiation inspecting device, is provided with: an X-ray source 71, which is a radiation source that irradiates an object being inspected with X-rays, constituting radiation; an X-ray sensor unit 72, which is a radiation sensor unit that receives the radiation from the X-ray source 71; and a radiation shielding unit 82 which extends to the outside of an irradiation region, on the X-ray sensor unit 72 side, upon which radiation is directly incident, and which shields radiation scattered by the X-ray sensor unit 72. It is thus possible to reduce leakage of radiation resulting from scattering of radiation by the radiation sensor unit.

Description

放射線検査装置及び手荷物検査装置Radiation inspection device and baggage inspection device
 本発明は、X線その他の放射線を使用して物体の内部について検査を行う放射線検査装置及び手荷物検査装置に関する。 The present invention relates to a radiation inspection apparatus and a baggage inspection apparatus that inspect the inside of an object using X-rays or other radiation.
 手荷物検査装置は、金属製の鞄であっても開封せずに内部の画像が得られることから、X線検査装置を用いて手荷物にX線を照射するものが一般的である。特に空港のように多数の手荷物を短時間で検査する必要がある場所では、検査部入口としてインターロック式のドアではなく放射線が透過し難い材質のカーテンを設置し、検査部を完全に密閉しない方式をとる場合が多い。これは食品検査用のX線装置についても同様である。この場合、法令規定の漏えい量は下回っているものの、ドア方式に比べて検査部入口からのX線漏えいが多くなるという問題がある。 The baggage inspection device generally irradiates baggage with X-rays using an X-ray inspection device because an internal image can be obtained without opening even a metal bag. Especially in places where a lot of baggage needs to be inspected in a short time, such as at airports, a curtain made of a material that is difficult to transmit radiation is installed at the entrance of the inspection section instead of an interlocking door, and the inspection section is not completely sealed. In many cases, the method is adopted. The same applies to the X-ray apparatus for food inspection. In this case, although the amount of leakage specified by laws and regulations is lower, there is a problem that X-ray leakage from the entrance of the inspection unit is increased as compared with the door method.
 特許文献1には、鋼管の損傷を検出するX線透視検査法に用いられる装置において、鋼管に近接して平行に延びるX線透過板上にシート状のX線透過度計を挟んで一対の平行に延びるX線散乱防止用マスク本体を取り付け、スリット状のマスクとして機能させるものが開示されている。 In Patent Document 1, in a device used for X-ray fluoroscopy for detecting damage to a steel pipe, a pair of sheet-like X-ray transmissometers are sandwiched on an X-ray transmission plate extending in parallel near the steel pipe. An X-ray scattering prevention mask main body that extends in parallel is attached to function as a slit-shaped mask.
 特許文献2には、放射線検査装置として、被検査物を搬入及び搬出する開口を有する検査室と、検査室に放射線を照射する放射線照射装置とを備え、放射線入射部の近傍に一対の平行に延びるL字型部材を配置して、放射線入射部から検査室に入射する放射線が散乱して開口の方向に流れることを防止するものが開示されている。 Patent Document 2 includes, as a radiation inspection apparatus, an inspection room having an opening for carrying in and out an object to be inspected, and a radiation irradiation apparatus for irradiating the inspection room with radiation, and a pair of parallel in the vicinity of the radiation incident part. There is disclosed an arrangement in which an extending L-shaped member is arranged to prevent the radiation incident on the examination room from the radiation incident portion from being scattered and flowing in the direction of the opening.
 特許文献3には、放射線イメージング装置として、X線を発生する管体に対して被検体を挟んで反対側であって被検体とフィルム状の感光部との間に散乱防止グリッドを配置したものが開示されている。散乱防止グリッドは、被検体側からの散乱放射線を除去するためのものであり、複数の傾斜角が異なるX線吸収要素を備えている。 In Patent Document 3, as a radiation imaging apparatus, an anti-scattering grid is disposed between a subject and a film-like photosensitive portion on the opposite side of the subject with respect to a tube generating X-rays. Is disclosed. The scattering prevention grid is for removing scattered radiation from the subject side, and includes a plurality of X-ray absorption elements having different inclination angles.
 しかしながら、上記特許文献1及び2の装置では、X線で被検体を照射する際の散乱成分を除去し、上記特許文献3の装置では、X線が感光部に入射する散乱成分を除去するものであり、放射線センサ部でのX線の散乱については十分に考慮されていない。放射線センサ部でのX線の散乱は、一般に微量であると考えられるが、微量であってもかかる散乱に起因するX線の漏えい量を低減することが望ましい。 However, the apparatus disclosed in Patent Documents 1 and 2 removes scattered components when the subject is irradiated with X-rays, and the apparatus disclosed in Patent Document 3 removes scattered components from which X-rays enter the photosensitive portion. Thus, the X-ray scattering at the radiation sensor unit is not sufficiently considered. Although it is generally considered that the amount of X-ray scattering at the radiation sensor unit is very small, it is desirable to reduce the amount of X-ray leakage caused by such scattering even if the amount is small.
実開平5-81798号公報Japanese Utility Model Publication No. 5-81798 特開2005-172486号公報JP 2005-172486 A 特開2012-5839号公報JP 2012-5839 A
 本発明は上記した点に鑑みてなされたものであり、放射線センサ部での放射線の散乱に起因する放射線の漏洩を低減できる放射線検査装置及び手荷物検査装置を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a radiation inspection apparatus and a baggage inspection apparatus capable of reducing leakage of radiation caused by radiation scattering at the radiation sensor unit.
 上記目的を達成するため、本発明に係る放射線検査装置の一態様は、放射線を被検査物に照射する放射線源と、放射線源からの放射線を受ける放射線センサ部と、放射線センサ部側において放射線が直接入射する照射領域の外に延在し、放射線センサ部で散乱された放射線を遮蔽する放射線遮蔽部と、を備える。 In order to achieve the above object, one aspect of a radiation inspection apparatus according to the present invention includes a radiation source that irradiates an object to be inspected, a radiation sensor unit that receives radiation from the radiation source, and radiation on the radiation sensor unit side. A radiation shielding part that extends outside the directly incident irradiation region and shields the radiation scattered by the radiation sensor part.
 上記放射線検査装置では、放射線遮蔽部が放射線センサ部で散乱された放射線を遮蔽するので、放射線センサ部に起因する放射線センサ部の周辺への放射線の漏洩を低減することができ、放射線検査装置に対する安心感を高めることができる。 In the radiation inspection apparatus, since the radiation shielding unit shields the radiation scattered by the radiation sensor unit, leakage of radiation to the periphery of the radiation sensor unit due to the radiation sensor unit can be reduced. A sense of security can be enhanced.
 本発明の具体的な側面では、放射線センサ部の検出面は、所定方向に直線状に延び、放射線遮蔽部は、放射線センサ部の検出面の外側において当該検出面の長手方向に沿って対向する状態で延びる。この場合、ラインセンサ状の検出面の長手方向に直交する方向に射出される散乱放射線の広がりを制限することができる。 In a specific aspect of the present invention, the detection surface of the radiation sensor unit extends linearly in a predetermined direction, and the radiation shielding unit faces along the longitudinal direction of the detection surface outside the detection surface of the radiation sensor unit. Extend in state. In this case, it is possible to limit the spread of the scattered radiation emitted in the direction orthogonal to the longitudinal direction of the line sensor-like detection surface.
 本発明の別の側面では、放射線源と放射線センサ部とは、鉛直方向に関して異なる高さ位置に配置され、放射線源と放射線センサ部とを収納して放射線を遮蔽する遮蔽ボックスと、放射線源と放射線センサ部との間を通って所定方向と交差する方向に延びるとともに遮蔽ボックスの入口と出口との間に亘って延在する搬送部と、をさらに備える。この場合、搬送部によって遮蔽ボックス内で放射線源と放射線センサ部との間に被検査物を通過させつつ検査を行うことができる。 In another aspect of the present invention, the radiation source and the radiation sensor unit are arranged at different height positions with respect to the vertical direction, a shielding box that houses the radiation source and the radiation sensor unit and shields radiation, and a radiation source, And a conveyance unit extending between the radiation sensor unit and a direction intersecting with the predetermined direction and extending between the entrance and the exit of the shielding box. In this case, the inspection can be performed while passing the inspection object between the radiation source and the radiation sensor unit in the shielding box by the transport unit.
 本発明のさらに別の側面では、放射線遮蔽部は、放射線センサ部の検出面の長手方向に延びる一対の辺の外側に設けた基部から鉛直下方に所定幅で突起するとともに検出面の長手方向に平行に延びる短冊状の一対の平板状部材である。この場合、平板状部材の形状や配置を適宜調整することで、1次散乱放射線の最大傾斜角を所望の値にすることができ、1次散乱X線の到達領域を制限することができる。 In yet another aspect of the present invention, the radiation shielding portion protrudes with a predetermined width vertically downward from a base provided outside a pair of sides extending in the longitudinal direction of the detection surface of the radiation sensor portion, and extends in the longitudinal direction of the detection surface. It is a pair of strip-shaped flat members extending in parallel. In this case, the maximum inclination angle of the primary scattered radiation can be set to a desired value by appropriately adjusting the shape and arrangement of the flat plate member, and the arrival area of the primary scattered X-ray can be limited.
 本発明のさらに別の側面では、一対の平板状部材の所定幅は、放射線センサ部で散乱された放射線が遮蔽ボックスの入口と出口とに直接入射することを阻止するように設定される。この場合、遮蔽ボックス外への放射線の漏洩を確実に低減することができる。 In still another aspect of the present invention, the predetermined width of the pair of flat plate members is set so as to prevent radiation scattered by the radiation sensor unit from directly entering the entrance and exit of the shielding box. In this case, leakage of radiation outside the shielding box can be reliably reduced.
 本発明のさらに別の側面では、放射線センサ部の下面、遮蔽ボックスの天面、遮蔽ボックスの壁面、及び搬送部の内部のいずれか1つ以上を含む複数箇所に放射線遮蔽部を配置する。この場合、1次の散乱に限らず2次以上の高次の散乱X線を包括的に抑える効果が高まる。 In yet another aspect of the present invention, the radiation shielding unit is arranged at a plurality of locations including any one or more of the lower surface of the radiation sensor unit, the top surface of the shielding box, the wall surface of the shielding box, and the inside of the transport unit. In this case, not only the primary scattering but also the effect of comprehensively suppressing secondary and higher-order scattered X-rays is enhanced.
 本発明のさらに別の側面では、遮蔽ボックスの入口側及び出口側に設けられる遮蔽カーテンをさらに備える。この場合、遮蔽ボックス外への放射線の漏洩をさらに確実に低減することができる。 In yet another aspect of the present invention, a shielding curtain is further provided on the entrance side and the exit side of the shielding box. In this case, leakage of radiation outside the shielding box can be further reliably reduced.
 本発明のさらに別の側面では、放射線源が照射する放射線はX線であり、放射線遮蔽部は、鉛で形成されている。 In yet another aspect of the present invention, the radiation emitted from the radiation source is X-rays, and the radiation shielding portion is formed of lead.
 上記目的を達成するため、本発明に係る手荷物検査装置の一態様は、上述した放射線検査装置を備え、被検査物としての手荷物を検査する。 In order to achieve the above object, one aspect of the baggage inspection apparatus according to the present invention includes the above-described radiation inspection apparatus and inspects baggage as an inspection object.
 上記手荷物検査装置では、放射線遮蔽部によって周辺への放射線の漏洩を低減することができ、手荷物検査装置に対する安心感を高めることができる。 In the above baggage inspection apparatus, radiation leakage to the surroundings can be reduced by the radiation shielding part, and a sense of security for the baggage inspection apparatus can be enhanced.
第1実施形態に係るX線検査装置又は荷物検査装置を概念的に示す側面図である。1 is a side view conceptually showing an X-ray inspection apparatus or a baggage inspection apparatus according to a first embodiment. 図1のAA矢視断面図である。It is AA arrow sectional drawing of FIG. 図2AのBB矢視断面図である。It is BB arrow sectional drawing of FIG. 2A. 図1のCC矢視断面図である。It is CC arrow sectional drawing of FIG. 放射線センサ部を長手方向に沿って見た拡大断面図である。It is the expanded sectional view which looked at the radiation sensor part along the longitudinal direction. センサ部を短手方向に沿って見た拡大側面図である。It is the expanded side view which looked at the sensor part along the transversal direction. X線の後方散乱を説明する概念図である。It is a key map explaining backscattering of X-rays. X線の後方散乱強度を説明する概念図である。It is a conceptual diagram explaining the backscattering intensity | strength of X-ray | X_line. 第2実施形態に係るX線検査装置又は荷物検査装置の要部を説明する拡大断面図である。It is an expanded sectional view explaining the principal part of the X-ray inspection apparatus or baggage inspection apparatus which concerns on 2nd Embodiment. X線検査装置の要部の変形例を説明する拡大断面図である。It is an expanded sectional view explaining the modification of the principal part of a X-ray inspection apparatus. X線検査装置の要部の別の変形例を説明する拡大断面図である。It is an expanded sectional view explaining another modification of the principal part of a X-ray inspection apparatus. 第3実施形態に係るX線検査装置等を説明する断面図である。It is sectional drawing explaining the X-ray inspection apparatus etc. which concern on 3rd Embodiment.
〔第1実施形態〕
 以下、図面を参照して、本発明に係る第1実施形態の放射線検査装置及び手荷物検査装置について説明する。
[First Embodiment]
Hereinafter, a radiation inspection apparatus and a baggage inspection apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
 図1に示すX線検査装置50は、搬送部としてのベルトコンベア51と、ベルトコンベア51により搬送された被検査物TOの中身をX線照射により確認するための検査本体部52と、ベルトコンベア51によって検査本体部52に搬送される被検査物の存在を検知する検知部53と、被検査物TOについてX線透過像を表示するディスプレイ装置54と、各部の制御を行う制御部56と、を備える放射線検査装置である。X線検査装置50は、具体的には被検査物TOとしての手荷物BAについて検査を行うことができ、手荷物検査装置100として機能する。 An X-ray inspection apparatus 50 shown in FIG. 1 includes a belt conveyor 51 as a conveyance unit, an inspection main body 52 for confirming the contents of an object to be inspected TO conveyed by the belt conveyor 51 by X-ray irradiation, and a belt conveyor. 51, a detection unit 53 for detecting the presence of an object to be inspected conveyed to the inspection main body 52, a display device 54 for displaying an X-ray transmission image of the inspection object TO, a control unit 56 for controlling each part, A radiological examination apparatus comprising: Specifically, the X-ray inspection apparatus 50 can inspect the baggage BA as the inspection object TO and functions as the baggage inspection apparatus 100.
 X線検査装置(放射線検査装置)50は、検査本体部52の入口側に設けられたカメラその他である検知部53により被検査物TOを検知しつつベルトコンベア51によって被検査物TOを搬送方向D1に沿って検査本体部52内へ送り込むように搬送し、検査本体部52においてX線照射によって内部構造を可視化する検査を行い、検査本体部52外へ被検査物TOを搬出して検査を終了する。 The X-ray inspection apparatus (radiation inspection apparatus) 50 detects the inspection object TO by the detection unit 53 that is a camera or the like provided on the entrance side of the inspection main body 52, and conveys the inspection object TO by the belt conveyor 51. The inspection main body 52 is transported so as to be fed into the inspection main body 52, and the inspection main body 52 performs inspection to visualize the internal structure by X-ray irradiation, and the inspection object TO is carried out of the inspection main body 52 and inspected. finish.
 X線検査装置50のうち、搬送部であるベルトコンベア51は、図2A~図2Cに示すように、被検査物TOが載置されるベルト部51aと、装置の入口側及び出口側の両端に設けられるとともにベルト部51aが取り付けられる一対のローラー部51b,51bと、搬送方向D1について一対のローラー部51b,51bの間であってかつリング状のベルト部51a内に設けられて、ベルト部51a及びベルト部51aに載置された被検査物TOを支える板状の部分であるベルト支持部51cと、上記各部を支持する支持フレーム51dと、を備える。 In the X-ray inspection apparatus 50, as shown in FIGS. 2A to 2C, a belt conveyor 51 serving as a transport unit includes a belt part 51a on which an object TO is placed and both ends on the inlet side and the outlet side of the apparatus. And a pair of roller portions 51b and 51b to which the belt portion 51a is attached and a belt portion between the pair of roller portions 51b and 51b in the transport direction D1 and in the ring-shaped belt portion 51a. The belt support part 51c which is a plate-shaped part which supports the to-be-inspected object TO mounted on 51a and the belt part 51a, and the support frame 51d which supports said each part are provided.
 ローラー部51b,51bは、不図示の機構に駆動されて回転し、ベルト部51aの上部を被検査物TOとともに搬送方向D1に所期の速度で移動させる。 The roller parts 51b and 51b are driven and rotated by a mechanism (not shown) to move the upper part of the belt part 51a together with the inspection object TO in the transport direction D1 at an expected speed.
 ベルト支持部51cは、被検査物TOの搬送方向D1に沿って配列される複数の細長い板状のブロック状部材62,62…と、複数のブロック状部材62,62…上に配置される押え板61とで構成されている。各ブロック状部材62は、支持フレーム51dから延びる一対のフランジ部65,65間に掛け渡されて着脱可能に固定されている。複数のブロック状部材62,62…のうち、遮蔽ボックス75内に配置されているものは、鉛等で構成されてX線吸収性を有し、検査本体部52で発生するX線を部分的に遮蔽する。ここで、複数のブロック状部材62,62…は、X線を透過させる透過領域SLを避けて配列されている。すなわち、複数のブロック状部材62,62…は、検査本体部52で発生するX線の一部を吸収しつつ透過領域SLでX線の他の一部を透過させることで、遮蔽ボックス75内を通過する被検査物TOへのX線の照射を可能にしている。押え板61は、例えばアクリル等のX線透過性素材で作製された板状部材である。押え板61は、ベルト支持部51cの最上面を構成し、ベルト支持部51c上面でのがたつきの発生を抑えてベルト支持部51cによるベルト部51aの支持を確実なものとしている。また、押え板61は、上表面が平らなだけでなく、摩擦の少ないものとなっており、ベルト部51aとともにベルト部51aに載置された被検査物TOの安定かつ確実な搬送を確保している。ベルト部51a等を支持する支持フレーム51dは、カバー部77に覆われている。 The belt support 51c is arranged on the plurality of elongated plate- like block members 62, 62... And the pressers arranged on the plurality of block members 62, 62. It is comprised with the board 61. FIG. Each block-like member 62 is spanned between a pair of flange portions 65, 65 extending from the support frame 51d, and is detachably fixed. Among the plurality of block-shaped members 62, 62..., Those arranged in the shielding box 75 are made of lead or the like, have X-ray absorption, and partially generate X-rays generated in the inspection main body 52. Shield. Here, the plurality of block- like members 62, 62... Are arranged avoiding the transmission region SL that transmits X-rays. That is, the plurality of block-shaped members 62, 62... Absorb the part of the X-rays generated in the inspection main body 52 and transmit the other part of the X-rays in the transmission region SL, thereby X-ray irradiation can be performed on the inspection object TO passing through. The presser plate 61 is a plate-like member made of an X-ray transparent material such as acrylic. The presser plate 61 constitutes the uppermost surface of the belt support portion 51c and suppresses the occurrence of rattling on the upper surface of the belt support portion 51c to ensure the support of the belt portion 51a by the belt support portion 51c. Further, the presser plate 61 has not only a flat upper surface but also less friction, and ensures stable and reliable conveyance of the inspection object TO placed on the belt portion 51a together with the belt portion 51a. ing. A support frame 51 d that supports the belt portion 51 a and the like is covered with a cover portion 77.
 検査本体部52は、検査対象である被検査物TOに対して放射線であるX線RLを照射するX線源71と、X線源71からのX線RLのうち被検査物TOを通過した成分を受けるX線センサ部72と、X線源71とX線センサ部72とを内部に収納する直方体状の遮蔽ボックス75と、を有する。ここで、搬送部としてのベルトコンベア51は、X線源71とX線センサ部72との間を通ってX線センサ部72の長手方向と交差するy方向に延びるとともに遮蔽ボックス75の入口ENと出口EXとの間に亘って延在する。これにより、ベルトコンベア51によって遮蔽ボックス75内でX線源71とX線センサ部72との間において被検査物TOを通過させつつ検査を行うことができる。 The inspection main body 52 has passed the inspection object TO among the X-ray source 71 that irradiates the X-ray RL that is radiation to the inspection object TO that is the inspection object, and the X-ray RL from the X-ray source 71. An X-ray sensor unit 72 that receives components, and a rectangular parallelepiped shielding box 75 that houses the X-ray source 71 and the X-ray sensor unit 72 therein. Here, the belt conveyor 51 serving as a transport unit extends between the X-ray source 71 and the X-ray sensor unit 72 in the y direction intersecting with the longitudinal direction of the X-ray sensor unit 72 and the entrance EN of the shielding box 75. And the exit EX. Thus, the inspection can be performed while the inspection object TO is passed between the X-ray source 71 and the X-ray sensor unit 72 in the shielding box 75 by the belt conveyor 51.
 X線源71は、X線RLを射出する放射線源である。X線源(放射線源)71は、遮蔽ボックス75の中央付近の下部側に配置されており、射出部EAから放射線であるX線RLをX線センサ部72に向けて照射する。なお、本実施形態では、X線源71として、パルス発振方式の冷陰極X線源を組み込んでいるが、CW発振方式の熱陰極X線源に置き換えることもできる。X線源71の遮蔽容器71aの上部であって、ベルトコンベア51の下方には、X線RLの搬送方向D1又はx方向への広がりを抑える遮蔽体71bが配置されている。 The X-ray source 71 is a radiation source that emits an X-ray RL. The X-ray source (radiation source) 71 is disposed on the lower side near the center of the shielding box 75 and irradiates the X-ray sensor RL with X-rays RL as radiation from the emission unit EA. In this embodiment, a pulse oscillation type cold cathode X-ray source is incorporated as the X-ray source 71, but it can be replaced with a CW oscillation type hot cathode X-ray source. A shield 71b that suppresses the spread of the X-ray RL in the transport direction D1 or the x direction is disposed above the shield container 71a of the X-ray source 71 and below the belt conveyor 51.
 X線センサ部72は、X線RLを受ける放射線センサ部である。X線センサ部72は、ベルトコンベア(搬送部)51を挟んでX線源71に対向するように遮蔽ボックス75の中央付近の上部側に配置されている。X線センサ部72は、例えば受光素子を搬送方向D1に対して垂直な方向に延びるようにライン状に並べて配置することで、ベルトコンベア51による搬送と協働してライン型のスキャンを可能にしている。すなわち、被検査物TOが遮蔽ボックス75の中央付近の領域DDを通過する際に、X線による被検査物への照射がなされ、X線センサ部72が受けた結果に基づき手荷物BA内部の3次元的な検査がなされる。 The X-ray sensor unit 72 is a radiation sensor unit that receives the X-ray RL. The X-ray sensor unit 72 is disposed on the upper side near the center of the shielding box 75 so as to face the X-ray source 71 with the belt conveyor (conveying unit) 51 interposed therebetween. For example, the X-ray sensor unit 72 arranges the light receiving elements in a line so as to extend in a direction perpendicular to the conveyance direction D1, thereby enabling line-type scanning in cooperation with conveyance by the belt conveyor 51. ing. That is, when the inspection object TO passes through the region DD near the center of the shielding box 75, the inspection object is irradiated with X-rays, and based on the result received by the X-ray sensor unit 72, 3 inside the baggage BA. A dimensional inspection is made.
 遮蔽ボックス75は、直方体状の筐体であり、ベルトコンベア51を挿入させて被検査物TOを内部に搬送させるとともに被検査物TOの入口ENや出口EXを形成する矩形状の開口部を有している。なお、遮蔽ボックス75を構成する各壁部は、外部へのX線漏洩を抑制するために、鉛等のX線吸収部材で形成されている。遮蔽ボックス75の入口EN及び出口EXには、遮蔽カーテンCN1,CN2が設けられている。遮蔽カーテンCN1,CN2の材料としては、短冊状の鉛入りゴム状部材を配列したものを用いることができる。遮蔽カーテンCN1,CN2を設けることで、遮蔽ボックス75外へのX線の漏洩をより確実に低減することができる。 The shielding box 75 is a rectangular parallelepiped housing, and has a rectangular opening that inserts the belt conveyor 51 to convey the object TO be inspected and forms an inlet EN and an outlet EX of the object TO. is doing. In addition, each wall part which comprises the shielding box 75 is formed with X-ray absorption members, such as lead, in order to suppress the X-ray leakage to the exterior. Shielding curtains CN1 and CN2 are provided at the entrance EN and the exit EX of the shielding box 75. As the material of the shielding curtains CN1 and CN2, a material in which strip-like lead-containing rubber-like members are arranged can be used. By providing the shielding curtains CN1 and CN2, leakage of X-rays outside the shielding box 75 can be more reliably reduced.
 図3Aに示すように、X線センサ部72は、受光素子72aと、信号処理回路72bと、収納容器72cと、を備える。受光素子72aの検出面72jは、紙面に垂直なx方向に直線状に延び、x方向を長手方向とする細長い矩形形状を有する。具体的には、検出面72jは、図2A等に示すベルトコンベア51のベルト部51aの幅程度の長さを有し、y方向に例えば数mm程度の幅を有する。収納容器72cは、鉛等のX線吸収部材で形成され、受光素子72aの検出面72jに対応する範囲に開口72oを有するとともに開口72oを塞ぐ透過窓72wを有する。 As shown in FIG. 3A, the X-ray sensor unit 72 includes a light receiving element 72a, a signal processing circuit 72b, and a storage container 72c. The detection surface 72j of the light receiving element 72a extends in a straight line in the x direction perpendicular to the paper surface, and has a long and narrow rectangular shape with the x direction as the longitudinal direction. Specifically, the detection surface 72j has a length about the width of the belt portion 51a of the belt conveyor 51 shown in FIG. 2A and the like, and has a width of about several mm in the y direction, for example. The storage container 72c is formed of an X-ray absorbing member such as lead, and has an opening 72o in a range corresponding to the detection surface 72j of the light receiving element 72a and a transmission window 72w that closes the opening 72o.
 図3A及び図3Bに示すように、X線センサ部72に付随して、X線センサ部72の下面72u側に放射線遮蔽部82が設けられている。つまり、放射線遮蔽部82とX線センサ部72とは、鉛直方向すなわちz方向に関して異なる高さ位置に配置されている。放射線遮蔽部82は、X線センサ部72で散乱された放射線であるX線RLを遮蔽するため、鉛等のX線吸収部材で形成されている。放射線遮蔽部82は、短冊状の一対の平板状部材82a,82bを有し、両平板状部材82a,82bは、X線源71からの放射線であるX線RLが直接入射する照射領域DRの外に照射領域DRを挟むように延在する。より具体的には、一対の平板状部材82a,82bは、X線センサ部72の検出面72jの外側において当該検出面72jの長手方向に沿って対向する状態で延びる。これにより、ラインセンサである検出面72jの長手方向に直交するy方向に射出される散乱放射線の広がりを制限することができる。つまり、一対の平板状部材82a,82bの形状や配置を適宜調整することで、1次散乱放射線の最大傾斜角を所望の値にすることができ、1次散乱X線L12,L22の到達領域を制限することができる。一対の平板状部材82a,82bは、X線センサ部72の検出面72jの長手方向に延びる一対の辺S1,S2の外側に設けた収納容器72cの基部72qから鉛直下方である-z方向に突起するとともに、検出面72jの長手方向であるx方向に平行に延びる。図3Bに示すように、一対の平板状部材82a,82bの長手方向又はx方向の幅又は長さは、X線センサ部72の検出面72jのx方向の長さより長く、検出面72jの範囲をカバーするものとなっている。 As shown in FIGS. 3A and 3B, a radiation shielding unit 82 is provided on the lower surface 72 u side of the X-ray sensor unit 72 in association with the X-ray sensor unit 72. That is, the radiation shielding unit 82 and the X-ray sensor unit 72 are arranged at different height positions in the vertical direction, that is, the z direction. The radiation shielding part 82 is formed of an X-ray absorbing member such as lead in order to shield the X-ray RL that is the radiation scattered by the X-ray sensor part 72. The radiation shielding part 82 has a pair of strip-like flat plate members 82a and 82b, and both the flat plate members 82a and 82b are in the irradiation region DR where X-rays RL as radiation from the X-ray source 71 are directly incident. It extends so as to sandwich the irradiation region DR outside. More specifically, the pair of flat members 82a and 82b extend outside the detection surface 72j of the X-ray sensor unit 72 so as to face each other along the longitudinal direction of the detection surface 72j. Thereby, the spread of the scattered radiation emitted in the y direction orthogonal to the longitudinal direction of the detection surface 72j that is a line sensor can be limited. That is, by appropriately adjusting the shape and arrangement of the pair of flat plate members 82a and 82b, the maximum inclination angle of the primary scattered radiation can be set to a desired value, and the arrival region of the primary scattered X-rays L12 and L22. Can be limited. The pair of flat plate members 82a and 82b are vertically downward from a base portion 72q of a storage container 72c provided outside a pair of sides S1 and S2 extending in the longitudinal direction of the detection surface 72j of the X-ray sensor portion 72. While projecting, it extends parallel to the x direction, which is the longitudinal direction of the detection surface 72j. As shown in FIG. 3B, the width or length in the longitudinal direction or the x direction of the pair of flat plate members 82a and 82b is longer than the length in the x direction of the detection surface 72j of the X-ray sensor unit 72, and the range of the detection surface 72j. It is intended to cover.
 以下、平板状部材82a,82bの鉛直方向の幅と水平方向の間隔とについて説明する。X線センサ部72の透過窓72wの外側に入射するX線RLのうち、透過窓72wを基準として最外点P1,P2に入射する外側X線L11,L21は、最外点P1,P2での後方散乱によって1次散乱X線L12,L22となって遮蔽ボックス75内に戻される。この際、1次散乱X線L12,L22は、反対側の平板状部材82a,82bの配置、特に下端部82eの配置との関係で後方散乱の傾斜角に制限が生じる。具体的には、最外点P1から反対の平板状部材82bまでの距離をdとし、平板状部材82bの鉛直幅をhとして、1次散乱X線L12の最大傾斜角θ1は、下端部82eでの遮蔽が臨界点となって、tan-1(d/h)となる。この最大傾斜角θ1より大きな傾斜角の後方散乱成分L13は、平板状部材82bの内面で再度後方散乱された2次散乱X線となるので、当初のX線RLの強度又は頻度に比較して(1/100~1/1000)倍程度微小なものとなり、安全性に与える影響度が格段に下がり安心感の確保が容易となる。なお、最外点P1に入射した外側X線L11が後方散乱されて同じ側の平板状部材82aに入射した場合、この後方散乱成分L14は、2次散乱X線となるので、安全性に与える影響度が格段に下がる。反対の最外点P2に入射する外側X線L21に起因する1次散乱X線L22も同様であり、最外点P2から反対の平板状部材82aまでの距離をdとし、平板状部材82bの縦幅をhとして、最大傾斜角θ2は、tan-1(d/h)となる。以上の最大傾斜角θ1,θ2内の角度領域A1は、1次散乱X線L12,L22の到達領域であり、遮蔽ボックス75外に直接漏れ出すような広がりを有しないことが望ましい。一方、最大傾斜角θ1,θ2外の角度領域A2は、1次散乱X線L12,L22が平板状部材82a,82bによって遮断されてX線の強度又は頻度が極めて低下しており、しかも、X線の伝搬距離が長くなるので、遮蔽ボックス75内でどのような広がりを有していても問題とならない。実際には、図2Bに示すように、角度領域A1の下端の最大広がり位置M1,M2が遮蔽ボックス75の入口ENや出口EXよりも内側となるように設定されており、平板状部材82a,82bによって1次散乱X線L12,L22が入口ENや出口EXに直接入射することが阻止されている。結果的に、遮蔽ボックス75外へのX線の漏洩を確実に低減できる。角度領域A1を通過した1次散乱X線L12,L22がベルトコンベア51に入射しても2次散乱X線となり、伝搬距離が長くなって、漏洩量を抑えることができる。なお、平板状部材82a,82bの鉛直幅hは、角度領域A1を狭く制限する観点である程度大きく確保することが望ましいが、ベルトコンベア51の搬送経路を妨げない範囲とする必要がある。平板状部材82a,82bの鉛直幅hを低くする観点からすると、平板状部材82a,82bを外側X線L11,L21になるべく近づけることが望ましいといえる。 Hereinafter, the vertical width and the horizontal interval of the flat members 82a and 82b will be described. Out of the X-rays RL that enter the outside of the transmission window 72w of the X-ray sensor unit 72, the outer X-rays L11 and L21 that enter the outermost points P1 and P2 with reference to the transmission window 72w are the outermost points P1 and P2. Are scattered back into the shielding box 75 as primary scattered X-rays L12 and L22. At this time, the primary scattered X-rays L12 and L22 are limited in the inclination angle of backscattering due to the arrangement of the opposite flat plate members 82a and 82b, particularly the arrangement of the lower end portion 82e. Specifically, assuming that the distance from the outermost point P1 to the opposite flat plate member 82b is d and the vertical width of the flat plate member 82b is h, the maximum inclination angle θ1 of the primary scattered X-ray L12 is the lower end portion 82e. Shielding at becomes a critical point and becomes tan −1 (d / h). The backscattering component L13 having an inclination angle larger than the maximum inclination angle θ1 becomes secondary scattered X-rays that are backscattered again on the inner surface of the flat plate member 82b, and therefore, compared with the intensity or frequency of the original X-ray RL. (1 / 100-1 / 1000) become a thing about twice a minute, the degree of influence on safety is easy to secure the peace of mind falling dramatically. When the outer X-ray L11 incident on the outermost point P1 is back-scattered and incident on the flat plate member 82a on the same side, this back-scattered component L14 becomes secondary scattered X-ray, which is given to safety. The degree of influence drops dramatically. The same applies to the primary scattered X-ray L22 caused by the outer X-ray L21 incident on the opposite outermost point P2, and the distance from the outermost point P2 to the opposite flat plate member 82a is d, and the flat plate member 82b When the vertical width is h, the maximum inclination angle θ2 is tan −1 (d / h). The angle region A1 within the maximum inclination angles θ1 and θ2 described above is an arrival region of the primary scattered X-rays L12 and L22, and preferably does not have a spread that directly leaks out of the shielding box 75. On the other hand, in the angle region A2 outside the maximum inclination angles θ1 and θ2, the primary scattered X-rays L12 and L22 are blocked by the plate- like members 82a and 82b, and the intensity or frequency of X-rays is extremely reduced. Since the propagation distance of the line becomes long, it does not matter if it has any extent in the shielding box 75. Actually, as shown in FIG. 2B, the maximum spreading positions M1, M2 of the lower end of the angle region A1 are set to be inside the entrance EN and the exit EX of the shielding box 75, and the flat plate members 82a, 82b prevents the primary scattered X-rays L12 and L22 from directly entering the entrance EN and the exit EX. As a result, X-ray leakage outside the shielding box 75 can be reliably reduced. Even if the primary scattered X-rays L12 and L22 that have passed through the angle region A1 are incident on the belt conveyor 51, they become secondary scattered X-rays, and the propagation distance becomes longer, and the amount of leakage can be suppressed. The vertical width h of the plate- like members 82a and 82b is desirably secured to some extent from the viewpoint of restricting the angle region A1 to be narrow, but needs to be in a range that does not hinder the conveyance path of the belt conveyor 51. From the viewpoint of reducing the vertical width h of the flat members 82a and 82b, it can be said that the flat members 82a and 82b are preferably as close as possible to the outer X-rays L11 and L21.
 以上の説明では、外側X線L11,L21が対称的にX線センサ部72に入射する前提で説明を行ったが、外側X線L11,L21が非対称的にX線センサ部72に入射する場合、個々の外側X線L11,L21について、最大傾斜角θ1,θ2を評価し平板状部材82a,82bの配置や大きさを設定すればよい。この場合、両平板状部材82a,82bの高さ又は鉛直幅が異なる場合も生じる。さらに、以上の説明では、X線センサ部72が遮蔽ボックス75内で搬送方向D1に関して中央にあるとしているが、X線センサ部72が遮蔽ボックス75内で中央からずれた位置にある場合も、外側X線L11,L21の入射位置に応じて平板状部材82a,82bの配置や大きさを個別に設定する。さらに、平板状部材82a,82bの高さ又は鉛直幅は、x方向の位置に関わらず一定となっているが、これに限る必要はなく、長手のx方向の位置によって異なるものであってもよい。 In the above description, the description has been made on the assumption that the outer X-rays L11 and L21 are incident on the X-ray sensor unit 72 symmetrically, but the outer X-rays L11 and L21 are incident on the X-ray sensor unit 72 asymmetrically. For the individual outer X-rays L11 and L21, the maximum inclination angles θ1 and θ2 may be evaluated to set the arrangement and size of the flat plate members 82a and 82b. In this case, the two flat members 82a and 82b may have different heights or vertical widths. Furthermore, in the above description, the X-ray sensor unit 72 is in the center in the shielding box 75 with respect to the transport direction D1, but the X-ray sensor unit 72 is also in a position deviated from the center in the shielding box 75. The arrangement and size of the flat members 82a and 82b are individually set according to the incident positions of the outer X-rays L11 and L21. Further, the height or vertical width of the flat members 82a and 82b is constant regardless of the position in the x direction, but is not limited thereto, and may be different depending on the position in the longitudinal x direction. Good.
 図4Aは、X線RLの散乱を説明する図である。X線RLを対象物OBに入射させた場合、対象物OBが散乱体であれば、透過成分R1の他に、前方散乱成分DR1と後方散乱成分DR2とが生成される。対象物OBの厚みや遮蔽能にもよるが、透過成分R1に比較して前方散乱成分DR1及び後方散乱成分DR2の比率は小さく、一般的には前方散乱成分DR1の方が後方散乱成分DR2よりも多くなる。また、図4Bに示すように、後方散乱成分DR2については、散乱角φrが大きくなるほど散乱強度が大きくなる。図3Aに示すような1次散乱X線L12,L22について考える場合、これらは後方散乱成分DR2に相当するものであり、1次散乱X線L12,L22の強度又は頻度は、対象物OBや散乱角φrにもよるが、元のX線RLの強度又は頻度に対して例えば1/100倍以下のレベルとなる。 FIG. 4A is a diagram for explaining scattering of X-ray RL. When the X-ray RL is incident on the object OB, if the object OB is a scatterer, a forward scattering component DR1 and a backscattering component DR2 are generated in addition to the transmission component R1. Although depending on the thickness and shielding ability of the object OB, the ratio of the forward scattering component DR1 and the back scattering component DR2 is smaller than the transmission component R1, and generally the forward scattering component DR1 is more than the back scattering component DR2. Will also increase. Further, as shown in FIG. 4B, for the backscattering component DR2, the scattering intensity increases as the scattering angle φr increases. When considering the primary scattered X-rays L12 and L22 as shown in FIG. 3A, these correspond to the backscattered component DR2, and the intensity or frequency of the primary scattered X-rays L12 and L22 depends on the object OB and the scattering. Although depending on the angle φr, the level is, for example, 1/100 times or less of the intensity or frequency of the original X-ray RL.
 以上のように、第1実施形態のX線検査装置50では、放射線遮蔽部82がX線センサ部72で散乱されたX線、すなわち1次散乱X線L12,L22を遮蔽するので、X線センサ部72に起因するX線センサ部72の周辺へのX線の漏洩を低減することができ、X線検査装置50に対する安心感を高めることができる。 As described above, in the X-ray inspection apparatus 50 according to the first embodiment, the radiation shielding unit 82 shields the X-rays scattered by the X-ray sensor unit 72, that is, the primary scattered X-rays L12 and L22. Leakage of X-rays to the periphery of the X-ray sensor unit 72 due to the sensor unit 72 can be reduced, and a sense of security for the X-ray inspection apparatus 50 can be enhanced.
 〔第2実施形態〕
 以下、図5Aを参照して、第1実施形態を変形した第2実施形態について説明する。なお、本実施形態に係るX線検査装置50は、放射線遮蔽部82及びその周辺の構造を除いて、第1実施形態と同様の構成であるので、X線検査装置50全体についての詳細な説明を省略する。
[Second Embodiment]
Hereinafter, a second embodiment obtained by modifying the first embodiment will be described with reference to FIG. 5A. Note that the X-ray inspection apparatus 50 according to the present embodiment has the same configuration as that of the first embodiment except for the radiation shielding part 82 and the surrounding structure, and therefore the detailed description of the X-ray inspection apparatus 50 as a whole. Is omitted.
 この場合、放射線遮蔽部82を構成する一対の平板状部材82a,82bが鉛直方向に対して傾いており、先端側で狭まるような形状となっている。第2実施形態の場合も、第1実施形態の場合と同様に、平板状部材82a,82bの下端部82eの配置を調整することにより、1次散乱X線L12,L22の最大傾斜角θ1,θ2を所望の値にすることができ、角度領域A1を所望の広がりを有する状態に設定することができる。一対の平板状部材82a,82bを先端側で狭まるような形状又は配置とすることで、平板状部材82a,82bを外側X線L11,L21に近づけることが比較的容易になる。 In this case, the pair of flat plate- like members 82a and 82b constituting the radiation shielding portion 82 are inclined with respect to the vertical direction and are narrowed on the tip side. In the case of the second embodiment, similarly to the case of the first embodiment, the maximum inclination angle θ1, the primary scattered X-rays L12, L22 is adjusted by adjusting the arrangement of the lower end portions 82e of the flat plate members 82a, 82b. θ2 can be set to a desired value, and the angle region A1 can be set to have a desired spread. By making the pair of flat members 82a and 82b into a shape or arrangement that narrows on the tip side, it becomes relatively easy to bring the flat members 82a and 82b closer to the outer X-rays L11 and L21.
 図5Bは、図5Aに示す放射線遮蔽部82を変形したものであり、平板状部材82a,82bが湾曲した形状を有する。図5Cは、図5Aに示す放射線遮蔽部82をさらに変形したものであり、放射線遮蔽部82を構成する板状部材182a,182bは、断面L字状で2つの平板部材を組み合わせたものとなっている。 FIG. 5B is a modification of the radiation shielding part 82 shown in FIG. 5A, and the flat plate members 82a and 82b have a curved shape. FIG. 5C is a further modification of the radiation shielding part 82 shown in FIG. 5A, and the plate- like members 182a and 182b constituting the radiation shielding part 82 are L-shaped in section and are a combination of two flat plate members. ing.
 〔第3実施形態〕
 以下、図6を参照して、第3実施形態について説明する。なお、本実施形態に係るX線検査装置50は、第1実施形態を部分的に変更したものであり、重複する部分については説明を省略する。
[Third Embodiment]
Hereinafter, the third embodiment will be described with reference to FIG. Note that the X-ray inspection apparatus 50 according to the present embodiment is a partial modification of the first embodiment, and description of overlapping portions is omitted.
 X線検査装置50は、遮蔽ボックス75内の複数箇所に放射線遮蔽部82を配置している。具体的には、遮蔽ボックス75内において、基本的な平板状部材82a,82bの外側に、X線センサ部72の下面72uから延びる一対の追加の平板状部材182a,182bと、遮蔽ボックス75の天面75aから延びる一対の追加の平板状部材282a,282bと、が形成されている。追加の平板状部材182a,182b,282a,282bは、基本的な平板状部材82a,82bと寸法が異なるが類似する形状を有しており、X線センサ部72で散乱された1次又は2次以上の高次の散乱成分を遮蔽する役割を有する。遮蔽ボックス75の壁面75bからは、搬送経路の上方においてx方向に掛け渡されるように、一対の追加の平板状部材382a,382bが形成されている。一対の平板状部材382a,382bは、X線センサ部72からの2次以上の高次の散乱成分を遮蔽する役割や、被検査物TOからの1次以上の散乱成分を遮蔽する役割を有する。さらに、ベルトコンベア51のベルト支持部51cのうち透過領域SLにおいて空間を設け、その空間を搬送経路方向に挟むように、一対の追加の平板状部材482a,482bを設けている。一対の平板状部材482a,482bは、ベルトコンベア(搬送部)51の内部において、X線センサ部72や被検査物TOからの1次以上の散乱成分を遮蔽する役割を有する。 The X-ray inspection apparatus 50 has radiation shielding portions 82 arranged at a plurality of locations in the shielding box 75. Specifically, in the shielding box 75, a pair of additional flat members 182 a and 182 b extending from the lower surface 72 u of the X-ray sensor unit 72 and the shielding box 75 are disposed outside the basic flat members 82 a and 82 b. A pair of additional flat plate members 282a and 282b extending from the top surface 75a are formed. The additional flat members 182 a, 182 b, 282 a, and 282 b have similar shapes but different dimensions from the basic flat members 82 a and 82 b, and are primary or scattered by the X-ray sensor unit 72. It has a role of shielding higher-order and higher-order scattering components. A pair of additional flat plate members 382a and 382b are formed from the wall surface 75b of the shielding box 75 so as to be spanned in the x direction above the transport path. The pair of flat members 382a and 382b have a role of shielding secondary and higher order scattering components from the X-ray sensor unit 72 and a role of shielding primary and higher order scattering components from the object TO. . Further, a space is provided in the transmission region SL in the belt support portion 51c of the belt conveyor 51, and a pair of additional flat plate members 482a and 482b are provided so as to sandwich the space in the conveyance path direction. The pair of flat members 482a and 482b have a role of shielding primary and higher-order scattering components from the X-ray sensor unit 72 and the inspection object TO inside the belt conveyor (conveying unit) 51.
 〔その他〕
 この発明は、上記の各実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
[Others]
The present invention is not limited to the above embodiments, and can be implemented in various modes without departing from the scope of the invention.
 上記実施形態では、透視観察型の検査のためX線RLを用いているが、X線RL以外の他の放射線を用いることができる。 In the above embodiment, the X-ray RL is used for the fluoroscopic observation type inspection, but radiation other than the X-ray RL can be used.
 上記実施形態では、X線検査装置50を手荷物検査装置100に適用する場合を説明したが、X線検査装置50は、手荷物検査に限らず、様々な対象をX線その他の放射線で検査する場合に応用できる。 In the above-described embodiment, the case where the X-ray inspection apparatus 50 is applied to the baggage inspection apparatus 100 has been described. However, the X-ray inspection apparatus 50 is not limited to the baggage inspection, and inspects various objects with X-rays or other radiation. It can be applied to.
 X線センサ部72の検出面72jの形状は、例示のものに限らず、縦横比を様々に変更したものとできる。 The shape of the detection surface 72j of the X-ray sensor unit 72 is not limited to the illustrated example, and the aspect ratio can be variously changed.
 遮蔽ボックス75の入口EN又は出口EXにおいて、遮蔽カーテンCN1,CN2へのX線の入射量が少ない場合、遮蔽カーテンCN1,CN2を省略することができる。 When the incident amount of X-rays to the shielding curtains CN1 and CN2 is small at the entrance EN or the exit EX of the shielding box 75, the shielding curtains CN1 and CN2 can be omitted.
 上記実施形態では、ベルトコンベア(搬送部)51を用いたが、ベルトコンベア51を有しないX線検査装置50において、図3A等に示す放射線遮蔽部82を組み付けることができる。ベルトコンベア51を有しない場合、X線センサ部72をラインセンサタイプとしないでX線その他の放射線を面状に照射することもできるが、X線センサ部72をラインセンサタイプとして検査対象及びX線センサ部72の一方を他方に対して相対的に移動させてもよい。 In the above embodiment, the belt conveyor (conveying unit) 51 is used. However, in the X-ray inspection apparatus 50 that does not have the belt conveyor 51, the radiation shielding unit 82 shown in FIG. 3A or the like can be assembled. When the belt conveyor 51 is not provided, the X-ray sensor unit 72 can be irradiated in a planar shape without using the X-ray sensor unit 72 as a line sensor type. One of the line sensor units 72 may be moved relative to the other.
 50…X線検査装置(放射線検査装置)、 51…ベルトコンベア(搬送部)、 51a…ベルト部、 51b…ローラー部、 51c…ベルト支持部、 51d…支持フレー
ム、 52…検査本体部、 54…ディスプレイ装置、 56…制御部、 62…ブロック状部材、 71…X線源(放射線源)、 71a…遮蔽容器、 72…X線センサ部(放射線センサ部)、 72a…受光素子、 72c…収納容器、 72j…検出面、 72o…開口、 72q…基部、 72u…下面、 72w…透過窓、 75…遮蔽ボックス、 82…放射線遮蔽部、 82a,82b…平板状部材、 82e…下端部、 100…手荷物検査装置、 A1,A2…角度領域、 BA…手荷物、 CN1,CN2…遮蔽カーテン、 D1…搬送方向、 DR…照射領域、 EA…射出部、 EN…入口、 EX…出口、 L11,L21…外側X線、 L21,L22…1次散乱X線L、 P1,P2…最外点、 S1,S2…一対の辺、 SL…透過領域、 TO…被検査物、 θ1,θ2…最大傾斜角
DESCRIPTION OF SYMBOLS 50 ... X-ray inspection apparatus (radiation inspection apparatus), 51 ... Belt conveyor (conveyance part), 51a ... Belt part, 51b ... Roller part, 51c ... Belt support part, 51d ... Support frame, 52 ... Inspection main-body part, 54 ... Display device 56 ... Control unit 62 ... Block-shaped member 71 ... X-ray source (radiation source) 71a ... Shielding container 72 ... X-ray sensor unit (radiation sensor unit) 72a ... Light receiving element 72c ... Storage container 72j ... detection surface, 72o ... opening, 72q ... base, 72u ... bottom surface, 72w ... transmission window, 75 ... shielding box, 82 ... radiation shielding part, 82a, 82b ... flat plate member, 82e ... lower end, 100 ... baggage Inspection device, A1, A2 ... Angle area, BA ... Baggage, CN1, CN2 ... Shielding curtain, D1 ... Transport direction, DR ... Irradiation area, EA ... Injection unit, EN ... Inlet, EX ... Exit, L11, L21 ... Outside X-ray, L21, L22 ... Primary scattered X-ray L, P1, P2 ... Outermost point, S1, S2 ... A pair of sides, SL ... Transmission region, TO ... Inspected object, θ1, θ2 ... Maximum inclination angle

Claims (9)

  1.  放射線を被検査物に照射する放射線源と、
     前記放射線源からの放射線を受ける放射線センサ部と、
     前記放射線センサ部側において放射線が直接入射する照射領域の外に延在し、前記放射線センサ部で散乱された放射線を遮蔽する放射線遮蔽部と、
     を備える、放射線検査装置。
    A radiation source for irradiating the object with radiation;
    A radiation sensor unit that receives radiation from the radiation source;
    A radiation shielding part that extends outside an irradiation region where radiation is directly incident on the radiation sensor part side and shields radiation scattered by the radiation sensor part; and
    A radiation inspection apparatus.
  2.  前記放射線センサ部の検出面は、所定方向に直線状に延び、
     前記放射線遮蔽部は、前記放射線センサ部の前記検出面の外側において当該検出面の長手方向に沿って対向する状態で延びる、
     請求項1に記載の放射線検査装置。
    The detection surface of the radiation sensor unit extends linearly in a predetermined direction,
    The radiation shielding part extends in a state of facing the longitudinal direction of the detection surface outside the detection surface of the radiation sensor unit.
    The radiation inspection apparatus according to claim 1.
  3.  前記放射線源と前記放射線センサ部とは、鉛直方向に関して異なる高さ位置に配置され、
     前記放射線源と前記放射線センサ部とを収納して放射線を遮蔽する遮蔽ボックスと、前記放射線源と前記放射線センサ部との間を通って前記所定方向と交差する方向に延びるとともに前記遮蔽ボックスの入口と出口との間に亘って延在する搬送部と、をさらに備える、
     請求項2に記載の放射線検査装置。
    The radiation source and the radiation sensor unit are arranged at different height positions in the vertical direction,
    A shielding box that houses the radiation source and the radiation sensor unit and shields radiation; and an entrance of the shielding box that extends between the radiation source and the radiation sensor unit in a direction intersecting the predetermined direction. And a transport section extending between the outlet and the outlet,
    The radiation inspection apparatus according to claim 2.
  4.  前記放射線遮蔽部は、前記放射線センサ部の前記検出面の長手方向に延びる一対の辺の外側に設けた基部から鉛直下方に所定幅で突起するとともに前記検出面の長手方向に平行に延びる短冊状の一対の平板状部材である、請求項3に記載の放射線検査装置。 The radiation shielding portion is a strip shape that protrudes vertically downward from a base portion provided outside the pair of sides extending in the longitudinal direction of the detection surface of the radiation sensor portion and extends in parallel with the longitudinal direction of the detection surface. The radiation inspection apparatus according to claim 3, which is a pair of flat plate members.
  5.  前記一対の平板状部材の前記所定幅は、前記放射線センサ部で散乱された放射線が前記遮蔽ボックスの前記入口と前記出口とに直接入射することを阻止するように設定される、請求項4に記載の放射線検査装置。 The predetermined width of the pair of flat plate members is set so as to prevent radiation scattered by the radiation sensor unit from directly entering the entrance and the exit of the shielding box. The radiation inspection apparatus described.
  6.  前記放射線センサ部の下面、前記遮蔽ボックスの天面、前記遮蔽ボックスの壁面、及び前記搬送部の内部のいずれか1つ以上を含む複数箇所に前記放射線遮蔽部を配置する、請求項3に記載の放射線検査装置。 The said radiation shielding part is arrange | positioned in several places including any one or more of the lower surface of the said radiation sensor part, the top | upper surface of the said shielding box, the wall surface of the said shielding box, and the inside of the said conveyance part. Radiation inspection equipment.
  7.  前記遮蔽ボックスの入口側及び出口側に設けられる遮蔽カーテンをさらに備える、請求項3に記載の放射線検査装置。 The radiation inspection apparatus according to claim 3, further comprising shielding curtains provided on an entrance side and an exit side of the shielding box.
  8.  前記放射線源が照射する放射線はX線であり、前記放射線遮蔽部は、鉛で形成されている、請求項1に記載の放射線検査装置。 The radiation inspection apparatus according to claim 1, wherein the radiation irradiated by the radiation source is X-rays, and the radiation shielding part is formed of lead.
  9.  請求項1~8のいずれか一項に記載の放射線検査装置を備え、被検査物としての手荷物を検査する手荷物検査装置。 A baggage inspection apparatus comprising the radiation inspection apparatus according to any one of claims 1 to 8 and inspecting baggage as an object to be inspected.
PCT/JP2019/010329 2018-03-15 2019-03-13 Radiation inspecting device, and baggage inspecting device WO2019177041A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980018398.2A CN111886493A (en) 2018-03-15 2019-03-13 Radiation inspection apparatus and baggage inspection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-047458 2018-03-15
JP2018047458A JP6629372B2 (en) 2018-03-15 2018-03-15 Radiation inspection equipment and baggage inspection equipment

Publications (1)

Publication Number Publication Date
WO2019177041A1 true WO2019177041A1 (en) 2019-09-19

Family

ID=67908369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010329 WO2019177041A1 (en) 2018-03-15 2019-03-13 Radiation inspecting device, and baggage inspecting device

Country Status (3)

Country Link
JP (1) JP6629372B2 (en)
CN (1) CN111886493A (en)
WO (1) WO2019177041A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287880B2 (en) * 2019-10-30 2023-06-06 日本信号株式会社 X-ray inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328101A (en) * 2001-05-01 2002-11-15 Ishida Co Ltd X-ray inspection device
JP2014517319A (en) * 2011-06-14 2014-07-17 アナロジック コーポレイション Security scanner
JP2016210501A (en) * 2014-07-03 2016-12-15 サイエナジー株式会社 Positional deviation detection mechanism of object to be packaged and defective product processing mechanism in packaging machine
WO2017057735A1 (en) * 2015-10-01 2017-04-06 株式会社イシダ Foreign material inspection device
WO2017110508A1 (en) * 2015-12-21 2017-06-29 浜松ホトニクス株式会社 Radiation detection device, radiation testing system, and method for adjusting radiation detection device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686080B2 (en) * 2001-09-11 2011-05-18 株式会社イシダ X-ray inspection equipment
JP2004166923A (en) * 2002-11-19 2004-06-17 Canon Inc X-ray computed tomography imaging apparatus
JP2005172486A (en) * 2003-12-09 2005-06-30 Ishida Co Ltd Radiation inspection device
JP2008002940A (en) * 2006-06-22 2008-01-10 Ihi Corp Remote x-ray fluoroscopic device and method
KR101034753B1 (en) * 2006-08-11 2011-05-17 아메리칸 사이언스 앤 엔지니어링, 인크. X-ray inspection with contemporaneous and proximal transmission and backscatter imaging
JP5133590B2 (en) * 2007-04-27 2013-01-30 アンリツ産機システム株式会社 X-ray foreign object detection device
JP5403423B2 (en) * 2009-11-04 2014-01-29 株式会社Ihi High energy X-ray energy discrimination inspection device and inspection method
CN201622251U (en) * 2010-03-23 2010-11-03 东莞市善时电子科技有限公司 X-ray security inspection device
US8265228B2 (en) * 2010-06-28 2012-09-11 General Electric Company Anti-scatter X-ray grid device and method of making same
JP2012078254A (en) * 2010-10-04 2012-04-19 Ishida Co Ltd X-ray inspection device
JP6296673B2 (en) * 2011-09-30 2018-03-20 日本信号株式会社 Train control system ground equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328101A (en) * 2001-05-01 2002-11-15 Ishida Co Ltd X-ray inspection device
JP2014517319A (en) * 2011-06-14 2014-07-17 アナロジック コーポレイション Security scanner
JP2016210501A (en) * 2014-07-03 2016-12-15 サイエナジー株式会社 Positional deviation detection mechanism of object to be packaged and defective product processing mechanism in packaging machine
WO2017057735A1 (en) * 2015-10-01 2017-04-06 株式会社イシダ Foreign material inspection device
WO2017110508A1 (en) * 2015-12-21 2017-06-29 浜松ホトニクス株式会社 Radiation detection device, radiation testing system, and method for adjusting radiation detection device

Also Published As

Publication number Publication date
JP2019158695A (en) 2019-09-19
JP6629372B2 (en) 2020-01-15
CN111886493A (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP6576373B2 (en) X-ray inspection device and baggage inspection device
JPH0949883A (en) Foreign matter inspection device
WO2019177041A1 (en) Radiation inspecting device, and baggage inspecting device
KR102549603B1 (en) Radiation detection instrument for non-destructive inspection
JP2009008441A (en) Adjustable apparatus and method for substance identification
JP5848941B2 (en) X-ray inspection equipment
WO2022052892A1 (en) Backscatter inspection system
JP2012078254A (en) X-ray inspection device
US11940393B2 (en) X-ray inspection apparatus
JP2006275853A (en) X-ray foreign substance detector
JP2019120635A (en) X-ray inspection device
JP7266479B2 (en) inspection equipment
JP3240129U (en) Upward irradiation type X-ray inspection device
JP6830243B2 (en) X-ray inspection equipment
JP6199151B2 (en) X-ray inspection equipment
JP2002202273A (en) Radiation exposure inspection device
JP7402673B2 (en) X-ray baggage inspection device
JP2010122103A (en) X-ray inspecting method and device
JP6506629B2 (en) X-ray receiving apparatus and X-ray inspection apparatus provided with the same
JP6852991B2 (en) X-ray inspection equipment
WO2023035788A1 (en) Radiation protection arrangement and security inspection device
JP2020144003A (en) X-ray inspection device
JP7461748B2 (en) Shielding curtains and X-ray inspection equipment
JP6578309B2 (en) X-ray inspection equipment
JP4094629B2 (en) X-ray detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766976

Country of ref document: EP

Kind code of ref document: A1