JP6234558B2 - 永久磁石型モータ - Google Patents

永久磁石型モータ Download PDF

Info

Publication number
JP6234558B2
JP6234558B2 JP2016515790A JP2016515790A JP6234558B2 JP 6234558 B2 JP6234558 B2 JP 6234558B2 JP 2016515790 A JP2016515790 A JP 2016515790A JP 2016515790 A JP2016515790 A JP 2016515790A JP 6234558 B2 JP6234558 B2 JP 6234558B2
Authority
JP
Japan
Prior art keywords
permanent magnet
motor
magnet
torque
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016515790A
Other languages
English (en)
Other versions
JPWO2015166544A1 (ja
Inventor
勇二 滝澤
勇二 滝澤
秀輔 堀
秀輔 堀
崇敬 市川
崇敬 市川
阿久津 悟
悟 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015166544A1 publication Critical patent/JPWO2015166544A1/ja
Application granted granted Critical
Publication of JP6234558B2 publication Critical patent/JP6234558B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • B62D5/0424Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

この発明は、Dy(dysprosium)やTb(terbium)等の重希土類元素を含まない永久磁石を有する回転子を備えた永久磁石型モータに関する。
従来から永久磁石型モータの構造が創作されており、回転子の永久磁石として、Dy等の重希土類元素の分布が異なる焼結磁石が、特許文献1及び特許文献2に開示されている。特許文献1は、焼結磁石であり、Dy等の重希土類元素の含有率の異なる領域が一体に結合された構造である。また、特許文献2は、Dyを拡散させて、焼結磁石内部で含有率に分布を持たせた構造である。
特開昭62−37907号公報 特許第5310544号公報
回転子の外周表面部に磁石を配置したモータのように、減磁され易い磁石両端部に、Dyの含有率の多い部分を形成することで、保磁力が上がり、減磁しにくくなるが、ネオジウムに比べて希少な重希土類元素を添加するため、磁石コストが高くなる問題点があった。
この発明は、かかる問題点を解決することを課題とするものであって、Dy等の磁石保磁力を向上させる重希土類元素を添加しない磁石において、トルクに対して効果的な磁石使用量を見出したことで、モータコストの低減を図り、Dy等の重希土類元素の価格変動リスクを回避することができる永久磁石型モータを得ることを目的としている。
この発明の永久磁石型モータは、電機子巻線、前記電機子巻線を納めるスロットを有する固定子鉄心から構成された固定子と、前記固定子の内周側に空隙を介して設けられ電磁鋼板を積層して構成された回転子鉄心、前記回転子鉄心の周方向表面部に間隔をおいて固着され、軸方向に伸びる複数の永久磁石、及び前記回転子鉄心の中心軸線にそって貫通したシャフトから構成された回転子と、を備え、前記複数の永久磁石は、それぞれ周方向に前記固定子鉄心に向かって凸状の曲面部分を有し、前記複数の永久磁石の間には、軸方向に伸びる前記固定子鉄心の突起を設け、前記突起と前記永久磁石の間には空隙が形成され、前記永久磁石は、重希土類元素を含まず、その外周部の前記曲面部分を除いて、その側面を前記突起に囲われ、前記回転子鉄心に埋め込まれており、前記永久磁石の極数をP、前記スロットの数をNとしたとき、P:N=2n:12n、但しnは2以上の整数であり、前記固定子鉄心の内周と前記永久磁石の外周との空隙長が1.0mm以下であり、前記永久磁石の周方向中心厚さが2.4〜4.2mmであり、前記永久磁石の周方向中心厚さをt、前記永久磁石の周方向長さをWmとしたとき、t/Wm≧0.2であり、且つ前記複数の永久磁石の間に設けられた前記突起の突起高さをWc、前記永久磁石の周方向両端部の厚さをWeとしたとき、1.8mm≦We<Wcである。
この発明に係る永久磁石型モータは、Dy等の保磁力を向上する重希土類元素を含有しなくとも、永久磁石の周方向中心厚さが2.4mm以上で磁石の減磁によりトルクが急減することを回避できる。また、重希土類元素を含有しない永久磁石は、従来の含有する磁石に比べ磁石厚さが厚くなってしまうことから、一定の空隙長では磁石使用量の割にトルクが増加しにくいが、4.2mm以下では磁石使用量を有効に活用してトルクを増加できる。したがって、コストの高い重希土類元素を使用しないことで、モータコスト低減とコスト変動リスク回避が実現できる永久磁石モータを得ることができる。
この発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
この発明の実施の形態1の永久磁石型モータが組み込まれた車両用の電動パワーステアリング装置を示す説明図である。 図1の電動駆動装置の側断面図である。 図1の電動パワーステアリング装置の電気回路図を示す図である。 図2の永久磁石型モータの要部を示す横断面図である。 図2の回転子を示す斜視図である。 実施の形態1における永久磁石の厚みに対するトルク比とトルク上昇率の関係を示す図である。 実施の形態1における空隙長に対する、永久磁石の厚みとトルク比の関係を示す図である。 実施の形態3における蒲鉾形状の永久磁石の両端部厚さを説明する図である。 実施の形態3における瓦形状の永久磁石の両端部厚さを説明する図である。
以下、この発明の永久磁石型モータの各実施の形態を、図に基づいて説明する。なお、各図において、同一符号は同一または相当部分を示す。
実施の形態1.
図1はこの発明の実施の形態1の永久磁石型モータ(以下、単にモータと略称する。)が組み込まれた自動車の電動パワーステアリング装置を示す説明図である。運転者は、ステアリングホイール(図示せず)を操舵し、そのトルクがステアリングシャフト(図示しない)を介してシャフト1に伝達される。このときトルクセンサ2が検出したトルクは、電気信号に変換され、ケーブル(図示せず)を通じて、第1のコネクタ3を介して、ECU(Electronic Control Unit)4に伝達される。ECU4は、制御基板とモータ6を駆動するインバータ回路を備えている。
一方、車速などの自動車の情報が電気信号に変換され、第2のコネクタ5を介して、ECU4に伝達される。ECU4は、操舵のトルクと車速などの自動車の情報から、必要なアシストトルクを演算し、インバータを通じてモータ6に電流を供給する。このモータ6は、ハウジング7内のラック軸の矢印Aで示す移動方向に平行な向きに配置されている。また、ECU4への電源供給はバッテリーやオルタネータから電源コネクタ8を介して送られる。モータ6が発生したトルクは、ベルト(図示せず)とボールネジ(図示せず)が内蔵されたギヤボックス9によって減速され、ハウジング7の内部にあるラック軸(図示せず)を矢印Aの方向に動かす推力を発生させ、運転者の操舵力をアシストする。
これにより、タイロッド10が動き、タイヤが転舵して車両を旋回させることができる。モータ6のトルクによってアシストされる結果、運転者は少ない操舵力で車両を旋回させることができる。なお、ラックブーツ11は、異物が電動パワーステアリング装置内に侵入しないように設けられている。また、モータ6とECU4は一体となっており、電動駆動装置100を構成している。
図2は、電動駆動装置100の側断面図である。まず、モータ6について説明する。モータ6は、電磁鋼鈑を積層して構成される固定子鉄心12と、固定子鉄心12のスロットに納められた電機子巻線13と、固定子鉄心12を固定するフレーム14とを有する。さらに、フレーム14は、モータ6のECU4と反対側のハウジング15にボルト16によって固定されている。ハウジング15には第1の軸受17が設けられ、この第1の軸受17は、第2の軸受18とともに、シャフト19を回転自在に支持している。第2の軸受18は、フレーム14と一体あるいは別体に設けられた壁部36に支持されている。
シャフト19の一端部、即ち出力軸側にはプーリー20が圧入されていて、プーリー20は電動パワーステアリング装置のベルトに駆動力を伝達する働きをする。シャフト19の他端部には、センサ用永久磁石21が設けられている。シャフト19には、回転子鉄心22が圧入されており、回転子鉄心22には、永久磁石23が固着されている。ECU4には、トルクセンサ2からの信号を受ける第1のコネクタ3と、車速等の自動車の情報を受け取る第2のコネクタ5と、電源供給用の電源コネクタ8とが取り付けられている。
ECU4には、モータ6を駆動するインバータ回路があり、インバータ回路は、MOS−FET等のスイッチング素子24を有する。このスイッチング素子24は例えば、ベアチップをDBC(Direct Bonded Copper)基板に実装した構成や、ベアチップを樹脂でモールドしてモジュールとした構成などが考えられる。スイッチング素子24は、モータ6を駆動する電流が流れるため発熱する。そこで、スイッチング素子24は、接着剤や絶縁シートなどを介してヒートシンク25と接触させ、放熱させる構造となっている。インバータ回路には、スイッチング素子24の他に、平滑コンデンサやノイズ除去用コイル、電源リレーやそれらを電気的に接続するバスバーなどがあるが、図2では省略している。
バスバーは、樹脂と一体成形され、中間部材26を形成している。また、中間部材26に隣接して、制御基板27が設けられている。この制御基板27は、第1のコネクタ3及び第2のコネクタ5から受け取った情報に基づき、モータ6を適切に駆動するスイッチング素子24に制御信号を送る。制御信号は、制御基板27とスイッチング素子24間を電気的に接続する接続部材28によって伝達される。この接続部材28は、ワイヤボンディングやプレスフィット、はんだ等で固定される。これらのインバータ回路と制御基板27は、ケース29によって覆われている。ケース29は、樹脂で構成してもよいし、アルミ等の金属であってもよく、また樹脂とアルミ等の金属とを組み合わせたものでもよい。制御基板27は、モータ6のシャフト19に垂直な面に沿うように配置されている。
ヒートシンク25のモータ6側には、センサ部30が配置されている。センサ部30は、磁気センサ31、基板32、接続部材28及び支持部材33を有し、磁気センサ31が実装された基板32がヒートシンク25にネジ(図示せず)で固定されている。磁気センサ31は、センサ用永久磁石21と同軸上でかつ相対応する位置に配置されていて、センサ用永久磁石21の発生する磁界を検出し、その向きを知ることで、回転子鉄心22と永久磁石23とから構成された、モータ6の回転子34の回転角度を検出する。ECU4は、この回転角度に応じて適切な駆動電流をモータ6に供給する。
さらに、接続部材28は、支持部材33によって支持され、センサ部30の基板32と制御基板27とを電気的に接続している。この接続はプレスフィットでもよいし、はんだでもよい。なお、接続部材28は、ヒートシンク25及び中間部材26を貫通する必要があるため、ヒートシンク25と中間部材26には接続部材28が通る穴部(図示しない)が設けられている。さらに、図示はしないが、中間部材26は接続部材28を位置決めできるようなガイドが設けられた構成となっている。図2では磁気センサ31が制御基板27とは別の基板に実装されている例を示したが、磁気センサ31を制御基板27に実装した構成とし、センサ用永久磁石21からヒートシンク25を介して漏れてくる磁束を検出する構造でもよい。また、中間部材26と制御基板27との位置関係が図2と逆に配置した構成でもよい。
図2では、回転センサとして磁気センサ31を用いたが、レゾルバを用いてもよい。ヒートシンク25には、凹部35を設けており、センサ部30の基板32に実装された磁気センサ31とヒートシンク25の表面との間の距離を大きくしている。ヒートシンク25は、ネジや焼き嵌めなどによってモータ6のフレーム14に固定される。このようにモータ6のフレーム14に固定されることによって、ヒートシンク25の熱をモータ6のフレーム14に伝達させることができる。
図3は、実施の形態1のモータ6が組み込まれた電動パワーステアリング装置の電気回路図である。二重3相巻線モータの場合を示すが、多重多相巻線モータでもよい。モータ6は、第1のU相巻線U1、第1のV相巻線V1、第1のW相巻線W1によって構成される第1の電機子巻線40と、第2のU相巻線U2、第2のV相巻線V2、第2のW相巻線W2によって構成される第2の電機子巻線41と、を有している。図3ではY結線としているがΔ結線でもよい。
ECU4は、第1のインバータ42及び第2のインバータ43を記載し、他の構成は省略している。それぞれのインバータ42,43から2つの電機子巻線40,41に3相の電流を供給する。ECU4にはバッテリーなどの電源44から直流電源が供給されており、ノイズ除去用のコイル68を介して、電源リレー45,46が接続されている。図3では電源44がECU4の内部にあるかのように描かれているが、実際はバッテリー等の外部の電源44から電源コネクタ8を介して、電力が供給される。電源リレーは、第1の電源リレー45及び第2の電源リレー46があり、それぞれ2個のMOS−FETで構成され、故障時などは電源リレー45,46を開放して、過大な電流が流れないようにする。なお、図3では、第1の電源リレー45、第2の電源リレー46は、電源44、コイル68、電源リレー45,46の順に接続されているが、コイル68よりも電源44に近い位置に設けられてもよい。
第1のコンデンサ47、第2のコンデンサ48は、平滑コンデンサである。図3ではそれぞれ、1個のコンデンサで構成されているが、複数のコンデンサを並列に接続して構成してもよい。第1のインバータ42と第2のインバータ43は、それぞれ6個のMOS−FETを用いたブリッジで構成されている。第1のインバータ42では、第1のMOS−FET49、第2のMOS−FET50が直列接続され、第3のMOS−FET51、第4のMOS−FET52が直列接続され、第5のMOS−FET53、第6のMOS−FET54が直列接続されて、さらにこの3組のMOS−FET49〜54が並列に接続されている。
さらに、下側の3つの第2のMOS−FET50、第4のMOS−FET52、第6のMOS−FET54のGND(グランド)側にはそれぞれシャント抵抗が1つずつ接続されており、第1のシャント55、第2のシャント56、第3のシャント57としている。これらシャント55〜57は、電流値の検出に用いられる。なお、シャント55〜57は3個の例を示したが、2個のシャントであってもよいし、1個のシャントであっても電流検出は可能であるため、そのような構成であってもよい。モータ6側への電流の供給は、図3に示すように、第1のMOS−FET49、第2のMOS−FET50の間からバスバー等を通じてモータ6のU1相へ、第3のMOS−FET51、第4のMOS−FET52の間からバスバー等を通じてモータ6のV1相へ、第5のMOS−FET53、第6のMOS−FET54の間からバスバー等を通じてモータ6のW1相へそれぞれ供給される。
第2のインバータ43も同様の構成である。第2のインバータ43では、第1のMOS−FET61、第2のMOS−FET62が直列接続され、第3のMOS−FET63、第4のMOS−FET64が直列接続され、第5のMOS−FET65、第6のMOS−FET66が直列接続されて、さらにこの3組のMOS−FET61〜66が並列に接続されている。さらに、下側の3つの第2のMOS−FET62、第4のMOS−FET64及び第6のMOS−FET66のGND(グランド)側にはそれぞれシャント抵抗が1つずつ接続されており、第1のシャント58、第2のシャント59及び第3のシャント60としている。これらシャント58〜60は、電流値の検出に用いられる。
モータ6側への電流の供給は、図3に示すように、第1のMOS−FET61、第2のMOS−FET62の間からバスバー等を通じてモータ6のU2相へ、第3のMOS−FET63、第4のMOS−FET64の間からバスバー等を通じてモータ6のV2相へ、第5のMOS−FET65、第6のMOS−FET66の間からバスバー等を通じてモータ6のW2相へそれぞれ供給される。図3では、故障時にモータ6と第1,第2のインバータ42,43を電気的に遮断するモータリレーを示していないが、モータリレーを設けるには中性点N1,N2に設ける場合とモータとインバータ間に設ける場合が考えられる。
2台の第1,第2のインバータ42,43は、モータ6に備えられた回転角度センサ67(図2の磁気センサ31に相当する。)によって検出した回転角度に応じて制御回路からMOS−FET49〜54,61〜66に信号が送られることでスイッチングし、第1の電機子巻線40と第2の電機子巻線41に所望の3相電流を供給する。なお、回転角度センサ67は、GMRセンサやAMRセンサやレゾルバ等が用いられる。
図4は図2のモータ6の要部横断面図、図5は図2の回転子34の斜視図である。第1の電機子巻線40、第2の電機子巻線41及び固定子鉄心12を有する固定子70は、その内周側に空隙を介して回転子34を囲っている。固定子鉄心12は、電磁鋼板などの磁性体で構成される環状のコアバック71とコアバック71から回転子34のシャフト19方向に延びるティース72から構成される。隣り合うティース72の間に形成されたスロット73に電機子巻線40,41が納められている。図示しないが、電機子巻線40,41と固定子鉄心12との間には絶縁紙等が挿入され電気的絶縁を確保している。
ティース72は、全部で48個形成されており、従ってスロット73も48個となっている。1つのスロット73には、電機子巻線40又は41のコイルが4本ずつ納められている。第1の電機子巻線40は、U1相,V1相,W1相の3相から構成され、第2の電機子巻線41は、U2相,V2相,W2相の3相から構成されている。電機子巻線40,41の配置は、図4に示すように、1番目のスロット73から順にU1,U2,W1,W2,V1,V2となっており、7番目以降もU1,U2,W1,W2,V1,V2の順に配置されていて、48番目まで同様の順に配置されている。
但し、1番目のスロット73のU1巻線と7番目のスロット73のU1巻線は電流の向きが互いに逆になるように第1の電機子巻線40が配置されている。第2の電機子巻線41も同様に配置される。即ち、1番目のスロット73から7番目のスロット73に巻かれた分布巻の構成となっており、電機子巻線40,41は、計6個のティース72を跨っている。これは電気角180度に相当し、短節巻係数が1となるため、永久磁石23が発生する磁束を有効に利用でき、小型高トルクのモータ6が得られ、永久磁石23の量を少なくできるため、巻線係数が小さいモータに比べて低コスト化が実現できるという効果がある。
固定子70の内周側には、回転子鉄心22の周方向表面部に永久磁石23を備えた回転子34が設けられている。永久磁石23は、周方向に間隔をおいて8個並んでおり、8極の構成となっている。隣り合う永久磁石23の極性は互いに逆となっている。さらに、回転子鉄心22には突起74が設けられている。突起74と永久磁石23との間には、漏れ磁束を低減するための空隙75が形成されている。この突起74は、モータ6の空隙長を小さくする効果があり、インダクタンスが大きくなる。これによって突極比が大きくなるのでリラクタンストルクを発生しやすくなり、高速回転時のトルク向上ができるという効果がある。図4では、8極48スロットのモータを示しているが、前記永久磁石の極数をP、前記スロット数をNとした時、P:N=2n:12n(nは2以上の整数)であるモータに適用できる。これは、n=2,3,4,5,---のとき、P:N=4:24,6:36,8:48,10:60,---で、常に2極分ずつ増えていくだけで、磁石から見ると毎極毎相2のステータに変わりがないためである。
固定子鉄心内径と突起74間の空隙長をできるだけ小さくし、突起74を大きくすることが効果的であるので、固定子鉄心内径と突起74間の空隙長に比べ、固定子鉄心内径と永久磁石23の周方向両端部間の空隙長は大きくなる。通常の表面永久磁石型モータにおける磁石位置決めの突起とは、高さが逆であり、かつ、軸方向にわたって突起74を設けることが、突起体積を大きくでき効果的である。すなわち、永久磁石23の外周部の曲面部分を除いて、永久磁石23側面も突起74に囲われ、永久磁石23が回転子鉄心22に埋め込まれた構成となる。
回転子鉄心22には、周方向に沿って等間隔で穴部76が形成されている。穴部76を設けることで軽量化とイナーシャを低減できる。回転子鉄心22は、電磁鋼板などを積層して構成されており、電磁鋼板同士はカシメ部77によって互いに連結されている。回転子鉄心22の中心軸線にはシャフト19が貫通している。回転子34は、図5を参照して、軸方向に並んだ第1の回転子部78及び第2の回転子部79とから構成されている。第2の回転子部79と第1の回転子部78とは、同じ設計で軸線方向の長さも同じである。さらに、第1の回転子部78と第2の回転子部79とは、互いに回転角度方向にずれた位置に配置されている。通常、永久磁石23の割れや欠けによる永久磁石23の飛散防止のため、回転子34の外周表面にはステンレスなどの薄板から構成される金属製の円筒を被せる。
図6は、実施の形態1における永久磁石の厚みに対するトルク比とトルク上昇率の関係を示す図である。図6には、空隙長0.65mmにおいて、永久磁石の周方向中心厚さ(磁石中心厚さ)を変化させた時のトルク比と、以下で定義するトルク上昇率の関係を示す。空隙長は固定子鉄心12の内周(回転子に対向するティース72の内周面)と永久磁石の外周(永久磁石の周方向中心の外周面)との間隙である。tは、永久磁石23の周方向中心の厚さ(図5参照)である。なお、トルクは減磁によるトルク減少を考慮している。実施の形態1に係わるモータは、図4のモータ外径が90mmφである。
モータ6の空隙長は、固定子70の内周面の真円度や回転子34の振れ、磁石飛散防止用の金属製円筒を考慮すると、0.6mm程度が必要である。さらに磁石の加工寸法は±0.05mm程度であることから、空隙長は0.65mmに設定した。また、トルク比は下記のトルク上昇率の勾配が最大となる磁石中心厚さ3.0mmを100%としたときの比率とした。トルクについては、磁石中心厚さが2.4mm以下では減磁により急減している。2.4mm以下ではトルクが減少してしまうので、運転者が大きな操舵力を出さなければならないのでモータ使用領域としては不適である。
トルク上昇率αについては、ある磁石中心厚さtにおけるトルクT(t)と、その厚さをΔtだけ増加させた場合のトルクT(t+Δt)と、その厚さをΔtだけ減少させた場合のトルクT(t−Δt)とから、
α={T(t+Δt)−T(t)}/{T(t)−T(t−Δt)}
で定義する。つまり、αはある磁石中心厚さ前後のトルクの傾きを表す指標であり、トルクがほぼ一定の傾きで急減する場合や、ほぼ一定の傾きでほとんど変化しない場合には、αがほぼ一定値になる。
前者、つまり、トルクがほぼ一定の傾きで急減する場合は、図6より、tが2.4mm以下の場合であり、減磁によりトルクが急減していき、2.0mm以下ではトルクが直線的に減少することを示している。後者、つまり、トルクがほぼ一定の傾きでほとんど変化しない場合は、tが4.2mm以上の場合であり、tを増加させてもトルクはそれほど改善せずに、トルクがほぼ一定値になってしまうことを示している。
以上のことから、運転者の操舵をモータによって十分にアシストするには、t≧2.4mmが必要であり、磁石使用量の増加を抑えてモータコストの増加を抑えるには、t≦4.2mmが適当であることは明らかである。モータは、モータ外径が80〜100mmφ400〜900Wに適用して好適である。電動パワーステアリング(EPS)用モータではステアリングギアに取り付けられるので、外径が大きいとステアリングギアに接触してしまうため、おのずと外径の大きさが制限される。
図7は、実施の形態1における空隙長に対する、永久磁石の周方向中心厚さとトルク比の関係を示す図である。図7では、空隙長を変化させた場合のトルク比の変化を示す。トルク比は、空隙長0.65mmの場合における各磁石中心厚さでのトルクに対する比であり、空隙長0.65mmでは磁石中心厚さに関わらず100%である。図6におけるトルク比の下限は、(磁石中心厚さ2.4mmにおいて)88%であり、空隙長が1.0mm以下であれば、磁石中心厚さ2.4mm以上において、図7でトルク比が89%以上となり、運転者の操舵をモータによって十分にアシストすることが可能である。
特に、車両用の電動パワーステアリング装置では、磁石の加工精度を加味し、空隙長を0.6±0.05mmの範囲にするとともに、トルク上昇率の変化の大きい3.0mmに近い磁石中心厚みとすることで、単位磁石重量当たりのトルクが大きくなるので、燃費向上に効果的な小型・軽量なモータが実現できる。なお、この実施の形態では8極48スロットの2重3相モータの場合について述べたが、2n極12nスロット(nは2以上の整数)の1重3相モータについても、同様の効果が得られることは言うまでもない。
実施の形態2.
実施の形態2では、磁石中心厚さをt、磁石の周方向長さ(磁石幅)をWmとすると、t/Wm≧0.2なる関係を有している(t,Wmは図5に示す。)。重希土類元素を含有しない永久磁石では、減磁に対して磁石厚さを厚くすることが必要であるので、重希土類元素を含有する従来の永久磁石と比べ、同じ磁石幅Wmでは磁石中心厚さtが大きくなり、t/Wm≧0.2なる関係が必要である。実施の形態2では磁石底面が平面である蒲鉾形状の磁石について述べたが、磁石底面も曲面となる瓦形状の磁石では、焼結磁石の外径と内径を砥石で研磨して加工するので、t/Wmが大きな形状の磁石ほど磁石中心部の割れや欠けが発生しにくく、歩留りが良く、コスト低減が実現できる効果がある。なお、蒲鉾形状の磁石は、図8に示され、瓦形状の磁石は、図9に示される。
実施の形態3.
実施の形態3では、永久磁石周方向両端部(磁石両端部)厚さをWe、突起74の高さをWcとすると、1.8mm≦We<Wcなる関係を有している。なお、突起高さWcは、突起74の下端から突起の外周面までの高さ(図5参照)、つまり、永久磁石周方向両端部の下端から突起74の外周面までの高さである。通常のネオジウム焼結磁石加工では磁石の厚みが、1.8mm程度以下に薄くなると、割れ欠けが発生しやすく、歩留りが悪化してしまうので、1.8mmは、事実上の量産限界となる。また、割れ欠けを防ぐために角R(コーナーアール)は0.4mm程度必要であり、磁石はコア突起74に片寄せするか、治具で位置決めするので、磁石側面の直線部分の厚さが1.0mm以下だと位置合わせが困難となる。そのため、両者の原因により、1.8mm≦Weである必要がある。
焼結磁石の加工では、角Rを付けることで角部での割れ欠けを防止している。この時のWeは、図8のような蒲鉾形状の磁石では、外径曲線の延長線と底面の延長線が、それぞれ磁石側面に接する鉛直方向の接線と交わる交点間の距離で定義する。また、図9のような瓦形状の磁石では、外径曲線の延長線と内径曲線の延長線が、それぞれ磁石側面に接する鉛直方向の接線と交わる交点間の距離で定義する。また、高速回転時のトルク向上には、突起74を大きくするのが効果的であるので、Weに比べて突起高さWcを高くすると、特にトルク向上に効果的であり、We<Wcとする必要がある。これらにより、磁石両端部での割れ欠けを防止するとともに、回転脈動を小さくすることができる。多重多相モータでは回転脈動をキャンセルするように多重の巻線に独立して通電できるので、さらに、騒音振動を低減できる。
特に、車両用の電動パワーステアリング装置では、回転脈動が小さくなることで、操舵フィーリングが改善されることや、騒音振動が低減されることで、快適な運転を実現するモータを提供できる。また、磁石貼り付け、着磁、組み立てなどの製造工程で磁石が割れ欠けし、それがモータ内に残留した場合、ロータがロックして危険である。特に着磁後の磁石は磁力を有するので、取り除くのが困難であるが、これを、1.8mm≦Weなる構成により、割れ欠けが発生しにくくなり、製造工程で取り除く工程も簡略化できる。
なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (3)

  1. 電機子巻線、前記電機子巻線を納めるスロットを有する固定子鉄心から構成された固定子と、
    前記固定子の内周側に空隙を介して設けられ電磁鋼板を積層して構成された回転子鉄心、前記回転子鉄心の周方向表面部に間隔をおいて固着され、軸方向に伸びる複数の永久磁石、及び前記回転子鉄心の中心軸線にそって貫通したシャフトから構成された回転子と、を備え、
    前記複数の永久磁石は、それぞれ周方向に前記固定子鉄心に向かって凸状の曲面部分を有し、
    前記複数の永久磁石の間には、軸方向に伸びる前記固定子鉄心の突起を設け、前記突起と前記永久磁石の間には空隙が形成され、
    前記永久磁石は、重希土類元素を含まず、その外周部の前記曲面部分を除いて、その側面を前記突起に囲われ、前記回転子鉄心に埋め込まれており、
    前記永久磁石の極数をP、前記スロットの数をNとしたとき、P:N=2n:12n、但しnは2以上の整数であり、
    前記固定子鉄心の内周と前記永久磁石の外周との空隙長が1.0mm以下であり、前記永久磁石の周方向中心厚さが2.4〜4.2mmであり、
    前記永久磁石の周方向中心厚さをt、前記永久磁石の周方向長さをWmとしたとき、t/Wm≧0.2であり、且つ
    前記複数の永久磁石の間に設けられた前記突起の突起高さをWc、前記永久磁石の周方向両端部の厚さをWeとしたとき、1.8mm≦We<Wcである永久磁石型モータ。
  2. 前記電機子巻線は多重多相巻線である請求項1記載の永久磁石型モータ。
  3. 請求項1又は請求項2記載の永久磁石型モータを用いた車両用の電動パワーステアリング装置。
JP2016515790A 2014-04-29 2014-04-29 永久磁石型モータ Expired - Fee Related JP6234558B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061920 WO2015166544A1 (ja) 2014-04-29 2014-04-29 永久磁石型モータ

Publications (2)

Publication Number Publication Date
JPWO2015166544A1 JPWO2015166544A1 (ja) 2017-04-20
JP6234558B2 true JP6234558B2 (ja) 2017-11-22

Family

ID=54358298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016515790A Expired - Fee Related JP6234558B2 (ja) 2014-04-29 2014-04-29 永久磁石型モータ

Country Status (5)

Country Link
US (1) US20160294235A1 (ja)
EP (1) EP3139478B1 (ja)
JP (1) JP6234558B2 (ja)
CN (1) CN106464108B (ja)
WO (1) WO2015166544A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056827B2 (ja) * 2014-09-30 2017-01-11 株式会社デンソー 回転電機制御装置
JP6192854B2 (ja) * 2014-10-20 2017-09-06 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
EP3133723A1 (en) * 2015-08-18 2017-02-22 Johnson Electric S.A. Fluid generating device and electric apparatus using the same
JP6525931B2 (ja) * 2016-08-19 2019-06-05 ファナック株式会社 種類の異なる同期電動機と同一の部品を備える同期電動機および同期電動機の製造方法
EP3547509A4 (en) * 2016-11-22 2020-01-29 Mitsubishi Electric Corporation ELECTRIC ROTATOR
WO2018179063A1 (ja) * 2017-03-27 2018-10-04 三菱電機株式会社 回転子、電動機、圧縮機、送風機、および空気調和装置
JP2020088920A (ja) * 2018-11-15 2020-06-04 株式会社デンソー 回転電機
CN111555479B (zh) * 2020-05-26 2021-08-31 安徽美芝精密制造有限公司 电机、压缩机和制冷设备
CN112701820B (zh) * 2020-12-21 2022-06-17 珠海格力电器股份有限公司 电机转子、电机和家用电器
GB2620355A (en) * 2021-07-05 2024-01-10 Zf Automotive Uk Ltd A surface permanent magnet motor
BE1031438B1 (de) * 2023-03-17 2024-10-14 Thyssenkrupp Presta Ag Lenksystem für ein Kraftfahrzeug

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048970A (ja) * 2002-07-16 2004-02-12 Meidensha Corp 永久磁石形回転電機
JP4124215B2 (ja) * 2005-07-20 2008-07-23 愛知製鋼株式会社 ブラシレスモータ
US20070028857A1 (en) * 2005-08-08 2007-02-08 Cooney Kathleen A Wound cover
US7898137B2 (en) * 2006-08-30 2011-03-01 Shin-Etsu Chemical Co., Ltd. Permanent magnet and permanent magnet rotating machine
JP5448314B2 (ja) * 2006-08-30 2014-03-19 信越化学工業株式会社 永久磁石及び永久磁石回転機
JP4737431B2 (ja) * 2006-08-30 2011-08-03 信越化学工業株式会社 永久磁石回転機
JP4851473B2 (ja) * 2008-01-18 2012-01-11 三菱電機株式会社 永久磁石形同期モータ
JP5228582B2 (ja) * 2008-04-04 2013-07-03 三菱電機株式会社 永久磁石型回転電機およびそれを用いた電動パワーステアリング装置
JP5501572B2 (ja) * 2008-04-25 2014-05-21 株式会社ジェイテクト モーターのローター及び電動パワーステアリング装置
JP5324294B2 (ja) * 2009-04-03 2013-10-23 アスモ株式会社 ロータ及びモータ
JP5094791B2 (ja) * 2009-06-30 2012-12-12 株式会社日立製作所 希土類磁石
JP5373002B2 (ja) * 2011-07-12 2013-12-18 株式会社日立製作所 希土類磁石及びそれを用いた回転機
US9564779B2 (en) * 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor

Also Published As

Publication number Publication date
WO2015166544A1 (ja) 2015-11-05
EP3139478B1 (en) 2022-04-27
CN106464108A (zh) 2017-02-22
CN106464108B (zh) 2018-11-16
US20160294235A1 (en) 2016-10-06
JPWO2015166544A1 (ja) 2017-04-20
EP3139478A1 (en) 2017-03-08
EP3139478A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP6234558B2 (ja) 永久磁石型モータ
JP6091619B2 (ja) 永久磁石型モータ、及び電動パワーステアリング装置
JP6124999B2 (ja) 電動パワーステアリング用永久磁石型モータ
JP6157652B2 (ja) 永久磁石型モータ
JP5944066B2 (ja) 永久磁石式モータ、駆動装置一体型永久磁石式モータおよび永久磁石式モータの製造方法
JP6305394B2 (ja) 永久磁石型モータ及び電動パワーステアリング装置
JP6388705B2 (ja) 回転電機の回転子、及びモータ
JP4558478B2 (ja) 回転機のロータ,その製造方法及び電動パワーステアリング用モータ
JP6257212B2 (ja) ブラシレスモータ
JP6282326B2 (ja) 永久磁石型モータ及び電動パワーステアリング装置
JP6261776B2 (ja) 電動駆動装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171024

R151 Written notification of patent or utility model registration

Ref document number: 6234558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees