JP6229170B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6229170B2
JP6229170B2 JP2015102337A JP2015102337A JP6229170B2 JP 6229170 B2 JP6229170 B2 JP 6229170B2 JP 2015102337 A JP2015102337 A JP 2015102337A JP 2015102337 A JP2015102337 A JP 2015102337A JP 6229170 B2 JP6229170 B2 JP 6229170B2
Authority
JP
Japan
Prior art keywords
discharge temperature
set value
superheat degree
compressor
suction superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015102337A
Other languages
Japanese (ja)
Other versions
JP2016217614A (en
Inventor
貴之 井関
貴之 井関
渡部 岳志
岳志 渡部
円 落合
円 落合
陽介 森宗
陽介 森宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015102337A priority Critical patent/JP6229170B2/en
Publication of JP2016217614A publication Critical patent/JP2016217614A/en
Application granted granted Critical
Publication of JP6229170B2 publication Critical patent/JP6229170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和装置などの冷凍サイクル装置の制御に関するものである。   The present invention relates to control of a refrigeration cycle apparatus such as an air conditioner.

従来の空気調和装置では、圧縮機の吐出温度が限界値以下であると、圧縮機の吸入過熱度が所定温度になるように絞り装置の開度を制御し、圧縮機の吐出温度が限界値を超えると圧縮機の吐出温度が所定値になるように絞り装置の開度を調整するように制御されている(例えば、特許文献1)。   In the conventional air conditioner, if the discharge temperature of the compressor is below the limit value, the opening degree of the throttle device is controlled so that the suction superheat degree of the compressor becomes a predetermined temperature, and the discharge temperature of the compressor is the limit value. When the pressure exceeds the value, the opening degree of the expansion device is controlled so that the discharge temperature of the compressor becomes a predetermined value (for example, Patent Document 1).

特開2001−174075号公報JP 2001-174075 A

しかしながら、吸入過熱度から吐出温度に制御目標切り替え時に、目標吐出温度と現在の吐出温度の差が大きいと、絞り装置の開度を大きく変化させ、冷媒の流量を大きく増減させて、吐出温度を急激に目標に近づけようとする。このため、圧縮機の熱容量が大きく、吐出温度の変化の反応が遅い機器では、絞り装置の絞りすぎや開きすぎを引き起こし、吐出温度が大きく変動してしまうことがある。   However, when the control target is switched from the suction superheat degree to the discharge temperature, if the difference between the target discharge temperature and the current discharge temperature is large, the opening of the expansion device is greatly changed, the flow rate of the refrigerant is greatly increased or decreased, and the discharge temperature is changed. Try to get close to the target suddenly. For this reason, in a device having a large heat capacity of the compressor and a slow reaction of changes in the discharge temperature, the throttle device may be excessively throttled or opened too much, and the discharge temperature may fluctuate greatly.

この変動を抑えるために、絞り装置の開度変化を小さくしたり、開度変化のタイミングをゆっくりにする(絞り装置の流量変化を遅くする)と、吐出温度の変動を小さくできる。しかし、絞り装置の流量変化を過度に遅くすると、吐出温度が危険レベルまで大きく上昇した場合など、急激に吐出温度を下げたい場合には、制御が間に合わなくなるという課題がある。   In order to suppress this fluctuation, the fluctuation of the discharge temperature can be reduced by reducing the opening change of the expansion device or slowing the timing of the opening change (slowing the flow change of the expansion device). However, if the flow rate change of the throttle device is excessively slowed, there is a problem that the control is not in time when it is desired to suddenly lower the discharge temperature, such as when the discharge temperature rises to a dangerous level.

前記従来の課題を解決するために、本発明は、吐出温度が所定の吐出温度を超えた場合には、前記吐出温度が吐出温度設定値となるように、前記絞り装置を通過する冷媒流量を調整するもので、前記吐出温度設定値は、前記所定の吐出温度を超えたときの前記吐出温度を基準とし、前記吐出温度と目標吐出温度設定値とに応じて変更するものである。   In order to solve the conventional problem, the present invention provides a flow rate of refrigerant that passes through the expansion device so that, when the discharge temperature exceeds a predetermined discharge temperature, the discharge temperature becomes a discharge temperature set value. The discharge temperature setting value is adjusted based on the discharge temperature when the predetermined discharge temperature is exceeded, and is changed according to the discharge temperature and the target discharge temperature setting value.

本発明により、絞り装置の流量の急激な変動による快適性や効率の低下、吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等の機器の信頼性の低下が回避でき、快適で信頼性の高い機器の供給が可能となる。   With the present invention, it is possible to avoid a decrease in comfort and efficiency due to sudden fluctuations in the flow rate of the throttle device, a decrease in equipment reliability such as deterioration of refrigeration oil and deterioration of compressor motor due to excessive increase in discharge temperature, and comfortable. Highly reliable equipment can be supplied.

本発明の実施の形態における冷凍サイクル図Refrigeration cycle diagram in the embodiment of the present invention 本発明の実施の形態における制御ブロック図Control block diagram in the embodiment of the present invention 本発明の実施の形態1におけるフローチャートFlowchart in Embodiment 1 of the present invention 本発明の実施の形態2におけるフローチャートFlowchart in Embodiment 2 of the present invention 本発明の実施の形態3におけるフローチャートFlowchart in Embodiment 3 of the present invention 本発明の実施の形態4におけるフローチャートFlowchart in Embodiment 4 of the present invention 本発明の実施の形態5におけるフローチャートFlowchart in the fifth embodiment of the present invention

第1の発明は、圧縮機、凝縮器、絞り装置、蒸発器と、前記圧縮機から吐出される冷媒の温度を検知する吐出温度検知部とを備え、前記吐出温度検知部が検知する吐出温度が目標吐出温度設定値となるように、前記絞り装置を通過する冷媒流量が調整される冷凍サイクル装置であって、前記吐出温度が所定の吐出温度を超えた場合には、前記吐出温度が吐出温度設定値となるように、前記絞り装置を通過する冷媒流量を調整するもので、前記吐出温度設定値は、前記所定の吐出温度を超えたときの前記吐出温度を基準とし、前記吐出温度と目標吐出温度設定値とに応じて変更するものである。   1st invention is equipped with the compressor, the condenser, the expansion device, the evaporator, and the discharge temperature detection part which detects the temperature of the refrigerant | coolant discharged from the said compressor, The discharge temperature which the said discharge temperature detection part detects Is a refrigeration cycle apparatus in which the flow rate of the refrigerant passing through the throttle device is adjusted so that the discharge temperature exceeds a predetermined discharge temperature so that the discharge temperature is discharged to the target discharge temperature setting value. The refrigerant flow rate passing through the throttle device is adjusted so as to be a temperature set value, and the discharge temperature set value is based on the discharge temperature when the predetermined discharge temperature is exceeded, and the discharge temperature and It is changed according to the target discharge temperature set value.

これによれば、吐出温度の変化に応じた変化量で、絞り装置の絞り量を変更するため、吐出温度を目標吐出温度設定値に徐々に近づけることができる。このため、絞り装置の流量の急激な変動による快適性や効率の低下、吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等の機器の信頼性の低下が回避でき、快適で信頼性の高い機器の供給が可能となる。   According to this, since the throttle amount of the throttle device is changed by a change amount corresponding to the change of the discharge temperature, the discharge temperature can be gradually brought close to the target discharge temperature set value. For this reason, it is possible to avoid a decrease in comfort and efficiency due to sudden fluctuations in the flow rate of the throttle device, a decrease in equipment reliability such as deterioration of refrigeration oil and compressor motor due to excessive increase in discharge temperature, and it is comfortable and reliable. High-quality equipment can be supplied.

また、第1の発明において、前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部を備え、前記吸入過熱度演算部が演算する吸入過熱度に応じて、前記吐出温度設定値を変更するものである。これによれば、吐出温度の変化と吸入過熱度に応じた変化量で、絞り装置の絞り量を変更できる。   In the first aspect of the present invention, a suction superheat degree calculation unit that calculates the superheat degree of the refrigerant sucked into the compressor is provided, and the discharge temperature setting is set according to the suction superheat degree calculated by the suction superheat degree calculation unit. The value is to be changed. According to this, the throttle amount of the throttle device can be changed by the change amount according to the change of the discharge temperature and the degree of superheat of suction.

特に、第2の発明は、第1の発明において、前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部を備え、前記吸入過熱度演算部が演算する吸入過熱度が、所定の過熱度より大きい場合には、前記吐出温度設定値を変更しないものである。これによれば、吸入過熱度が大きく、吐出温度が急激に上昇するような状態では、絞り装置の絞りの変化量を小さくできる。   In particular, the second invention includes a suction superheat degree calculation unit that calculates the superheat degree of the refrigerant sucked into the compressor in the first invention, and the suction superheat degree calculated by the suction superheat degree calculation part is: When the degree of superheat is larger than the predetermined superheat degree, the discharge temperature set value is not changed. According to this, in a state where the suction superheat degree is large and the discharge temperature rapidly rises, the amount of change in the throttle of the throttle device can be reduced.

第3の発明は、第1の発明において、前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部を備え、前記吸入過熱度演算部が演算する吸入過熱度が、所定の過熱度より大きい場合には、前記吐出温度設定値を下げるものである。これによれば、吸入過熱度が大きく、吐出温度が急激に上昇するような状態では、絞り装置の絞りの変化量をより小さくできる。   A third invention includes a suction superheat degree calculation unit that calculates a superheat degree of the refrigerant sucked into the compressor in the first invention, and the suction superheat degree calculated by the suction superheat degree calculation part is a predetermined value. When the degree of superheat is greater, the discharge temperature set value is lowered. According to this, in a state where the suction superheat degree is large and the discharge temperature rapidly increases, the amount of change in the throttle of the throttle device can be further reduced.

第4の発明は、第1の発明において、前記吐出温度と前記吐出温度設定値との差が、所定の温度差より小さい場合には、前記吐出温度設定値を上げるものである。これによれば、吐出温度が安定した状態、つまり、急激に上昇するようなことがない状態では、絞り装置の絞りの変化量を大きくできる。このため、すみやかに吐出温度を目標吐出温度設定値にあわせることができる。   According to a fourth aspect, in the first aspect, when the difference between the discharge temperature and the discharge temperature set value is smaller than a predetermined temperature difference, the discharge temperature set value is increased. According to this, in a state where the discharge temperature is stable, that is, in a state where the discharge temperature does not rapidly increase, the amount of change in the aperture of the aperture device can be increased. Therefore, the discharge temperature can be quickly adjusted to the target discharge temperature set value.

第5の発明は、第1の発明において、前記吐出温度設定値が、前記目標吐出温度設定値から所定温度以上高い場合には、前記吐出温度設定値を下げるものである。これによれば、吐出温度が周期的に変動することを防止できる。   In a fifth aspect based on the first aspect, when the discharge temperature set value is higher than the target discharge temperature set value by a predetermined temperature or more, the discharge temperature set value is lowered. According to this, it is possible to prevent the discharge temperature from fluctuating periodically.

以上の発明は、吸入過熱度がある値を超えて大きくなると、吐出温度が急激に上昇するような冷媒を用いる場合に、特に効果的である。これは、従来の吐出温度での絞り装置の制御で生じやすい吐出温度の大きな変動を、抑制できるためである。   The above invention is particularly effective in the case of using a refrigerant whose discharge temperature rapidly increases when the suction superheat degree exceeds a certain value. This is because it is possible to suppress large fluctuations in the discharge temperature that are likely to occur due to the control of the diaphragm device at the conventional discharge temperature.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和装置の冷凍サイクル図、図2は制御ブロック図、図3はフローチャートである。
(Embodiment 1)
1 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram, and FIG. 3 is a flowchart.

図1において、室外機1にはインバータ駆動の容量(周波数)可変形圧縮機2(以下単に圧縮機と称す)と、室外熱交換器3と、室外送風機4と、冷暖房切換用の四方弁5とが設けられる。圧縮機2に接続される吐出管、または、圧縮機2の頂部表面には圧縮機吐出温度検知装置(吐出温度検知部)15が、圧縮機2に接続される吸入管には圧縮機吸入温度検知装置(吸入温度検知部)16がそれぞれ設けられている。室外熱交換器3には室外熱交換器温度検知装置17が設けられている。   In FIG. 1, an outdoor unit 1 includes an inverter-driven capacity (frequency) variable compressor 2 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 3, an outdoor blower 4, and a four-way valve 5 for switching between heating and cooling. And are provided. A compressor discharge temperature detection device (discharge temperature detection unit) 15 is provided on the discharge pipe connected to the compressor 2 or the top surface of the compressor 2, and the compressor intake temperature is provided on the suction pipe connected to the compressor 2. A detection device (intake temperature detection unit) 16 is provided. The outdoor heat exchanger 3 is provided with an outdoor heat exchanger temperature detection device 17.

一方、室内機7には室内送風機8と、室内熱交換器9とが設けられている。室内熱交換器9には室内熱交換器温度検知装置18が設けられている。   On the other hand, the indoor unit 7 is provided with an indoor blower 8 and an indoor heat exchanger 9. The indoor heat exchanger 9 is provided with an indoor heat exchanger temperature detection device 18.

室外機1は、液側接続部13とガス側接続部14とを備えている。液側接続部13とガス側接続部14に接続された接続配管により、室外機1は室内機7に接続されている。   The outdoor unit 1 includes a liquid side connection portion 13 and a gas side connection portion 14. The outdoor unit 1 is connected to the indoor unit 7 by connection piping connected to the liquid side connection unit 13 and the gas side connection unit 14.

また、液側接続部13と室外熱交換器3とを接続する配管である冷媒液管11には、例えばステッピングモータ等により弁開度をパルス制御可能な絞り装置である電動膨張弁6が設けられている。   The refrigerant liquid pipe 11, which is a pipe connecting the liquid side connecting portion 13 and the outdoor heat exchanger 3, is provided with an electric expansion valve 6, which is a throttling device capable of pulse-controlling the valve opening by a stepping motor, for example. It has been.

圧縮機2、室外熱交換器3、四方弁5、電動膨張弁6、室内熱交換器9を環状に配管で接続し、冷凍サイクル回路を構成している。冷凍サイクル回路には、冷媒として、R32(ジフオロメタン)が封入されている。R32は、圧縮機2の吸入過熱度がある値を超えて大きくなると、圧縮機2の吐出温度が急激に上昇するような傾向を有する冷媒である。   The compressor 2, the outdoor heat exchanger 3, the four-way valve 5, the electric expansion valve 6, and the indoor heat exchanger 9 are connected in a ring shape to form a refrigeration cycle circuit. R32 (difluoromethane) is enclosed as a refrigerant in the refrigeration cycle circuit. R32 is a refrigerant having a tendency that the discharge temperature of the compressor 2 rapidly increases when the suction superheat degree of the compressor 2 exceeds a certain value.

また、室内機7には、居住者が希望する運転モード(冷房、除湿または暖房)や、目標室温を設定したり、運転あるいは停止を指示する運転設定装置10が設けられている。運転設定装置10は、例えば、リモコンである。   In addition, the indoor unit 7 is provided with an operation setting device 10 that sets an operation mode (cooling, dehumidification or heating) desired by a resident, a target room temperature, and instructs operation or stop. The operation setting device 10 is, for example, a remote controller.

室外機1には、運転設定装置10の設定に応じて、圧縮機2の回転数や、室外送風機4の回転数、四方弁5の切換、電動膨張弁6の開度などを調整する制御装置20を備えている。   The outdoor unit 1 includes a control device that adjusts the rotational speed of the compressor 2, the rotational speed of the outdoor blower 4, the switching of the four-way valve 5, the opening degree of the electric expansion valve 6, and the like according to the setting of the operation setting device 10. 20 is provided.

冷房あるいは除湿運転時には、室外熱交換器3が凝縮器となり、室内熱交換器9が蒸発器となる。このため、室内熱交換器温度検知装置18が蒸発器温度検知部となる。暖房運転時には、室内熱交換器9が凝縮器となり、室外熱交換器3が蒸発器となる。このため、室外熱交換器温度検知装置17が蒸発器温度検知部となる。   During the cooling or dehumidifying operation, the outdoor heat exchanger 3 serves as a condenser, and the indoor heat exchanger 9 serves as an evaporator. For this reason, the indoor heat exchanger temperature detector 18 serves as an evaporator temperature detector. During the heating operation, the indoor heat exchanger 9 serves as a condenser, and the outdoor heat exchanger 3 serves as an evaporator. For this reason, the outdoor heat exchanger temperature detector 17 serves as an evaporator temperature detector.

上記構成の冷凍サイクル装置において、冷房あるいは除湿運転時は、圧縮機2から吐出された冷媒は、四方弁5を介して室外熱交換器3へと流れ、室外送風機4の駆動により室外熱交換器3で室外空気と熱交換して凝縮液化する。その後、冷媒は、冷媒液管11を通り電動膨張弁6で流量制御される。電動膨張弁6で減圧された冷媒は、室内機7の室内熱交換器9で蒸発した後に、冷媒ガス管12、四方弁5を介して再び圧縮機2に吸入される。   In the refrigeration cycle apparatus having the above configuration, during cooling or dehumidifying operation, the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 through the four-way valve 5, and the outdoor fan 4 is driven to drive the outdoor heat exchanger. 3 heat-exchanges with outdoor air and condensates. Thereafter, the flow rate of the refrigerant passes through the refrigerant liquid pipe 11 and is controlled by the electric expansion valve 6. The refrigerant decompressed by the electric expansion valve 6 evaporates in the indoor heat exchanger 9 of the indoor unit 7 and then is sucked into the compressor 2 again through the refrigerant gas pipe 12 and the four-way valve 5.

この電動膨張弁6は室内の負荷に見合った開度となるようにステッピングモータ等によりパルス制御されるため、冷媒は室内負荷に応じた流量に調整される。   Since this electric expansion valve 6 is pulse-controlled by a stepping motor or the like so as to have an opening corresponding to the load in the room, the refrigerant is adjusted to a flow rate corresponding to the room load.

一方、暖房運転時は、圧縮機2から吐出された冷媒は、四方弁5を介して室内熱交換器9へと流れ、室内送風機8の駆動により室内熱交換器9で室内空気と熱交換して凝縮液化
する。その後、冷媒は、電動膨張弁6で流量制御される。電動膨張弁6で減圧された冷媒は、室外熱交換器3で蒸発した後に、四方弁5を介して再び圧縮機2に吸入される。
On the other hand, during the heating operation, the refrigerant discharged from the compressor 2 flows to the indoor heat exchanger 9 through the four-way valve 5, and exchanges heat with indoor air in the indoor heat exchanger 9 by driving the indoor blower 8. To condense. Thereafter, the flow rate of the refrigerant is controlled by the electric expansion valve 6. The refrigerant decompressed by the electric expansion valve 6 evaporates in the outdoor heat exchanger 3 and then is sucked into the compressor 2 again through the four-way valve 5.

図2は、本実施の形態の制御ブロック図である。電動膨張弁6は、制御装置に接続されている。制御装置は、ステッピングモータ等を制御する出力リレー回路と、出力リレー回路に信号を出力する判定装置を備えている。判定装置は、圧縮機吐出温度検知装置15、圧縮機吸入温度検知装置16、室外熱交換器温度検知装置17、室内熱交換器温度検知装置18、吸入過熱度検知装置19に接続されている。吸入過熱度検知装置(吸入過熱度演算部)19は、圧縮機吸入温度検知装置16、室外熱交換器温度検知装置17、室内熱交換器温度検知装置18の検知値から、圧縮機2の吸入過熱度を演算するものである。   FIG. 2 is a control block diagram of the present embodiment. The electric expansion valve 6 is connected to the control device. The control device includes an output relay circuit that controls a stepping motor and the like, and a determination device that outputs a signal to the output relay circuit. The determination device is connected to the compressor discharge temperature detection device 15, the compressor suction temperature detection device 16, the outdoor heat exchanger temperature detection device 17, the indoor heat exchanger temperature detection device 18, and the suction superheat degree detection device 19. The suction superheat degree detection device (suction superheat degree calculation unit) 19 is configured to suck the compressor 2 from the detected values of the compressor suction temperature detection device 16, the outdoor heat exchanger temperature detection device 17, and the indoor heat exchanger temperature detection device 18. The degree of superheat is calculated.

判定装置は、これらの検知装置の出力と、これらの出力から演算された目標吐出温度設定値、吸入過熱度設定値、吐出温度設定値と、あらかじめ定められた吐出温度判定値とから、判定・演算した開度に、電動膨張弁6を調整する。   The determination device determines, based on the outputs of these detection devices, the target discharge temperature set value, the suction superheat degree set value, the discharge temperature set value calculated from these outputs, and the predetermined discharge temperature determination value. The electric expansion valve 6 is adjusted to the calculated opening.

次に、本実施の形態の制御について、図3のフローチャートを用いて説明する。   Next, the control of the present embodiment will be described using the flowchart of FIG.

居住者が運転設定装置10で例えば冷房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S000)、圧縮機吐出温度検知装置15が圧縮機吐出温度(以下、単に吐出温度と称する)(Td)を検出する(S001)。   The resident selects, for example, cooling with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S000), the compressor discharge temperature detector 15 detects the compressor discharge temperature (hereinafter simply referred to as discharge temperature) (Td) (S001).

吐出温度(Td)を所定の吐出温度判定値(TdA)と比較する(S002)。吐出温度(Td)が吐出温度判定値(TdA)以下の場合(S002のNo)には、圧縮機2の吸入過熱度(SH)を検出する(S003)。   The discharge temperature (Td) is compared with a predetermined discharge temperature determination value (TdA) (S002). When the discharge temperature (Td) is equal to or lower than the discharge temperature determination value (TdA) (No in S002), the suction superheat degree (SH) of the compressor 2 is detected (S003).

吸入過熱度(SH)を所定の吸入過熱度設定値(SHA)と比較する(S004)。吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S004のYes)には、電動膨張弁6を開方向にA(PLS)開く(S005)。吸入過熱度(SH)が吸入過熱度設定値(SHA)より低い場合(S004のNo)には、吸入過熱度(SH)を「吸入過熱度設定値(SHA)−1℃」と比較する(S006)。吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」以上でかつ吸入過熱度設定値(SHA)以下の場合(S006のNo)には、電動膨張弁6の開閉をしない(S007)。吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」より小さい場合(S006のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S008)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   The suction superheat degree (SH) is compared with a predetermined suction superheat degree set value (SHA) (S004). When the intake superheat degree (SH) is higher than the intake superheat degree set value (SHA) (Yes in S004), the electric expansion valve 6 is opened A (PLS) in the opening direction (S005). When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHA) (No in S004), the suction superheat degree (SH) is compared with “suction superheat degree set value (SHA) -1 ° C.” ( S006). When the suction superheat degree (SH) is not less than “suction superheat degree set value (SHA) -1 ° C.” and not more than the suction superheat degree set value (SHA) (No in S006), the electric expansion valve 6 is not opened / closed. (S007). If the suction superheat degree (SH) is smaller than “suction superheat degree set value (SHA) −1 ° C.” (Yes in S006), the electric expansion valve 6 is closed B (PLS) in the closing direction (S008). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

つまり、吐出温度(Td)が吐出温度判定値(TdA)より小さい場合には、電動膨張弁6の開閉を吸入SH制御で調整する。   That is, when the discharge temperature (Td) is smaller than the discharge temperature determination value (TdA), the opening / closing of the electric expansion valve 6 is adjusted by the suction SH control.

電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree setting value (SHA). Is set to a large number of pulses.

また、吸入過熱度は、冷房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室内熱交換器温度検知装置18から検出された室内熱交換器温度(冷房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2に吸入される過熱度が大きくなるので、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が大きくなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、液量が多いことによるメカ破損につながる。このため、吸入過熱度を適切な値
で制御することが必要である。
In the case of cooling, the intake superheat degree is determined based on the indoor heat exchanger temperature detected from the indoor heat exchanger temperature detection device 18 from the compressor intake temperature detected from the compressor intake temperature detection device 16 (during cooling). (Evaporation temperature) is reduced. If this difference is large, the degree of superheat sucked into the compressor 2 increases, so that the refrigerating machine oil of the compressor 2 due to a decrease in efficiency of the compressor 2 or an increase in the temperature of the refrigerant discharged from the compressor 2. Cause deterioration of compressors and compressor motors. If this difference is small, liquid-rich refrigerant is sucked into the compressor 2, leading to a reduction in efficiency of the compressor 2 and mechanical damage due to a large amount of liquid. For this reason, it is necessary to control the suction superheat degree with an appropriate value.

なお、吸入過熱度は、暖房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室外熱交換器温度検知装置17から検出された室外熱交換器温度(暖房時は蒸発温度)を減じたものである。   Note that, in the case of heating, the suction superheat degree is determined based on the outdoor heat exchanger temperature detected from the outdoor heat exchanger temperature detection device 17 based on the compressor suction temperature detected from the compressor suction temperature detection device 16 (during heating). (Evaporation temperature) is reduced.

一方、吐出温度(Td)が吐出温度判値(TdA)より高くなると(S002のYes)、その時点での吐出温度(Td)を初期の吐出温度設定値(Td1)とする(S009)。また、室内熱交換器温度検知装置18から検出された温度(冷房時は蒸発温度)と室外熱交換器温度検知装置17から検出された温度(冷房時は凝縮温度)から適切な目標吐出温度(TdX)を算出する(S010)。そして、吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていく。   On the other hand, when the discharge temperature (Td) becomes higher than the discharge temperature value (TdA) (Yes in S002), the discharge temperature (Td) at that time is set as the initial discharge temperature setting value (Td1) (S009). Further, an appropriate target discharge temperature (from the temperature detected by the indoor heat exchanger temperature detection device 18 (evaporation temperature during cooling) and the temperature detected from the outdoor heat exchanger temperature detection device 17 (condensation temperature during cooling)). TdX) is calculated (S010). Then, the discharge temperature set value (Td1) is gradually increased until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX).

この温度の変更方法について説明する。吐出温度(Td)を吐出温度設定値(Td1)と比較する(S011)。吐出温度(Td)が吐出温度設定値(Td1)より高くなると(S011のYes)、電動膨張弁6を開方向にC(PLS)開く(S012)。吐出温度(Td)が吐出温度設定値(Td1)より低い場合(S012のNo)には、吐出温度(Td)を「吐出温度設定値(Td1)−1℃」と比較する(S013)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」以上でかつ吐出温度設定値(Td1)以下の場合(S013のNo)には、電動膨張弁6の開閉をしない(S014)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」より低い場合(S013のYes)には、電動膨張弁6を閉方向にD(PLS)閉じる(S015)。これにより、吐出温度(Td)を吐出温度設定値(Td1)に保つように制御する。   A method for changing the temperature will be described. The discharge temperature (Td) is compared with the discharge temperature set value (Td1) (S011). When the discharge temperature (Td) becomes higher than the discharge temperature set value (Td1) (Yes in S011), the electric expansion valve 6 is opened C (PLS) in the opening direction (S012). When the discharge temperature (Td) is lower than the discharge temperature set value (Td1) (No in S012), the discharge temperature (Td) is compared with “discharge temperature set value (Td1) −1 ° C.” (S013). When the discharge temperature (Td) is equal to or higher than “discharge temperature set value (Td1) −1 ° C.” and equal to or lower than the discharge temperature set value (Td1) (No in S013), the electric expansion valve 6 is not opened or closed (S014). . When the discharge temperature (Td) is lower than “discharge temperature set value (Td1) −1 ° C.” (Yes in S013), the electric expansion valve 6 is closed D (PLS) in the closing direction (S015). Thus, the discharge temperature (Td) is controlled to be kept at the discharge temperature set value (Td1).

その後、目標吐出温度(TdX)を吐出温度設定値(Td1)と比較する(S016)。吐出温度設定値(Td1)が適切な目標吐出温度(TdX)より低い場合(S016のYes)には、吐出温度設定値(Td1)をTa℃上げる(S017)。その後、S011に戻り、この上がった吐出温度設定値(Td1)を目指し、ある一定の間隔をおいて再び電動膨張弁6の開閉を行う。この動作を繰り返すことにより、吐出温度設定値(Td1)は徐々に適切な目標吐出温度(TdX)に近づくように制御される。吐出温度設定値(Td1)が適切な目標吐出温度(TdX)に到達すると(S016のNo)、吐出温度設定値(Td1)は変更しない(S018)。   Thereafter, the target discharge temperature (TdX) is compared with the discharge temperature set value (Td1) (S016). When the discharge temperature set value (Td1) is lower than the appropriate target discharge temperature (TdX) (Yes in S016), the discharge temperature set value (Td1) is increased by Ta ° C. (S017). Thereafter, the process returns to S011, and the electric expansion valve 6 is opened and closed again at a certain interval aiming at the increased discharge temperature set value (Td1). By repeating this operation, the discharge temperature set value (Td1) is controlled so as to gradually approach the appropriate target discharge temperature (TdX). When the discharge temperature set value (Td1) reaches an appropriate target discharge temperature (TdX) (No in S016), the discharge temperature set value (Td1) is not changed (S018).

つまり、吐出温度(Td)が吐出温度判定値(TdA)より大きい場合には、電動膨張弁6の開閉を、暫定的に目標とする吐出温度設定値(Td1)を徐々に上昇させる吐出温度制御で調整する。   That is, when the discharge temperature (Td) is higher than the discharge temperature determination value (TdA), the discharge temperature control for gradually increasing the discharge temperature setting value (Td1) temporarily set to open / close the electric expansion valve 6. Adjust with.

電動膨張弁の開方向C(PLS)、閉方向D(PLS)のパルス数は、吐出温度(Td)と吐出温度設定値(Td1)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction C (PLS) and the closing direction D (PLS) of the electric expansion valve is determined by the difference between the discharge temperature (Td) and the discharge temperature set value (Td1). It is set to be a number.

吸入SH制御から吐出温度制御に切り替え時、吐出温度(Td)と適切な目標吐出温度(TdX)の差が大きい場合、電動膨張弁6の開閉を大きく変化させ冷媒の循環量を急激に変化させることで、吐出温度(Td)を急激に目標吐出温度(TdX)に近づけようとする。圧縮機2の熱容量が大きいと吐出温度(Td)の変化スピードは緩やかなため、電動膨張弁6の開きすぎや閉じすぎが発生し、吐出温度(Td)がおおきく変動し不安定になる。   When switching from the suction SH control to the discharge temperature control, if the difference between the discharge temperature (Td) and the appropriate target discharge temperature (TdX) is large, the opening / closing of the electric expansion valve 6 is greatly changed to rapidly change the refrigerant circulation amount. Thus, the discharge temperature (Td) is abruptly brought closer to the target discharge temperature (TdX). When the heat capacity of the compressor 2 is large, the change speed of the discharge temperature (Td) is slow. Therefore, the electric expansion valve 6 opens or closes too much, and the discharge temperature (Td) fluctuates greatly and becomes unstable.

しかし、本実施の形態では、吸入SH制御から吐出温度制御に切り替え時、吐出温度(Td)を初期の吐出温度設定値(Td1)として、吐出温度設定値(Td1)を目標吐出
温度(TdX)に到達するまで徐々に上げていくことにより、吐出温度(Td)と吐出温度設定値(Td1)の差が常に小さいので電動膨張弁6の開閉も小さくなり、吐出温度(Td)の変動が抑えられる。
However, in this embodiment, when switching from the suction SH control to the discharge temperature control, the discharge temperature (Td) is set as the initial discharge temperature set value (Td1), and the discharge temperature set value (Td1) is set as the target discharge temperature (TdX). By gradually increasing until reaching the value, the difference between the discharge temperature (Td) and the discharge temperature set value (Td1) is always small, so the opening and closing of the electric expansion valve 6 is also reduced, and the fluctuation of the discharge temperature (Td) is suppressed. It is done.

電動膨張弁6が大きく開閉すると、冷媒循環量が大きく変動し、機器の能力の変化(吹き出し温度の変動)による快適性の低下や、効率の低下、信頼性の低下(吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等)を引き起こすが、この制御により回避でき、快適で信頼性の高い機器の供給が可能となる。   When the electric expansion valve 6 opens and closes greatly, the refrigerant circulation rate fluctuates greatly, resulting in a decrease in comfort due to a change in the capacity of the device (a variation in the blowing temperature), a decrease in efficiency, and a decrease in reliability (due to an excessive increase in the discharge temperature). Cause deterioration of refrigeration oil, deterioration of compressor motor, etc.), but can be avoided by this control, and it becomes possible to supply comfortable and highly reliable equipment.

なお、適切な目標吐出温度(TdX)は蒸発温度、凝縮温度、最適な吸入SH、圧縮機モータ効率、室外機温度、室内機温度から圧縮機2の吸入の状態が最適になるように予測し算出される圧縮機2の吐出温度であるが、従来の吐出温度制御における目標値と同様に算出されるものであるため、ここでは詳細は割愛する。   The appropriate target discharge temperature (TdX) is predicted so that the suction state of the compressor 2 is optimized from the evaporation temperature, the condensation temperature, the optimum suction SH, the compressor motor efficiency, the outdoor unit temperature, and the indoor unit temperature. The calculated discharge temperature of the compressor 2 is calculated in the same manner as the target value in the conventional discharge temperature control, and therefore the details are omitted here.

(実施の形態2)
図4は実施の形態2における制御のフローチャートである。冷凍サイクルの構成や制御ブロック構成は、実施の形態1と同一なので説明を省略する。
(Embodiment 2)
FIG. 4 is a flowchart of control in the second embodiment. Since the configuration of the refrigeration cycle and the control block configuration are the same as those in the first embodiment, the description thereof is omitted.

居住者が運転設定装置10で例えば冷房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S100)、圧縮機吐出温度検知装置15が圧縮機吐出温度(Td)を検出する(S101)。   The resident selects, for example, cooling with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S100), the compressor discharge temperature detection device 15 detects the compressor discharge temperature (Td) (S101).

吐出温度(Td)が吐出温度判値(TdA)以下の場合(S102のNo)には、圧縮機2の吸入過熱度(SH)を検出し(S103)、吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S104のYes)には、電動膨張弁6を開方向にA(PLS)開く(S105)。   When the discharge temperature (Td) is equal to or lower than the discharge temperature value (TdA) (No in S102), the suction superheat degree (SH) of the compressor 2 is detected (S103), and the suction superheat degree (SH) is the suction superheat. When it is higher than the degree set value (SHA) (Yes in S104), the electric expansion valve 6 is opened A (PLS) in the opening direction (S105).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」以上でかつ吸入過熱度設定値(SHA)以下の場合(S106のNo)には、電動膨張弁6の開閉をしない(S107)。   When the suction superheat degree (SH) is not less than “suction superheat degree set value (SHA) −1 ° C.” and not more than the suction superheat degree set value (SHA) (No in S106), the electric expansion valve 6 is not opened / closed. (S107).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」より小さい場合(S106のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S108)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   If the suction superheat degree (SH) is smaller than “suction superheat degree set value (SHA) −1 ° C.” (Yes in S106), the electric expansion valve 6 is closed B (PLS) in the closing direction (S108). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree setting value (SHA). Is set to a large number of pulses.

また、吸入過熱度は、冷房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室内熱交換器温度検知装置18から検出された室内熱交換器温度(冷房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2の吸入過熱度が大きくなり、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が大きくなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、液量が多いことによるメカ破損につながる。このため、吸入過熱度を適切な値で制御することが必要である。   In the case of cooling, the intake superheat degree is determined based on the indoor heat exchanger temperature detected from the indoor heat exchanger temperature detection device 18 from the compressor intake temperature detected from the compressor intake temperature detection device 16 (during cooling). (Evaporation temperature) is reduced. When this difference is large, the suction superheat degree of the compressor 2 is increased, the efficiency of the compressor 2 is decreased, the deterioration of the refrigerating machine oil of the compressor 2 due to the temperature of the refrigerant discharged from the compressor 2 is increased, It causes deterioration of the compressor motor. If this difference is small, liquid-rich refrigerant is sucked into the compressor 2, leading to a reduction in efficiency of the compressor 2 and mechanical damage due to a large amount of liquid. For this reason, it is necessary to control the suction superheat degree with an appropriate value.

一方、吐出温度(Td)が吐出温度判値(TdA)より高くなると(S102のYes)、その時点での吐出温度(Td)を初期の吐出温度設定値(Td1)とし(S109)
、室内熱交換器温度検知装置18から検出された温度(冷房時は蒸発温度)と室外熱交換器温度検知装置17から検出された温度(冷房時は凝縮温度)から適切な目標吐出温度(TdX)を算出する(S110)。
On the other hand, when the discharge temperature (Td) becomes higher than the discharge temperature value (TdA) (Yes in S102), the discharge temperature (Td) at that time is set as the initial discharge temperature setting value (Td1) (S109).
An appropriate target discharge temperature (TdX) from the temperature detected from the indoor heat exchanger temperature detection device 18 (evaporation temperature during cooling) and the temperature detected from the outdoor heat exchanger temperature detection device 17 (condensation temperature during cooling). ) Is calculated (S110).

吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていく。   The discharge temperature set value (Td1) is gradually increased until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX).

つまり、吐出温度(Td)が吐出温度設定値(Td1)より高くなると(S111のYes)、電動膨張弁6を開方向にC(PLS)開く(S112)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」以上でかつ吐出温度設定値(Td1)以下の場合(S113のNo)には、電動膨張弁6の開閉をしない(S114)。吐出温度(Td)が吐出温度設定値(Td1)−1℃より低い場合(S113のYes)には、電動膨張弁6を開方向にD(PLS)閉じる(S115)。これにより、吐出温度(Td)を吐出温度設定値(Td1)に保つように制御する。   That is, when the discharge temperature (Td) becomes higher than the discharge temperature set value (Td1) (Yes in S111), the electric expansion valve 6 is opened C (PLS) in the opening direction (S112). When the discharge temperature (Td) is equal to or higher than “discharge temperature set value (Td1) −1 ° C.” and equal to or lower than the discharge temperature set value (Td1) (No in S113), the electric expansion valve 6 is not opened or closed (S114). . When the discharge temperature (Td) is lower than the discharge temperature set value (Td1) -1 ° C. (Yes in S113), the electric expansion valve 6 is closed D (PLS) in the opening direction (S115). Thus, the discharge temperature (Td) is controlled to be kept at the discharge temperature set value (Td1).

その後、目標吐出温度(TdX)を吐出温度設定値(Td1)と比較する(S116)。吐出温度設定値(Td1)が適切な目標吐出温度(TdX)より低い場合(S116のYes)には、圧縮機2の吸入過熱度(SH)を検出する(S117)。そして、吸入過熱度(SH)を第2の所定の吸入過熱度設定値(SHB)と比較する(S118)。吸入過熱度(SH)が吸入過熱度設定値(SHB)より低い場合(S118のYes)には、吐出温度設定値(Td1)をTa℃上げる(S119)。その後、S111に戻り、この上がった吐出温度設定値(Td1)を目指し、ある一定の間隔をおいて再び電動膨張弁6の開閉を行う。   Thereafter, the target discharge temperature (TdX) is compared with the discharge temperature set value (Td1) (S116). When the discharge temperature set value (Td1) is lower than the appropriate target discharge temperature (TdX) (Yes in S116), the suction superheat degree (SH) of the compressor 2 is detected (S117). Then, the suction superheat degree (SH) is compared with a second predetermined suction superheat degree set value (SHB) (S118). When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHB) (Yes in S118), the discharge temperature set value (Td1) is raised by Ta ° C. (S119). Thereafter, the process returns to S111, and the electric expansion valve 6 is opened and closed again at a certain interval aiming at the increased discharge temperature set value (Td1).

吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合(S118のNo)には、圧縮機2の吸入過熱度が大きく、吐出温度設定値(Td1)を上げて電動膨張弁6を閉方向に閉じると、吸入過熱度がさらに大きくなり、吐出温度が急激に上がるので、吐出温度設定値(Td1)を上げない(S120)。   When the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) (No in S118), the suction superheat degree of the compressor 2 is large, and the discharge temperature set value (Td1) is increased to increase the electric expansion valve 6. When the is closed in the closing direction, the degree of superheated suction is further increased and the discharge temperature is rapidly increased, so that the discharge temperature set value (Td1) is not increased (S120).

以上の動作を繰り返すことにより、吐出温度設定値(Td1)を徐々に適切な目標吐出温度(TdX)に近づくように制御し、吐出温度設定値(Td1)が適切な目標吐出温度(TdX)に到達すると(S116のNo)、吐出温度設定値(Td1)は変更しない(S120)。   By repeating the above operation, the discharge temperature set value (Td1) is controlled so as to gradually approach the appropriate target discharge temperature (TdX), and the discharge temperature set value (Td1) becomes the appropriate target discharge temperature (TdX). When it reaches (No in S116), the discharge temperature set value (Td1) is not changed (S120).

電動膨張弁の開方向C(PLS)、閉方向D(PLS)のパルス数は、吐出温度(Td)と吐出温度設定値(Td1)の差によって決められており、差が大きい場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction C (PLS) and the closing direction D (PLS) of the electric expansion valve is determined by the difference between the discharge temperature (Td) and the discharge temperature set value (Td1). It is set to be a number.

本実施の形態では、吸入SH制御から吐出温度制御に切り替え時、吐出温度(Td)を初期の吐出温度設定値(Td1)として、吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていき、かつ、吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合は、吐出温度設定値(Td1)を上げないように吐出温度設定値(Td1)を制御する。   In the present embodiment, when switching from the suction SH control to the discharge temperature control, the discharge temperature (Td) is set to the initial discharge temperature set value (Td1), and the discharge temperature set value (Td1) reaches the target discharge temperature (TdX). The discharge temperature set value (Td1) is gradually increased until the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) until the discharge temperature set value (Td1) is not increased. The discharge temperature set value (Td1) is controlled.

これにより、吐出温度(Td)と吐出温度設定値(Td1)の差が常に小さく抑えられ、それにより電動膨張弁6の開閉も小さくなり、吐出温度(Td)の変動が抑えられる。   As a result, the difference between the discharge temperature (Td) and the discharge temperature set value (Td1) is always kept small, whereby the opening and closing of the electric expansion valve 6 is also made small and fluctuations in the discharge temperature (Td) are suppressed.

電動膨張弁6が大きく開閉すると、冷媒循環量が大きく変動し、機器の能力の変化(吹き出し温度の変動)による快適性の低下や、効率の低下、信頼性の低下(吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等)をまねくが、この制御により回避でき
、快適で信頼性の高い機器の供給が可能となる。
When the electric expansion valve 6 opens and closes greatly, the refrigerant circulation rate fluctuates greatly, resulting in a decrease in comfort due to a change in the capacity of the device (a variation in the blowing temperature), a decrease in efficiency, and a decrease in reliability (due to an excessive increase in discharge temperature). Deterioration of refrigeration oil and compressor motor) can be avoided by this control, and it is possible to supply comfortable and reliable equipment.

また、吐出温度設定値(Td1)が目標吐出温度(TdX)に到達するまで、吸入過熱度(SH)に応じて、吐出温度設定値(Td1)を上げたり、上げないようにしたり調整するため、吐出温度(Td)の急激な変動が抑えられる。   Further, the discharge temperature set value (Td1) is increased or not increased according to the suction superheat degree (SH) until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX). , Rapid fluctuations in the discharge temperature (Td) can be suppressed.

(実施の形態3)
図5は実施の形態3における制御のフローチャートである。冷凍サイクルの構成や制御ブロック構成は、実施の形態1と同一なので説明を省略する。
(Embodiment 3)
FIG. 5 is a flowchart of control in the third embodiment. Since the configuration of the refrigeration cycle and the control block configuration are the same as those in the first embodiment, the description thereof is omitted.

居住者が運転設定装置10で例えば冷房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S200)、圧縮機吐出温度検知装置15が圧縮機吐出温度(Td)を検出する(S201)。   The resident selects, for example, cooling with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S200), the compressor discharge temperature detection device 15 detects the compressor discharge temperature (Td) (S201).

吐出温度(Td)が吐出温度判値(TdA)以下の場合(S202のNo)には、圧縮機2の吸入過熱度(SH)を検出し(S203)、吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S204のYes)には、電動膨張弁6を開方向にA(PLS)開く(S205)。   When the discharge temperature (Td) is equal to or lower than the discharge temperature value (TdA) (No in S202), the suction superheat degree (SH) of the compressor 2 is detected (S203), and the suction superheat degree (SH) is the suction superheat. When it is higher than the degree set value (SHA) (Yes in S204), the electric expansion valve 6 is opened A (PLS) in the opening direction (S205).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」以上でかつ吸入過熱度設定値(SHA)以下の場合(S206のNo)には、電動膨張弁6の開閉をしない(S207)。   When the suction superheat degree (SH) is not less than “suction superheat degree set value (SHA) −1 ° C.” and not more than the suction superheat degree set value (SHA) (No in S206), the electric expansion valve 6 is not opened / closed. (S207).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」より小さい場合(S206のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S208)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   When the suction superheat degree (SH) is smaller than “suction superheat degree set value (SHA) −1 ° C.” (Yes in S206), the electric expansion valve 6 is closed B (PLS) in the closing direction (S208). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree setting value (SHA). Is set to a large number of pulses.

また、吸入過熱度は、冷房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室内熱交換器温度検知装置18から検出された室内熱交換器温度(冷房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2の吸入過熱度が大きくなり、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が大きくなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、液量が多いことによるメカ破損につながる。このため、吸入過熱度を適切な値で制御することが必要である。   In the case of cooling, the intake superheat degree is determined based on the indoor heat exchanger temperature detected from the indoor heat exchanger temperature detection device 18 from the compressor intake temperature detected from the compressor intake temperature detection device 16 (during cooling). (Evaporation temperature) is reduced. When this difference is large, the suction superheat degree of the compressor 2 is increased, the efficiency of the compressor 2 is decreased, the deterioration of the refrigerating machine oil of the compressor 2 due to the temperature of the refrigerant discharged from the compressor 2 is increased, It causes deterioration of the compressor motor. If this difference is small, liquid-rich refrigerant is sucked into the compressor 2, leading to a reduction in efficiency of the compressor 2 and mechanical damage due to a large amount of liquid. For this reason, it is necessary to control the suction superheat degree with an appropriate value.

一方、吐出温度(Td)が吐出温度判値(TdA)より高くなると(S202のYes)、その時点での吐出温度(Td)を初期の吐出温度設定値(Td1)とし(S209)、室内熱交換器温度検知装置18から検出された温度(冷房時は蒸発温度)と室外熱交換器温度検知装置17から検出された温度(冷房時は凝縮温度)から適切な目標吐出温度(TdX)を算出する(S210)。   On the other hand, when the discharge temperature (Td) becomes higher than the discharge temperature value (TdA) (Yes in S202), the discharge temperature (Td) at that time is set as the initial discharge temperature setting value (Td1) (S209), and the indoor heat An appropriate target discharge temperature (TdX) is calculated from the temperature detected from the exchanger temperature detection device 18 (evaporation temperature during cooling) and the temperature detected from the outdoor heat exchanger temperature detection device 17 (condensation temperature during cooling). (S210).

吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていく。   The discharge temperature set value (Td1) is gradually increased until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX).

つまり、吐出温度(Td)が吐出温度設定値(Td1)より高くなると(S211のY
es)、電動膨張弁6を開方向にC(PLS)開く(S212)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」以上でかつ吐出温度設定値(Td1)以下の場合(S213のNo)には、電動膨張弁6の開閉をしない(S214)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」より低い場合(S213のYes)には、電動膨張弁6を閉方向にD(PLS)閉じる(S215)。
That is, when the discharge temperature (Td) becomes higher than the discharge temperature set value (Td1) (Y in S211)
es), the electric expansion valve 6 is opened C (PLS) in the opening direction (S212). When the discharge temperature (Td) is equal to or higher than “discharge temperature set value (Td1) −1 ° C.” and equal to or lower than the discharge temperature set value (Td1) (No in S213), the electric expansion valve 6 is not opened or closed (S214). . When the discharge temperature (Td) is lower than “discharge temperature set value (Td1) −1 ° C.” (Yes in S213), the electric expansion valve 6 is closed D (PLS) in the closing direction (S215).

これにより、吐出温度(Td)を吐出温度設定値(Td1)に保つように制御する。   Thus, the discharge temperature (Td) is controlled to be kept at the discharge temperature set value (Td1).

その後、目標吐出温度(TdX)を吐出温度設定値(Td1)と比較する(S216)。吐出温度設定値(Td1)が適切な目標吐出温度(TdX)より低い場合(S216のYes)には、圧縮機2の吸入過熱度(SH)を検出する(S217)。そして、吸入過熱度(SH)が吸入過熱度設定値(SHB)より低い場合(S218のYes)には、吐出温度設定値(Td1)をTa℃上げる(S219)。その後、S211に戻り、上がった吐出温度設定値(Td1)を目指し、ある一定の間隔をおいて再び電動膨張弁6の開閉を行う。   Thereafter, the target discharge temperature (TdX) is compared with the discharge temperature set value (Td1) (S216). When the discharge temperature set value (Td1) is lower than the appropriate target discharge temperature (TdX) (Yes in S216), the suction superheat degree (SH) of the compressor 2 is detected (S217). When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHB) (Yes in S218), the discharge temperature set value (Td1) is increased by Ta ° C. (S219). Thereafter, the process returns to S211, and the electric expansion valve 6 is opened and closed again at a certain interval, aiming at the increased discharge temperature set value (Td1).

吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合(S218のNo)には、圧縮機2の吸入過熱度が大きく、吐出温度設定値(Td1)を上げて電動膨張弁6を閉方向に閉じると、吸入過熱度がさらに大きくなり、吐出温度が急激に上がるので、吐出温度設定値(Td1)をTb℃下げる(S222)。なお、TbはTaと同じ値でもよいし、異なる値であってもよい。   When the intake superheat degree (SH) is equal to or higher than the intake superheat degree set value (SHB) (No in S218), the intake superheat degree of the compressor 2 is large, and the discharge temperature set value (Td1) is increased to increase the electric expansion valve 6. When the valve is closed in the closing direction, the degree of superheat of suction is further increased and the discharge temperature is rapidly increased, so that the discharge temperature set value (Td1) is lowered by Tb ° C. (S222). Tb may be the same value as Ta or a different value.

また、吐出温度設定値(Td1)が適切な目標吐出温度(TdX)以上の場合(S216のNo)には、吸入過熱度(SH)を吸入過熱度設定値(SHB)と比較する(S220)。吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合(S220のNo)には、吸入過熱度が大きく、吐出温度設定値(Td1)を上げて電動膨張弁6を閉方向に閉じると、吸入過熱度がさらに大きくなり、吐出温度が急激に上がるので、吐出温度設定値(Td1)をTb℃下げる(S222)。   When the discharge temperature set value (Td1) is equal to or higher than the appropriate target discharge temperature (TdX) (No in S216), the suction superheat degree (SH) is compared with the suction superheat degree set value (SHB) (S220). . When the intake superheat degree (SH) is equal to or higher than the intake superheat degree set value (SHB) (No in S220), the intake superheat degree is large, the discharge temperature set value (Td1) is increased, and the electric expansion valve 6 is moved in the closing direction. When closed, the suction superheat degree further increases and the discharge temperature rises rapidly, so the discharge temperature set value (Td1) is lowered by Tb ° C. (S222).

吸入過熱度(SH)が吸入過熱度設定値(SHB)より低い場合(S220のYes)には、吐出温度設定値(Td1)を維持する(S221)。   When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHB) (Yes in S220), the discharge temperature set value (Td1) is maintained (S221).

以上の動作を繰り返すことにより、吐出温度設定値(Td1)を徐々に適切な目標吐出温度(TdX)に近づくように制御する。   By repeating the above operation, the discharge temperature set value (Td1) is controlled to gradually approach the appropriate target discharge temperature (TdX).

電動膨張弁の開方向C(PLS)、閉方向D(PLS)のパルス数は、吐出温度(Td)と吐出温度設定値(Td1)の差によって決められており、差が大きい場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction C (PLS) and the closing direction D (PLS) of the electric expansion valve is determined by the difference between the discharge temperature (Td) and the discharge temperature set value (Td1). It is set to be a number.

本実施の形態では、吸入SH制御から吐出温度制御に切り替え時、吐出温度(Td)を初期の吐出温度設定値(Td1)として、吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていき、かつ、吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合は、吐出温度設定値(Td1)を下げて吐出温度設定値(Td1)を制御する。   In the present embodiment, when switching from the suction SH control to the discharge temperature control, the discharge temperature (Td) is set to the initial discharge temperature set value (Td1), and the discharge temperature set value (Td1) reaches the target discharge temperature (TdX). The discharge temperature set value (Td1) is gradually increased until the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) until the discharge temperature set value (Td1) is lowered. The temperature set value (Td1) is controlled.

これにより、吐出温度(Td)と吐出温度設定値(Td1)の差が常に小さく抑えられ、それにより電動膨張弁6の開閉も小さくなり、吐出温度(Td)の変動が抑えられる。   As a result, the difference between the discharge temperature (Td) and the discharge temperature set value (Td1) is always kept small, whereby the opening and closing of the electric expansion valve 6 is also made small and fluctuations in the discharge temperature (Td) are suppressed.

電動膨張弁6が大きく開閉すると、冷媒循環量が大きく変動し、機器の能力の変化(吹き出し温度の変動)による快適性の低下や、効率の低下、信頼性の低下(吐出温度の過上
昇による冷凍機油の劣化や圧縮機モータの劣化等)をまねくが、この制御により回避でき、快適で信頼性の高い機器の供給が可能となる。
When the electric expansion valve 6 opens and closes greatly, the refrigerant circulation rate fluctuates greatly, resulting in a decrease in comfort due to a change in the capacity of the device (a variation in the blowing temperature), a decrease in efficiency, and a decrease in reliability (due to an excessive increase in discharge temperature). Deterioration of refrigeration oil and compressor motor) can be avoided by this control, and it is possible to supply comfortable and reliable equipment.

また、吐出温度設定値(Td1)が目標吐出温度(TdX)に到達するまで、吸入過熱度(SH)に応じて、吐出温度設定値(Td1)を上げたり、維持したり、下げたりするため、吐出温度(Td)の急激な変動が抑えられる。   Further, the discharge temperature set value (Td1) is increased, maintained, or decreased according to the suction superheat degree (SH) until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX). , Rapid fluctuations in the discharge temperature (Td) can be suppressed.

(実施の形態4)
図6は実施の形態4における制御のフローチャートである。冷凍サイクルの構成や制御ブロック構成は、実施の形態1と同一なので説明を省略する。
(Embodiment 4)
FIG. 6 is a flowchart of control in the fourth embodiment. Since the configuration of the refrigeration cycle and the control block configuration are the same as those in the first embodiment, the description thereof is omitted.

居住者が運転設定装置10で例えば冷房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S300)、圧縮機吐出温度検知装置15が圧縮機吐出温度(Td)を検出する(S301)。   The resident selects, for example, cooling with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S300), the compressor discharge temperature detection device 15 detects the compressor discharge temperature (Td) (S301).

吐出温度(Td)が吐出温度判値(TdA)以下の場合(S302のNo)には、圧縮機2の吸入過熱度(SH)を検出し(S303)、吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S304のYes)には、電動膨張弁6を開方向にA(PLS)開く(S305)。   When the discharge temperature (Td) is equal to or lower than the discharge temperature value (TdA) (No in S302), the suction superheat degree (SH) of the compressor 2 is detected (S303), and the suction superheat degree (SH) is the suction superheat. When it is higher than the degree set value (SHA) (Yes in S304), the electric expansion valve 6 is opened A (PLS) in the opening direction (S305).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」以上でかつ吸入過熱度設定値(SHA)以下の場合(S306のNo)には、電動膨張弁6の開閉をしない(S307)。   When the suction superheat degree (SH) is not less than “suction superheat degree set value (SHA) -1 ° C.” and not more than the suction superheat degree set value (SHA) (No in S306), the electric expansion valve 6 is not opened / closed. (S307).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」より小さい場合(S306のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S308)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   When the suction superheat degree (SH) is smaller than “suction superheat degree set value (SHA) −1 ° C.” (Yes in S306), the electric expansion valve 6 is closed B (PLS) in the closing direction (S308). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree setting value (SHA). Is set to a large number of pulses.

また、吸入過熱度は、冷房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室内熱交換器温度検知装置18から検出された室内熱交換器温度(冷房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2の吸入過熱度が大きくなるので、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が大きくなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、液量が多いことによるメカ破損につながる。このため、吸入過熱度を適切な値で制御することが必要である。   In the case of cooling, the intake superheat degree is determined based on the indoor heat exchanger temperature detected from the indoor heat exchanger temperature detection device 18 from the compressor intake temperature detected from the compressor intake temperature detection device 16 (during cooling). (Evaporation temperature) is reduced. If this difference is large, the suction superheat degree of the compressor 2 becomes large, so that the efficiency of the compressor 2 is reduced, and the refrigerant oil of the compressor 2 is deteriorated due to the temperature of the refrigerant discharged from the compressor 2 becoming large. And causes deterioration of the compressor motor. If this difference is small, liquid-rich refrigerant is sucked into the compressor 2, leading to a reduction in efficiency of the compressor 2 and mechanical damage due to a large amount of liquid. For this reason, it is necessary to control the suction superheat degree with an appropriate value.

一方、吐出温度(Td)が吐出温度判値(TdA)より高くなると(S302のYes)、その時点での吐出温度(Td)を初期の吐出温度設定値(Td1)とし(S309)、室内熱交換器温度検知装置18から検出された温度(冷房時は蒸発温度)と室外熱交換器温度検知装置17から検出された温度(冷房時は凝縮温度)から適切な目標吐出温度(TdX)を算出する(S310)。   On the other hand, when the discharge temperature (Td) becomes higher than the discharge temperature value (TdA) (Yes in S302), the discharge temperature (Td) at that time is set as the initial discharge temperature setting value (Td1) (S309), and the indoor heat An appropriate target discharge temperature (TdX) is calculated from the temperature detected from the exchanger temperature detection device 18 (evaporation temperature during cooling) and the temperature detected from the outdoor heat exchanger temperature detection device 17 (condensation temperature during cooling). (S310).

吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていく。   The discharge temperature set value (Td1) is gradually increased until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX).

つまり、吐出温度(Td)が吐出温度設定値(Td1)より高くなると(S311のYes)、電動膨張弁6を開方向にC(PLS)開く(S312)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」以上でかつ吐出温度設定値(Td1)以下の場合(S313のNo)には、電動膨張弁6の開閉をしない(S314)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」より低い場合(S313のYes)には、電動膨張弁6を閉方向にD(PLS)閉じる(S315)。   That is, when the discharge temperature (Td) becomes higher than the discharge temperature set value (Td1) (Yes in S311), the electric expansion valve 6 is opened C (PLS) in the opening direction (S312). When the discharge temperature (Td) is equal to or higher than “discharge temperature set value (Td1) −1 ° C.” and equal to or lower than the discharge temperature set value (Td1) (No in S313), the electric expansion valve 6 is not opened or closed (S314). . When the discharge temperature (Td) is lower than “discharge temperature set value (Td1) −1 ° C.” (Yes in S313), the electric expansion valve 6 is closed D (PLS) in the closing direction (S315).

これにより、吐出温度(Td)を吐出温度設定値(Td1)に保つように制御する。   Thus, the discharge temperature (Td) is controlled to be kept at the discharge temperature set value (Td1).

その後、目標吐出温度(TdX)を吐出温度設定値(Td1)と比較する(S316)。吐出温度設定値(Td1)が適切な目標吐出温度(TdX)より低い場合(S316のYes)には、圧縮機2の吸入過熱度(SH)を検出する(S317)。そして、吸入過熱度(SH)を第2の所定の吸入過熱度設定値(SHB)と比較する(S318)。また、吐出温度設定値(Td1)と、吐出温度設定値(Td1)からある設定値X(例えば1℃)を引いた値を比較する(S319)。   Thereafter, the target discharge temperature (TdX) is compared with the discharge temperature set value (Td1) (S316). When the discharge temperature set value (Td1) is lower than the appropriate target discharge temperature (TdX) (Yes in S316), the suction superheat degree (SH) of the compressor 2 is detected (S317). Then, the suction superheat degree (SH) is compared with a second predetermined suction superheat degree set value (SHB) (S318). Further, the discharge temperature set value (Td1) is compared with a value obtained by subtracting a set value X (for example, 1 ° C.) from the discharge temperature set value (Td1) (S319).

吸入過熱度(SH)が吸入過熱度設定値(SHB)より低く(S318のYes)、かつ吐出温度(Td)が「吐出温度設定値(Td1)−X℃」より大きい場合、つまり、吐出温度と吐出温度設定値(Td1)の差がX℃(ここでは例えば1℃)に近づいた場合(S319のYes)には、吐出温度設定値(Td1)をTa℃上げる(S320)。その後、S311に戻り、上がった吐出温度設定値(Td1)を目指し、ある一定の間隔をおいて再び電動膨張弁6の開閉を行う。   When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHB) (Yes in S318) and the discharge temperature (Td) is higher than “discharge temperature set value (Td1) −X ° C.”, that is, the discharge temperature When the difference between the discharge temperature setting value (Td1) approaches X ° C. (here, for example, 1 ° C.) (Yes in S319), the discharge temperature setting value (Td1) is increased by Ta ° C. (S320). Thereafter, the process returns to S311, and the electric expansion valve 6 is opened and closed again at a certain interval aiming at the increased discharge temperature set value (Td1).

吐出温度(Td)と吐出温度設定値(Td1)の温度差がX℃以上ある場合(S319のNo)には、吐出温度設定値(Td1)を維持する(S322)。これによれば、温度差が大きくなると電動膨張弁6の開閉が大きく変化し、冷媒の循環量が急激に変化することで、吐出温度(Td)が大きく変動し不安定になることを回避できる。   When the temperature difference between the discharge temperature (Td) and the discharge temperature set value (Td1) is equal to or higher than X ° C. (No in S319), the discharge temperature set value (Td1) is maintained (S322). According to this, when the temperature difference becomes large, the opening and closing of the electric expansion valve 6 changes greatly, and the circulation amount of the refrigerant changes abruptly, so that it is possible to avoid the discharge temperature (Td) from fluctuating greatly and becoming unstable. .

吐出温度設定値(Td1)が適切な目標吐出温度(TdX)より低く(S316のYes)、吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合(S318のNo)には、吸入過熱度が大きく、吐出温度設定値(Td1)を上げて電動膨張弁6を閉方向に閉じると、吸入過熱度がさらに大きくなり、吐出温度が急激に上がるので、吐出温度設定値(Td1)をTb℃下げる(S323)。   When the discharge temperature set value (Td1) is lower than the appropriate target discharge temperature (TdX) (Yes in S316) and the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) (No in S318), If the suction superheat degree is large and the discharge temperature set value (Td1) is increased and the electric expansion valve 6 is closed in the closing direction, the suction superheat degree further increases and the discharge temperature rises rapidly, so the discharge temperature set value (Td1) Is lowered by Tb ° C. (S323).

また、吐出温度設定値(Td1)が適切な目標吐出温度(TdX)以上(S316のNo)で、かつ、吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合(S321のYes)には、吸入過熱度が大きく、吐出温度設定値(Td1)を上げて電動膨張弁6を閉方向に閉じると、吸入過熱度がさらに大きくなり、吐出温度が急激に上がるので、吐出温度設定値(Td1)をTb℃下げる(S323)。   Further, when the discharge temperature set value (Td1) is equal to or higher than the appropriate target discharge temperature (TdX) (No in S316) and the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) (Yes in S321). ), The suction superheat degree is large, and when the discharge temperature set value (Td1) is increased and the electric expansion valve 6 is closed in the closing direction, the suction superheat degree further increases and the discharge temperature rises rapidly. The value (Td1) is lowered by Tb ° C. (S323).

また、吐出温度設定値(Td1)が適切な目標吐出温度(TdX)以上(S316のNo)で、かつ、吸入過熱度(SH)が吸入過熱度設定値(SHB)より低い場合(S321)には、吐出温度設定値(Td1)を維持する(S322)。   Further, when the discharge temperature set value (Td1) is equal to or higher than the appropriate target discharge temperature (TdX) (No in S316) and the suction superheat (SH) is lower than the suction superheat set value (SHB) (S321). Maintains the discharge temperature set value (Td1) (S322).

以上の動作を繰り返すことにより、吐出温度設定値(Td1)を徐々に適切な目標吐出温度(TdX)に近づくように制御する。   By repeating the above operation, the discharge temperature set value (Td1) is controlled to gradually approach the appropriate target discharge temperature (TdX).

電動膨張弁の開方向C(PLS)、閉方向D(PLS)のパルス数は、吐出温度(Td)と吐出温度設定値(Td1)の差によって決められており、差が大きい場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction C (PLS) and the closing direction D (PLS) of the electric expansion valve is determined by the difference between the discharge temperature (Td) and the discharge temperature set value (Td1). It is set to be a number.

本実施の形態では、吸入SH制御から吐出温度制御に切り替え時、吐出温度(Td)を初期の吐出温度設定値(Td1)として、吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていき、かつ、吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合は、吐出温度設定値(Td1)を下げて吐出温度設定値(Td1)を制御する。   In the present embodiment, when switching from the suction SH control to the discharge temperature control, the discharge temperature (Td) is set to the initial discharge temperature set value (Td1), and the discharge temperature set value (Td1) reaches the target discharge temperature (TdX). The discharge temperature set value (Td1) is gradually increased until the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) until the discharge temperature set value (Td1) is lowered. The temperature set value (Td1) is controlled.

これにより、吐出温度(Td)と吐出温度設定値(Td1)の差が常に小さく抑えられ、それにより電動膨張弁6の開閉も小さくなり、吐出温度(Td)の変動が抑えられる。   As a result, the difference between the discharge temperature (Td) and the discharge temperature set value (Td1) is always kept small, whereby the opening and closing of the electric expansion valve 6 is also made small and fluctuations in the discharge temperature (Td) are suppressed.

電動膨張弁6が大きく開閉すると、冷媒循環量が大きく変動し、機器の能力の変化(吹き出し温度の変動)による快適性の低下や、効率の低下、信頼性の低下(吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等)をまねくが、この制御により回避でき、快適で信頼性の高い機器の供給が可能となる。   When the electric expansion valve 6 opens and closes greatly, the refrigerant circulation rate fluctuates greatly, resulting in a decrease in comfort due to a change in the capacity of the device (a variation in the blowing temperature), a decrease in efficiency, and a decrease in reliability (due to an excessive increase in the discharge temperature). Deterioration of refrigeration oil and compressor motor) can be avoided by this control, and it is possible to supply comfortable and reliable equipment.

また、吐出温度設定値(Td1)が目標吐出温度(TdX)に到達するまで、吸入過熱度(SH)と吐出温度(Td)とに応じて、吐出温度設定値(Td1)を上げたり、維持したり、下げたりするため、吐出温度(Td)の急激な変動が抑えられる。   Further, until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX), the discharge temperature set value (Td1) is increased or maintained according to the suction superheat degree (SH) and the discharge temperature (Td). Therefore, rapid fluctuations in the discharge temperature (Td) can be suppressed.

(実施の形態5)
図7は実施の形態5における制御のフローチャートである。冷凍サイクルの構成や制御ブロック構成は、実施の形態1と同一なので説明を省略する。
(Embodiment 5)
FIG. 7 is a flowchart of control in the fifth embodiment. Since the configuration of the refrigeration cycle and the control block configuration are the same as those in the first embodiment, the description thereof is omitted.

居住者が運転設定装置10で例えば冷房を選択し、運転開始を指示する。圧縮機2が運転を開始すると(S400)、圧縮機吐出温度検知装置15が圧縮機吐出温度(Td)を検出する(S401)。   The resident selects, for example, cooling with the operation setting device 10 and instructs the start of operation. When the compressor 2 starts operation (S400), the compressor discharge temperature detection device 15 detects the compressor discharge temperature (Td) (S401).

吐出温度(Td)が吐出温度判値(TdA)以下の場合(S402のNo)には、圧縮機2の吸入過熱度(SH)を検出し(S403)、吸入過熱度(SH)が吸入過熱度設定値(SHA)より高い場合(S404のYes)には、電動膨張弁6を開方向にA(PLS)開く(S405)。   When the discharge temperature (Td) is equal to or lower than the discharge temperature value (TdA) (No in S402), the suction superheat degree (SH) of the compressor 2 is detected (S403), and the suction superheat degree (SH) is the suction superheat. When it is higher than the degree set value (SHA) (Yes in S404), the electric expansion valve 6 is opened A (PLS) in the opening direction (S405).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」以上でかつ吸入過熱度設定値(SHA)以下の場合(S406のNo)には、電動膨張弁6の開閉をしない(S407)。   When the suction superheat degree (SH) is equal to or higher than “suction superheat degree set value (SHA) -1 ° C.” and lower than the suction superheat degree set value (SHA) (No in S406), the electric expansion valve 6 is not opened / closed. (S407).

吸入過熱度(SH)が「吸入過熱度設定値(SHA)−1℃」より小さい場合(S406のYes)には、電動膨張弁6を閉方向にB(PLS)閉じる(S408)。これにより、吸入過熱度(SH)をある適切な値(SHA)に保つように制御する。   If the suction superheat degree (SH) is smaller than “suction superheat degree set value (SHA) −1 ° C.” (Yes in S406), the electric expansion valve 6 is closed B (PLS) in the closing direction (S408). Thus, the control is performed so as to keep the suction superheat degree (SH) at a certain appropriate value (SHA).

電動膨張弁6の開方向A(PLS)、閉方向B(PLS)のパルス数は、吸入過熱度(SH)と吸入過熱度設定値(SHA)の差によって決められており、差が大きな場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction A (PLS) and the closing direction B (PLS) of the electric expansion valve 6 is determined by the difference between the suction superheat degree (SH) and the suction superheat degree setting value (SHA). Is set to a large number of pulses.

また、吸入過熱度は、冷房の場合には、圧縮機吸入温度検知装置16から検出された圧縮機吸入温度から室内熱交換器温度検知装置18から検出された室内熱交換器温度(冷房時は蒸発温度)を減じたものである。この差が大きいと、圧縮機2の吸入過熱度が大きくなり、圧縮機2の効率の低下や、圧縮機2から吐出される冷媒の温度が大きくなることによる圧縮機2の冷凍機油の劣化や圧縮機モータの劣化を引き起こす。また、この差が小さいと、圧縮機2に液リッチな冷媒が吸い込まれることになり、圧縮機2の効率の低下や、
液量が多いことによるメカ破損につながる。このため、適切な値で制御することが必要である。
In the case of cooling, the intake superheat degree is determined based on the indoor heat exchanger temperature detected from the indoor heat exchanger temperature detection device 18 from the compressor intake temperature detected from the compressor intake temperature detection device 16 (during cooling). (Evaporation temperature) is reduced. When this difference is large, the suction superheat degree of the compressor 2 is increased, the efficiency of the compressor 2 is decreased, the deterioration of the refrigerating machine oil of the compressor 2 due to the temperature of the refrigerant discharged from the compressor 2 is increased, It causes deterioration of the compressor motor. Moreover, if this difference is small, liquid-rich refrigerant will be sucked into the compressor 2, and the efficiency of the compressor 2 may be reduced,
It leads to mechanical damage due to the large amount of liquid. For this reason, it is necessary to control with an appropriate value.

一方、吐出温度(Td)が吐出温度判値(TdA)より高くなると(S402のYes)、その時点での吐出温度(Td)を初期の吐出温度設定値(Td1)とし(S409)、室内熱交換器温度検知装置18から検出された温度(冷房時は蒸発温度)と室外熱交換器温度検知装置17から検出された温度(冷房時は凝縮温度)から適切な目標吐出温度(TdX)を算出する(S410)。   On the other hand, when the discharge temperature (Td) becomes higher than the discharge temperature value (TdA) (Yes in S402), the discharge temperature (Td) at that time is set as the initial discharge temperature setting value (Td1) (S409), and the indoor heat An appropriate target discharge temperature (TdX) is calculated from the temperature detected from the exchanger temperature detection device 18 (evaporation temperature during cooling) and the temperature detected from the outdoor heat exchanger temperature detection device 17 (condensation temperature during cooling). (S410).

吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていく。   The discharge temperature set value (Td1) is gradually increased until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX).

つまり、吐出温度(Td)が吐出温度設定値(Td1)より高くなると(S411のYes)、電動膨張弁6を開方向にC(PLS)開く(S412)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」以上でかつ吐出温度設定値(Td1)以下の場合(S413のNo)には、電動膨張弁の開閉をしない(S314)。吐出温度(Td)が「吐出温度設定値(Td1)−1℃」より低い場合(S413のYes)には、電動膨張弁6を閉方向にD(PLS)閉じる(S415)。これにより、吐出温度(Td)が吐出温度設定値(Td1)に保つように制御する。   That is, when the discharge temperature (Td) becomes higher than the discharge temperature set value (Td1) (Yes in S411), the electric expansion valve 6 is opened C (PLS) in the opening direction (S412). When the discharge temperature (Td) is equal to or higher than “discharge temperature set value (Td1) −1 ° C.” and equal to or lower than the discharge temperature set value (Td1) (No in S413), the electric expansion valve is not opened or closed (S314). When the discharge temperature (Td) is lower than “discharge temperature set value (Td1) −1 ° C.” (Yes in S413), the electric expansion valve 6 is closed D (PLS) in the closing direction (S415). Thus, the discharge temperature (Td) is controlled to be kept at the discharge temperature set value (Td1).

その後、目標吐出温度(TdX)を吐出温度設定値(Td1)と比較する(S416)。吐出温度設定値(Td1)が適切な目標吐出温度(TdX)より低い場合(S416のYes)には、圧縮機2の吸入過熱度(SH)を検出する(S417)。そして、吸入過熱度(SH)を第2の所定の吸入過熱度設定値(SHB)と比較する(S418)。また、吐出温度設定値(Td1)と、吐出温度設定値(Td1)からある設定値X(例えば1℃)を引いた値を比較する(S419)。   Thereafter, the target discharge temperature (TdX) is compared with the discharge temperature set value (Td1) (S416). When the discharge temperature set value (Td1) is lower than the appropriate target discharge temperature (TdX) (Yes in S416), the suction superheat degree (SH) of the compressor 2 is detected (S417). Then, the suction superheat degree (SH) is compared with a second predetermined suction superheat degree setting value (SHB) (S418). Further, the discharge temperature set value (Td1) is compared with a value obtained by subtracting a set value X (for example, 1 ° C.) from the discharge temperature set value (Td1) (S419).

吸入過熱度(SH)が吸入過熱度設定値(SHB)より低く(S418のYes)、かつ吐出温度(Td)が「吐出温度設定値(Td1)−X℃」より大きい場合、つまり、吐出温度と吐出温度設定値(Td1)の差がX℃(ここでは例えば1℃)に近づいた場合(S419のYes)、吐出温度設定値(Td1)をTa℃上げる(S420)。その後、S411に戻り、上がった吐出温度設定値(Td1)を目指し、ある一定の間隔をおいて再び電動膨張弁6の開閉を行う。   When the suction superheat degree (SH) is lower than the suction superheat degree set value (SHB) (Yes in S418) and the discharge temperature (Td) is higher than “discharge temperature set value (Td1) −X ° C.”, that is, the discharge temperature When the difference between the discharge temperature setting value (Td1) approaches X ° C. (here, for example, 1 ° C.) (Yes in S419), the discharge temperature setting value (Td1) is increased by Ta ° C. (S420). Thereafter, the process returns to S411, and the electric expansion valve 6 is opened and closed again at a certain interval aiming at the increased discharge temperature set value (Td1).

吐出温度(Td)と吐出温度設定値(Td1)の温度差がX℃以上ある場合(S419のNo)には、吐出温度設定値(Td1)を維持する(S424)。これによれば、温度差が大きくなると電動膨張弁6の開閉が大きく変化し、冷媒の循環量が急激に変化することで、吐出温度(Td)が大きく変動し不安定になることを回避できる。   When the temperature difference between the discharge temperature (Td) and the discharge temperature set value (Td1) is equal to or higher than X ° C. (No in S419), the discharge temperature set value (Td1) is maintained (S424). According to this, when the temperature difference becomes large, the opening and closing of the electric expansion valve 6 changes greatly, and the circulation amount of the refrigerant changes abruptly, so that it is possible to avoid the discharge temperature (Td) from fluctuating greatly and becoming unstable. .

吐出温度設定値(Td1)が適切な目標吐出温度(TdX)より低く(S416のYes)、吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合(S418のNo)には、吸入過熱度が大きく、吐出温度設定値(Td1)を上げて電動膨張弁6を閉方向に閉じると、吸入過熱度がさらに大きくなり、吐出温度が急激に上がるので、吐出温度設定値(Td1)をTb℃下げる(S425)。   When the discharge temperature set value (Td1) is lower than the appropriate target discharge temperature (TdX) (Yes in S416) and the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) (No in S418), If the suction superheat degree is large and the discharge temperature set value (Td1) is increased and the electric expansion valve 6 is closed in the closing direction, the suction superheat degree further increases and the discharge temperature rises rapidly, so the discharge temperature set value (Td1) Is lowered by Tb ° C. (S425).

一方、吐出温度設定値(Td1)が適切な目標吐出温度(TdX)以上の場合(S416のNo)には、吐出温度設定値(Td1)と、吐出温度設定値(Td1)からある設定値Y(例えば2℃)を加えた値を比較する(S421)。吐出温度設定値(Td1)が目標吐出温度(TdX)をY℃以上(ここでは例えば2℃)超えていない場合(S421)には、吸入過熱度(SH)を吸入過熱度設定値(SHB)と比較する(S423)。   On the other hand, when the discharge temperature set value (Td1) is equal to or higher than the appropriate target discharge temperature (TdX) (No in S416), the discharge temperature set value (Td1) and the set value Y from the discharge temperature set value (Td1). A value obtained by adding (for example, 2 ° C.) is compared (S421). When the discharge temperature setting value (Td1) does not exceed the target discharge temperature (TdX) by more than Y ° C. (for example, 2 ° C. here) (S421), the suction superheat degree (SH) is set to the suction superheat degree set value (SHB). (S423).

吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合(S423のNo)には、吸入過熱度が大きく、吐出温度設定値(Td1)を上げて電動膨張弁6を閉方向に閉じると、吸入過熱度がさらに大きくなり、吐出温度が急激に上がるので吐出温度設定値(Td1)をTb℃下げる(S425)。   When the intake superheat degree (SH) is equal to or higher than the intake superheat degree set value (SHB) (No in S423), the intake superheat degree is large and the discharge temperature set value (Td1) is increased to move the electric expansion valve 6 in the closing direction. When closed, the degree of suction superheat further increases and the discharge temperature rises rapidly, so the discharge temperature set value (Td1) is lowered by Tb ° C. (S425).

吸入過熱度(SH)が吸入過熱度設定値(SHB)より小さい場合(S423のYes)には、吐出温度設定値(Td1)を下げず、維持する(S424)。   When the suction superheat degree (SH) is smaller than the suction superheat degree set value (SHB) (Yes in S423), the discharge temperature set value (Td1) is not lowered and maintained (S424).

吐出温度設定値(Td1)が適切な目標吐出温度(TdX)以上の場合(S416のNo)で、TdXをY℃以上、超えた場合(S421のNo)には、吐出温度設定値(Td1)を適切な目標吐出温度(TdX)に近づけるようにTc℃下げる(S422)。なお、TcはTaやTbと同じ値でもよいし、異なる値であってもよい。   When the discharge temperature set value (Td1) is equal to or higher than the appropriate target discharge temperature (TdX) (No in S416) and TdX exceeds Y ° C. or more (No in S421), the discharge temperature set value (Td1) Is lowered by Tc ° C. so as to approach the appropriate target discharge temperature (TdX) (S422). Tc may be the same value as Ta or Tb, or may be a different value.

吐出温度設定値(Td1)が適切な目標吐出温度(TdX)を超えた場合に、吐出温度設定値(Td1)をすぐに下げると、電動膨張弁6が開き、冷媒流量を増大させ、吐出温度が低下する。吐出温度が低下すると、今度は、電動膨張弁6が閉じ、冷媒流量を減少させることで、再び、吐出温度が上昇する。この繰り返しで吐出温度の変動が起こる。しかし、本実施の形態では、吐出温度設定値(Td1)が適切な目標吐出温度(TdX)を大きく超えた場合にのみ、吐出温度設定値(Td1)をTc℃下げることにより安定性が向上する。   When the discharge temperature set value (Td1) exceeds an appropriate target discharge temperature (TdX), if the discharge temperature set value (Td1) is immediately lowered, the electric expansion valve 6 is opened, the refrigerant flow rate is increased, and the discharge temperature is increased. Decreases. When the discharge temperature decreases, the electric expansion valve 6 closes this time, and the discharge temperature increases again by decreasing the refrigerant flow rate. By repeating this, the discharge temperature varies. However, in the present embodiment, stability is improved by lowering the discharge temperature setting value (Td1) by Tc ° C. only when the discharge temperature setting value (Td1) greatly exceeds the appropriate target discharge temperature (TdX). .

以上の動作を繰り返すことにより、吐出温度設定値(Td1)を徐々に適切な目標吐出温度(TdX)に近づくように制御する。   By repeating the above operation, the discharge temperature set value (Td1) is controlled to gradually approach the appropriate target discharge temperature (TdX).

電動膨張弁の開方向C(PLS)、閉方向D(PLS)のパルス数は、吐出温度(Td)と吐出温度設定値(Td1)の差によって決められており、差が大きい場合は大きなパルス数になるように設定されている。   The number of pulses in the opening direction C (PLS) and the closing direction D (PLS) of the electric expansion valve is determined by the difference between the discharge temperature (Td) and the discharge temperature set value (Td1). It is set to be a number.

本実施の形態では、吸入SH制御から吐出温度制御に切り替え時、吐出温度(Td)を初期の吐出温度設定値(Td1)として、吐出温度設定値(Td1)を目標吐出温度(TdX)に到達するまで、徐々に吐出温度設定値(Td1)を上げていき、かつ、吸入過熱度(SH)が吸入過熱度設定値(SHB)以上の場合は、吐出温度設定値(Td1)を下げて吐出温度設定値(Td1)を制御する。   In the present embodiment, when switching from the suction SH control to the discharge temperature control, the discharge temperature (Td) is set to the initial discharge temperature set value (Td1), and the discharge temperature set value (Td1) reaches the target discharge temperature (TdX). The discharge temperature set value (Td1) is gradually increased until the suction superheat degree (SH) is equal to or higher than the suction superheat degree set value (SHB) until the discharge temperature set value (Td1) is lowered. The temperature set value (Td1) is controlled.

これにより、吐出温度(Td)と吐出温度設定値(Td1)の差が常に小さく抑えられ、それにより電動膨張弁6の開閉も小さくなり、吐出温度(Td)の変動が抑えられる。   As a result, the difference between the discharge temperature (Td) and the discharge temperature set value (Td1) is always kept small, whereby the opening and closing of the electric expansion valve 6 is also made small and fluctuations in the discharge temperature (Td) are suppressed.

電動膨張弁6が大きく開閉すると、冷媒循環量が大きく変動し、機器の能力の変化(吹き出し温度の変動)による快適性の低下や、効率の低下、信頼性の低下(吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等)をまねくが、この制御により回避でき、快適で信頼性の高い機器の供給が可能となる。   When the electric expansion valve 6 opens and closes greatly, the refrigerant circulation rate fluctuates greatly, resulting in a decrease in comfort due to a change in the capacity of the device (a variation in the blowing temperature), a decrease in efficiency, and a decrease in reliability (due to an excessive increase in the discharge temperature). Deterioration of refrigeration oil and compressor motor) can be avoided by this control, and it is possible to supply comfortable and reliable equipment.

また、吐出温度設定値(Td1)が目標吐出温度(TdX)に到達するまで、吸入過熱度(SH)と吐出温度(Td)とに応じて、吐出温度設定値(Td1)を上げたり、維持したり、下げたりするため、吐出温度(Td)の急激な変動が抑えられる。特に、吐出温度設定値(Td1)が目標吐出温度(TdX)を大きく超えた場合にのみ、吐出温度設定値(Td1)を少し下げることにより、安定性が向上する。   Further, until the discharge temperature set value (Td1) reaches the target discharge temperature (TdX), the discharge temperature set value (Td1) is increased or maintained according to the suction superheat degree (SH) and the discharge temperature (Td). Therefore, rapid fluctuations in the discharge temperature (Td) can be suppressed. In particular, stability is improved by slightly reducing the discharge temperature setting value (Td1) only when the discharge temperature setting value (Td1) greatly exceeds the target discharge temperature (TdX).

なお、以上の実施の形態において、「吸入過熱度設定値(SHA)−1℃」や「吐出温
度設定値(Td1)−1℃」の1℃は、1℃でなくてもよく、例えば、数℃であってもよい。
In the above embodiment, 1 ° C. of “suction superheat setting value (SHA) −1 ° C.” and “discharge temperature setting value (Td1) −1 ° C.” may not be 1 ° C., for example, It may be several degrees Celsius.

以上説明したように、本実施の形態は、可変容量圧縮機、室外熱交換器、送風機、四方弁、絞り装置とを有する室外機と室内熱交換器、送風機を有する室内機を接続し、少なくとも前記室内機に室内熱交換器温度を検知する室内熱交換器温度検知装置を設け、少なくとも前記室外機に前記圧縮機から吐出される冷媒の温度を検知する圧縮機吐出温度検知装置と室外熱交換器温度を検知する室外熱交換器温度検知装置と前記圧縮機に吸入される冷媒の温度を検知する圧縮機吸入温度検知装置とを設け、前記圧縮機の吸入側の過熱度を検知する吸入過熱度検知装置から検出される吸入過熱温度の値がある所定の温度になるように前記絞り装置を制御するが、前記圧縮機吐出温度検知装置から検知される吐出温度がある所定の温度を超えると、前記圧縮機吐出温度検知装置から検出される吐出温度が前記室内熱交換器温度検知装置と室外熱交換器温度検知装置から検出される蒸発温度と凝縮温度から算出される目標吐出温度になるように前記絞り装置を制御する空気調和装置において、吐出温度が所定の温度を超え吐出温度による制御に切り替わった場合、切り替え時の吐出温度を初期吐出温度設定値とし、吐出温度の変化をみながら吐出温度設定値を目標吐出温度になるように徐々に変更する。   As described above, this embodiment connects an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a four-way valve, a throttle device, an indoor heat exchanger, and an indoor unit having a blower, and at least The indoor unit is provided with an indoor heat exchanger temperature detection device that detects the temperature of the indoor heat exchanger, and at least the compressor discharge temperature detection device that detects the temperature of the refrigerant discharged from the compressor in the outdoor unit and the outdoor heat exchange An outdoor heat exchanger temperature detection device for detecting the compressor temperature and a compressor suction temperature detection device for detecting the temperature of the refrigerant sucked into the compressor, and suction superheat for detecting the degree of superheat on the suction side of the compressor The throttle device is controlled so that the value of the suction superheat temperature detected from the degree detection device becomes a predetermined temperature. When the discharge temperature detected from the compressor discharge temperature detection device exceeds a predetermined temperature, The above The discharge temperature detected from the compressor discharge temperature detection device is the target discharge temperature calculated from the evaporation temperature and the condensation temperature detected from the indoor heat exchanger temperature detection device and the outdoor heat exchanger temperature detection device. In the air conditioner that controls the expansion device, when the discharge temperature exceeds the predetermined temperature and the control is switched to the discharge temperature, the discharge temperature at the time of switching is set as the initial discharge temperature setting value, and the discharge temperature is set while monitoring the change in the discharge temperature. Gradually change the value to reach the target discharge temperature.

徐々に変更する方法としては、吸入過熱度検知装置の値がある所定の温度を超えている場合は吐出温度設定値を維持するか、少し下げ、吸入過熱度検知装置の値がある所定の温度以下の場合にのみ、吐出温度設定値を少し上げる。   As a method of gradually changing, when the value of the suction superheat degree detection device exceeds a predetermined temperature, the discharge temperature set value is maintained or slightly lowered, and the value of the suction superheat degree detection device has a predetermined temperature. Only in the following cases, the discharge temperature set value is slightly increased.

ただし、吐出温度が吐出温度設定値の温度に対しある所定温度以下の場合、すなわち吐出温度が吐出温度設定値の温度に対し、かなり低く温度に開きがある場合は、吐出温度設定値の値を上げない。   However, if the discharge temperature is below a certain temperature with respect to the discharge temperature set value, that is, if the discharge temperature is considerably lower than the discharge temperature set value, the temperature of the discharge temperature set value is Do not raise.

また、吐出温度と吐出温度設定値の温度差がある所定温度以下の場合、すなわち吐出温度が吐出温度設定値の温度に値に近づいた場合にのみ、吐出温度設定値の値を少し上げる。   Further, only when the temperature difference between the discharge temperature and the discharge temperature set value is equal to or less than a predetermined temperature, that is, when the discharge temperature approaches the value of the discharge temperature set value, the value of the discharge temperature set value is slightly increased.

また、吐出温度設定値が目標吐出温度を超えた場合、吐出温度設定値と目標温度設定値の温度差がある所定温度以上の場合にのみ、吐出温度設定値の値を下げる。つまり、吐出温度設定値が目標温度設定値を大きく超えた場合のみ下げ、少し超えた程度では吐出温度設定値を下げない。   Further, when the discharge temperature set value exceeds the target discharge temperature, the value of the discharge temperature set value is decreased only when the temperature difference between the discharge temperature set value and the target temperature set value is equal to or higher than a predetermined temperature. That is, it is lowered only when the discharge temperature set value greatly exceeds the target temperature set value, and the discharge temperature set value is not lowered when the discharge temperature set value is slightly exceeded.

これにより、絞り装置の流量の急激な変動による快適性や効率の低下、吐出温度の過上昇による冷凍機油の劣化や圧縮機モータの劣化等の機器の信頼性の低下が回避でき、快適で信頼性の高い機器の供給が可能となる。   As a result, it is possible to avoid a decrease in comfort and efficiency due to sudden fluctuations in the flow rate of the throttle device, a decrease in equipment reliability such as deterioration of refrigeration oil and deterioration of compressor motor due to excessive increase in discharge temperature, and it is comfortable and reliable. High-quality equipment can be supplied.

以上のように本発明にかかる冷凍サイクル装置は、吐出温度の大きな変動を回避し、膨張弁を適切に制御し快適性と信頼性の向上を図ることが可能となるので、家庭用のエアコンや、ビル用マルチエアコン等の用途にも適用できる。   As described above, the refrigeration cycle apparatus according to the present invention can avoid large fluctuations in the discharge temperature, appropriately control the expansion valve, and improve comfort and reliability. It can also be applied to multi-air conditioners for buildings.

1 室外機
2 圧縮機
3 室外熱交換器
4 室外送風機
5 四方弁
6 電動膨張弁
7 室内機
8 室内送風機
9 室内熱交換器
10 運転設定装置
11 冷媒液管
12 冷媒ガス管
13 液側接続部
14 ガス側接続部
15 圧縮機吐出温度検知装置
16 圧縮機吸入温度検知装置
17 室外熱交換器温度検知装置
18 室内熱交換器温度検知装置
19 吸入過熱度検知装置
20 制御装置
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 4 Outdoor fan 5 Four way valve 6 Electric expansion valve 7 Indoor unit 8 Indoor fan 9 Indoor heat exchanger 10 Operation setting apparatus 11 Refrigerant liquid pipe 12 Refrigerant gas pipe 13 Liquid side connection part 14 Gas side connection 15 Compressor discharge temperature detection device 16 Compressor suction temperature detection device 17 Outdoor heat exchanger temperature detection device 18 Indoor heat exchanger temperature detection device 19 Suction superheat degree detection device 20 Control device

Claims (5)

圧縮機、凝縮器、絞り装置、蒸発器と、前記圧縮機から吐出される冷媒の温度を検知する吐出温度検知部とを備え、
前記吐出温度検知部が検知する吐出温度が目標吐出温度設定値となるように、前記絞り装置を通過する冷媒流量が調整される冷凍サイクル装置であって、
前記吐出温度が所定の吐出温度を超えた場合には、前記吐出温度が吐出温度設定値となるように、前記絞り装置を通過する冷媒流量を調整するもので、
前記吐出温度設定値は、前記所定の吐出温度を超えたときの前記吐出温度を基準とし、前記吐出温度と目標吐出温度設定値とに応じて変更することを特徴とする冷凍サイクル装置。
A compressor, a condenser, a throttling device, an evaporator, and a discharge temperature detector for detecting the temperature of the refrigerant discharged from the compressor;
A refrigeration cycle apparatus in which a refrigerant flow rate passing through the throttle device is adjusted so that a discharge temperature detected by the discharge temperature detection unit becomes a target discharge temperature set value;
When the discharge temperature exceeds a predetermined discharge temperature, the refrigerant flow rate that passes through the expansion device is adjusted so that the discharge temperature becomes a discharge temperature setting value.
The refrigeration cycle apparatus, wherein the discharge temperature set value is changed according to the discharge temperature and the target discharge temperature set value with reference to the discharge temperature when the predetermined discharge temperature is exceeded.
前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部を備え、前記吸入過熱度演算部が演算する吸入過熱度が、所定の過熱度より大きい場合には、前記吐出温度設定値を変更しないことを特徴とする請求項1に記載の冷凍サイクル装置。 A suction superheat degree calculation unit that calculates the superheat degree of the refrigerant sucked into the compressor, and the discharge temperature setting when the suction superheat degree calculated by the suction superheat degree calculation unit is larger than a predetermined superheat degree The refrigeration cycle apparatus according to claim 1, wherein the value is not changed. 前記圧縮機に吸入される冷媒の過熱度を演算する吸入過熱度演算部を備え、前記吸入過熱度演算部が演算する吸入過熱度が、所定の過熱度より大きい場合には、前記吐出温度設定値を下げることを特徴とする請求項1に記載の冷凍サイクル装置。 A suction superheat degree calculation unit that calculates the superheat degree of the refrigerant sucked into the compressor, and the discharge temperature setting when the suction superheat degree calculated by the suction superheat degree calculation unit is larger than a predetermined superheat degree The refrigeration cycle apparatus according to claim 1, wherein the value is lowered. 前記吐出温度と前記吐出温度設定値との差が、所定の温度差より小さい場合には、前記吐出温度設定値を上げることを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein when the difference between the discharge temperature and the discharge temperature set value is smaller than a predetermined temperature difference, the discharge temperature set value is increased. 前記吐出温度設定値が、前記目標吐出温度設定値から所定温度以上高い場合には、前記吐出温度設定値を下げることを特徴とする請求項1に記載の冷凍サイクル装置。
2. The refrigeration cycle apparatus according to claim 1, wherein when the discharge temperature set value is higher than the target discharge temperature set value by a predetermined temperature or more, the discharge temperature set value is lowered.
JP2015102337A 2015-05-20 2015-05-20 Refrigeration cycle equipment Active JP6229170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102337A JP6229170B2 (en) 2015-05-20 2015-05-20 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102337A JP6229170B2 (en) 2015-05-20 2015-05-20 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2016217614A JP2016217614A (en) 2016-12-22
JP6229170B2 true JP6229170B2 (en) 2017-11-15

Family

ID=57580695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102337A Active JP6229170B2 (en) 2015-05-20 2015-05-20 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6229170B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805887B2 (en) * 2017-02-28 2020-12-23 株式会社富士通ゼネラル Air conditioner
JP7154800B2 (en) * 2018-04-05 2022-10-18 三菱重工サーマルシステムズ株式会社 Refrigerator control device, Refrigerator, Refrigerator control method, and Refrigerator control program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162770A (en) * 1984-09-05 1986-03-31 株式会社日立製作所 Method of controlling refrigerating air conditioner
JP2889791B2 (en) * 1993-07-22 1999-05-10 三洋電機株式会社 Vapor compression refrigerator
JP3632645B2 (en) * 2000-10-13 2005-03-23 松下電器産業株式会社 Heat pump water heater
JP2005147437A (en) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump device
JP5999501B2 (en) * 2012-11-30 2016-09-28 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP6156727B2 (en) * 2013-03-27 2017-07-05 株式会社Gsユアサ Power storage element and power storage device

Also Published As

Publication number Publication date
JP2016217614A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6557855B2 (en) Refrigeration cycle equipment
JP6300921B2 (en) Air conditioning ventilator
US10371407B2 (en) Air conditioning apparatus
JP6734624B2 (en) Indoor unit of air conditioner
JP2008039234A (en) Air conditioner
JP2007218532A (en) Air conditioner
JP7026781B2 (en) Air conditioning system
JP2008175490A (en) Air conditioner
JP5229208B2 (en) Air conditioner
WO2018164253A1 (en) Air-conditioning device
JP6229170B2 (en) Refrigeration cycle equipment
JP2016166710A (en) Air-conditioning system
WO2015087423A1 (en) Outside air handler and air conditioner
JP6045400B2 (en) Heat source unit of refrigeration cycle apparatus and control method thereof
JP2001065949A (en) Controller for multi-chamber type air conditioner
WO2020003490A1 (en) Air conditioning device
JP2005147541A (en) Multi-chamber type air conditioner
WO2019215813A1 (en) Air-conditioning apparatus
KR20190073870A (en) Air conditioner and control method of air conditioner
JP5195814B2 (en) Air conditioning apparatus and control method thereof
JP6573507B2 (en) Air conditioner
JP6745895B2 (en) Air conditioning system
WO2020079764A1 (en) Air conditioner
JP2019011950A (en) Air conditioner
JP6271011B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6229170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151