JP6226730B2 - 光走査装置および光走査型観察装置 - Google Patents

光走査装置および光走査型観察装置 Download PDF

Info

Publication number
JP6226730B2
JP6226730B2 JP2013256311A JP2013256311A JP6226730B2 JP 6226730 B2 JP6226730 B2 JP 6226730B2 JP 2013256311 A JP2013256311 A JP 2013256311A JP 2013256311 A JP2013256311 A JP 2013256311A JP 6226730 B2 JP6226730 B2 JP 6226730B2
Authority
JP
Japan
Prior art keywords
fiber
optical scanning
light
tip
smf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013256311A
Other languages
English (en)
Other versions
JP2015112278A (ja
Inventor
藤原 真人
真人 藤原
雅史 山田
雅史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2013256311A priority Critical patent/JP6226730B2/ja
Publication of JP2015112278A publication Critical patent/JP2015112278A/ja
Application granted granted Critical
Publication of JP6226730B2 publication Critical patent/JP6226730B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光走査装置およびこれを用いた光走査型観察装置に関する。
圧電素子を用いてファイバの先端部を振動させて、対象物に対して照明光を所定の軌跡を描くように走査させる光走査装置が提案されている(例えば、特許文献1および非特許文献1参照)。このような装置では、ファイバ走査のために、ファイバの先端部を揺動可能に片持ち支持する保持部材の周りに複数の圧電素子を配置する。そして、この圧電素子をファイバに沿う方向に伸縮させるように正負の電圧を交互に印加することによって、ファイバを所望の周波数で駆動する。
特に、保持部材をファイバの光軸に沿う方向に長い直方体状に形成し、その4つの側面に圧電素子を配置することによって、ファイバの照明光の出射端を2次元的に走査させることができる。これにより、圧電素子に印加する電圧の波形を制御することによって、螺旋走査、ラスター走査、リサージュ走査など、種々の走査パターンで走査することが可能になる。ここで、ファイバは、ファイバ先端部の共振周波数の近傍で振動させると、より大きな振幅を得やすいため、少なくとも何れかの方向への振動駆動は、共振周波数近傍の周波数で行われる。
特表2008−525844号公報
Quinn. Y. J. Smithwick et al. "A Nonlinear State-Space Model of a Resonating Single Fiber Scanner for Tracking Control: Theory and Experiment", ASME J Dyn. Syst., Meas., Control, 126(1), pp. 88-101, 2004
ところで、ファイバの振幅を大きくするためには、保持部材上で圧電素子をファイバの光軸に沿う方向に、できるだけ大きく伸縮させることが望ましい。圧電素子の伸縮が大きければ、ファイバの先端部がより大きく傾動するからである。圧電素子の伸縮量は、圧電素子の長さが長いほど大きくなる。しかし、圧電素子を長くするためには、圧電素子を配置する保持部材の長さも長くする必要がある。しかし、保持部材の長さを長くすれば、結果として、保持部材及びファイバ先端部を合わせた長さが長くなる。その結果、光走査装置の小型化がしにくくなる。特に、この光走査装置を内視鏡に適用した場合には、先端の硬質長が長くなり、挿入可能な管腔臓器が制限されることや、挿入手技が困難になることなどの点で好ましくない。
したがって、これらの点に着目してなされた本発明の目的は、ファイバ保持部材およびファイバ先端部を合わせた長さ(すなわち硬質長)を増加させることなく、ファイバ先端部の振幅増大を可能にした光走査装置、および、これを用いた光走査型観察装置を提供することにある。
上記目的を達成する光走査装置の発明は、
光源からの照明光を対象物に向けて射出するファイバと、
前記ファイバが挿通され、該ファイバの先端部を揺動可能に支持する直方体のファイバ保持部材と、
前記ファイバ保持部材の各側面上に配置される圧電素子と、
を備え、前記ファイバ保持部材の前記ファイバの先端部を支持する端部に、凹部が設けられていることを特徴とするものである。
前記ファイバ保持部材の前記凹部は、前記ファイバの光軸周りに非等方な形状を有することができる。
好ましくは、前記圧電素子は、前記ファイバの延在方向に伸縮するように固定される。
また、上記目的を達成する光走査型観察装置の発明は、
光源からの照明光を対象物に向けて射出するファイバと、
前記ファイバが挿通され、該ファイバの先端部を揺動可能に支持する直方体のファイバ保持部材と、
前記ファイバ保持部材の各側面上に配置される圧電素子と、
前記照明光の照射により、前記対象物から得られる信号光を検出する検出器と
を備え、前記ファイバ保持部材の前記ファイバの先端部を支持する端部に、凹部が設けられていることを特徴とするものである。
本発明によれば、ファイバ保持部材のファイバの先端部を支持する端部に凹部を設けたので、ファイバ保持部材およびファイバ先端部を合わせた長さ(硬質長)を増加させることなく、ファイバ先端部の振幅を増大させることができる。
第1実施の形態に係る光走査型内視鏡装置の概略構成を示すブロック図である。 図1のスコープを概略的に示す概観図である。 図2のスコープの先端部の内部を拡大して示す図である。 図1の光走査型内視鏡装置の光源ユニットの概略構成を示す図である。 図1の光走査型内視鏡装置の検出ユニットの概略構成を示す図である。 図3の走査部を拡大して示す図であり、図6(a)は走査部の光ファイバの光軸方向に沿う断面図、図6(b)は光ファイバの出射端側から見た正面図である。 従来技術による圧電素子を用いた走査部の断面図である。 第2実施の形態に係る光走査型内視鏡の走査部の斜視図である。 第3実施の形態に係る光走査型顕微内視鏡のスコープを概略的に示す概観図である。 図9の先端部の内部を拡大して示す図である。 第3実施の形態に係る光走査型顕微内視鏡の光源・検出ユニットの概略構成を示す図である。
以下、本発明の実施の形態について、図面を参照して説明する。
(第1実施の形態)
図1は、第1実施の形態に係る光走査型内視鏡装置10の概略構成を示すブロック図である。光走査型内視鏡装置10は、スコープ20と、光源ユニット30(光源)と、検出ユニット40(検出部)と、コンピュータ50と、表示装置58とを含んで構成される。光源ユニット30とスコープ20との間はSMF(シングルモードファイバ)11により光学的に接続され、検出ユニット40とスコープ20との間は複数のMMF(マルチモードファイバ)12により光学的に接続されている。また、コンピュータ50とスコープ20との間には、配線ケーブル13が接続されている。
図2は、図1のスコープ20を概略的に示す概観図である。スコープ20は、操作部24、挿入部25を備える。操作部24には、光源ユニット30からのSMF11と、検出ユニット40からのMMF12と、コンピュータ50からの配線ケーブル13とのそれぞれが接続されており、これらSMF11、MMF12および配線ケーブル13は、挿入部25を通って、挿入部25の先端部26まで導かれている。
図3は、図2のスコープ20の先端部26の内部を拡大して示す図である。SMF11は、チューブ状の先端部26の中心部を通り、MMF12は先端部26の外周部を通るように配置されている。スコープ20内を挿通されてきたSMF11は、アクチュエータ保持具61とこのアクチュエータ保持具61に端部を固定された直方体状のフェルール62(ファイバ保持部材)に設けられた孔部を通り、このフェルール62から突出したファイバ先端部11aが揺動可能に支持される。SMF11のファイバ先端部11aの出射端の先にはレンズ64が配置され、SMF11から出力されたレーザ光(照明光)が、観察対象物100上に小さいスポットを形成するように構成されている。なお、図3においてレンズ64は一枚のレンズとなっているが、複数枚のレンズで構成しても良い。
一方、MMF12の入射端は、観察対象物100が配置される側に面しており、SMF11から出力されたレーザ光が観察対象物100に照射されて得られる光を、信号光として入射させるように構成されている。ここで、観察対象物に照射されて得られる光とは、SMF11から出力されたレーザ光の反射光や散乱光、レーザ光の照射により発生する蛍光などである。
また、フェルール62の4つの側面には、薄板状の圧電素子63a〜63dが面的に接触して固定されている。この圧電素子63a〜63dに配線ケーブル13を介して振動電圧を印加することによって、フェルール62を介してSMF11が振動駆動される。
図4は、図1の光走査型内視鏡装置10の光源ユニット30の概略構成を示す図である。光源ユニット30は、それぞれ、赤、緑および青の三原色のCW(連続発振)レーザ光を射出するLD(半導体レーザ)31R,DPSS(半導体励起固体レーザ)31G,LD31Bと、ダイクロイックミラー32a,32bと、レンズ33とを備える。
ダイクロイックミラー32aは、赤色の波長帯域の光を透過させ、緑色の波長帯域の光を反射させる光学特性を有し、レーザ光源31Rから出射した赤色のレーザ光と、レーザ光源31Gから出射した緑色のレーザ光とが合波される。また、ダイクロイックミラー32bは、赤色の波長帯域の光と緑色の波長帯域の光とを透過させ、青色の波長帯域の光を反射させる光学特性を有し、ダイクロイックミラー32aで合波されたレーザ光と、レーザ光源31Bから出射した青色のレーザ光とを合波する。
このようにして、それぞれのレーザ光源31R,31G,31Bを出射した赤、緑、青の3原色のレーザ光が合波されることにより白色のレーザ光となり、レンズ33によりSMF11の入射端に入射される。なお、レーザ光源31R,31G,および31B並びにダイクロイックミラー32aおよび32bの配置は、これに限られず、例えば、緑色および青色のレーザ光を合波した後、赤色のレーザ光を合波するようにしても良い。
図5は、図1の光走査型内視鏡装置10の検出ユニット40の概略構成を示す図である。検出ユニット40は、赤、緑および青の各色に対応する光を検出するためのフォトダイオードを用いた受光器であるPD41R,41G,41B、ダイクロイックミラー42a,42bおよびレンズ43を備える。検出ユニット40には、複数のMMF12が束ねられて接続されている。
レーザ光の照射により観察対象物100により反射され、あるいは、観察対象物100で発生し、MMF12を通りその出射端から出射した信号光は、レンズ43により略平行な光束となる。略平行光束となった信号光の光路上には、ダイクロイックミラー42aおよび42bが配置されている。ダイクロイックミラー42bは、青色の波長帯域の光を反射させ、赤色および緑色の波長帯域の光を透過させる光学特性を有し、レンズ43で平行光束となった信号光から青色の信号光を分離する。分離された青色の信号光は、PD41Bにより検出され、電気信号に変換される。また、ダイクロイックミラー42aは、緑色の波長帯域の光を反射させ、赤色の波長帯域の光を透過させる光学特性を有し、ダイクロイックミラー42bを透過した信号光を赤色と緑色の信号光とに分離する。分離された赤色および緑色の信号光は、それぞれPD41RおよびPD41Gにより検出され電気信号に変換される。
なお、PD41R,41Gおよび41Bは、後述する図1のコンピュータ50の検出制御部52および信号処理部54に電気的に接続されている。また、PD41R,41G,および41B並びにダイクロイックミラー42aおよび42bの配置は、これに限られず、例えば、信号光から赤色の光を分離した後、さらに緑色と青色の信号光を分離するような配置としても良い。
図1のコンピュータ50は、スコープ20の走査部23、光源ユニット30および検出ユニット40を駆動制御するとともに、検出ユニット40により出力された電気信号を処理して、画像を合成し表示装置60に表示する。このためコンピュータ50は、光源制御部51と、検出制御部52と、走査制御部53と、信号処理部54と、制御部55と、記憶部56と、入力部57とを備える。
検出制御部52は、検出ユニット40のPD41R,41G,41Bによる信号光の検出タイミング、検出時間および検出感度を制御することができる。また、走査制御部53は、スコープ20の走査部23を駆動制御して、SMF11から射出されるレーザ光のスポットを、観察対象物上で所望の軌跡により走査させる。さらに、信号処理部54は、検出ユニット40の各PD41R,41G,41Bから出力された電気信号に基づいて、観察対象物100の各点に対応する画像データを生成し、対応する画素データとして、記憶部56に記憶する。
制御部55は、光走査型内視鏡装置10の光源制御部51、検出制御部52、走査制御部53および信号処理部54の全体を同期制御することにより、光源ユニット30からのレーザ光により観察対象物100を走査させ、検出ユニット40に観察対象物100から得られる信号光を所定のタイミングで電気信号に変換させ、信号処理部54により画像データを生成させる。
次に、走査部23の構成についてより詳細に説明する。図6は、図3の走査部23を拡大して示す図であり、図6(a)は走査部の光ファイバの光軸方向に沿う断面図、図6(b)はファイバ先端部11aの出射端側から見た正面図である。フェルール62は、例えばニッケル材料により形成された、SMF11の光軸に垂直な断面が略正方形の四角柱の形状を有する部材である。四角柱の長手方向の一端は、スコープ20内部に固定されたアクチュエータ保持具61に対して固着されている。そして、フェルール62の他方の端部、すなわち、SMF11のファイバ先端部11aを揺動可能に支持している出射端側の端部には、円錐状の凹部65が設けられている。SMF11は、アクチュエータ保持具61とフェルール62との中央部を貫通する孔部に挿通され、ファイバ先端部11a側の凹部65で接着剤66により固定されている。なお凹部65は、円錐状でなく、円柱状に構成されていても良い。
図6(b)に示すように、圧電素子63a〜63dは、SMF11を挟んで互いに対向配置された圧電素子63aと63cの組、および圧電素子63bと63dの組を含み、それぞれの圧電素子の組の各圧電素子63a〜63dに互いに逆方向の電圧を印加することによって、各圧電素子63a〜63dは、SMF11の光軸方向に対向する圧電素子と異なる向きに伸縮する。これによって、SMF11の光軸に直交する、Y軸方向と、SMF11の光軸およびY軸方向の双方に直交するX軸方向の2方向にSMF11を傾動させることができる。
図6(a)に示すように、各圧電素子63a〜63dは、フェルール62のSMF11の光軸方向に延びる各側面上に、SMF11に沿ってフェルール62の一端から他端まで延在し、その一端部は、アクチュエータ保持具61に接触するように取り付けられている。このようにすることによって、ファイバ先端部11a側での圧電素子63a〜63dの振幅を大きくすることができる。圧電素子63a〜63dの振幅が大きくなれば、必然的にファイバ先端部11aの振幅も大きくなる。
比較のために、図7に、従来技術による圧電素子を用いた走査部(比較例)の断面図を示す。なお、図7では、各構成要素に図6の対応する各構成要素の番号に100を加えた番号を付している。図7によれば、フェルール162のファイバ先端部111a側の面は平面で構成され、この上に接着剤166を塗布することによって、フェルール162内を挿通されたSMF111を固定している。このようにした場合、接着剤166をファイバの周りにバランスよく塗布することは困難である。また、圧電素子163a〜163d(163a、163cのみ図示)は、フェルール162の側面上のSMF111に沿う方向の全長に渡っては設けられていない。
図6(a)に示した本発明の走査部23と図7の比較例の走査部123とを比較すると、本発明は、凹部65を設けることによって、ファイバ先端部11aの揺動可能な長さを短くすること無く、フェルール62の長さを長くし、従って、圧電素子63a〜63dの長さを長くしている。これによって、SMF11のファイバ先端部11aの共振周波数を、図7の場合と変えることなく、ファイバ先端部11aの振幅を増大させることができる。
以上説明したように、本実施の形態によれば、ファイバ先端部11aを支持するフェルール62の端部に凹部65を設けたので、ファイバ先端部11aの長さを変えることなく、ファイバの先端部11aの振幅を増大させることができる。これにより、共振周波数を変えることなく、エネルギー効率良く高振幅でファイバ先端部11aを振動駆動させることが可能になる。また、ファイバ先端部11aとフェルール62とからなる部分の硬質長を変化させないので、走査型内視鏡に適用した場合、挿入可能な管腔臓器が制限されたり、操作性が悪化したりすることはない。さらに、走査部23を薄板状の圧電素子63a〜63dを、直方体のフェルール62に沿って配置した構成としたので、スコープ20の先端の径も小さくすることができる。
また、凹部65に接着剤66を塗布してファイバ11の支持部を固定しているので、接着剤66を充填し易く、接着剤が流れて不均一となったりすることもない。
さらに、圧電素子63a〜63dが、アクチュエータ保持具61に接触するように取り付けられることで、圧電素子63a〜63dのファイバ先端部11a側の伸びが大きくなる。また、SMF11に沿う方向にフェルール62の側面の一端から他端まで圧電素子63a〜63dが延在しているので、フェルールの長手方向に部分的に圧電素子を設ける場合に比べて、同じ印加電圧に対する圧電素子の振幅を増大させることができる。
(第2実施の形態)
図8は、第2実施の形態に係る光走査型内視鏡の走査部の斜視図である。この図では、SMF11のファイバ先端部11a、フェルール62および圧電素子63a〜63dの部分のみを示している。フェルール62の凹部64は、第1実施の形態とは異なり、SMF11の光軸に垂直な断面がX軸方向に長軸、Y軸方向に短軸を有する楕円となるような形状を有している。すなわち、凹部64は、SMF11の光軸(すなわちZ軸)の周りに非等方的な形状となっている。第2実施の形態のその他の構成は、第1実施の形態と同様である。
上記のような、非等方的な凹部64を設けることにより、凹部64に接着剤65を充填しSMF11を固定した場合、SMF11を保持する接着剤65の有する弾性によって、SMF11のファイバ先端部11aの振動方向によって共振周波数が異なることとなる。図8の楕円形状の凹部64では、X軸方向とY軸方向とで共振周波数が異なるので、X軸方向に走査部を共振周波数近傍で振動駆動させたときに、Y軸方向の振動が発生して、不所望な楕円軌道が発生することを回避することができる。断面が楕円形状の凹部64は、SMF11のファイバ先端部11aを一方向に共振周波数で振動させるような走査方法、例えば、ラスター走査やリサージュ走査に用いる場合に特に好適である。
(第3実施の形態)
第3実施の形態は、本発明の光走査装置を光走査型顕微内視鏡に適用したものであり、図9は、そのスコープを概略的に示す概観図である。また、図10は、図9のスコープ20の先端部26の内部を拡大して示す図である。この光走査型顕微内視鏡では、第1実施の形態における光走査型内視鏡とは異なり、観察対象物100から得られる信号光を集光し伝達するためのMMFを設けず、観察対象物100の照明用に用いたSMF11を、信号光の集光、伝達用にも用いるものである。
また、第1実施の形態では、光源ユニットと検出ユニットとがそれぞれ設けられていたのに対して、本実施の形態では、これらの構成要素を一つにまとめた光源・検出ユニット70を設ける。図11は、光走査型顕微内視鏡の光源・検出ユニット70の概略構成を示す図である。光源・検出ユニット70は、青色の光源であるLD71、ダイクロイックミラー72、レンズ73およびPMT(光電子増倍管)74を備える。LD71から射出されたレーザ光は、ダイクロイックミラー72を透過して、レンズ73によりSMF11に入射するように構成される。また、SMF11を通ってきた信号光は、レンズ73で略平行光束となりダイクロイックミラー72で反射され、PMT74により検出されるように構成される。このため、ダイクロイックミラー72は、LD71から射出される光の波長は透過させ、信号光は反射させる波長特性を有する。例えば、光走査型顕微内視鏡でフルオレセイン(Fluorescein)により染色された試料を蛍光観察する場合は、LD71として波長494nmの半導体レーザを用い、この波長を透過させ波長520nmの蛍光を反射させるダイクロイックミラー72を用いることができる。
また、走査部23は、図3、図6等を用いて説明した第1実施の形態の走査部と同様に構成されている。その他の構成は、第1実施の形態と同様であるので、同一または対応する構成要素には同一参照符号を付して説明を省略する。
以上のような構成により、LD71から射出されたレーザ光は、SMF11を通りスコープ20の先端からレンズ64により集光され観察対象物100に照射される。その際、SMF11の先端部11aは、走査部23により振動駆動される。レーザ光の走査により、観察対象物100から得られた蛍光等の信号光は、レンズ64によりSMF11のファイバ先端部11aの出射端からSMF11に入射する。この信号光は、SMF11を光源・検出ユニット70まで導光され、PMT74により検出される。LD71および圧電素子63a〜63dの制御やPMT74から得られる画像データの処理は、第1実施の形態と同様である。
本実施の形態によれば、光走査型顕微内視鏡において、第1実施の形態の図3、図6に示したものと同様の走査部を用いるので、第1実施の形態と同様の効果が得られる。なお、本実施形態においては図9のスコープ型を想定しているが、他のスコープの鉗子穴に挿通して使用するプローブ型であっても良い。そのようにすることで、他のスコープで内視鏡観察を行いながら、そのスコープの鉗子穴にプローブ型の走査型顕微内視鏡を挿通し、顕微観察も同時に行うことが可能となる。
なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。たとえば、第1実施の形態の光源ユニット、検出ユニット、コンピュータは同一の筐体に格納しても良い。あるいは、信号光を受光するための受光素子をスコープの先端部に配置して、受光素子から出力される電気信号をケーブルを介してコンピュータに入力するようにしても良い。また、本発明の光走査装置の用途は、光走査型内視鏡や光走査型顕微内視鏡に限られず、画像投影装置等にも適用することが可能である。
10 光走査型内視鏡装置
11 SMF(シングルモードファイバ)
11a ファイバ先端部
12 MMF(マルチモードファイバ)
13 配線ケーブル
20 スコープ
23 走査部
24 操作部
25 挿入部
26 先端部
30 光源ユニット
31R,31B LD(半導体レーザ)
31G DPSSレーザ(半導体励起固体レーザ)
32a,32b ダイクロイックミラー
33 レンズ
40 検出ユニット
41R,41G,41B PD(フォトダイオード)
42a,42b ダイクロイックミラー
43 レンズ
50 コンピュータ
51 光源制御部
52 検出制御部
53 走査制御部
54 信号処理部
55 制御部
56 記憶部
58 表示装置
61 アクチュエータ保持具
62 フェルール(ファイバ保持部材)
63a〜63d 圧電素子
64 レンズ
65 凹部
66 接着材
71 LD(半導体レーザ)
72 ダイクロイックミラー
73 レンズ
74 PMT(光電子増倍管)
100 観察対象物


Claims (4)

  1. 光源からの照明光を対象物に向けて射出するファイバと、
    前記ファイバが挿通され、該ファイバの先端部を揺動可能に支持する直方体のファイバ保持部材と、
    前記ファイバ保持部材の各側面上に配置される圧電素子と、
    を備え、前記ファイバ保持部材の前記ファイバの先端部を支持する端部に、凹部が設けられていることを特徴とする光走査装置。
  2. 前記ファイバ保持部材の前記凹部は、前記ファイバの光軸周りに非等方な形状を有することを特徴とする請求項1に記載の光走査装置。
  3. 前記圧電素子は、前記ファイバの延在方向に伸縮するように固定されていることを特徴とする請求項1または2に記載の光走査装置。
  4. 光源からの照明光を対象物に向けて射出するファイバと、
    前記ファイバが挿通され、該ファイバの先端部を揺動可能に支持する直方体のファイバ保持部材と、
    前記ファイバ保持部材の各側面上に配置される圧電素子と、
    前記照明光の照射により、前記対象物から得られる信号光を検出する検出器と
    を備え、前記ファイバ保持部材の前記ファイバの先端部を支持する端部に、凹部が設けられていることを特徴とする光走査型観察装置。
JP2013256311A 2013-12-11 2013-12-11 光走査装置および光走査型観察装置 Active JP6226730B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256311A JP6226730B2 (ja) 2013-12-11 2013-12-11 光走査装置および光走査型観察装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256311A JP6226730B2 (ja) 2013-12-11 2013-12-11 光走査装置および光走査型観察装置

Publications (2)

Publication Number Publication Date
JP2015112278A JP2015112278A (ja) 2015-06-22
JP6226730B2 true JP6226730B2 (ja) 2017-11-08

Family

ID=53526656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256311A Active JP6226730B2 (ja) 2013-12-11 2013-12-11 光走査装置および光走査型観察装置

Country Status (1)

Country Link
JP (1) JP6226730B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044559A1 (ja) * 2018-08-31 2020-03-05 オリンパス株式会社 弾性体、光ファイバスキャナ、照明装置および観察装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208004A1 (ja) * 2015-06-24 2016-12-29 オリンパス株式会社 走査型内視鏡システム
WO2016208495A1 (ja) 2015-06-24 2016-12-29 オリンパス株式会社 走査型内視鏡システム
JP6765928B2 (ja) * 2016-10-11 2020-10-07 株式会社日立製作所 光走査装置、tof型分析装置、および光干渉断層計測装置
WO2018092302A1 (ja) * 2016-11-21 2018-05-24 オリンパス株式会社 光走査装置および光走査装置の組立調整方法
CN110212083A (zh) * 2018-02-28 2019-09-06 成都理想境界科技有限公司 压电器件、光纤扫描驱动器、光纤扫描装置和投影装置
CN111830702A (zh) * 2019-04-19 2020-10-27 成都理想境界科技有限公司 一种扫描致动器、光纤扫描器及驱动方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583872B2 (en) * 2007-04-05 2009-09-01 University Of Washington Compact scanning fiber device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044559A1 (ja) * 2018-08-31 2020-03-05 オリンパス株式会社 弾性体、光ファイバスキャナ、照明装置および観察装置

Also Published As

Publication number Publication date
JP2015112278A (ja) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6226730B2 (ja) 光走査装置および光走査型観察装置
JP6438221B2 (ja) 光走査用アクチュエータおよび光走査装置
US9775501B2 (en) Endoscope and endoscope apparatus having piezoelectric element which swings a free end of an optical element through a joining member
US8466956B2 (en) Scanning endoscope processor and scanning endoscope apparatus
JP6086674B2 (ja) 光走査装置
JP6057743B2 (ja) 光走査装置
JP2010117442A (ja) 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置
WO2015182137A1 (ja) 光走査型内視鏡装置
WO2015163001A1 (ja) 光走査装置及び走査型内視鏡
JP6518687B2 (ja) 光走査用アクチュエータ及び光走査装置
JP6071591B2 (ja) 光走査型内視鏡
WO2016151633A1 (ja) 光走査装置の走査軌跡測定方法、走査軌跡測定装置及び画像キャリブレーション方法
WO2016116963A1 (ja) 光走査方法及び光走査装置
JP6006039B2 (ja) 光走査型観察装置
JP2016009012A (ja) 光走査用アクチュエータ、光走査装置、及び光走査用アクチュエータの製造方法
WO2016116962A1 (ja) 光走査方法及び光走査装置
WO2017103962A1 (ja) 光走査用アクチュエータ、光走査装置、及び光走査用アクチュエータの製造方法
WO2016116968A1 (ja) 光走査装置
JP5953452B1 (ja) 走査型内視鏡
WO2016084116A1 (ja) 光走査用アクチュエータ及び光走査装置
JP6081678B1 (ja) 走査型内視鏡
JP2009254464A (ja) 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置
JP6368627B2 (ja) 光走査型観察システム
JP6173035B2 (ja) 光走査デバイス、光走査型観察装置および光走査型画像表示装置
JP2010113309A (ja) 光走査型内視鏡装置、光走査型内視鏡、および光走査型内視鏡プロセッサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R151 Written notification of patent or utility model registration

Ref document number: 6226730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250