JP6226105B1 - Laminated member and touch panel - Google Patents

Laminated member and touch panel Download PDF

Info

Publication number
JP6226105B1
JP6226105B1 JP2017514923A JP2017514923A JP6226105B1 JP 6226105 B1 JP6226105 B1 JP 6226105B1 JP 2017514923 A JP2017514923 A JP 2017514923A JP 2017514923 A JP2017514923 A JP 2017514923A JP 6226105 B1 JP6226105 B1 JP 6226105B1
Authority
JP
Japan
Prior art keywords
transparent electrode
conductive layer
electrode layer
compound
laminated member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017514923A
Other languages
Japanese (ja)
Other versions
JPWO2017159448A1 (en
Inventor
創 水口
創 水口
麻里恵 小山
麻里恵 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Application granted granted Critical
Publication of JP6226105B1 publication Critical patent/JP6226105B1/en
Publication of JPWO2017159448A1 publication Critical patent/JPWO2017159448A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Laminated Bodies (AREA)
  • Materials For Photolithography (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Position Input By Displaying (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

本発明は、上記基材上に形成された透明電極層Aと、一部が上記透明電極層A上と、一部が基材上に形成された導電層Bとを備え、上記導電層Bが、導電性粒子(a)、極性基を有する有機バインダー樹脂(b)及び一分子中にヒドロキシピリジン骨格を有する化合物(c)を含有する積層部材。基材上に形成された透明電極と周囲配線との接続性、及び環境負荷耐性に優れる、積層部材を提供する。The present invention includes a transparent electrode layer A formed on the substrate, a part of the transparent electrode layer A, and a part of the conductive layer B formed on the substrate. Are laminated members containing conductive particles (a), an organic binder resin (b) having a polar group, and a compound (c) having a hydroxypyridine skeleton in one molecule. Provided is a laminated member having excellent connectivity between a transparent electrode formed on a substrate and surrounding wiring, and excellent environmental load resistance.

Description

本発明は、積層部材及びタッチパネルに関する。   The present invention relates to a laminated member and a touch panel.

静電容量式タッチパネルは、表示領域に酸化インジウムスズ(以下、ITOと称す)等からなる透明電極が基材上に形成してあり、その周囲の非表示領域には周囲配線が基材上に形成されており、一部が透明電極と接続している。この周囲配線は、表示領域へのタッチ操作により生じた静電容量変化を電気信号としてICドライバーへ伝送することを目的としており、導電ペーストをスクリーン印刷法等で塗布する方法(例えば、特許文献1及び2)や、非表示領域の比率を小さくする目的で周囲配線の線幅を細くする手法として、フォトレジストを用いてフォトリソグラフィー加工する方法(例えば特許文献3及び4)や、感光性の導電ペーストを用いる方法(例えば特許文献5及び6)が提案されている。   In the capacitive touch panel, a transparent electrode made of indium tin oxide (hereinafter referred to as ITO) or the like is formed on the base material in the display area, and the surrounding wiring is formed on the base material in the non-display area around it. It is formed and a part is connected with the transparent electrode. The peripheral wiring is intended to transmit the capacitance change caused by the touch operation to the display area to the IC driver as an electric signal, and a method of applying a conductive paste by a screen printing method or the like (for example, Patent Document 1). And 2), and as a method of reducing the width of the surrounding wiring for the purpose of reducing the ratio of the non-display area, a method of photolithography using a photoresist (for example, Patent Documents 3 and 4), photosensitive conductive A method using a paste (for example, Patent Documents 5 and 6) has been proposed.

特開2009−230952号公報JP 2009-230952 A 特開2007−207567号公報JP 2007-207567 A 特開2011−197754号公報JP 2011-197754 A 特開2015−122046号公報JP 2015-122046 特開2013−136727号公報JP 2013-136727 A 特開2013−229284号公報JP 2013-229284 A

しかしながら、周囲配線を一般的な樹脂と金属粉からなる導電ペーストを用いて形成した場合、高温高湿などの環境負荷後に、透明電極と周囲配線との電気的接続性が悪化することが問題視されていた。   However, when the surrounding wiring is formed using a conductive paste made of general resin and metal powder, the electrical connectivity between the transparent electrode and the surrounding wiring deteriorates after environmental load such as high temperature and high humidity. It had been.

そこで本発明は、基材上に形成された透明電極と周囲配線との接続性、及び環境負荷耐性に優れる、積層部材を提供することを目的とする。   Then, an object of this invention is to provide the laminated member which is excellent in the connectivity of the transparent electrode formed on the base material and surrounding wiring, and environmental load tolerance.

本発明者らは、鋭意検討をした結果、高温高湿環境後に電気的接続性が悪化する直接原因が、透明電極に生じた微細クラックであることを突き止め、その要因が周囲配線である導電ペースト中に残存する有機バインダーの未反応部位にあることを見出した。未反応部位は高温高湿環境下の熱や湿度の影響を受け、徐々に反応が進行し、それにより生じる硬化収縮力が透明電極に微細クラックを発生させた原因であると予想した。そこで導電ペースト中にヒドロキシピリジン骨格を有する化合物を含有させ、高温高湿下での反応進行を抑制させることで、上記現象を抑制し、課題の解決に極めて有効であることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have determined that the direct cause of the deterioration of electrical connectivity after a high-temperature and high-humidity environment is a fine crack generated in the transparent electrode, and the cause is a conductive paste whose surrounding wiring is It was found that the organic binder remained in the unreacted portion of the organic binder. The unreacted site was affected by heat and humidity in a high-temperature and high-humidity environment, and the reaction gradually progressed, and it was predicted that the resulting curing shrinkage force caused fine cracks in the transparent electrode. Therefore, it has been found that by containing a compound having a hydroxypyridine skeleton in the conductive paste and suppressing the progress of the reaction under high temperature and high humidity, the above phenomenon is suppressed and the present invention is extremely effective in solving the problems. completed.

本発明は、基材上に形成された透明電極層Aと、一部が前記透明電極層A上と一部が基材上とに形成された導電層Bとを備え、前記導電層Bが、導電性粒子(a)と極性基を有する有機バインダー樹脂(b)と一分子中にヒドロキシピリジン骨格を有する化合物(c)とを含有する積層部材である。   The present invention comprises a transparent electrode layer A formed on a substrate, and a conductive layer B partially formed on the transparent electrode layer A and partially on the substrate, the conductive layer B being And a laminated member containing conductive particles (a), an organic binder resin (b) having a polar group, and a compound (c) having a hydroxypyridine skeleton in one molecule.

本発明によれば、基材上に形成された透明電極と周囲配線との接続性、及び環境負荷耐性に優れる、積層部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the laminated member excellent in the connectivity of the transparent electrode formed on the base material and surrounding wiring, and environmental load tolerance can be provided.

透明電極層と導電層との接続性評価に用いた積層部材の概略図である。It is the schematic of the laminated member used for the connectivity evaluation of a transparent electrode layer and a conductive layer.

本発明の積層部材は、基材上に形成された透明電極層Aと、一部が前記透明電極層A上と一部が基材上とに形成された導電層Bとを備え、前記導電層Bが、導電性粒子(a)と極性基を有する有機バインダー樹脂(b)と一分子中にヒドロキシピリジン骨格とを有する化合物(c)を含有する積層部材である。   The laminated member of the present invention includes a transparent electrode layer A formed on a base material, and a conductive layer B formed partly on the transparent electrode layer A and partly on the base material. Layer B is a laminated member containing conductive particles (a), an organic binder resin (b) having a polar group, and a compound (c) having a hydroxypyridine skeleton in one molecule.

本発明の積層部材が備える基材とは、その表面上に透明電極層や導電層等を形成するための支持体をいう。基材としては、例えば、ガラスやガラスエポキシ基板又はセラミックス基板等のリジッド基板や、ポリエステル、ポリイミド又はシクロオレフィン等のフィルムを用いたフレキシブル基板が挙げられる。積層部材をタッチパネルとして用いる場合は透明性の観点から、ガラス、ポリエチレンテレフタレートフィルム又はシクロオレフィンフィルムが好ましい。なお、耐熱性、光学特性の向上を目的に上記基材表面に改質処理、保護膜形成をしてもよい。   The base material provided in the laminated member of the present invention refers to a support for forming a transparent electrode layer, a conductive layer, etc. on the surface thereof. Examples of the substrate include a rigid substrate such as glass, a glass epoxy substrate, or a ceramic substrate, and a flexible substrate using a film such as polyester, polyimide, or cycloolefin. When using a laminated member as a touch panel, glass, a polyethylene terephthalate film, or a cycloolefin film is preferable from the viewpoint of transparency. For the purpose of improving heat resistance and optical characteristics, a modification treatment and a protective film may be formed on the surface of the substrate.

基材上に形成される透明電極層Aは、全面に施す平坦な層ではなく、印刷レジストやフォトレジストを用いてパターン加工された、任意形状のパターンである。すなわち、透明電極層Aは基材を完全に覆い隠しているのではなく、透明電極層Aのパターンが形成されていない部位においては、基材が露出した状態となっている。   The transparent electrode layer A formed on the substrate is not a flat layer applied to the entire surface, but is a pattern having an arbitrary shape that is patterned using a printing resist or a photoresist. That is, the transparent electrode layer A does not completely cover the base material, and the base material is exposed at a portion where the pattern of the transparent electrode layer A is not formed.

透明電極層Aは、導電成分のみからなるか、導電成分を含有するものである。透明電極層Aを構成する導電成分としては、例えば、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステン、あるいはこれら金属の酸化物や、カーボンナノチューブが挙げられる。より具体的には、例えば、ITOであるインジウムスズ酸化物、インジウム亜鉛酸化物、酸化インジウム−酸化亜鉛複合酸化物、アルミニウム亜鉛酸化物、ガリウム亜鉛酸化物、フッ素亜鉛酸化物、フッ素インジウム酸化物、アンチモンスズ酸化物(以下、ATOと称す)又はフッ素スズ酸化物が挙げられる。中でも、導電性及び可視光透過性が高く、かつ価格面でも有利な、ITO又はATOが好ましい。   The transparent electrode layer A consists of only a conductive component or contains a conductive component. As the conductive component constituting the transparent electrode layer A, for example, indium, tin, zinc, gallium, antimony, titanium, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten, or an oxide of these metals, A carbon nanotube is mentioned. More specifically, for example, indium tin oxide that is ITO, indium zinc oxide, indium oxide-zinc oxide composite oxide, aluminum zinc oxide, gallium zinc oxide, fluorine zinc oxide, fluorine indium oxide, Examples thereof include antimony tin oxide (hereinafter referred to as ATO) or fluorine tin oxide. Among these, ITO or ATO, which has high conductivity and visible light transmittance and is advantageous in terms of price, is preferable.

パターン加工をする前の、透明電極層の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法又はコーティング法が挙げられる。   Examples of the method for forming the transparent electrode layer before pattern processing include a vacuum deposition method, a sputtering method, an ion plating method, and a coating method.

透明電極層Aの厚さは、良好な導電性及び可視光透過性を両立させるため、0.01〜0.5μmが好ましく、0.05〜0.3μmがより好ましい。透明電極層Aの厚みが0.05μm以上であると、抵抗値のバラツキを抑制することができるとともに高温高湿環境負荷下で生じる微細クラックの影響を抑制することができる。一方で、透明電極層Aの厚みが0.3μm以下であると、可視光透過率を高くすることができる。   The thickness of the transparent electrode layer A is preferably 0.01 to 0.5 μm and more preferably 0.05 to 0.3 μm in order to achieve both good conductivity and visible light transmittance. When the thickness of the transparent electrode layer A is 0.05 μm or more, it is possible to suppress variations in resistance value and to suppress the influence of fine cracks that occur under a high temperature and high humidity environment load. On the other hand, if the thickness of the transparent electrode layer A is 0.3 μm or less, the visible light transmittance can be increased.

導電層Bは、導電性粒子(a)と極性基を有する有機バインダー樹脂(b)と一分子中にヒドロキシピリジン骨格を有する化合物(c)とを含有する。導電層Bは、全面に施す平坦な層ではなく、任意形状のパターンであっても構わない。この場合、導電層Bは基材及び透明電極層Aを完全に覆い隠しているのではなく、導電層Bのパターンが形成されていない部位においては、基材及び/又は透明電極層Aが露出した状態となっている。   The conductive layer B contains conductive particles (a), an organic binder resin (b) having a polar group, and a compound (c) having a hydroxypyridine skeleton in one molecule. The conductive layer B is not a flat layer applied to the entire surface, and may be a pattern having an arbitrary shape. In this case, the conductive layer B does not completely cover and hide the base material and the transparent electrode layer A, but the base material and / or the transparent electrode layer A is exposed at a portion where the pattern of the conductive layer B is not formed. It has become a state.

導電層Bが含有する導電性粒子(a)としては、銀、金、銅、白金、鉛、スズ、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン、インジウムあるいはこれら金属の合金が挙げられるが、導電性が高い銀、金又は銅が好ましく、安定性が高くかつ価格面でも有利な銀がより好ましい。   Examples of the conductive particles (a) contained in the conductive layer B include silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, and alloys of these metals. Silver, gold or copper having high conductivity is preferable, and silver which is highly stable and advantageous in terms of price is more preferable.

導電性粒子(a)の形状としては、長軸長を短軸長で除した値であるアスペクト比が、1.0〜3.0であることが好ましく、1.0〜2.0であることがより好ましい。導電性粒子(a)のアスペクト比が1.0以上であると、導電性粒子同士の接触確率が、より高まることになる。一方で、導電性粒子(a)のアスペクト比が2.0以下であると、フォトリソグラフィー法で導電層Bのパターンを形成する場合において露光光が遮蔽されにくく、現像マージンが広くなる。導電性粒子(a)のアスペクト比は、走査型電子顕微鏡(SEM)もしくは透過型電子顕微鏡(TEM)を用いて倍率15000倍で導電性粒子(a)を観察し、無作為に100個の導電性粒子の一次粒子を選択して、それぞれの長軸長及び短軸長を測定し、両者の平均値からアスペクト比を求める。   As the shape of the conductive particles (a), the aspect ratio, which is a value obtained by dividing the major axis length by the minor axis length, is preferably 1.0 to 3.0, and is 1.0 to 2.0. It is more preferable. When the aspect ratio of the conductive particles (a) is 1.0 or more, the contact probability between the conductive particles is further increased. On the other hand, when the aspect ratio of the conductive particles (a) is 2.0 or less, the exposure light is hardly shielded when the pattern of the conductive layer B is formed by a photolithography method, and the development margin is widened. The aspect ratio of the conductive particles (a) was determined by observing the conductive particles (a) at a magnification of 15000 times using a scanning electron microscope (SEM) or transmission electron microscope (TEM), and randomly conducting 100 conductive particles. The primary particles of the active particles are selected, the major axis length and the minor axis length of each are measured, and the aspect ratio is obtained from the average value of both.

導電性粒子(a)の粒径は、0.05〜2.0μmが好ましく、0.1〜1.5μmがより好ましい。導電性粒子(a)の粒径が0.05μm以上であると、粒子間の相互作用が弱く、導電性粒子の分散状態を保ち易い。一方で、導電性粒子(a)の粒径が2.0μm以下であると、形成した導電層Bのパターンのエッジをシャープにすることができる。導電層Bが含有する導電性粒子(a)の粒径は、導電層Bをピンセットや粘着テープ等で物理的に採取したものにテトラヒドロフラン(以下、THFと称す)等の有機溶剤で樹脂成分を溶解し、沈降した導電性粒子を回収し、ボックスオーブンを用いて70℃で10分間乾燥をしたものについて、電子顕微鏡を用いて15000倍の倍率で観察し、無作為に20個の導電性粒子の一次粒子を選択して、それぞれの最大幅を測定し、それらの平均値を求めることで算出することができる。このとき用いる有機溶剤は導電層Bの樹脂成分を溶解できるものであればよく、特に限定されない。   0.05-2.0 micrometers is preferable and, as for the particle size of electroconductive particle (a), 0.1-1.5 micrometers is more preferable. When the particle size of the conductive particles (a) is 0.05 μm or more, the interaction between the particles is weak, and the dispersed state of the conductive particles is easily maintained. On the other hand, when the particle size of the conductive particles (a) is 2.0 μm or less, the edge of the pattern of the formed conductive layer B can be sharpened. The particle size of the conductive particles (a) contained in the conductive layer B is determined by adding a resin component to an organic solvent such as tetrahydrofuran (hereinafter referred to as THF) obtained by physically collecting the conductive layer B with tweezers or an adhesive tape. Dissolved and settled conductive particles were collected and dried at 70 ° C. for 10 minutes using a box oven, and observed with an electron microscope at a magnification of 15000 times, and randomly 20 conductive particles. The primary particles can be selected, the maximum width of each can be measured, and the average value thereof can be obtained. The organic solvent used at this time is not particularly limited as long as it can dissolve the resin component of the conductive layer B.

導電層Bが含有する導電性粒子(a)の割合は、60〜95質量%が好ましい。導電性粒子(a)の割合が60質量%以上であると、導電性粒子同士、透明電極層Aとの接触確率が高まり、本発明の積層部材の配線抵抗値を安定化することができる。一方で、導電性粒子(a)の割合が95質量%以下であると、本発明の積層部材を屈曲させた場合の導電層Bの導電性を、より安定化できる。導電層Bが含有する導電性粒子(a)の割合は、採取した導電層Bを、熱重量分析装置を用いて焼成残分を測定することで求めることができる。   As for the ratio of the electroconductive particle (a) which the conductive layer B contains, 60-95 mass% is preferable. When the proportion of the conductive particles (a) is 60% by mass or more, the contact probability between the conductive particles and the transparent electrode layer A is increased, and the wiring resistance value of the laminated member of the present invention can be stabilized. On the other hand, when the proportion of the conductive particles (a) is 95% by mass or less, the conductivity of the conductive layer B when the laminated member of the present invention is bent can be further stabilized. The ratio of the conductive particles (a) contained in the conductive layer B can be determined by measuring the firing residue of the collected conductive layer B using a thermogravimetric analyzer.

導電層Bが含有する極性基を有する有機バインダー樹脂(b)の極性基は、カルボキシル基、ヒドロキシル基、アミノ基を指し、有機バインダー樹脂(b)としては、導電ペーストに用いられる熱硬化性樹脂、熱可塑性樹脂が好ましく、具体的には、アクリル樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、アクリルウレタン樹脂、ポリエーテルウレタン樹脂、フェノキシ樹脂、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリアミドなどが挙げられ、単独又は2種以上組み合わせて用いることができる。本発明の積層部材をタッチパネルとして用いる場合は基材への密着性、柔軟性の観点から、有機バインダー樹脂(b)はアクリル樹脂、エポキシ樹脂、ポリエステル樹脂、アクリルウレタン樹脂、ポリエーテルウレタン樹脂が好ましい。なお、極性基を有する有機バインダー樹脂(b)がウレタン骨格を有していると硬化収縮力を緩和することができ、透明導電層へのダメージを低減することができる。   The polar group of the organic binder resin (b) having a polar group contained in the conductive layer B refers to a carboxyl group, a hydroxyl group, and an amino group, and the organic binder resin (b) is a thermosetting resin used in a conductive paste. Thermoplastic resins are preferred, and specific examples include acrylic resins, polyester resins, phenol resins, epoxy resins, acrylic urethane resins, polyether urethane resins, phenoxy resins, polycarbonates, polyimides, polyamideimides, polyamides, etc. Or it can use in combination of 2 or more types. When using the laminated member of the present invention as a touch panel, the organic binder resin (b) is preferably an acrylic resin, an epoxy resin, a polyester resin, an acrylic urethane resin, or a polyether urethane resin from the viewpoints of adhesion to a substrate and flexibility. . In addition, when the organic binder resin (b) having a polar group has a urethane skeleton, the curing shrinkage force can be relaxed, and damage to the transparent conductive layer can be reduced.

また、有機バインダー樹脂(b)は極性基を有することで、ヒドロキシピリジン骨格を有する化合物と強固な相互作用を形成することができ、高温高湿下において有機バインダー樹脂(b)の動きを抑制し、未反応部位同士、もしくは硬化剤との接触確率を下げることができ、その結果反応の進行を抑えることができる。特に極性基がカルボキシル基ではその効果が高く、好ましい。   Further, the organic binder resin (b) has a polar group, so that it can form a strong interaction with the compound having a hydroxypyridine skeleton, and suppresses the movement of the organic binder resin (b) under high temperature and high humidity. In addition, the probability of contact with unreacted sites or with the curing agent can be reduced, and as a result, the progress of the reaction can be suppressed. In particular, when the polar group is a carboxyl group, the effect is high, which is preferable.

導電層Bを感光性導電ペーストを用いて形成する場合、極性基を有する有機バインダー樹脂(b)はカルボキシル基を有するアクリル系共重合体もしくはエポキシカルボキシレート樹脂が好ましく、基材、透明電極層Aとの密着性の観点からエポキシカルボキシレート樹脂がより好ましい。   When the conductive layer B is formed using a photosensitive conductive paste, the organic binder resin (b) having a polar group is preferably an acrylic copolymer or epoxycarboxylate resin having a carboxyl group, and the substrate, the transparent electrode layer A An epoxy carboxylate resin is more preferable from the viewpoint of adhesiveness.

カルボキシル基を有するアクリル系共重合体は、アクリル系モノマー及び不飽和カルボン酸等の不飽和酸を共重合成分として、共重合させることにより得られる。   The acrylic copolymer having a carboxyl group can be obtained by copolymerizing an acrylic monomer and an unsaturated acid such as an unsaturated carboxylic acid as a copolymerization component.

アクリル系モノマーとしては、例えば、アクリル酸(以下、AAと称す)、メチルアクリレート、エチルアクリレート(以下、EAと称す)、2−エチルヘキシルアクリレート、n−ブチルアクリレート(以下、BAと称す)、iso−ブチルアクリレート、iso−プロパンアクリレート、グリシジルアクリレート、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2−ヒドロキシエチルアクリレート、イソボルニルアクリレート、2−ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1−ナフチルアクリレート、2−ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレート、アリル化シクロヘキシルジアクリレート、メトキシ化シクロヘキシルジアクリレート、1,4−ブタンジオールジアクリレート、1,3−ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アクリルアミド、N−メトキシメチルアクリルアミド、N−エトキシメチルアクリルアミド、N−n−ブトキシメチルアクリルアミド、N−イソブトキシメチルアクリルアミド、エポキシ基を不飽和酸で開環させた水酸基を有するエチレングリコールジグリシジルエーテルのアクリル酸付加物、ジエチレングリコールジグリシジルエーテルのアクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルのアクリル酸付加物、グリセリンジグリシジルエーテルのアクリル酸付加物、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFのアクリル酸付加物、クレゾールノボラックのアクリル酸付加物等のエポキシアクリレートモノマー、又はγ−アクリロキシプロピルトリメトキシシラン、あるいは、それらのアクリル基を、メタクリル基に置換した化合物が挙げられるが、極性基を有する有機バインダー樹脂(b)の可視光透過性を高めるため、脂肪鎖又は脂環式構造を有するアクリル系モノマーが好ましい。   Examples of acrylic monomers include acrylic acid (hereinafter referred to as AA), methyl acrylate, ethyl acrylate (hereinafter referred to as EA), 2-ethylhexyl acrylate, n-butyl acrylate (hereinafter referred to as BA), iso- Butyl acrylate, iso-propane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodexyl acrylate, Isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxydiethylene glycol acrylate Relate, octafluoropentyl acrylate, phenoxyethyl acrylate, stearyl acrylate, trifluoroethyl acrylate, aminoethyl acrylate, phenyl acrylate, phenoxyethyl acrylate, 1-naphthyl acrylate, 2-naphthyl acrylate, thiophenol acrylate, benzyl mercaptan acrylate, allylated Cyclohexyl diacrylate, methoxylated cyclohexyl diacrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, neopentyl Glycol diacrylate, Pyrene glycol diacrylate, polypropylene glycol diacrylate, triglycerol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, acrylamide, N-methoxymethylacrylamide, N -Ethoxymethylacrylamide, Nn-butoxymethylacrylamide, N-isobutoxymethylacrylamide, acrylic acid adduct of ethylene glycol diglycidyl ether having a hydroxyl group in which an epoxy group is opened with an unsaturated acid, diethylene glycol diglycidyl ether Acrylic acid adduct, neopentyl glycol diglycidyl ether with acrylic acid Additives, acrylic acid adducts of glycerin diglycidyl ether, acrylic acid adducts of bisphenol A diglycidyl ether, acrylic acid adducts of bisphenol F, acrylic acid adducts of cresol novolac, or γ-acryloxy Examples include propyltrimethoxysilane or a compound obtained by substituting an acrylic group thereof with a methacryl group. In order to increase the visible light transmittance of the organic binder resin (b) having a polar group, an aliphatic chain or an alicyclic structure is used. An acrylic monomer having

不飽和酸としては、例えば、AA、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくは酢酸ビニル又はこれらの酸無水物が挙げられる。共重合成分として用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。   Examples of the unsaturated acid include AA, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof. The acid value of the resulting acrylic copolymer can be adjusted by the amount of the unsaturated acid used as the copolymer component.

エポキシカルボキシレート化合物とは、エポキシ化合物と、不飽和二重結合を有するカルボキシル化合物とを出発原料として合成することができる化合物をいう。   The epoxy carboxylate compound refers to a compound that can be synthesized using an epoxy compound and a carboxyl compound having an unsaturated double bond as starting materials.

出発原料となり得るエポキシ化合物としては、例えば、グリシジルエーテル類、脂環式エポキシ樹脂、グリシジルエステル類、グリシジルアミン類又はエポキシ樹脂が挙げられる。より具体的には、例えば、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、テトラメチルビフェノールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、3’,4’−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート又はtert−ブチルグリシジルアミンが挙げられる。   Examples of the epoxy compound that can be a starting material include glycidyl ethers, alicyclic epoxy resins, glycidyl esters, glycidyl amines, and epoxy resins. More specifically, for example, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether Bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bisphenol fluorenediglycidyl ether, biphenol diglycidyl ether, tetramethylbiphenol glycidyl ether, trimethylolpropane triglycidyl ether 3 ', 4'-epoxy Hexyl-3,4-epoxycyclohexane carboxylate or tert- butyl glycidyl amines.

出発原料となり得る不飽和二重結合を有するカルボキシル化合物としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸又はα−シアノ桂皮酸が挙げられる。   Examples of the carboxyl compound having an unsaturated double bond that can be used as a starting material include (meth) acrylic acid, crotonic acid, cinnamic acid, and α-cyanocinnamic acid.

エポキシカルボキシレート化合物と多塩基酸無水物とを反応させて、エポキシカルボキシレート化合物の酸価を調整しても構わない。多塩基酸無水物としては、例えば、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水イタコン酸、3−メチルテトラヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、無水トリメリット酸又は無水マレイン酸が挙げられる。   The acid value of the epoxycarboxylate compound may be adjusted by reacting the epoxycarboxylate compound with the polybasic acid anhydride. Examples of the polybasic acid anhydride include succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, anhydrous Examples include trimellitic acid or maleic anhydride.

上記の多塩基酸無水物により酸価を調整したエポキシカルボキシレート化合物が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物とを反応させることにより、エポキシカルボキシレート化合物が有する反応性の不飽和二重結合の量を調整しても構わない。   By reacting the carboxyl group of the epoxy carboxylate compound whose acid value has been adjusted with the above polybasic acid anhydride with a compound having an unsaturated double bond such as glycidyl (meth) acrylate, the epoxy carboxylate compound becomes You may adjust the quantity of the reactive unsaturated double bond which has.

エポキシカルボキシレート化合物が有するヒドロキシ基と、ジイソシアネート化合物とを反応させることにより、ウレタン化をしても構わない。ジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、テトラメチルキシレンジイソシアネート、ナフタレン−1,5−ジイソシアネート、トリデンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、アリルシアンジイソシアネート又はノルボルナンジイソシアネートが挙げられる。   The urethanization may be carried out by reacting the hydroxy group of the epoxycarboxylate compound with the diisocyanate compound. Examples of the diisocyanate compound include hexamethylene diisocyanate, tetramethylxylene diisocyanate, naphthalene-1,5-diisocyanate, tridenic diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, allyl cyanide diisocyanate, and norbornane diisocyanate.

導電層Bを感光性導電ペーストを用いて形成する場合、極性基を有する有機バインダー樹脂(b)の酸価は、50〜250mgKOH/gであることが好ましく、パターン加工性をより高めるため、60〜150mgKOH/gがより好ましい。酸価が50mgKOH/g以上であれば現像液への溶解度が高くなり、現像残渣の発生を抑制することができる。酸価が250mgKOH/g以下であれば現像液への過度な溶解を抑え、パターン形成部の膜減りを抑制することができる。なお有機バインダー樹脂(b)の酸価は、JIS K 0070(1992)に準拠して測定することができる。   When the conductive layer B is formed using a photosensitive conductive paste, the acid value of the organic binder resin (b) having a polar group is preferably 50 to 250 mgKOH / g. -150 mgKOH / g is more preferable. When the acid value is 50 mgKOH / g or more, the solubility in the developer is increased, and the generation of development residues can be suppressed. If the acid value is 250 mgKOH / g or less, excessive dissolution in the developer can be suppressed, and film loss at the pattern forming portion can be suppressed. The acid value of the organic binder resin (b) can be measured according to JIS K 0070 (1992).

導電層Bが含有する一分子中にヒドロキシピリジン骨格を有する化合物(c)とは、一分子中にヒドロキシピリジン骨格を有していればよく、単一化合物やその塩の形で導入されていてもよい。具体的には2−ヒドロキシピリジン、3−ヒドロキシピリジン、4−ヒドロキシピリジン、2,4−ジヒドロキシピリジン、2,4−ジヒドロキシキノリン、2,6−ジヒドロキシキノリン、2,8−ジヒドロキシキノリン、5−ヒドロキシ−2−メチルピリジン、2−ヒドロキシ−4−メチルピリジン、2−ヒドロキシ−5−メチルピリジン、2−ヒドロキシ−6−メチルピリジン、2,4−ジヒドロキシ−6−メチルピリジン、2−エチル−3−ヒドロキシ−6−メチルピリジン、ピリドキシン−3,4−ジバルミタート、4−デオキシピリドキシン、ピリドキサミン、ジカプリル酸ピリドキシン、4−ブロモ−2−ヒドロキシピリジン、4−クロロ−2−ヒドロキシピリジン、2−ヒドロキシ−5−ヨードピリジン、3−ヒドロキシイソキノリン、2−キノリノール、3−キノリノール、2−メチル−4−キノリノール、ピリドキサール−5−ホスフェート、シトラジン酸、6−ヒドロキシニコチン酸およびこれらの塩が挙げられる。中でもメチロール基を有するピリドキシン、4−デオキシピリドキシン、ピリドキサール、ピリドキサミン、ピリドキサール−5−ホスフェート、4−ピリドキシ酸、イソピリドキサール、2−ヒドロキシメチル−3−ピリジノール、2−ヒドロキシメチル−6−メチル−3−ピリジノール、2,6−ビス(ヒドロキシメチル)−3−ピリジノール、ギンコトキシン、ジカプリル酸ピリドキシン、ピリドキサールオキシム、6−(ヒドロキシメチル)−3,4−ピリジンジオール、2−ブロモ−6−(ヒドロキシメチル)−3−ピリジノール、2,5−ジクロロ−6−(ヒドロキシメチル)−3−ピリジノール、2−クロロ−6−(ヒドロキシメチル)−4−ヨード−3−ピリジノール、3−(ヒドロキシメチル)−6−メチル−4−キノリノール、ピリドキシン−3,4−ジパルミタート、およびこれらの塩は、極性基を有する有機バインダー樹脂(b)との相互作用をより強固にすることができるため好ましい。   The compound (c) having a hydroxypyridine skeleton in one molecule contained in the conductive layer B only needs to have a hydroxypyridine skeleton in one molecule, and is introduced in the form of a single compound or a salt thereof. Also good. Specifically, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, 2,4-dihydroxypyridine, 2,4-dihydroxyquinoline, 2,6-dihydroxyquinoline, 2,8-dihydroxyquinoline, 5-hydroxy 2-methylpyridine, 2-hydroxy-4-methylpyridine, 2-hydroxy-5-methylpyridine, 2-hydroxy-6-methylpyridine, 2,4-dihydroxy-6-methylpyridine, 2-ethyl-3- Hydroxy-6-methylpyridine, pyridoxine-3,4-dibalmitate, 4-deoxypyridoxine, pyridoxamine, pyridoxine dicaprylate, 4-bromo-2-hydroxypyridine, 4-chloro-2-hydroxypyridine, 2-hydroxy-5 Iodopyridine, 3-hydroxyi Quinoline, 2-quinolinol, 3-quinolinol, 2-methyl-4-quinolinol, pyridoxal-5-phosphate, citrazinic acid, 6-hydroxy nicotinic acid and salts thereof. Among them, pyridoxine having a methylol group, 4-deoxypyridoxine, pyridoxal, pyridoxamine, pyridoxal-5-phosphate, 4-pyridoxy acid, isopyridoxal, 2-hydroxymethyl-3-pyridinol, 2-hydroxymethyl-6-methyl-3- Pyridinol, 2,6-bis (hydroxymethyl) -3-pyridinol, ginkotoxin, pyridoxine dicaprylate, pyridoxal oxime, 6- (hydroxymethyl) -3,4-pyridinediol, 2-bromo-6- (hydroxymethyl) -3-pyridinol, 2,5-dichloro-6- (hydroxymethyl) -3-pyridinol, 2-chloro-6- (hydroxymethyl) -4-iodo-3-pyridinol, 3- (hydroxymethyl) -6- Methyl-4-quinori Lumpur, pyridoxine 3,4 dipalmitate, and these salts are preferred because they can be more robust interaction with the organic binder resin (b) having a polar group.

導電層Bが含有する一分子中にヒドロキシピリジン骨格を有する化合物(c)の添加量は、極性基を有する有機バインダー樹脂(b)100質量部に対し、好ましくは0.1〜20質量部の範囲で添加され、より好ましくは0.5〜10質量部である。一分子中にヒドロキシピリジン骨格を有する化合物(c)の添加量が、極性基を有する有機バインダー樹脂(b)100質量部に対して、0.1質量部以上、より好ましくは0.5質量部以上であると高温高湿後の電気的接続性を安定化させる効果が高くなる。また、一分子中にヒドロキシピリジン骨格を有する化合物(c)の添加量が、極性基を有する有機バインダー樹脂(b)100質量部に対して、20質量部以下、より好ましくは10質量部以下であると透明電極層Aと導電層Bとの密着性を高くすることができる。導電層Bが含有する一分子中にヒドロキシピリジン骨格を有する化合物(c)の特定、及び含有量については、採取した導電層Bを溶媒抽出などを行い、得られた試料についてIR、H−NMR、MS測定などを実施することで求めることができる。The amount of the compound (c) having a hydroxypyridine skeleton in one molecule contained in the conductive layer B is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the organic binder resin (b) having a polar group. It is added in a range, more preferably 0.5 to 10 parts by mass. The amount of the compound (c) having a hydroxypyridine skeleton in one molecule is 0.1 parts by mass or more, more preferably 0.5 parts by mass with respect to 100 parts by mass of the organic binder resin (b) having a polar group. If it is as described above, the effect of stabilizing electrical connectivity after high temperature and high humidity is enhanced. The amount of the compound (c) having a hydroxypyridine skeleton in one molecule is 20 parts by mass or less, more preferably 10 parts by mass or less with respect to 100 parts by mass of the organic binder resin (b) having a polar group. If it exists, the adhesiveness of the transparent electrode layer A and the conductive layer B can be made high. Regarding the identification and content of the compound (c) having a hydroxypyridine skeleton in one molecule contained in the conductive layer B, the collected conductive layer B is subjected to solvent extraction or the like, and the obtained sample is subjected to IR, 1 H- It can obtain | require by implementing NMR, MS measurement, etc.

導電層Bの厚みは1.0〜10.0μmが好ましい。導電層Bの厚みが1.0μm以上であれば抵抗のバラツキを抑えることができる。導電層Bの厚みが10.0μm以下であれば高温高湿下で生じる硬化収縮量が小さくなり、電気的接続性を安定化させる効果が高くなる。   The thickness of the conductive layer B is preferably 1.0 to 10.0 μm. If the thickness of the conductive layer B is 1.0 μm or more, variation in resistance can be suppressed. If the thickness of the conductive layer B is 10.0 μm or less, the amount of curing shrinkage that occurs under high temperature and high humidity becomes small, and the effect of stabilizing electrical connectivity becomes high.

本発明のタッチパネルは、本発明の積層部材を具備する。より具体的には、本発明の積層部材は、タッチパネル用の部材として好適に用いられる。タッチパネルの方式としては、例えば、抵抗膜式、光学式、電磁誘導式又は静電容量式が挙げられるが、特に静電容量式タッチパネルは、特に微細な配線が求められることから、本発明の一態様である、感光性導電ペーストを用いて導電層Bのパターンを形成した積層部材がより好適に用いられる。そのような導電層Bのパターンをタッチパネルの周囲配線として備え、かつ該周囲配線が50μmピッチ(配線幅+配線間幅)以下であるタッチパネルにおいては、非表示領域を狭くでき、表示領域を広くすることができる。   The touch panel of the present invention includes the laminated member of the present invention. More specifically, the laminated member of the present invention is suitably used as a member for a touch panel. Examples of the touch panel method include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type. In particular, a capacitance type touch panel requires particularly fine wiring. The laminated member which formed the pattern of the conductive layer B using the photosensitive electrically conductive paste which is an aspect is used more suitably. In a touch panel provided with such a pattern of the conductive layer B as the peripheral wiring of the touch panel and the peripheral wiring is 50 μm pitch (wiring width + inter-wiring width) or less, the non-display area can be narrowed and the display area is widened. be able to.

以下に本発明を実施例及び比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the embodiments of the present invention are not limited thereto.

各実施例及び比較例で用いた材料は、以下のとおりである。
[透明電極層Aの材料]
・ITO(酸化インジウム97質量%、酸化スズ3質量%)
・ATO
[極性基を有する有機バインダー樹脂(b)]
・jER(登録商標)828(三菱化学(株)製)
・ARUFON(登録商標)UC−3000(東亞合成(株)製)(以下、UC−3000と称す)
・樹脂(b−1)〜(b−4)。
The materials used in each example and comparative example are as follows.
[Material of transparent electrode layer A]
・ ITO (97% by mass of indium oxide, 3% by mass of tin oxide)
・ ATO
[Organic binder resin having polar group (b)]
・ JER (registered trademark) 828 (Mitsubishi Chemical Corporation)
ARUFON (registered trademark) UC-3000 (manufactured by Toagosei Co., Ltd.) (hereinafter referred to as UC-3000)
-Resins (b-1) to (b-4).

[合成例1]
共重合比率(質量基準):EA/メタクリル酸2−エチルヘキシル(以下、2−EHMAと称す)/BA/N−メチロールアクリルアミド(以下、MAAと称す)/AA=20/40/20/5/15
窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテート(以下、DMEAと称す)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2−EHMA、20gのBA、5gのMAA、15gのAA、0.8gの2,2’−アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(b−1)を得た。得られた樹脂(b−1)の酸価は103mgKOH/gであった。
[Synthesis Example 1]
Copolymerization ratio (mass basis): EA / 2-ethylhexyl methacrylate (hereinafter referred to as 2-EHMA) / BA / N-methylolacrylamide (hereinafter referred to as MAA) / AA = 20/40/20/5/15
150 g of diethylene glycol monoethyl ether acetate (hereinafter referred to as DMEA) was charged into a reaction vessel in a nitrogen atmosphere, and the temperature was raised to 80 ° C. using an oil bath. To this, a mixture consisting of 20 g EA, 40 g 2-EHMA, 20 g BA, 5 g MAA, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA was added 1 It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The reaction solution obtained was purified with methanol to remove unreacted impurities, and further dried under vacuum for 24 hours to obtain a resin (b-1). The acid value of the obtained resin (b-1) was 103 mgKOH / g.

[合成例2]
共重合比率(質量基準):EA/2−EHMA/スチレン(以下、Stと称す)/グリシジルメタクリレート(以下、GMAと称す)/AA=30/30/25/5/10
窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、30gのEA、30gの2−EHMA、25gのSt、10gのAA、0.8gの2,2’−アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、樹脂(b−2)を得た。得られた樹脂(b−2)の酸価は83mgKOH/gであった。
[Synthesis Example 2]
Copolymerization ratio (mass basis): EA / 2-EHMA / styrene (hereinafter referred to as St) / glycidyl methacrylate (hereinafter referred to as GMA) / AA = 30/30/25/5/10
In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added dropwise a mixture of 30 g EA, 30 g 2-EHMA, 25 g St, 10 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA over 1 hour. did. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g GMA, 1 g triethylbenzylammonium chloride and 10 g DMEA was added dropwise over 0.5 hours. After completion of the dropwise addition, an additional reaction was performed for 2 hours. The reaction solution obtained was purified with methanol to remove unreacted impurities, and further dried under vacuum for 24 hours to obtain a resin (b-2). The acid value of the obtained resin (b-2) was 83 mgKOH / g.

[合成例3]
窒素雰囲気の反応溶液中に、492.1gのカルビトールアセテート、860.0gのEOCN−103S(日本化薬(株)製;クレゾールノボラック型エポキシ樹脂;エポキシ当量:215.0g/当量)、288.3gのAA、4.92gの2,6−ジ−tert−ブチル−p−クレゾール及び4.92gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mgKOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。引き続き、この反応液に169.8gのカルビトールアセテート及び201.6gのテトラヒドロ無水フタル酸を仕込み、95℃で4時間反応させ、樹脂(b−3)を得た。得られた樹脂(b−3)の酸価は104mgKOH/gであった。
[Synthesis Example 3]
492.1 g carbitol acetate, 860.0 g EOCN-103S (manufactured by Nippon Kayaku Co., Ltd .; cresol novolac type epoxy resin; epoxy equivalent: 215.0 g / equivalent), 288. 3 g of AA, 4.92 g of 2,6-di-tert-butyl-p-cresol and 4.92 g of triphenylphosphine were charged, and the acid value of the reaction solution was reduced to 0.5 mgKOH / g or less at a temperature of 98 ° C. The reaction was continued until an epoxycarboxylate compound was obtained. Subsequently, 169.8 g of carbitol acetate and 201.6 g of tetrahydrophthalic anhydride were added to this reaction solution and reacted at 95 ° C. for 4 hours to obtain a resin (b-3). The acid value of the obtained resin (b-3) was 104 mgKOH / g.

[合成例4]
窒素雰囲気の反応容器中に、368.0gのRE−310S(日本化薬(株)製;ビスフェノールA型エポキシ樹脂;エポキシ当量:184.0g/当量)、141.2gのAA、1.02gのハイドロキノンモノメチルエーテル及び1.53gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mgKOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。その後、この反応溶液に755.5gのカルビトールアセテート、268.3gの2,2−ビス(ジメチロール)−プロピオン酸、1.08gの2−メチルハイドロキノン及び140.3gのスピログリコールを加え、45℃に昇温した。この溶液に485.2gのトリメチルヘキサメチレンジイソシアネートを、反応温度が65℃を超えないように徐々に滴下した。滴下終了後、反応温度を80℃に上昇させ、赤外吸収スペクトル測定法により、2250cm−1付近の吸収がなくなるまで6時間反応させ、樹脂(b−4)を得た。得られた樹脂(b−4)の酸価は80.0mgKOH/gであった。
[Synthesis Example 4]
In a nitrogen atmosphere reaction vessel, 368.0 g of RE-310S (manufactured by Nippon Kayaku Co., Ltd .; bisphenol A type epoxy resin; epoxy equivalent: 184.0 g / equivalent), 141.2 g of AA, 1.02 g of Hydroquinone monomethyl ether and 1.53 g of triphenylphosphine were charged and reacted at a temperature of 98 ° C. until the acid value of the reaction solution became 0.5 mgKOH / g or less to obtain an epoxycarboxylate compound. Thereafter, 755.5 g carbitol acetate, 268.3 g 2,2-bis (dimethylol) -propionic acid, 1.08 g 2-methylhydroquinone and 140.3 g spiroglycol were added to the reaction solution, The temperature was raised to. To this solution, 485.2 g of trimethylhexamethylene diisocyanate was gradually added dropwise so that the reaction temperature did not exceed 65 ° C. After completion of the dropwise addition, the reaction temperature was raised to 80 ° C., and the mixture was reacted for 6 hours until absorption near 2250 cm −1 disappeared by an infrared absorption spectrum measurement method to obtain a resin (b-4). The acid value of the obtained resin (b-4) was 80.0 mgKOH / g.

[光重合開始剤]
・IRGACURE(登録商標)OXE−01(チバジャパン(株)製)(以下、OXE−01と称す)
[熱重合開始剤]
・パーメンタ(登録商標)H(日油(株)製)
[硬化剤]
・キュアゾール(登録商標)1B2MZ
[モノマー]
・ライトアクリレートMPD−A(共栄社化学(株)製)(以下、MPD−Aと称す)。
[Photopolymerization initiator]
IRGACURE (registered trademark) OXE-01 (manufactured by Ciba Japan Co., Ltd.) (hereinafter referred to as OXE-01)
[Thermal polymerization initiator]
・ Permenta (registered trademark) H (manufactured by NOF Corporation)
[Curing agent]
Cureazole (registered trademark) 1B2MZ
[monomer]
Light acrylate MPD-A (manufactured by Kyoeisha Chemical Co., Ltd.) (hereinafter referred to as MPD-A).

[実施例1]
<透明電極層Aの形成>
基材として、厚さ30μmの二軸遠心ポリエチレンテレフタレート(PET)フィルムを用意した。基材表面に、ITOの焼結体ターゲットを備えたスパッタ装置を用いて、ITOからなる厚さ50nm(0.05μm)のITO薄膜を形成した。
[Example 1]
<Formation of transparent electrode layer A>
A biaxial centrifugal polyethylene terephthalate (PET) film having a thickness of 30 μm was prepared as a substrate. An ITO thin film made of ITO having a thickness of 50 nm (0.05 μm) was formed on the surface of the base material using a sputtering apparatus equipped with an ITO sintered body target.

<ITO薄膜のパターン加工>
ITO薄膜にフォトレジストフィルムをラミネートさせた後、フォトマスクを密着させ、超高圧水銀ランプを有する露光機で200mJ/cmの露光量でフォトレジストを露光し、30℃の1質量%炭酸ナトリウム水溶液で30秒間スプレー現像することでフォトレジストをパターン加工する。そして0.1質量%塩酸水溶液でITOをエッチング後、1質量%水酸化ナトリウム水溶液でレジストを剥離させ、基板上にパターン加工された透明電極層A1を形成した。
<Pattern processing of ITO thin film>
After laminating a photoresist film on the ITO thin film, a photomask is adhered, and the photoresist is exposed at an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultra-high pressure mercury lamp, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. The photoresist is patterned by spray development for 30 seconds. And after etching ITO with 0.1 mass% hydrochloric acid aqueous solution, the resist was peeled off with 1 mass% sodium hydroxide aqueous solution, and the transparent electrode layer A1 patterned on the board | substrate was formed.

<導電層Bを形成するための組成物の調製>
100mLクリーンボトルに、10.0gのjER828、1.5gの2−ヒドロキシピリジン、0.5gのキュアゾール1B2MZ及び5.0gのジエチエングリコールを入れ、自転−公転真空ミキサー“あわとり錬太郎”(登録商標)ARE−310((株)シンキー製)で混合して、17.0gの樹脂溶液(固形分70.6質量%)を得た。
<Preparation of composition for forming conductive layer B>
In a 100 mL clean bottle, put 10.0 g of jER828, 1.5 g of 2-hydroxypyridine, 0.5 g of Curazole 1B2MZ and 5.0 g of diethylene glycol, and rotate and revolve vacuum mixer "Awatori Rentaro" (Registered) Trademark) ARE-310 (manufactured by Sinky Corporation) was mixed to obtain 17.0 g of a resin solution (solid content: 70.6 mass%)

得られた17.0gの樹脂溶液に、粒径1.0μm、アスペクト比1.1の銀粒子68.0gを混ぜ合わせ、三本ローラーミル(EXAKT M−50;EXAKT社製)を用いて混練し、85.0gの組成物B1を得た。   To the obtained 17.0 g resin solution, 68.0 g of silver particles having a particle size of 1.0 μm and an aspect ratio of 1.1 are mixed and kneaded using a three roller mill (EXAKT M-50; manufactured by EXAKT). 85.0 g of composition B1 was obtained.

<導電層Bの形成>
PETフィルム上にパターン加工された透明電極層A1の表面に、組成物B1をスクリーン印刷機で導電層B1の膜厚が6μmになるように塗布し、140℃で60分間キュアを行い、導電層B1を形成した。
<Formation of conductive layer B>
On the surface of the transparent electrode layer A1 patterned on the PET film, the composition B1 is applied with a screen printer so that the thickness of the conductive layer B1 is 6 μm, and is cured at 140 ° C. for 60 minutes. B1 was formed.

<透明電極Aと導電層Bとの接続安定性評価>
上記方法により図1に示す積層部材を製造し、85℃、85%RHの高温高湿槽に480時間投入し、取り出し後、端子間の抵抗値を測定する。高温高湿槽投入前の抵抗値からの上昇率を下記式から求め、それを接続安定性の値とした。結果を表3に示す。
<Evaluation of connection stability between transparent electrode A and conductive layer B>
The laminated member shown in FIG. 1 is manufactured by the above method, put into a high-temperature and high-humidity tank at 85 ° C. and 85% RH for 480 hours, and after taking out, the resistance value between terminals is measured. The rate of increase from the resistance value before the introduction of the high-temperature and high-humidity tank was determined from the following formula, and was used as the value of connection stability. The results are shown in Table 3.

[実施例2〜5]
表1、2に示す積層部材を実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表3に示す。
[Examples 2 to 5]
The laminated members shown in Tables 1 and 2 were manufactured by the same method as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 3.

[実施例6]
実施例1と同様の方法で、基材上にITO薄膜のパターン加工をした。
<導電層Bの形成>
基板上にパターン加工された透明電極層A6の表面に、組成物B6をスクリーン印刷機で乾燥膜の膜厚が5μmになるように塗布し、70℃で10分間熱風乾燥機で乾燥後、所定のフォトマスクを介して超高圧水銀ランプを有する露光機で300mJ/cmの露光量で露光し、0.2質量%炭酸ナトリウム水溶液を0.1MPaの圧力で30秒間スプレー現像した後、140℃で60分間キュアを行い、図1に示す積層部材を製造した。
[Example 6]
In the same manner as in Example 1, the ITO thin film was patterned on the substrate.
<Formation of conductive layer B>
The composition B6 was applied to the surface of the transparent electrode layer A6 patterned on the substrate with a screen printer so that the thickness of the dried film was 5 μm, dried at 70 ° C. for 10 minutes with a hot air dryer, and then predetermined. The film was exposed at an exposure amount of 300 mJ / cm 2 with an exposure machine having an ultra-high pressure mercury lamp through a photomask, and 0.2 mass% sodium carbonate aqueous solution was spray-developed at a pressure of 0.1 MPa for 30 seconds, and then 140 ° C. Was cured for 60 minutes to produce a laminated member shown in FIG.

積層部材について、実施例1と同様の評価を行った。結果を表3に示す。   The laminated member was evaluated in the same manner as in Example 1. The results are shown in Table 3.

[実施例7〜14]
表1、2に示す積層部材を実施例6と同様の方法で製造し、実施例1と同様の評価を行った。結果を表3に示す。
[Examples 7 to 14]
The laminated members shown in Tables 1 and 2 were manufactured by the same method as in Example 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 3.

[比較例1及び2]
表1、2に示す積層部材を実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表3に示す。
[Comparative Examples 1 and 2]
The laminated members shown in Tables 1 and 2 were manufactured by the same method as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 3.

[比較例3]
表1、2に示す積層部材を実施例6と同様の方法で製造し、実施例1と同様の評価を行った。結果を表3に示す。
[Comparative Example 3]
The laminated members shown in Tables 1 and 2 were manufactured by the same method as in Example 6, and the same evaluation as in Example 1 was performed. The results are shown in Table 3.

実施例1〜14においては、いずれも透明電極と周囲配線との接続性、及び環境負荷耐性に優れる積層部材を製造できていることが判る。   In Examples 1-14, it turns out that the laminated member excellent in the connectivity of a transparent electrode and surrounding wiring, and environmental load tolerance is manufactured in all.

本発明の積層部材は、タッチパネルの構成要素として好適に利用することができる。   The laminated member of this invention can be utilized suitably as a component of a touch panel.

1 基材
2 透明電極層A
3 導電層B
1 Substrate 2 Transparent electrode layer A
3 Conductive layer B

Claims (5)

基材上に形成された透明電極層Aと、
一部が前記透明電極層A上と一部が基材上とに形成された導電層Bとを備え、
前記導電層Bが、導電性粒子(a)と極性基を有する有機バインダー樹脂(b)と一分子中にヒドロキシピリジン骨格を有する化合物(c)とを含有し、
前記一分子中にヒドロキシピリジン骨格を有する化合物(c)がメチロール基を有する積層部材。
A transparent electrode layer A formed on the substrate;
A conductive layer B partially formed on the transparent electrode layer A and partially on the substrate;
The conductive layer B contains conductive particles (a), an organic binder resin (b) having a polar group, and a compound (c) having a hydroxypyridine skeleton in one molecule ,
Laminated member in which the compound having a hydroxy pyridine skeleton in one molecule (c) is have a methylol group.
前記透明電極層Aの厚みが0.5μm以下である、請求項1載の積層部材。 The thickness of the transparent electrode layer A is 0.5μm or less, according to claim 1 Symbol placement lamination member. 前記極性基を有する有機バインダー樹脂(b)の極性基がカルボキシル基を含む、請求項1または2記載の積層部材。 The laminated member according to claim 1 or 2 , wherein the polar group of the organic binder resin (b) having the polar group contains a carboxyl group. 前記極性基を有する有機バインダー樹脂(b)がウレタン骨格を有する、請求項1〜のいずれか一項記載の積層部材。 The laminated member according to any one of claims 1 to 3 , wherein the organic binder resin (b) having the polar group has a urethane skeleton. 請求項1〜のいずれか一項記載の積層部材を備える、タッチパネル。 A touch panel provided with the lamination | stacking member as described in any one of Claims 1-4 .
JP2017514923A 2016-03-17 2017-03-07 Laminated member and touch panel Expired - Fee Related JP6226105B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016053828 2016-03-17
JP2016053829 2016-03-17
JP2016053829 2016-03-17
JP2016053828 2016-03-17
PCT/JP2017/008913 WO2017159448A1 (en) 2016-03-17 2017-03-07 Laminate member and touch panel

Publications (2)

Publication Number Publication Date
JP6226105B1 true JP6226105B1 (en) 2017-11-08
JPWO2017159448A1 JPWO2017159448A1 (en) 2018-03-22

Family

ID=59850919

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017514923A Expired - Fee Related JP6226105B1 (en) 2016-03-17 2017-03-07 Laminated member and touch panel
JP2017514922A Expired - Fee Related JP6566027B2 (en) 2016-03-17 2017-03-07 Photosensitive conductive paste and method for manufacturing substrate with conductive pattern

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017514922A Expired - Fee Related JP6566027B2 (en) 2016-03-17 2017-03-07 Photosensitive conductive paste and method for manufacturing substrate with conductive pattern

Country Status (5)

Country Link
JP (2) JP6226105B1 (en)
KR (2) KR20180121875A (en)
CN (2) CN108700806A (en)
TW (2) TWI697994B (en)
WO (2) WO2017159445A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110453A1 (en) * 2018-11-30 2020-06-04 東レ株式会社 Photosensitive conductive paste, film for use in conductive pattern forming, and layered member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019019A1 (en) * 2004-08-17 2006-02-23 Toray Industries, Inc. Composite transparent conductive substrate for touch panel and touch panel
JP2010077187A (en) * 2008-09-24 2010-04-08 Shin Etsu Polymer Co Ltd Conductive polymer solution, conductive coating film and input device
JP2011005793A (en) * 2009-06-29 2011-01-13 Dainippon Printing Co Ltd Moisture-resistant heat-resistant transparent electroconductive laminate for touch panels, and moisture-resistant heat-resistant transparent laminated plastic touch panel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297199B2 (en) * 1993-09-14 2002-07-02 株式会社東芝 Resist composition
JP3239772B2 (en) * 1995-10-09 2001-12-17 信越化学工業株式会社 Chemically amplified positive resist material
JP4048777B2 (en) * 2001-12-27 2008-02-20 東レ株式会社 Transparent conductive paste, display member and plasma display panel using the same, and method for manufacturing plasma display panel member
JP4238124B2 (en) * 2003-01-07 2009-03-11 積水化学工業株式会社 Curable resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, conductive connection paste, conductive connection sheet, and electronic component assembly
TW200420694A (en) * 2003-04-15 2004-10-16 Taiyo Ink Mfg Co Ltd Photo-curable thermosetting conductive composition, conductive circuit using the conductive composition, and forming method thereof
US7666326B2 (en) * 2004-08-30 2010-02-23 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
JP2007095506A (en) * 2005-09-29 2007-04-12 Shin Etsu Polymer Co Ltd Transparent conductive sheet for touch panel, manufacturing method thereof, and touch panel
JP4635888B2 (en) 2006-02-01 2011-02-23 藤倉化成株式会社 Conductive paste and conductive circuit manufacturing method
JP5650363B2 (en) * 2007-04-27 2015-01-07 信越ポリマー株式会社 Conductive circuit and method for forming the same
JP4936142B2 (en) 2008-03-21 2012-05-23 福田金属箔粉工業株式会社 Conductive paste composition, electronic circuit, and electronic component
JP5612814B2 (en) * 2008-09-22 2014-10-22 信越ポリマー株式会社 Conductive polymer solution, conductive coating film and input device
KR101752023B1 (en) * 2010-02-05 2017-06-28 나믹스 가부시끼가이샤 Reducing agent composition for conductive metal paste
JP5375692B2 (en) 2010-03-17 2013-12-25 大日本印刷株式会社 Manufacturing method of touch panel sensor
WO2011114846A1 (en) * 2010-03-18 2011-09-22 東レ株式会社 Photosensitive conductive paste and method for forming conductive pattern
SG190020A1 (en) * 2010-10-29 2013-06-28 Shinetsu Polymer Co Transparent conductive glass substrate
JP5492967B2 (en) 2011-11-29 2014-05-14 太陽インキ製造株式会社 Conductive resin composition for forming conductive circuit and conductive circuit
JP5360285B2 (en) * 2012-01-26 2013-12-04 東レ株式会社 Photosensitive conductive paste
JP5463498B1 (en) * 2012-12-28 2014-04-09 東洋インキScホールディングス株式会社 Photosensitive conductive ink and cured product thereof
CN105340023B (en) * 2013-06-27 2017-06-13 东丽株式会社 Conductive paste, the manufacture method of conductive pattern and touch panel
KR20150073529A (en) 2013-12-23 2015-07-01 삼성전기주식회사 Touch panel, manufacturing method thereof, and touchscreen apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019019A1 (en) * 2004-08-17 2006-02-23 Toray Industries, Inc. Composite transparent conductive substrate for touch panel and touch panel
JP2010077187A (en) * 2008-09-24 2010-04-08 Shin Etsu Polymer Co Ltd Conductive polymer solution, conductive coating film and input device
JP2011005793A (en) * 2009-06-29 2011-01-13 Dainippon Printing Co Ltd Moisture-resistant heat-resistant transparent electroconductive laminate for touch panels, and moisture-resistant heat-resistant transparent laminated plastic touch panel

Also Published As

Publication number Publication date
KR102096831B1 (en) 2020-04-03
KR20180121876A (en) 2018-11-09
CN108701509A (en) 2018-10-23
KR20180121875A (en) 2018-11-09
JPWO2017159445A1 (en) 2019-01-17
TW201800850A (en) 2018-01-01
TWI697994B (en) 2020-07-01
WO2017159448A1 (en) 2017-09-21
CN108700806A (en) 2018-10-23
WO2017159445A1 (en) 2017-09-21
JPWO2017159448A1 (en) 2018-03-22
TWI704417B (en) 2020-09-11
TW201739029A (en) 2017-11-01
CN108701509B (en) 2020-02-07
JP6566027B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6150021B2 (en) Method for manufacturing conductive pattern forming member
TWI645002B (en) Conductive paste, method of fabricating conductive pattern, and touch panel
KR20130107320A (en) Low-temperature sintering conductive paste, conductive film using same, and method for forming conductive film
KR101681126B1 (en) Photo sensitive paste composition and pattern forming method
JP6226105B1 (en) Laminated member and touch panel
CN111149056A (en) Photosensitive conductive paste and film for forming conductive pattern
US10275104B2 (en) Laminate member and touch panel
JP2018120652A (en) Conductive pattern forming film
TW202043296A (en) Method for manufacturing electroconductive pattern
TWI641000B (en) Method of producing laminated pattern for touch sensor, touch sensor and touch panel
JPWO2017208842A1 (en) Laminate pattern forming substrate and touch panel manufacturing method
WO2018029749A1 (en) Production method for conductive pattern-forming member
WO2018029750A1 (en) Laminated member and touch panel
JP2019052945A (en) Pressure sensor manufacturing method
JP6638511B2 (en) Conductive paste, method for producing conductive pattern, and substrate having conductive pattern
JP2021152988A (en) Conductive paste, conductive pattern forming film, laminated member, and touch panel
TW201807498A (en) Conductive patterning forming member and method of manufacturing the same including a coating step, a drying step, an exposure step, a developing step, and a curing step
JP2020196212A (en) Laminate member and film for conductive patten formation
JP2016194640A (en) Photosensitive conductive paste, conductive thin film, and electric circuit
JP2016191803A (en) Photosensitive conductive paste, conductive thin film and electric circuit
JP2016191802A (en) Photosensitive conductive paste, conductive thin film, and electric circuit

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170807

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R151 Written notification of patent or utility model registration

Ref document number: 6226105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees