JP6218576B2 - Rotating electric machine rotor, rotating electric machine, manufacturing method of rotor, manufacturing method of rotating electric machine, iron core member of rotor - Google Patents

Rotating electric machine rotor, rotating electric machine, manufacturing method of rotor, manufacturing method of rotating electric machine, iron core member of rotor Download PDF

Info

Publication number
JP6218576B2
JP6218576B2 JP2013246224A JP2013246224A JP6218576B2 JP 6218576 B2 JP6218576 B2 JP 6218576B2 JP 2013246224 A JP2013246224 A JP 2013246224A JP 2013246224 A JP2013246224 A JP 2013246224A JP 6218576 B2 JP6218576 B2 JP 6218576B2
Authority
JP
Japan
Prior art keywords
laminated
core
rotor
divided
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013246224A
Other languages
Japanese (ja)
Other versions
JP2015106928A (en
Inventor
隆之 鬼橋
隆之 鬼橋
遼 並河
遼 並河
宏志 山中
宏志 山中
一之 山本
一之 山本
弘枝 福住
弘枝 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013246224A priority Critical patent/JP6218576B2/en
Publication of JP2015106928A publication Critical patent/JP2015106928A/en
Application granted granted Critical
Publication of JP6218576B2 publication Critical patent/JP6218576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は、主に空気調和装置や家電製品等に用いられる永久磁石を用いた回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材に関するものである。   The present invention relates to a rotor of a rotating electrical machine using a permanent magnet mainly used in an air conditioner, a home appliance, etc., a rotating electrical machine, a manufacturing method of the rotor, a manufacturing method of the rotating electrical machine, and an iron core member of the rotor. is there.

一般に、電気機器の1つとして冷暖房などの空気調和を行う空気調和装置は、送風を行うためのファンおよびそのファンを回転駆動するための回転電機を備えている。近年、このような装置に使用する回転電機として、メンテナンスやエネルギー効率に優位性のあるブラシレスDCモータが採用されることが多くなっている。   In general, an air conditioner that performs air conditioning such as cooling and heating as one of the electric devices includes a fan for blowing air and a rotating electrical machine for rotationally driving the fan. In recent years, brushless DC motors that are superior in maintenance and energy efficiency are often employed as rotating electrical machines used in such devices.

このブラシレスDCモータには、パルス幅変調(Pulse Width Modulation)方式(以下、PWM方式と記載)のインバータが用いられる。回転電機であるブラシレスDCモータが、PWM方式のインバータで駆動される場合、巻線の中性点電位がゼロとならないため、軸受の外輪と内輪間に電位差(以下、軸電圧と記載)を発生させる。軸電圧は、インバータのスイッチングによる高周波成分を含んでおり、軸電圧が軸受内部の油膜の絶縁破壊電圧に達すると、軸受内部に微小電流が流れ、軸受内部に電食が発生する。電食が進行した場合、軸受内輪、軸受外輪または軸受玉に波状摩耗減少が発生し、モータ音が次第に大きくなることが知られている。   In this brushless DC motor, an inverter of a pulse width modulation type (hereinafter referred to as PWM method) is used. When a brushless DC motor, which is a rotating electrical machine, is driven by a PWM inverter, the neutral point potential of the winding does not become zero, so a potential difference (hereinafter referred to as shaft voltage) is generated between the outer ring and the inner ring of the bearing. Let The shaft voltage includes a high-frequency component due to switching of the inverter. When the shaft voltage reaches the dielectric breakdown voltage of the oil film inside the bearing, a minute current flows inside the bearing, and electrolytic corrosion occurs inside the bearing. It is known that when electric corrosion progresses, wavy wear reduction occurs in the bearing inner ring, bearing outer ring, or bearing ball, and the motor noise gradually increases.

特許文献1に係る回転電機の回転子は、永久磁石、回転子ヨーク、ボスを樹脂でモールドし、これらを固定している。回転子ヨークの内周には一定の距離をおいて出力軸と勘合し、出力伝達部となるボスが設けられている。この構成により、回転子ヨークと出力軸との間が絶縁され、回転子ヨークに発生した電流が出力軸に伝達せず、駆動音の原因となる軸受の電食等が発生しにくくなる。   In a rotor of a rotating electrical machine according to Patent Document 1, a permanent magnet, a rotor yoke, and a boss are molded with resin, and these are fixed. On the inner periphery of the rotor yoke, there is provided a boss that is fitted with the output shaft at a certain distance and serves as an output transmission portion. With this configuration, the rotor yoke and the output shaft are insulated from each other, the current generated in the rotor yoke is not transmitted to the output shaft, and the electric corrosion of the bearing, which causes drive noise, is less likely to occur.

特許第4552267号公報(4頁[0028]段落、図2)Japanese Patent No. 4552267 (page 4, [0028] paragraph, FIG. 2)

ところで、特許文献1に係る発明では、回転子ヨークと出力軸を勘合し、出力伝達部となるボスは略円弧状をしており、回転子ヨークとボスはそれぞれにおいて一体構造をとって、一つのプレス金型で回転子ヨークとボスを、回転子としたときと同じ配置で打抜いている。   By the way, in the invention according to Patent Document 1, the rotor yoke and the output shaft are fitted together, and the boss serving as the output transmission portion has a substantially arc shape, and the rotor yoke and the boss have an integral structure in each case. The rotor yoke and boss are punched with the same arrangement as in the case of using a single press die.

このような回転電機の構造および製造方法を採用すると、回転子ヨークとボス間の材料が無駄となってしまい、回転子の製造コスト増を招く。また、永久磁石を回転子ヨークの外周面に貼りつけるSPM(Surface Permanent Magnet)型回転子の場合、回転子ヨークの肉厚は磁気飽和しない程度の厚みでよく、薄肉にしたい要求があると回転子ヨーク内径とボス外径の差が大きくなり、更なる材料の歩留り悪化の原因となる。   If such a structure and manufacturing method of a rotating electrical machine are employed, the material between the rotor yoke and the boss is wasted, which increases the manufacturing cost of the rotor. In addition, in the case of an SPM (Surface Permanent Magnet) type rotor in which a permanent magnet is attached to the outer peripheral surface of the rotor yoke, the thickness of the rotor yoke may be such that it does not become magnetically saturated. The difference between the inner diameter of the child yoke and the outer diameter of the boss increases, which causes further deterioration of the material yield.

本発明は、上記のような課題を解決するためになされたものであり、軸受等の電食を抑制でき、回転子ヨーク(外側鉄心)とボス部(内側鉄心)の材料使用量を減少させ、プレス加工費も抑制可能とし、これにより安価な回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can suppress electric corrosion of bearings and the like, and can reduce the amount of material used for the rotor yoke (outer iron core) and the boss portion (inner iron core). An object of the present invention is to provide a rotor for a rotating electrical machine, a rotating electrical machine, a manufacturing method for the rotor, a manufacturing method for the rotating electrical machine, and an iron core member for the rotor.

この発明に係る回転電機の回転子は、
鉄心片を積層して構成された円筒状の積層回転子鉄心と、前記積層回転子鉄心に、周方向に等間隔に保持した永久磁石と、
前記積層回転子鉄心の中心に挿入された回転軸を備えた回転電機の回転子において、
前記積層回転子鉄心は、回転軸が締結される積層内側鉄心と、
前記積層内側鉄心の周囲を取り囲むように配置され、周方向に複数個の分割積層外側鉄心に分割された積層外側鉄心と、
前記積層内側鉄心と前記積層外側鉄心の間に形成され、前記積層内側鉄心と前記積層外側鉄心を結合する連結部材とからなり、
前記積層内側鉄心の内部には前記分割積層外側鉄心と同形状の肉抜き部が形成されているものである。
The rotor of the rotating electrical machine according to the present invention is:
A cylindrical laminated rotor core constituted by laminating iron core pieces, and a permanent magnet held at equal intervals in the circumferential direction on the laminated rotor core,
In the rotor of the rotating electrical machine having a rotating shaft inserted in the center of the laminated rotor core,
The laminated rotor core includes a laminated inner core to which a rotation shaft is fastened,
A laminated outer core disposed so as to surround the laminated inner iron core and divided into a plurality of divided laminated outer iron cores in the circumferential direction;
Formed between the laminated inner iron core and the laminated outer iron core, and comprising a connecting member for coupling the laminated inner iron core and the laminated outer iron core,
A hollow portion having the same shape as the divided laminated outer core is formed inside the laminated inner core.

この発明に係る回転電機は、
上述の回転電機の回転子と、
円環状のヨーク部と、前記ヨーク部から内側に突出するティース部、前記ティース部に巻回した固定子巻線とを有し、
前記回転子を、内側に収納する固定子とを有するものである。
The rotating electrical machine according to this invention is
The rotor of the rotating electrical machine described above;
An annular yoke portion, a teeth portion protruding inward from the yoke portion, and a stator winding wound around the teeth portion;
The rotor includes a stator that houses the rotor inside.

この発明に係る回転子の製造方法は、
鉄心片を積層して構成された円筒状の積層回転子鉄心と、前記積層回転子鉄心に、周方向に等間隔に保持された永久磁石と、
前記積層回転子鉄心の中心に挿入された回転軸とを備えた回転子の製造方法であって、
前記回転軸が締結される積層内側鉄心を構成する内側鉄心片と、
前記積層内側鉄心の周囲を取り囲むように配置され、周方向に複数個の分割積層外側鉄心に分割された積層外側鉄心を構成する分割外側鉄心片を同じ板材から切り出す際に、
前記分割外側鉄心片を、前記内側鉄心片の内部から肉抜きして切り出す鉄心片切出工程を有するものである。
The manufacturing method of the rotor according to the present invention is as follows:
A cylindrical laminated rotor core configured by laminating core pieces, and a permanent magnet held at equal intervals in the circumferential direction on the laminated rotor core,
A rotor manufacturing method comprising a rotating shaft inserted into the center of the laminated rotor core,
An inner core piece constituting a laminated inner core to which the rotating shaft is fastened;
When it is arranged so as to surround the periphery of the laminated inner iron core, and the divided outer iron core pieces constituting the laminated outer iron core divided into a plurality of divided laminated outer iron cores in the circumferential direction are cut out from the same plate material,
It has an iron core piece cutting process which cuts out the division | segmentation outer side iron core piece from the inside of the said inner side iron core piece.

この発明に係る回転電機の製造方法は、
上述の回転子の製造方法において、
前記回転子を収納する固定子の一層分の鉄心片を、前記板材から同時に切り出すものである。
A method of manufacturing a rotating electrical machine according to the present invention includes:
In the above-described rotor manufacturing method,
The core pieces for one layer of the stator that houses the rotor are cut out simultaneously from the plate material.

この発明に係る回転子の鉄心部材は、
複数の鉄心片からなる回転子の積層回転子鉄心用の鉄心部材であって、
前記積層回転子鉄心のうち、回転軸挿入部を有する積層内側鉄心の一つの層を構成する1枚の内側鉄心片と、
前記積層内側鉄心の外周に絶縁性の連結部材を介して結合される積層外側鉄心を、周方向に等分した複数の分割積層外側鉄心の、前記一つの層と同一の層を構成するそれぞれ1枚、全部で前記分割積層外側鉄心の数と同数の分割外側鉄心片からなり、
前記分割外側鉄心片の内、少なくとも2枚の前記分割外側鉄心片は、前記内側鉄心片の内部から切り抜かれているものである。
The core member of the rotor according to the present invention is:
A core member for a laminated rotor core of a rotor composed of a plurality of core pieces,
Among the laminated rotor cores, one inner core piece constituting one layer of a laminated inner core having a rotating shaft insertion portion,
Each of the plurality of divided laminated outer cores that are equally divided in the circumferential direction of the laminated outer cores joined to the outer circumference of the laminated inner cores via an insulating connecting member constitutes the same layer as the one layer. Sheet, consisting of the same number of divided outer core pieces as the number of the divided laminated outer cores,
Of the divided outer core pieces, at least two of the divided outer core pieces are cut out from the inside of the inner core pieces.

この発明に係る、回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材によれば、回転子ヨークと出力軸との間が絶縁され、回転子ヨークに発生した電流が出力軸に伝達せず、回転電機の駆動騒音の原因となる軸受の電食等が発生しにくくなる。
さらに、分割外側鉄心片は、鉄心部材を切り出す磁性材料の内側鉄心片の内側となる部分から切り出されるため、先行例と比べ回転子鉄心の使用材料を低減することができ、安価な回転電機の回転子、回転電機を提供することができる。
According to the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the iron core member of the rotor according to the present invention, the rotor yoke and the output shaft are insulated from each other. The current generated in the yoke is not transmitted to the output shaft, and it is difficult for the electric corrosion of the bearing, which causes drive noise of the rotating electrical machine, to occur.
Furthermore, since the divided outer core piece is cut out from the inner part of the inner core piece of the magnetic material from which the iron core member is cut out, the material used for the rotor core can be reduced compared to the previous example, and an inexpensive rotating electrical machine can be used. A rotor and a rotating electrical machine can be provided.

本発明の実施の形態1に係る回転電機の断面概略図である。1 is a schematic cross-sectional view of a rotary electric machine according to Embodiment 1 of the present invention. 図1に示す回転電機の回転子の斜視図である。It is a perspective view of the rotor of the rotary electric machine shown in FIG. 図2に示す回転子を回転軸の中心軸を通る平面で切断した断面図と、図3(a)のA−A線での断面図である。It is sectional drawing which cut | disconnected the rotor shown in FIG. 2 by the plane which passes along the central axis of a rotating shaft, and sectional drawing in the AA line of Fig.3 (a). 本発明の実施の形態1に係る固定子鉄心を構成する固定子鉄心片の平面図、固定子鉄心片を打ち抜く際の板材上での各鉄心片のレイアウトを示す図、積層固定子の平面図である。The top view of the stator core piece which comprises the stator core which concerns on Embodiment 1 of this invention, the figure which shows the layout of each core piece on the board | plate material at the time of punching out a stator core piece, The top view of a lamination | stacking stator It is. 本発明の実施の形態1に係る回転電機の分割積層外側鉄心の平面図と積層外側鉄心の平面図である。It is the top view of the division | segmentation laminated | stacked outer core of the rotary electric machine which concerns on Embodiment 1 of this invention, and the top view of a lamination | stacking outer iron core. 金型の中で積層して嵌合された積層外側鉄心の平面図と断面図である。It is the top view and sectional drawing of the lamination | stacking outer side iron core laminated | stacked and fitted in the metal mold | die. 本発明の実施の形態1に係る積層回転子鉄心の一つの積層を構成する鉄心片をプレスで打ち抜く際の板材上での各鉄心片のレイアウトを示す図である。It is a figure which shows the layout of each core piece on the board | plate material at the time of punching out the core piece which comprises one lamination | stacking of the lamination | stacking rotor core which concerns on Embodiment 1 of this invention with a press. 複数の分割積層外側鉄心の結合前の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning before the coupling | bonding of a some division | segmentation laminated | stacked outer side iron core. 本発明の実施の形態1に係る積層回転子鉄心の一つの積層を構成する鉄心片をプレスで打ち抜く際の板材上での各鉄心片のレイアウトを示す他の例図である。It is another example figure which shows the layout of each core piece on the board | plate material at the time of punching out the core piece which comprises one lamination | stacking of the lamination | stacking rotor core which concerns on Embodiment 1 of this invention with a press. 内側鉄心と、一体型の外側鉄心を有する回転子の断面図等(比較例)である。It is sectional drawing etc. (comparative example) of the rotor which has an inner side iron core and an integrated outer side iron core. 分割外側鉄心片と内側鉄心片を別々のプレス金型で打ち抜く場合の板材上での各鉄心片のレイアウトを示す図(比較例)である。It is a figure (comparative example) which shows the layout of each iron core piece on the board | plate material at the time of punching a division | segmentation outer side iron core piece and an inner side iron core piece with a separate press die. 本発明の本実施の形態2に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 2 of this invention. 本発明の本実施の形態2に係る回転子用の鉄心片を打ち抜くプレス金型における板材上での各鉄心片のレイアウトを示す図である。It is a figure which shows the layout of each core piece on the board | plate material in the press metal mold | die which punches out the core piece for rotors concerning this Embodiment 2 of this invention. 本発明の本実施の形態3に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 3 of this invention. 本発明の本実施の形態3に係る回転子用の鉄心片を打ち抜くプレス金型における板材上での各鉄心片のレイアウトを示す図である。It is a figure which shows the layout of each core piece on the board | plate material in the press die which punches out the core piece for rotors which concerns on this Embodiment 3 of this invention. 本発明の実施の形態1に係る分割積層外側鉄心の平面図である。It is a top view of the division | segmentation lamination | stacking outer side iron core which concerns on Embodiment 1 of this invention. 本発明の実施の形態4に係る分割積層外側鉄心の平面図である。It is a top view of the division | segmentation lamination | stacking outer side iron core which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る分割積層外側鉄心の他の例を示す平面図である。It is a top view which shows the other example of the division | segmentation lamination | stacking outer side iron core which concerns on Embodiment 4 of this invention. 本発明の本実施の形態5に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 5 of this invention. 本発明の本実施の形態6に係る回転子の断面図と図20(a)のA−A断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 6 of this invention, and AA sectional drawing of Fig.20 (a). 本発明の本実施の形態7に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 7 of this invention. 本発明の本実施の形態7に係る回転子用の鉄心片を打ち抜くプレス金型における板材上での各鉄心片のレイアウトを示す図である。It is a figure which shows the layout of each core piece on the board | plate material in the press die which punches out the core piece for rotors concerning this Embodiment 7 of this invention. 本発明の本実施の形態8に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 8 of this invention. 本発明の本実施の形態8に係る回転子用の鉄心片を打ち抜くプレス金型における板材上での各鉄心片のレイアウトを示す図である。It is a figure which shows the layout of each core piece on the board | plate material in the press die which punches out the core piece for rotors concerning this Embodiment 8 of this invention. 本発明の実施の形態9に係る分割積層外側鉄心の平面図である。It is a top view of the division | segmentation lamination | stacking outer side iron core which concerns on Embodiment 9 of this invention. 本発明の本実施の形態9に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 9 of this invention. 本発明の本実施の形態9に係る回転子用の鉄心片を打ち抜くプレス金型における板材上での各鉄心片のレイアウトを示す図である。It is a figure which shows the layout of each core piece on the board | plate material in the press die which punches out the core piece for rotors which concerns on this Embodiment 9 of this invention. 本発明の実施の形態10に係る分割積層外側鉄心の平面図である。It is a top view of the division | segmentation lamination | stacking outer side iron core which concerns on Embodiment 10 of this invention. 本発明の本実施の形態10に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this Embodiment 10 of this invention. 本発明の本実施の形態10に係る回転子用の鉄心片を打ち抜くプレス金型における板材上での各鉄心片のレイアウトを示す図である。It is a figure which shows the layout of each core piece on the board | plate material in the press die which punches out the core piece for rotors which concerns on this Embodiment 10 of this invention. 本発明の本実施の形態11に係る回転電機の分割積層固定子ユニット鉄心の平面図である。It is a top view of the division | segmentation lamination | stacking stator unit core of the rotary electric machine which concerns on this Embodiment 11 of this invention. 本発明の本実施の形態11に係る分割積層固定子ユニット鉄心を4個、環状に配置した積層固定子鉄心の平面図である。It is a top view of the lamination | stacking stator core which arrange | positioned the four division | segmentation lamination | stacking stator unit iron cores concerning this Embodiment 11 of this invention cyclically | annularly. 本発明の本実施の形態11に係る回転子の鉄心を構成する一層の鉄心片と分割固定子ユニット鉄心を構成する一層用の鉄心片を打ち抜くプレス金型における板材上での各鉄心片のレイアウトを示す図である。Layout of each core piece on a plate material in a press mold for punching out one core piece constituting a core of a rotor and a single core piece constituting a split stator unit core according to the eleventh embodiment of the present invention FIG.

実施の形態1.
以下、本発明の実施の形態1に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて説明する。なお、特に説明しない限り、本明細書で使用する「周方向」、「径方向」、「軸方向」とは、回転子、及び回転電機の「周方向」、「径方向」、「軸方向」をいうものとする。
図1は、本発明の実施の形態1に係る回転電機100の断面概略図である。回転電機100は、ブラシレスDCモータである。
図2は、回転電機100に使用する回転子1の斜視図である。
図3(a)は、回転子1を回転軸12の中心軸を通る平面で切断した断面図である。
図3(b)は、図3(a)のA−A線で切断した断面図である。
回転電機100(ブラシレスDCモータ)は、PWM方式で駆動される。また、本実施の形態では、回転子1が固定子2の内周側に回転自在に配置されたインナーロータ型のブラシレスDCモータの例を挙げて説明する。さらに、本実施の形態では、永久磁石3が回転子鉄心の表面に貼り付けられたSPM型回転子であり、磁石個数が10個の例である。
Embodiment 1 FIG.
Hereinafter, a rotor of a rotating electrical machine, a rotating electrical machine, a manufacturing method of the rotor, a manufacturing method of the rotating electrical machine, and a core member of the rotor according to Embodiment 1 of the present invention will be described with reference to the drawings. Unless otherwise specified, the “circumferential direction”, “radial direction”, and “axial direction” used in this specification are the “circumferential direction”, “radial direction”, and “axial direction” of the rotor and the rotating electrical machine. ".
FIG. 1 is a schematic cross-sectional view of a rotating electrical machine 100 according to Embodiment 1 of the present invention. The rotating electrical machine 100 is a brushless DC motor.
FIG. 2 is a perspective view of the rotor 1 used in the rotating electrical machine 100.
FIG. 3A is a cross-sectional view of the rotor 1 cut along a plane that passes through the central axis of the rotary shaft 12.
FIG. 3B is a cross-sectional view taken along line AA in FIG.
The rotating electrical machine 100 (brushless DC motor) is driven by the PWM method. In the present embodiment, an example of an inner rotor type brushless DC motor in which the rotor 1 is rotatably arranged on the inner peripheral side of the stator 2 will be described. Further, in the present embodiment, the permanent magnet 3 is an SPM type rotor attached to the surface of the rotor core, and the number of magnets is ten.

図1に示すように、分割積層固定子鉄心21には絶縁材料からなるインシュレータを介して、固定子巻線22が巻装されている。この固定子巻線22は、PWM方式のインバータと電気的に接続されている。固定子2は、積層固定子鉄心20と固定子巻線22およびインシュレータが樹脂によってモールド成形され、円筒状の形状をしている。   As shown in FIG. 1, a stator winding 22 is wound around a split laminated stator core 21 via an insulator made of an insulating material. The stator winding 22 is electrically connected to a PWM inverter. The stator 2 has a cylindrical shape in which a laminated stator core 20, a stator winding 22 and an insulator are molded with resin.

図4(a)は、積層固定子鉄心20を構成する固定子鉄心片4の平面図である。
図4(b)は、複数の固定子鉄心片4を磁性鋼板からプレスで打ち抜く際のレイアウトを示す図である。
図4(c)は、積層固定子鉄心20の平面図である。
図4(b)に示すように、固定子鉄心片4は、磁性鋼板(以後、板材という)からプレスにより二列抜きで打ち抜かれる。このとき、二列の固定子鉄心片4が一方の列の互いに隣接するティース部4a分の間に、他方の列のティース部4a部分が、互い違いに向き合って入るように配置される。
FIG. 4A is a plan view of the stator core piece 4 constituting the laminated stator core 20.
FIG. 4B is a diagram showing a layout when a plurality of stator core pieces 4 are punched out of a magnetic steel plate with a press.
FIG. 4C is a plan view of the laminated stator core 20.
As shown in FIG. 4 (b), the stator core pieces 4 are punched out from a magnetic steel plate (hereinafter referred to as a plate material) by two rows by pressing. At this time, the stator core pieces 4 of the two rows are arranged so that the portions of the tooth portions 4a of the other row are alternately opposed to each other between the adjacent teeth portions 4a of the one row.

積層固定子鉄心20は、固定子鉄心片4を複数枚積層した分割積層固定子鉄心21を環状に12個組み合わせて構成されている。また、各部材は接着や溶接、カシメ等により一体に固定されている。 The laminated stator core 20 is configured by combining twelve divided laminated stator cores 21 in which a plurality of stator core pieces 4 are laminated in an annular shape. Each member is integrally fixed by adhesion, welding, caulking or the like.

分割積層固定子鉄心21は、全体形状が略T字状であり、積層ティース部21aと積層ヨーク部21bとから構成される。積層ティース部21aは、積層ヨーク部21bの内周側から略直角に径方向に延びていて、積層ヨーク部21bの外周部は円弧状になっている。また、積層ティース部21aの内周側の先端部21cの両側が左右に広がる傘状であり、先端部21cは、円弧状になっている。   The divided laminated stator core 21 has a substantially T-shape as a whole, and includes a laminated tooth portion 21a and a laminated yoke portion 21b. The laminated tooth portion 21a extends in a radial direction at a substantially right angle from the inner peripheral side of the laminated yoke portion 21b, and the outer peripheral portion of the laminated yoke portion 21b has an arc shape. Moreover, the both ends of the front-end | tip part 21c of the inner peripheral side of the lamination | stacking tooth | gear part 21a are umbrella shape which spreads right and left, and the front-end | tip part 21c is circular arc shape.

このようにして得られた複数の分割積層固定子鉄心21に対して固定子巻線22を施した後、環状に並べ、接触面を接着や溶接等により固着することで、図1に示すような固定子2を得ることができる。固定子鉄心片4の製造時に上述のような配列を採用にすることで、一列に固定子鉄心片を打ち抜く場合に比べ、積層固定子鉄心20の製造に使用する材料の量を低減できる。   As shown in FIG. 1, the stator windings 22 are applied to the plurality of divided laminated stator cores 21 obtained in this way, and then arranged in a ring shape, and the contact surfaces are fixed by adhesion, welding, or the like. Can be obtained. By adopting the above-described arrangement at the time of manufacturing the stator core pieces 4, it is possible to reduce the amount of material used for manufacturing the laminated stator core 20 compared to the case where the stator core pieces are punched in a row.

図1、図2に示すように、固定子2の内周側には、空隙を介して回転子1が挿入されている。回転子1は、最外周部から内周側の回転軸12に向かって、永久磁石3、積層回転子鉄心5の外側部を構成する積層外側鉄心50、樹脂等から成る連結部材52、積層回転子鉄心5の内側部を構成する積層内側鉄心53とから構成されている。   As shown in FIGS. 1 and 2, the rotor 1 is inserted on the inner peripheral side of the stator 2 through a gap. The rotor 1 includes a permanent magnet 3, a laminated outer iron core 50 that forms the outer part of the laminated rotor core 5, a connecting member 52 made of resin, and the like, from the outermost peripheral portion toward the inner peripheral rotation shaft 12. It is comprised from the lamination | stacking inner side iron core 53 which comprises the inner side part of the core iron core 5. FIG.

積層内側鉄心53の中心部には、回転軸12が挿通されている。回転軸12にはローレット加工が施されており、これを積層内側鉄心53に嵌合することで積層内側鉄心53に結合している。このような構成により、積層外側鉄心50と回転軸12との間が絶縁され、積層外側鉄心50に発生した電流が回転軸12に伝達せず、音の原因となる軸受の電食等が発生しにくくなる。   The rotating shaft 12 is inserted through the central portion of the laminated inner core 53. The rotary shaft 12 is knurled, and is coupled to the laminated inner core 53 by fitting it to the laminated inner core 53. With such a configuration, the laminated outer iron core 50 and the rotary shaft 12 are insulated from each other, and the current generated in the laminated outer iron core 50 is not transmitted to the rotary shaft 12, so that the electric corrosion of the bearing causing noise is generated. It becomes difficult to do.

積層内側鉄心53と積層外側鉄心50は、それぞれ薄板状の鉄心片を複数枚積層することで構成されている。また、これらの鉄心片は接着や溶接、カシメ等により一体に固定されている(図示無し)。積層内側鉄心53の外周面と積層外側鉄心50の内周面は、樹脂等から成る連結部材52を間に挟んでこれと一体に成形することで結合されている。   Each of the laminated inner iron core 53 and the laminated outer iron core 50 is configured by laminating a plurality of thin plate-like core pieces. These iron core pieces are integrally fixed by adhesion, welding, caulking or the like (not shown). The outer peripheral surface of the laminated inner iron core 53 and the inner peripheral surface of the laminated outer iron core 50 are joined by being integrally formed with a connecting member 52 made of resin or the like.

永久磁石3は、積層外側鉄心50の外周部に接着剤で接着されている。本実施の形態では、永久磁石3は、回転軸12を中心として周方向に均等に10個配置されている。また、積層外側鉄心50は、周方向に複数の分割積層外側鉄心51に分割されている。本実施の形態では、積層外側鉄心50は、永久磁石3の個数と同じ10個の分割積層外側鉄心51に分割されている。   The permanent magnet 3 is bonded to the outer periphery of the laminated outer core 50 with an adhesive. In the present embodiment, ten permanent magnets 3 are equally arranged in the circumferential direction around the rotating shaft 12. The laminated outer core 50 is divided into a plurality of divided laminated outer cores 51 in the circumferential direction. In the present embodiment, the laminated outer core 50 is divided into ten divided laminated outer cores 51 that are the same as the number of permanent magnets 3.

図5(a)は、分割積層外側鉄心51の平面図である。
図5(b)は、複数の分割積層外側鉄心51を環状に嵌合した積層外側鉄心50の平面図である。
分割積層外側鉄心51は、それぞれの周方向端部に設けた蟻溝状の凹部51pと蟻桟状の凸部51qとを互いに嵌合している。この凹部51pは、分割積層外側鉄心51の内部に軸方向に伸びる蟻溝として形成され、分割積層外側鉄心51の周方向端部側における径方向の幅(寸法L2)が、周方向端部から遠い先端部における径方向の幅(寸法L1)より大きくなるように設定されている。
FIG. 5A is a plan view of the split laminated outer core 51.
FIG. 5B is a plan view of a laminated outer iron core 50 in which a plurality of divided laminated outer iron cores 51 are annularly fitted.
The split laminated outer iron core 51 is fitted with a dovetail recess 51p and a dovetail protrusion 51q provided at each circumferential end. The recess 51p is formed as a dovetail extending in the axial direction inside the split laminated outer iron core 51, and the radial width (dimension L2) on the circumferential end side of the split laminated outer iron core 51 is from the circumferential end. It is set to be larger than the radial width (dimension L1) at the far end.

また凸部51qは、分割積層外側鉄心51から周方向に突出し、軸方向に伸びる蟻桟として形成され、分割積層外側鉄心51の根本部における径方向の幅は前述のL1とし、先端部における径方向の幅を前述の寸法L2とする。このときL1<L2とすれば、各分割積層外側鉄心51の位置決めが容易となり、さらに回転軸12の径方向にそれぞれの分割積層外側鉄心51が抜けることもないという効果がある。   The convex portion 51q protrudes from the divided laminated outer core 51 in the circumferential direction and is formed as a dovetail extending in the axial direction. The radial width at the root portion of the divided laminated outer core 51 is L1 as described above, and the diameter at the tip portion. The width in the direction is the above-described dimension L2. At this time, if L1 <L2, the positioning of each divided laminated outer core 51 is facilitated, and further, there is an effect that each divided laminated outer core 51 does not come out in the radial direction of the rotating shaft 12.

また、分割積層外側鉄心51の内周側には、径方向外側に向かって形成された周り止め凹部51tを備える。これにより、樹脂である連結部材52が噛み合って回転反力による周方向の回り止めをすることができる。本例では周り止め凹部51tとしたが凸部としても回り止めの効果を得ることができる。なお、凹部とすると、回転子鉄心歩留まりがより高く、凸部とすると回り止めの力を大きく取ることができる。製造する回転電機にとって有利な方を選択すればよい。さらに、積層内側鉄心53の外周部にも同様の凹部53tを軸方向に設けており、連結部材52の回り止めの力を大きくすることができる。この凹部を凸部としても同様に回り止めの効果を得ることができる。   Further, the inner circumferential side of the divided laminated outer core 51 is provided with a rotation stopper recess 51t formed toward the radially outer side. Thereby, the connection member 52 which is resin can mesh, and the rotation of the circumferential direction by rotation reaction force can be prevented. In this example, the anti-rotation recess 51t is used, but the anti-rotation effect can be obtained even when the protrusion is a convex portion. In addition, if it is set as a recessed part, the rotor core yield will be higher, and if it is set as a projected part, the force of rotation prevention can be taken largely. The one that is advantageous for the rotating electrical machine to be manufactured may be selected. Furthermore, the same recessed part 53t is provided in the axial direction also in the outer peripheral part of the lamination | stacking inner side iron core 53, and the force of the rotation prevention of the connection member 52 can be enlarged. Even if this concave portion is a convex portion, the effect of preventing rotation can be obtained similarly.

図3(b)に示すように、隣接する分割積層外側鉄心51同士の接合部51sは、全て、永久磁石3の内周面の周方向中央部分に位置するように配置させている。このように分割積層外側鉄心51の接合部51sを配置すると、永久磁石3を分割積層外側鉄心51の外周面に接着する際に、凹部51pと凸部51qとの間の隙間に接着剤が入り込むため、さらに強固な固定ができる。   As shown in FIG. 3 (b), all the joint portions 51 s between the adjacent laminated laminated outer cores 51 are arranged so as to be located in the circumferential central portion of the inner peripheral surface of the permanent magnet 3. When the joint portion 51s of the split laminated outer core 51 is arranged in this way, the adhesive enters the gap between the concave portion 51p and the convex portion 51q when the permanent magnet 3 is bonded to the outer peripheral surface of the split laminated outer iron core 51. Therefore, it can be further firmly fixed.

また、本実施の形態の回転子1の場合、永久磁石3からでる磁力の通り道(磁路)は、図3(b)の矢印Bに示すように、永久磁石3→分割積層外側鉄心51→隣接する永久磁石3となる。この磁路に分割積層外側鉄心51の接合部51s(分割面)がないため、磁気抵抗の増加を抑制可能な回転子1を得ることができる。   Further, in the case of the rotor 1 of the present embodiment, the path (magnetic path) of the magnetic force generated from the permanent magnet 3 is the permanent magnet 3 → the divided laminated outer core 51 → as shown by the arrow B in FIG. It becomes the adjacent permanent magnet 3. Since there is no joint 51s (divided surface) of the split laminated outer core 51 in this magnetic path, the rotor 1 capable of suppressing an increase in magnetic resistance can be obtained.

各分割積層外側鉄心51には1個の孔51mを有している。この孔51mは、積層内側鉄心53と各分割積層外側鉄心51とを連結部材52で一体に成形する際に、金型内での位置決めとして使用することができ、生産性を高めることができる。
図6(a)は、金型7の中で積層して嵌合された積層外側鉄心50の平面図である。
図6(b)は、その断面図である。
図6(a)、(b)に示すように、例えば、積層回転子鉄心5を一体に成形する金型7に、分割積層外側鉄心51の孔51mが挿入されるボス71を設ける。分割積層外側鉄心51の外周面51nを金型7の内周面72に合わせることで積層回転子鉄心5の各分割積層外側鉄心51の同軸を出し、ボス71と孔51mを合わせることで周方向の位置決めをすることができる。
Each divided laminated outer core 51 has one hole 51m. The holes 51m can be used as positioning in the mold when the laminated inner iron core 53 and each divided laminated outer iron core 51 are integrally formed by the connecting member 52, and productivity can be improved.
FIG. 6A is a plan view of the laminated outer iron core 50 that is laminated and fitted in the mold 7.
FIG. 6B is a cross-sectional view thereof.
As shown in FIGS. 6A and 6B, for example, a boss 71 into which the hole 51 m of the divided laminated outer core 51 is inserted is provided in a mold 7 that integrally molds the laminated rotor core 5. By aligning the outer peripheral surface 51n of the divided laminated outer iron core 51 with the inner peripheral surface 72 of the mold 7, the respective laminated laminated outer iron cores 51 of the laminated rotor core 5 are coaxially arranged, and the boss 71 and the hole 51m are aligned in the circumferential direction. Can be positioned.

また、本実施の形態では孔51mの位置が全ての分割積層外側鉄心51について同一位置となる配置としたが、全て異なる配置とすることもできる。このようにすることで、積層回転子鉄心5を一体に成形する際の位置決めが容易となることに加え、各分割積層外側鉄心51を構成する鉄心片の区別をすることができ、部材管理が容易となる。   Further, in the present embodiment, the positions of the holes 51m are the same positions for all the divided laminated outer cores 51, but all the positions may be different. By doing so, in addition to facilitating positioning when integrally forming the laminated rotor core 5, it is possible to distinguish between the core pieces constituting each divided laminated outer core 51, and member management is possible. It becomes easy.

積層内側鉄心53の内部には分割積層外側鉄心51と同形状の肉抜き部53a〜53fが形成されている。この肉抜き部53a〜53fは、図3(b)における回転軸12の中心0を中心として点対称となる形状をしている。このように配置することで、回転子1のバランスがとれ、回転軸12が偏芯しにくくなり、偏芯により発生する音を抑制することができる。   In the laminated inner iron core 53, the lightening portions 53 a to 53 f having the same shape as the divided laminated outer iron core 51 are formed. The thinned portions 53a to 53f have a shape that is point-symmetric about the center 0 of the rotating shaft 12 in FIG. By arranging in this way, the rotor 1 is balanced, and the rotating shaft 12 is less likely to be decentered, and the sound generated by the decentering can be suppressed.

図1に示すように、回転子1の回転軸12には、回転軸12を支持する2つの軸受31a、31bが設置されている。軸受31a、31bは複数の鉄製玉を有した円筒形状の軸受であり、軸受の内輪が回転軸12を回転可能に支持している。図1では、回転軸12がブラシレスDCモータ内部から突出した側となる出力軸側において、軸受31aが回転軸12を支持し、その反対側(以下、反出力軸側と記載)において、軸受31bが回転軸12を支持している。そして、これらの軸受31a、31bは、それぞれハウジングにより外輪が固定されている。図1では、出力軸側の軸受31aの外輪がハウジング部3a(絶縁性部材=樹脂)により固定されており、反主力軸側の軸受31b(導電性部材=金属)の外輪がハウジング部3bにより固定されている。以上の構成により、回転軸12が一対の軸受31a、31bに支持され、回転軸12が回転自在に回転する。本実施例では、軸受31a側に波ワッシャ32が配置されている。   As shown in FIG. 1, two bearings 31 a and 31 b that support the rotating shaft 12 are installed on the rotating shaft 12 of the rotor 1. The bearings 31a and 31b are cylindrical bearings having a plurality of iron balls, and the inner ring of the bearing supports the rotary shaft 12 in a rotatable manner. In FIG. 1, the bearing 31a supports the rotating shaft 12 on the output shaft side where the rotating shaft 12 protrudes from the brushless DC motor, and the bearing 31b on the opposite side (hereinafter referred to as the non-output shaft side). Supports the rotating shaft 12. The bearings 31a and 31b have outer rings fixed by housings. In FIG. 1, the outer ring of the bearing 31a on the output shaft side is fixed by the housing part 3a (insulating member = resin), and the outer ring of the bearing 31b (conductive member = metal) on the anti-main force shaft side is fixed by the housing part 3b. It is fixed. With the above configuration, the rotating shaft 12 is supported by the pair of bearings 31a and 31b, and the rotating shaft 12 rotates freely. In this embodiment, a wave washer 32 is disposed on the bearing 31a side.

また、本ブラシレスDCモータには制御回路や駆動回路および永久磁石3の位置を検出するための素子等を実装したプリント基板が内蔵されている。例えば、プリント基板には固定子巻線22に電流を流すためのインバータが実装される。またプリント基板上で、固定子巻線22の結線接続を行っている(図示無し)。   The brushless DC motor has a built-in printed circuit board on which a control circuit, a drive circuit, an element for detecting the position of the permanent magnet 3, and the like are mounted. For example, an inverter for supplying current to the stator winding 22 is mounted on the printed circuit board. In addition, the stator winding 22 is connected on the printed circuit board (not shown).

次に、回転子1の製造方法について説明する。
図7は、回転子1の積層回転子鉄心5の一つの積層を構成する鉄心片をプレスで打ち抜く際の板材1w上での各鉄心片のレイアウトを示す図である。
図7に示すように、積層回転子鉄心5は、一層分の積層外側鉄心50を構成する全ての分割積層外側鉄心51用の分割外側鉄心片8a〜8jと積層内側鉄心53用の内側鉄心片6を、同一のプレス金型を使用して同一の板材1wから順次打ち抜いて積層し、これらを結合して製造する。
Next, a method for manufacturing the rotor 1 will be described.
FIG. 7 is a view showing a layout of each core piece on the plate 1w when punching out the core pieces constituting one stack of the laminated rotor cores 5 of the rotor 1 with a press.
As shown in FIG. 7, the laminated rotor core 5 includes divided outer iron core pieces 8 a to 8 j for all divided laminated outer iron cores 51 and inner iron pieces for the laminated inner iron core 53 that constitute the laminated outer iron core 50 for one layer. 6 are sequentially punched from the same plate material 1w using the same press die and laminated, and these are combined to produce.

このとき、内側鉄心片6の内部から6枚の分割外側鉄心片8a〜8fを打ち抜き、内側鉄心片6の外部から4枚の分割外側鉄心片8g〜8jを打ち抜いている(鉄心片切出工程)。また、図の矢印Dの方向は板材1wの圧延方向を示している。矢印Eの方向は、板材1wの圧延方向と垂直となる方向である。ところで、分割積層外側鉄心51の磁路は、図3(b)に示す通り、矢印Bに沿う径方向の経路成分が長い。このため、板材1wの圧延方向を矢印Dの方向と一致させることで、より磁気抵抗の小さい回転子1を得ることができる。これにより、より少材料化が可能な回転子1を得ることができる。   At this time, six divided outer core pieces 8a to 8f are punched from the inside of the inner core piece 6, and four divided outer core pieces 8g to 8j are punched from the outside of the inner core piece 6 (core piece cutting step). ). Moreover, the direction of the arrow D in the figure indicates the rolling direction of the plate 1w. The direction of arrow E is a direction perpendicular to the rolling direction of the plate 1w. Incidentally, the magnetic path of the split laminated outer core 51 has a long radial path component along the arrow B as shown in FIG. For this reason, by making the rolling direction of the plate 1w coincide with the direction of the arrow D, the rotor 1 having a smaller magnetic resistance can be obtained. Thereby, the rotor 1 in which the number of materials can be reduced can be obtained.

図8(a)は、各分割積層外側鉄心51の結合前の配置を示す図である(分割積層外側鉄心51は偶数)。
図8(b)は、各分割積層外側鉄心51の結合前の配置を示す図である(分割積層外側鉄心51は奇数)。
なお、図8(a)、(b)は、各分割積層外側鉄心51a〜51jを、回転軸12を中心として均等に周方向に配置したものを、直線状に表現した模式図である。また、点線で示した最右部の分割積層外側鉄心51aは、最左部の分割積層外側鉄心51aと同一物であることを示すことで、周方向配置を模式的に表した。
Fig.8 (a) is a figure which shows the arrangement | positioning before the coupling | bonding of each division | segmentation lamination | stacking outer side iron core 51 (division | stacking lamination | stacking outer side iron core 51 is an even number).
FIG. 8B is a view showing the arrangement of the divided laminated outer cores 51 before joining (the divided laminated outer iron cores 51 are odd numbers).
FIGS. 8A and 8B are schematic diagrams in which each of the laminated laminated outer cores 51a to 51j is arranged in the circumferential direction evenly around the rotation shaft 12 in a straight line. In addition, the rightmost divided laminated outer core 51a indicated by a dotted line schematically represents the circumferential arrangement by showing that it is the same as the leftmost divided laminated outer core 51a.

上述の方法で製造した分割外側鉄心片8a〜8jを、内側鉄心片6の内部と外部から一旦切り出して積層し、又は金型内でそのまま積層してから取り出して各分割積層外側鉄心51a〜51jを構成する。その後、図8(a)に示すように、各分割積層外側鉄心51a〜51jを下、上、下、上・・・と配置し、この状態で凹部51p(蟻溝)と凸部51q(蟻桟)の位置を合わせて位置決めし、回転軸12の軸方向から相互に圧入することで環状の積層外側鉄心50を得ることができる。   The divided outer core pieces 8a to 8j manufactured by the above-described method are once cut out from the inside and outside of the inner core piece 6 and stacked, or stacked as they are in the mold and taken out to be divided into the divided stacked outer cores 51a to 51j. Configure. Thereafter, as shown in FIG. 8 (a), the respective divided laminated outer cores 51a to 51j are arranged in the lower, upper, lower, upper,... An annular laminated outer core 50 can be obtained by aligning the positions of the crosspieces) and press-fitting each other in the axial direction of the rotary shaft 12.

上述の説明では、分割積層外側鉄心51a〜51jの10個(偶数)であったが、これが奇数となった場合について説明する。
図8(b)は、分割積層外側鉄心の個数が11個の場合を示す模式図である。このとき、各分割積層外側鉄心51a〜51kを下、上、下、上・・・と配置すると、分割積層外側鉄心51kは下側に配置されることになる。
In the above description, the number of divided laminated outer cores 51a to 51j is 10 (even), but the case where this is an odd number will be described.
FIG. 8B is a schematic diagram showing a case where the number of divided laminated outer cores is eleven. At this time, when the divided laminated outer iron cores 51a to 51k are arranged in the lower, upper, lower, upper,..., The divided laminated outer iron core 51k is arranged on the lower side.

この場合、一方の隣接する分割積層外側鉄心51jとは上下方向から互いに圧入することが可能である。しかし、もう一方の隣接する分割積層外側鉄心51aとの関係では、いずれも回転軸12の軸方向位置が図8(b)に示す下側となり一致しているため、互いに凹凸部を圧入できない。これを解決するためには、例えば、分割積層外側鉄心51aと分割積層外側鉄心51k同士を先に圧入しておいて、その後、他の分割積層外側鉄心とともに、上下に配置するといった作業が必要となる。これでは生産性が低下してしまう。このため、図8(a)のように、1台の回転子を構成する分割積層外側鉄心の数を偶数とすることにより、回転子1及び回転電機100の生産性を高めることが可能である。   In this case, it is possible to press-fit one adjacent divided laminated outer core 51j from above and below. However, in the relationship with the other adjacent divided laminated outer iron core 51a, since the axial position of the rotating shaft 12 coincides with the lower side shown in FIG. 8B, the concave and convex portions cannot be pressed into each other. In order to solve this, for example, it is necessary to press-fit the divided laminated outer iron core 51a and the divided laminated outer iron core 51k first and then arrange them vertically together with other divided laminated outer iron cores. Become. This reduces productivity. For this reason, as shown in FIG. 8A, the productivity of the rotor 1 and the rotating electrical machine 100 can be increased by setting the number of the divided laminated outer cores constituting one rotor to an even number. .

図9は、回転子1の積層回転子鉄心5の一つの積層を構成する鉄心片をプレスで打ち抜く際の板材2w上での各鉄心片のレイアウトを示す図である。図7の板材1w上での各鉄心片のレイアウトでは、内側鉄心片6の中心0を中心として内側鉄心片6が点対称な形状となるように内側鉄心片6の内部から切り出す分割外側鉄心片8a〜8f及び外部から切り出す分割外側鉄心片8g〜8jを配置した。   FIG. 9 is a diagram showing a layout of each core piece on the plate member 2w when punching out the core pieces constituting one stack of the laminated rotor cores 5 of the rotor 1 with a press. In the layout of each core piece on the plate member 1w in FIG. 7, the divided outer core piece cut out from the inner core piece 6 so that the inner core piece 6 has a point-symmetric shape with the center 0 of the inner core piece 6 as the center. 8a to 8f and divided outer core pieces 8g to 8j cut out from the outside were disposed.

これに対して図9に示す板材2w上での各鉄心片のレイアウトでは、内側鉄心片6の内部の形状は、図7の場合と同様に中心0を中心とした点対称であるが、内側鉄心片6の外部で打ち抜く分割外側鉄心片8g〜8jは、中心0を中心として非点対称であり、板材2wの長辺方向の中心線C−Cに対して線対象に、複数の分割外側鉄心8g〜8jが並列に並ぶような配置としている。このような配置とすることで図7の板材1wに比べて材料の使用量を抑制することが可能となると同時に、積層回転子鉄心5の回転軸12に対する重量バランスが保たれる。   On the other hand, in the layout of each iron core piece on the plate member 2w shown in FIG. 9, the inner shape of the inner iron core piece 6 is point-symmetric about the center 0 as in the case of FIG. The divided outer core pieces 8g to 8j punched outside the iron core piece 6 are asymmetric with respect to the center 0, and are divided into a plurality of divided outer sides with respect to the center line CC in the long side direction of the plate 2w. The iron cores 8g to 8j are arranged in parallel. With such an arrangement, it is possible to reduce the amount of material used compared to the plate material 1w of FIG. 7, and at the same time, the weight balance with respect to the rotating shaft 12 of the laminated rotor core 5 is maintained.

次に、どの程度の材料節約効果があるかを説明する。板材1w、板材2wはいずれも四角形状で供給され、この内部から必要な形状の各鉄心片をプレスにより切り出して形成する。これらを比較例と比較する。
図10(a)は、内側鉄心片と一体型の外側鉄心を有する回転子(比較例)の断面図である。
図10(b)は、図10(a)のA−A線での断面図である。
図10(c)は、回転子を構成する外側鉄心と内側鉄心を同一のプレス金型で打ち抜く場合の板材3w上での各鉄心片のレイアウトを示す図である。
Next, the degree of material saving effect will be described. Both the plate material 1w and the plate material 2w are supplied in a quadrangular shape, and each core piece having a required shape is cut out from the inside by pressing. These are compared with comparative examples.
FIG. 10A is a cross-sectional view of a rotor (comparative example) having an outer core that is integral with the inner core piece.
FIG.10 (b) is sectional drawing in the AA line of Fig.10 (a).
FIG.10 (c) is a figure which shows the layout of each core piece on the board | plate material 3w at the time of punching out the outer side iron core and inner side iron core which comprise a rotor with the same press metal mold | die.

図7、図9、図10では外側鉄心片、内側鉄心片、連結部材、回転軸用の穴等、全ての部材の外形寸法を同一としている。図10に示す外側鉄心片8xは、環状の1枚物であるため、内側鉄心片6xの外部から外側鉄心片8xを打ち抜いて製造する。この場合、内側鉄心片6xと外側鉄心片8xの間の領域は廃材となり、無駄が多い。このとき、必要となる板材3wの材料面積S3は、S3=L5a×L6aとなる。これと同様に、図7で必要となる板材1wの材料面積S1はS1=L1a×L2aとなり、図9で必要となる材料面積S2はS2=L3a×L4aとなる。これらにおいて、S3を100%として、S3に対するS1、S2の比率を表1に示す。(全ての条件で、材料縁から打ち抜き輪郭までの距離xを一定として試算)   7, 9, and 10, the outer dimensions of all members such as the outer core piece, the inner core piece, the connecting member, and the hole for the rotating shaft are the same. Since the outer core piece 8x shown in FIG. 10 is a single piece, it is manufactured by punching the outer core piece 8x from the outside of the inner core piece 6x. In this case, the area between the inner iron core piece 6x and the outer iron core piece 8x becomes waste and is wasteful. At this time, the necessary material area S3 of the plate material 3w is S3 = L5a × L6a. Similarly, the material area S1 of the plate 1w required in FIG. 7 is S1 = L1a × L2a, and the material area S2 required in FIG. 9 is S2 = L3a × L4a. Table 1 shows the ratios of S1 and S2 with respect to S3, where S3 is 100%. (Estimated by assuming a constant distance x from the material edge to the punching profile under all conditions)

Figure 0006218576
Figure 0006218576

このように、各板材からの打ち抜きレイアウトを、図7のレイアウト、更には図9のレイアウトとすることで、材料の使用量を低減することができ、少ない材料で安価な回転電機100の回転子1を提供することができる。   Thus, by using the punching layout from each plate material as the layout of FIG. 7 and further to the layout of FIG. 9, the amount of material used can be reduced, and the rotor of the rotary electric machine 100 that is inexpensive and uses a small amount of material. 1 can be provided.

次に、分割外側鉄心片と内側鉄心片を別々のプレス金型で打ち抜く場合に使用する板材の使用量とも比較をする。
図11(a)、(b)は、分割外側鉄心片8yと内側鉄心片6yを別々のプレス金型で打ち抜く場合の板材4aw、4bw上での各鉄心片のレイアウトを示す図(比較例)である。
この場合、分割外側鉄心片8yを打ち抜くプレスショット数に加え、内側鉄心片6yを打ち抜くプレスショット数が必要となる。分割外側鉄心片8yだけを考えても、必要なプレスショット数は分割外側鉄心片8yの分割数が増加すればするほど増加する。これに対し、本実施の形態では回転子1を構成する全ての分割外側鉄心片8と内側鉄心片6を同一金型で同一の板材から一緒に打ち抜くことができるため、プレスショット数が少なく、生産性の良い安価な回転子1と回転電機100を提供することができる。
Next, it compares with the usage-amount of the board | plate material used when the division | segmentation outer side iron piece and an inner side iron piece are punched with a separate press die.
FIGS. 11A and 11B are diagrams showing layouts of the core pieces on the plate members 4aw and 4bw when the divided outer core pieces 8y and the inner core pieces 6y are punched with separate press dies (comparative example). It is.
In this case, in addition to the number of press shots for punching the divided outer core piece 8y, the number of press shots for punching the inner core piece 6y is required. Even if only the divided outer core piece 8y is considered, the required number of press shots increases as the number of divided outer core pieces 8y increases. On the other hand, in the present embodiment, all the divided outer core pieces 8 and the inner core pieces 6 constituting the rotor 1 can be punched together from the same plate material with the same mold, so the number of press shots is small, An inexpensive rotor 1 and rotating electric machine 100 with good productivity can be provided.

本発明の実施の形態1に係る、回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材によれば、積層外側鉄心と積層内側鉄心の材料使用量を減少させつつ、回転時における回転子のバランスが取れるので、電食を抑制でき、かつ、生産性の良い安価な回転電機の回転子1と、その回転子を使用する回転電機100を提供することができる。   According to the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the core member of the rotor according to the first embodiment of the present invention, the material use of the laminated outer core and the laminated inner core Since the rotor can be balanced during rotation while reducing the amount, the rotor 1 of an inexpensive rotating electrical machine that can suppress electrolytic corrosion and has good productivity, and the rotating electrical machine 100 that uses the rotor are provided. can do.

実施の形態2.
以下、本発明の実施の形態2に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1と異なる部分を中心に説明する。
図12は、本実施の形態に係る回転子201の断面図である。
図13は、回転子201用の鉄心片を打ち抜くプレス金型における板材20w上での各鉄心片のレイアウトを示す図である。
回転子201の鉄心以外の構成は、回転子1と同じであるため説明を省略する。
図12に示すように、積層外側鉄心250は、周方向に均等に5個の分割積層外側鉄心251に分割されている。また、回り止め用の凹部251tは、各分割積層外側鉄心251に2個配置されている。また、図13に示すように、分割外側鉄心片208a、208bは、内側鉄心片206の内部から打ち抜かれ、分割外側鉄心片208c〜208eは内側鉄心片206の外部から打ち抜かれることで製造される。
Embodiment 2. FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the core member of the rotor according to the second embodiment of the present invention are different from the first embodiment with reference to the drawings. The explanation will be focused on.
FIG. 12 is a cross-sectional view of the rotor 201 according to the present embodiment.
FIG. 13 is a diagram showing a layout of each core piece on the plate member 20w in a press mold for punching out the core piece for the rotor 201. FIG.
Since the configuration of the rotor 201 other than the iron core is the same as that of the rotor 1, the description thereof is omitted.
As shown in FIG. 12, the laminated outer core 250 is divided into five divided laminated outer cores 251 evenly in the circumferential direction. Further, two recesses 251t for preventing rotation are arranged in each divided laminated outer core 251. Further, as shown in FIG. 13, the divided outer core pieces 208 a and 208 b are manufactured by punching from the inside of the inner core piece 206, and the divided outer core pieces 208 c to 208 e are punched from the outside of the inner core piece 206. .

図13の配置で各分割外側鉄心片208a〜208eと内側鉄心片206を打ち抜いて、上述した分割外側鉄心片の積層方法でこれらを積層し、環状に組み立てて積層外側鉄心250を製造する。この積層外側鉄心250と積層内側鉄心253を連結部材252で一体化したあと、積層外側鉄心250の外周面に永久磁石3を接着剤で固定する。そして回転軸12を積層内側鉄心253の回転子挿入部に入れることで、回転子201を得ることができる。   Each of the divided outer core pieces 208a to 208e and the inner core piece 206 is punched out in the arrangement shown in FIG. 13, and these are laminated by the above-described lamination method of the divided outer core pieces. After the laminated outer iron core 250 and the laminated inner iron core 253 are integrated by the connecting member 252, the permanent magnet 3 is fixed to the outer peripheral surface of the laminated outer iron core 250 with an adhesive. And the rotor 201 can be obtained by putting the rotating shaft 12 in the rotor insertion part of the lamination | stacking inner side iron core 253. FIG.

各分割積層外側鉄心251同士の全ての接合部251sは、実施の形態1と同様に永久磁石3の中央部に位置するように配置されているが、接合部251sの数は、回転子1の場合の半分となっている。   All the joint portions 251 s of the respective divided laminated outer cores 251 are arranged so as to be located at the center portion of the permanent magnet 3 as in the first embodiment, but the number of the joint portions 251 s is the same as that of the rotor 1. It is half of the case.

本発明の実施の形態2に係る、回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材によれば、実施の形態1と同様に回転子201の製造に必要となる板材の使用量を低減することができる。
また、実施の形態1に比べ、分割外側鉄心の接合部(分割面)の数が少なく、磁気抵抗の増加を抑制することができ、より小型化が可能な(材料使用量が低減可能な)回転子を得ることができる。さらに、実施の形態1に比べ、分割外側鉄心の分割数が少ないため、部品点数が少ない回転子を得ることができる。
According to the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the core member of the rotor according to the second embodiment of the present invention, the rotor 201 is the same as in the first embodiment. It is possible to reduce the amount of plate material that is required for manufacturing the plate.
Further, compared to the first embodiment, the number of joints (divided surfaces) of the divided outer iron core is small, an increase in magnetic resistance can be suppressed, and the size can be further reduced (the amount of material used can be reduced). A rotor can be obtained. Furthermore, since the number of divisions of the divided outer iron core is small as compared with the first embodiment, a rotor with a small number of parts can be obtained.

実施の形態3.
以下、本発明の実施の形態3に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1と異なる部分を中心に説明する。
図14は、本実施の形態に係る回転子301の断面図である。
図15は、回転子301用の鉄心片を打ち抜くプレス金型における板材30w上での各鉄心片のレイアウトを示す図である。
Embodiment 3 FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the iron core member of the rotor according to the third embodiment of the present invention are different from the first embodiment with reference to the drawings. The explanation will be focused on.
FIG. 14 is a cross-sectional view of the rotor 301 according to the present embodiment.
FIG. 15 is a diagram showing a layout of each core piece on the plate member 30w in a press mold for punching out the core piece for the rotor 301. As shown in FIG.

実施の形態1との違いは、積層内側鉄心353の外径が大きいことと、それに合わせて連結部材352の外径が小さくなったこと、また、内側鉄心片306の内部に全ての分割外側鉄心片308を配置したことである。本実施の形態では、積層内側鉄心353と積層外側鉄心350を構成する全ての内側鉄心片306、分割外側鉄心片308を同一のプレス金型および同一の板材から打ち抜いて回転子を構成できる。   The difference from the first embodiment is that the outer diameter of the laminated inner iron core 353 is large, the outer diameter of the connecting member 352 is reduced accordingly, and all the divided outer iron cores are disposed inside the inner iron core piece 306. That is, the piece 308 is arranged. In the present embodiment, all the inner core pieces 306 and the divided outer core pieces 308 constituting the laminated inner iron core 353 and the laminated outer iron core 350 can be punched from the same press mold and the same plate material to constitute a rotor.

このように、回転電機の仕様によっては本実施例のように、回転子301を構成する全ての分割外側鉄心片308を内側鉄心片306の内部から切り出すように配置することが可能であるため、より板材の使用量、プレス加工の工数を低減可能な回転子301を得ることができる。   Thus, depending on the specifications of the rotating electrical machine, as in the present embodiment, it is possible to arrange all the divided outer core pieces 308 constituting the rotor 301 so as to be cut out from the inside of the inner core piece 306. Thus, the rotor 301 that can reduce the amount of plate material used and the number of press work steps can be obtained.

実施の形態4.
以下、本発明の実施の形態4に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1と異なる部分を中心に説明する。
図16は、実施の形態1に係る分割積層外側鉄心51の平面図である。
図17は、本実施の形態に係る分割積層外側鉄心451の平面図である。
実施の形態1では、図16に示すように、分割積層外側鉄心51の外周面の、軸方向に垂直な断面を円弧R2とし、分割積層外側鉄心51の内周面の、軸方向に垂直な断面を円弧R1とするとき、R1とR2の曲率中心0は一致していた。そのため、分割積層外側鉄心51の内周面に周り止め凹部51tを設けていた。
Embodiment 4 FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the iron core member of the rotor according to the fourth embodiment of the present invention are different from the first embodiment with reference to the drawings. The explanation will be focused on.
FIG. 16 is a plan view of the split laminated outer core 51 according to the first embodiment.
FIG. 17 is a plan view of the divided laminated outer core 451 according to the present embodiment.
In the first embodiment, as shown in FIG. 16, the cross section perpendicular to the axial direction of the outer peripheral surface of the divided laminated outer iron core 51 is an arc R2, and the inner peripheral surface of the divided laminated outer iron core 51 is perpendicular to the axial direction. When the cross section is an arc R1, the curvature centers 0 of R1 and R2 coincided. Therefore, the rotation stopping recess 51t is provided on the inner peripheral surface of the divided laminated outer core 51.

本実施の形態では、図17に示すように、分割積層外側鉄心451の外周面の、軸方向に垂直な断面を円弧R402とし、分割積層外側鉄心451の内周面の、軸方向に垂直な断面を円弧R401とするとき、R401とR402の曲率中心は一致しない。これにより、周り止め凹部を設けなくても、周り止めの効果を奏することができるし、周り止め凹部451tを設ければ更に周り止めの効果が高くなる。   In the present embodiment, as shown in FIG. 17, the cross section perpendicular to the axial direction of the outer peripheral surface of the divided laminated outer core 451 is an arc R402, and the inner peripheral surface of the divided laminated outer iron core 451 is perpendicular to the axial direction. When the cross section is an arc R401, the centers of curvature of R401 and R402 do not match. Thereby, even if it does not provide a rotation prevention recessed part, the effect of rotation prevention can be show | played, and if the rotation prevention recessed part 451t is provided, the effect of rotation prevention will become still higher.

図18に示すように内周面の、軸方向に垂直な断面が直線状となるような分割積層外側鉄心451dを用い、周り止め凹部の代わりに周り止め凸部451duを設けても同様の効果を奏する。   As shown in FIG. 18, the same effect can be obtained by using a divided laminated outer iron core 451d having a linear cross section perpendicular to the axial direction on the inner peripheral surface and providing a detent protrusion 451du in place of the detent recess. Play.

実施の形態5.
以下、本発明の実施の形態5に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1〜4と異なる部分を中心に説明する。
図19は、本実施の形態に係る回転子501の断面図である。
実施の形態1では、SPM型回転子の例を示したが、本実施の形態ではIPM (Interior Permanent Magnet)型の回転子501の例を説明する。
Embodiment 5. FIG.
Hereinafter, a rotor of a rotating electrical machine, a rotating electrical machine, a method of manufacturing a rotor, a method of manufacturing a rotating electrical machine, and a core member of the rotor according to a fifth embodiment of the present invention will be described as Embodiments 1 to 4 with reference to the drawings. The description will focus on the different parts.
FIG. 19 is a cross-sectional view of a rotor 501 according to the present embodiment.
In the first embodiment, an example of an SPM type rotor is shown, but in this embodiment, an example of an IPM (Interior Permanent Magnet) type rotor 501 will be described.

実施の形態1では、永久磁石3が積層外側鉄心50の外周部に保持されていた。本実施の形態は、各永久磁石3が各分割積層外側鉄心551の内部に保持される点が実施の形態1と異なる。また永久磁石3の固定方法も異なる。   In the first embodiment, the permanent magnet 3 is held on the outer peripheral portion of the laminated outer core 50. This embodiment is different from the first embodiment in that each permanent magnet 3 is held inside each divided laminated outer core 551. Also, the fixing method of the permanent magnet 3 is different.

永久磁石3は、分割積層外側鉄心551の内部にある磁石挿入部551dに配置される。また、分割積層外側鉄心551と永久磁石3および積層内側鉄心553は、樹脂等から構成される連結部材552で一体に成形して固定されている。さらに、連結部材552は、分割積層外側鉄心551の軸方向の両端部を覆っている。分割積層外側鉄心551の構成は、実施の形態1で挙げた形状から永久磁石3が入る磁石挿入部551d(穴)を追加すれば良い。   The permanent magnet 3 is disposed in the magnet insertion portion 551d inside the split laminated outer iron core 551. The split laminated outer iron core 551, the permanent magnet 3, and the laminated inner iron core 553 are integrally formed and fixed by a connecting member 552 made of resin or the like. Further, the connecting member 552 covers both end portions of the split laminated outer core 551 in the axial direction. The configuration of the split laminated outer iron core 551 may be obtained by adding a magnet insertion portion 551d (hole) into which the permanent magnet 3 enters from the shape described in the first embodiment.

本発明の実施の形態に係る、回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材によれば、積層外側鉄心550と回転軸12との間が絶縁され、積層外側鉄心550に発生した電流が回転軸に伝達せず、音の原因となる軸受の電食等が発生しにくくなる。また、接着剤の使用量の削減、接着時間の削減を図ることができ、回転子501、回転電機の生産性を向上することができる。このように、IPM型の回転子501であっても、電食を抑制でき、積層外側鉄心550と積層内側鉄心553の材料使用量を減少させ、かつ、プレス加工費も抑制可能で、安価な回転電機の回転子501、回転電機を提供することができる。   According to the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the core member of the rotor according to the embodiment of the present invention, between the laminated outer core 550 and the rotating shaft 12. Is insulated, and the current generated in the laminated outer iron core 550 is not transmitted to the rotating shaft, so that the electric corrosion of the bearing causing noise is less likely to occur. Further, the amount of adhesive used can be reduced and the bonding time can be reduced, and the productivity of the rotor 501 and the rotating electrical machine can be improved. Thus, even with the IPM type rotor 501, electric corrosion can be suppressed, the amount of material used for the laminated outer iron core 550 and the laminated inner iron core 553 can be reduced, and the press work cost can be reduced, which is inexpensive. A rotor 501 of the rotating electric machine and the rotating electric machine can be provided.

実施の形態6.
以下、本発明の実施の形態6に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1と異なる部分を中心に説明する。
図20(a)は、本実施の形態に係る回転子601の断面図である。
図20(b)は、図20(a)のA−A線での断面図である。
実施の形態1に係る回転子1と、本実施の形態に係る回転子601では、永久磁石3の固定方法および連結部材652の形状が異なる。その他の構造は同じであるため説明を省略する。
ただし、説明の簡略化のために、図20(b)としては、積層内側鉄心53の内部の肉抜き部53a〜53fが、実施の形態1の図3(b)に比べて回転軸12の中心0を中心としてやや回転させた状態のものを使用する。
Embodiment 6 FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the core member of the rotor according to the sixth embodiment of the present invention are different from the first embodiment with reference to the drawings. The explanation will be focused on.
FIG. 20A is a cross-sectional view of the rotor 601 according to the present embodiment.
FIG. 20B is a cross-sectional view taken along the line AA in FIG.
In the rotor 1 according to the first embodiment and the rotor 601 according to the present embodiment, the fixing method of the permanent magnet 3 and the shape of the connecting member 652 are different. Since the other structure is the same, description is abbreviate | omitted.
However, for simplification of description, as shown in FIG. 20B, the lightening portions 53 a to 53 f inside the laminated inner core 53 have the rotating shaft 12 as compared with FIG. 3B of the first embodiment. A thing slightly rotated around the center 0 is used.

本実施の形態では、連結部材552を用いて、永久磁石3の外周全体を覆うことにより積層内側鉄心53と各分割積層外側鉄心51および永久磁石3を相互に固定している。このようにすることで、接着剤の接着時間の削減を図ることができ、回転子及び回転電機の生産性を向上することができる。また、積層内側鉄心53の内部の分割外側鉄心片を打ち抜いた部分である肉抜き部53a、53b、53c、53dの内部に、連結部材552を充填して一体として成形するので、各部材をより強固に結合することができる。   In the present embodiment, the laminated inner iron core 53, each divided laminated outer iron core 51, and the permanent magnet 3 are fixed to each other by covering the entire outer periphery of the permanent magnet 3 using the connecting member 552. By doing in this way, the adhesive adhesive time can be reduced, and the productivity of the rotor and the rotating electrical machine can be improved. In addition, the connecting members 552 are filled into the inside of the lightening portions 53a, 53b, 53c, and 53d, which are portions where the divided outer core pieces inside the laminated inner core 53 are punched, so that each member is formed more integrally. Can be firmly bonded.

実施の形態7.
以下、本発明の実施の形態7に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1と異なる部分を中心に説明する。
図21は、本実施の形態に係る回転子701の断面図である。
図22は、回転子701用の鉄心片を打ち抜くプレス金型における板材70w上での各鉄心片のレイアウトを示す図である。実施の形態1と本実施の形態の違いは、積層内側鉄心753の積層厚みH2と各分割積層外側鉄心751の積層厚みH1が異なることである。本実施の形態では、H1=α×H2(α=2以上の整数)の関係が成り立ち、α=2の例である。
Embodiment 7 FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the iron core member of the rotor according to the seventh embodiment of the present invention are different from the first embodiment with reference to the drawings. The explanation will be focused on.
FIG. 21 is a cross-sectional view of a rotor 701 according to the present embodiment.
FIG. 22 is a diagram showing a layout of each core piece on the plate material 70w in a press mold for punching out the core piece for the rotor 701. FIG. The difference between the first embodiment and the present embodiment is that the laminated thickness H2 of the laminated inner core 753 and the laminated thickness H1 of each divided laminated outer core 751 are different. In the present embodiment, a relationship of H1 = α × H2 (an integer equal to or greater than α = 2) is established, and α = 2.

また、連結部材752が各分割積層外側鉄心751の軸方向の端部751a、751bと積層内側鉄心753の軸方向の端部の外周部753aにまで一体に成形されていることが異なる。また、分割積層外側鉄心751と積層内側鉄心753を同時に打ち抜く板材上での各鉄心片のレイアウトも異なる。さらに、分割積層外側鉄心751から積層外側鉄心750を構成する製造方法が異なる。   Further, the connecting member 752 is integrally formed to the axial end portions 751a and 751b of each divided laminated outer core 751 and the outer peripheral portion 753a of the axial end portion of the laminated inner core 753. Further, the layout of each core piece on the plate material on which the divided laminated outer core 751 and the laminated inner core 753 are simultaneously punched is also different. Furthermore, the manufacturing method which comprises the lamination | stacking outer side iron core 750 from the division | segmentation lamination | stacking outer side iron core 751 differs.

本実施の形態では、積層外側鉄心750の周方向の分割数、すなわち分割積層外側鉄心751の数は10であるが、それぞれの分割積層外側鉄心は、軸方向にもさらに2グループに分割されている(積層外側鉄心750Xの軸方向上方に、積層外側鉄心750Yが重ねて配置される)。積層外側鉄心750Xと積層外側鉄心750Yの軸方向の分割面は、カシメや溶接、接着等で固定されておらず、連結部材を一体に成形することで結合している。   In this embodiment, the number of divisions in the circumferential direction of the laminated outer core 750, that is, the number of divided laminated outer cores 751 is 10, but each divided laminated outer core is further divided into two groups in the axial direction. (The laminated outer iron core 750Y is disposed so as to overlap with the laminated outer iron core 750X in the axial direction). The axially divided surfaces of the laminated outer iron core 750X and the laminated outer iron core 750Y are not fixed by caulking, welding, adhesion, or the like, but are joined by integrally forming a connecting member.

図22に示すように、本実施の形態の回転子701では、1つの内側鉄心片706と、積層外側鉄心750を周方向に分割した数(10個)より多い(α倍の)20個の分割外側鉄心片708を同一プレス金型を用いて同一の板材70wから打ち抜く。このとき、カシメや溶接や接着等により各鉄心片を固定した状態の積層の厚みを、各分割積層外側鉄心751も積層内側鉄心753もH2とする。このようにして製造した分割積層外側鉄心751a1〜751j1、751a2〜751j2を、積層内側鉄心753の内部と外部から一旦取り出す。   As shown in FIG. 22, in the rotor 701 of the present embodiment, there are 20 pieces (α times) larger than the number (10 pieces) obtained by dividing one inner iron core piece 706 and the laminated outer iron core 750 in the circumferential direction. The division | segmentation outer side iron core piece 708 is punched out from the same board | plate material 70w using the same press metal mold | die. At this time, the thickness of the lamination in a state where each iron core piece is fixed by caulking, welding, adhesion, or the like is set to H2 for each divided laminated outer core 751 and laminated inner iron core 753. The divided laminated outer cores 751a1 to 751j1 and 751a2 to 751j2 manufactured in this way are once taken out from the inside and outside of the laminated inner core 753.

その後、図8(a)と同様に、各分割積層外側鉄心751a1〜751j1を下、上、下、上・・・と配置し、この状態で周方向の凹部と凸部を位置決めし、軸方向から上側の分割積層外側鉄心群と下側の分割積層外側鉄心群を互いに圧入することで1個の環状の積層外側鉄心750X(積層厚みはH2)を得ることができる。同様にこれを繰り返し、各分割積層外側鉄心751a2〜751j2を環状に組み立てて、積層外側鉄心750Y(積層厚みはH2)を得ることができる。さらに、これらの2つの積層外側鉄心750X、750Y(それぞれ積層厚みはH2)を軸方向に重ねることで、一台分に必要な積層厚みH1の積層外側鉄心750を得ることができる。   Thereafter, similarly to FIG. 8A, the respective divided laminated outer cores 751a1 to 751j1 are arranged in the lower, upper, lower, upper, etc., and in this state, the circumferential concave and convex portions are positioned, and the axial direction Thus, one annular laminated outer core 750X (with a laminated thickness of H2) can be obtained by press-fitting the upper divided laminated outer core group and the lower divided laminated outer core group together. Similarly, this is repeated, and each of the divided laminated outer cores 751a2 to 751j2 is assembled in an annular shape to obtain a laminated outer iron core 750Y (with a laminated thickness of H2). Furthermore, by laminating these two laminated outer cores 750X and 750Y (each laminated thickness is H2) in the axial direction, a laminated outer iron core 750 having a laminated thickness H1 required for one unit can be obtained.

そして、各積層外側鉄心750X、750Yを出力軸方向に2段に重ねた状態で、連結部材752により積層内側鉄心753と一体に成形することで、2つの積層外側鉄心750X、750Yの積層方向に分割された箇所についても固定することができる。   Then, in a state where the respective laminated outer cores 750X and 750Y are stacked in two stages in the output axis direction, the connecting member 752 is integrally formed with the laminated inner iron core 753 so that the two laminated outer iron cores 750X and 750Y are stacked in the stacking direction. It can fix also about the divided part.

このように、積層外側鉄心750の積層厚みをH1、積層内側鉄心753の積層厚みH2とすると、H1>H2であり、H1=α×H2(2以上の整数、本例ではα=2)としたことにより、積層内側鉄心753の積層厚みを半分にできる。これにより、回転子701の材料使用量を低減することができプレス回数を低減して安価な回転電機の回転子701を提供することができる。   Thus, if the laminated thickness of the laminated outer core 750 is H1, and the laminated thickness H2 of the laminated inner core 753 is H1> H2, and H1 = α × H2 (an integer of 2 or more, α = 2 in this example). As a result, the laminated thickness of the laminated inner iron core 753 can be halved. Thereby, the amount of material used for the rotor 701 can be reduced, and the number of presses can be reduced to provide an inexpensive rotor 701 for a rotating electrical machine.

以上から、本例では、電食を抑制でき、積層外側鉄心と積層内側鉄心の材料使用量を減少させ、かつ、生産性の悪化の抑制が可能で安価な回転電機の回転子701を提供することができる。   As described above, in this example, there is provided an inexpensive rotating electrical machine rotor 701 that can suppress electrolytic corrosion, reduce the amount of material used for the laminated outer core and the laminated inner core, and can suppress the deterioration of productivity. be able to.

実施の形態8.
以下、本発明の実施の形態8に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1と異なる部分を中心に説明する。
図23は、本実施の形態に係る回転子801の断面図である。
図24は、回転子801用の鉄心片を打ち抜くプレス金型における板材80w上での各鉄心片のレイアウトを示す図である。実施の形態1とは、積層外側鉄心850の分割数と、分割積層外側鉄心851の形状、そのプレス金型におけるレイアウトが異なる。
その他は、実施の形態1と同じであるため説明を省略する。
Embodiment 8 FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the iron core member of the rotor according to the eighth embodiment of the present invention are different from the first embodiment with reference to the drawings. The explanation will be focused on.
FIG. 23 is a cross-sectional view of a rotor 801 according to the present embodiment.
FIG. 24 is a diagram showing a layout of each core piece on the plate member 80w in a press die for punching the core piece for the rotor 801. FIG. The first embodiment differs from the first embodiment in the number of divisions of the laminated outer core 850, the shape of the divided laminated outer core 851, and the layout of the press die.
Since others are the same as Embodiment 1, description is abbreviate | omitted.

本実施の形態では、実施の形態1で示した2個の分割積層外側鉄心851の外周部の間に薄肉の連結部51vを設けた分割積層外側ユニット鉄心55a〜55eを使用する。連結部51vは、薄肉で構成されているので、2個の分割積層外側鉄心851の外周面が連続する曲面となるように同一平面状で折り曲げることが可能な形状となっている。   In the present embodiment, split laminated outer unit cores 55a to 55e are used in which thin connection portions 51v are provided between the outer peripheral portions of the two split laminated outer cores 851 shown in the first embodiment. Since the connecting portion 51v is formed of a thin wall, the connecting portion 51v has a shape that can be bent in the same plane so that the outer peripheral surfaces of the two divided laminated outer cores 851 are continuous curved surfaces.

積層内側鉄心853には、図23に示すように、軸方向の断面が分割積層外側ユニット鉄心を連結部51vで略V字形状となるように外周側に折曲げた形状と同じ形状をした肉抜き部853a〜853dが形成されている。また、図24に示すように、プレス金型での鉄心片のレイアウトでは、内側鉄心片806の内部からは、前述した略V字形状の分割外側ユニット鉄心片808a〜808dが打ち抜かれ、内側鉄心片の外部からは分割外側ユニット鉄心片808eが打ち抜かれる。このとき分割外側ユニット鉄心片808eは略V字状ではなく、2枚の分割外側鉄心片808が連結部を介して直線状になるようにして配置されている。   In the laminated inner core 853, as shown in FIG. 23, a meat having the same shape as the shape in which the cross section in the axial direction is bent to the outer peripheral side so that the divided laminated outer unit core is substantially V-shaped at the connecting portion 51v. Cutout portions 853a to 853d are formed. Further, as shown in FIG. 24, in the layout of the core pieces in the press mold, the above-described substantially V-shaped divided outer unit core pieces 808a to 808d are punched from the inside of the inner core piece 806, and the inner core pieces are punched out. A divided outer unit core piece 808e is punched from the outside of the piece. At this time, the divided outer unit core piece 808e is not substantially V-shaped, and the two divided outer core pieces 808 are arranged in a straight line via the connecting portion.

次に、回転子801の製造方法を説明する。
図24の状態で打ち抜いて積層された各分割積層外側ユニット鉄心55a〜55eと、積層内側鉄心853を金型から抜き出す。次に、各分割積層外側ユニット鉄心55a〜55eを中間の連結部51vにおいて、2個の分割積層外側鉄心851の隣接する周方向の端面同士が(図24、分割外側ユニット鉄心片808d、端部a、b参照)が密着するように折り曲げ、このように変形した5個の分割積層外側ユニット鉄心55a〜55eを使って、実施の形態1で説明した組み立て方法で組み立てることにより、環状の積層外側鉄心850を得ることができる。
Next, a method for manufacturing the rotor 801 will be described.
Each of the divided laminated outer unit cores 55a to 55e and the laminated inner iron core 853 punched and laminated in the state of FIG. 24 is extracted from the mold. Next, in the intermediate connecting portion 51v of each divided laminated outer unit core 55a to 55e, the adjacent circumferential end surfaces of the two divided laminated outer cores 851 are (FIG. 24, divided outer unit core pieces 808d, end portions). a) and b) are bent so as to be in close contact with each other, and the five laminated laminated outer unit cores 55a to 55e deformed in this way are assembled by the assembling method described in the first embodiment, thereby forming an annular laminated outer side. An iron core 850 can be obtained.

次に、積層外側鉄心850と積層内側鉄心853を連結部材852で一体化したあと、積層外側鉄心850の外周部に永久磁石3を接着剤で固定する。そして回転軸12を内側鉄心の回転子挿入部854に入れることで、回転子801を得ることができる。   Next, after the laminated outer iron core 850 and the laminated inner iron core 853 are integrated by the connecting member 852, the permanent magnet 3 is fixed to the outer peripheral portion of the laminated outer iron core 850 with an adhesive. The rotor 801 can be obtained by inserting the rotary shaft 12 into the rotor insertion portion 854 of the inner iron core.

本発明の実施の形態に係る、回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材によれば、実施の形態1に比べ、分割積層外側鉄心851を連結部51vを介して複数個連結したため、部品点数が少ない回転子801を得ることができる。   According to the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the core member of the rotor according to the embodiment of the present invention, compared to the first embodiment, the divided laminated outer core Since a plurality of 851 are connected via the connecting portion 51v, the rotor 801 with a small number of parts can be obtained.

また、回転子801を構成する各鉄心片を打ち抜く際の各鉄心片のレイアウトでは、内側鉄心片806の内部においては回転軸挿入穴806hを取り囲むように略V字状の分割外側ユニット鉄心片808a〜808dを配置して打ち抜くことができ、材料歩留まりを向上することができる。さらに内側鉄心片806の外部においても、連結部51vを介して直線状に分割外側鉄心片808を並べた分割外側ユニット鉄心片808eが打ち抜かれるため、略V字状の分割外側ユニット鉄心片を打ち抜く場合に比べて材料歩留まりを高めることができる。   Also, in the layout of each core piece when punching out each core piece constituting the rotor 801, a substantially V-shaped divided outer unit core piece 808a is surrounded inside the inner core piece 806 so as to surround the rotary shaft insertion hole 806h. ˜808d can be arranged and punched, and the material yield can be improved. Further, since the divided outer unit core piece 808e in which the divided outer core pieces 808 are arranged linearly via the connecting portion 51v is also punched outside the inner core piece 806, the substantially V-shaped divided outer unit core piece is punched out. Compared to the case, the material yield can be increased.

さらに、分割外側ユニット鉄心片808a〜808eの折り曲げ可能な連結手段として単純な薄肉部を形成するだけで済むために製造が容易である。
以上から、電食を抑制でき、積層外側鉄心850と積層内側鉄心853の材料使用量を減少させ、かつ、生産性の悪化を抑制可能で、安価な回転電機の回転子801を提供することができる。
Furthermore, since the split outer unit core pieces 808a to 808e can be bent as a connecting means only by forming a simple thin portion, manufacturing is easy.
From the above, it is possible to provide an inexpensive rotary electric machine rotor 801 that can suppress electrolytic corrosion, reduce the amount of material used for the laminated outer core 850 and the laminated inner core 853, and suppress deterioration in productivity. it can.

実施の形態9.
以下、本発明の実施の形態9に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1と異なる部分を中心に説明する。
図25は、分割積層外側鉄心951の平面図である。
図26は、本実施の形態に係る回転子901の断面図である。
図27は、回転子901用の鉄心片を打ち抜くプレス金型における板材90w上での各鉄心片のレイアウトを示す図である。
Embodiment 9 FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the core member of the rotor according to the ninth embodiment of the present invention are different from the first embodiment with reference to the drawings. The explanation will be focused on.
FIG. 25 is a plan view of the split laminated outer core 951.
FIG. 26 is a cross-sectional view of a rotor 901 according to the present embodiment.
FIG. 27 is a diagram showing a layout of each core piece on the plate member 90w in a press mold for punching out the core piece for the rotor 901. FIG.

実施の形態1とは、分割外側鉄心の形状と、そのプレス金型での鉄心片のレイアウトが異なる。その他は、実施の形態1と同じであるため説明を省略する。
図25〜図27に示すように、分割積層外側鉄心951の外周面の、軸方向に垂直な断面を円弧R902とし、分割積層外側鉄心951の内周面の、軸方向に垂直な断面を円弧R901とするとき、円弧R902の曲率中心は、回転軸12の中心軸上の点0と一致し、円弧R901の曲率中心は、回転軸12の中心軸上の点0と一致せず点0より外周側に位置する。また、回り止めとして径方向内側に突出する凸部951uを有する。
The first embodiment differs from the first embodiment in the shape of the divided outer iron core and the layout of the iron core pieces in the press mold. Since others are the same as Embodiment 1, description is abbreviate | omitted.
As shown in FIGS. 25 to 27, the cross section perpendicular to the axial direction of the outer peripheral surface of the split laminated outer core 951 is an arc R902, and the cross section perpendicular to the axial direction of the inner peripheral surface of the split laminated outer iron core 951 is an arc. When R901 is set, the center of curvature of the arc R902 coincides with the point 0 on the center axis of the rotating shaft 12, and the center of curvature of the arc R901 does not coincide with the point 0 on the center axis of the rotating shaft 12 from the point 0. Located on the outer periphery. Moreover, it has the convex part 951u which protrudes to radial inside as a rotation stopper.

図27に示すように、プレス金型では同一の板材90wから積層内側鉄心953と積層外側鉄心950の同一の積層を構成する全ての鉄心片を同時に打ち抜いている。内側鉄心片906の内部から分割外側鉄心片908a〜908fが打ち抜かれ、内側鉄心片906の外部から分割外側鉄心片908g〜908jが打ち抜かれる。このとき、実施の形態1では、内側鉄心片6と、分割外側鉄心片8g〜8jの間には隙間があった。本例ではこの隙間をなくし、内側鉄心片906の外周部と分割外側鉄心片の内周部の境界をそれぞれ同形状の円弧R903、R901となるように一度で打ち抜いて構成する。このとき、分割外側鉄心片908g〜908jの外周部の円弧R902の曲率中心は、回転子挿入穴906hの中心0とは異なる位置(積層外側鉄心950として組み立てたときに回転軸12の中心となるよう)に配置される。これにより、円弧R903と円弧R901の曲率半径は等しく、円弧R902と、円弧R903及び円弧R901の曲率半径は異なることになる。
このようにすることで、実施の形態1と比べてプレス打ち抜き時の鉄心片の隙間をなくすことができるため、板材90wの歩留まりをさらに向上することができる。
As shown in FIG. 27, in the press die, all the core pieces constituting the same laminate of the laminated inner iron core 953 and the laminated outer iron core 950 are punched simultaneously from the same plate material 90w. The split outer core pieces 908a to 908f are punched from the inside of the inner core piece 906, and the split outer core pieces 908g to 908j are punched from the outside of the inner core piece 906. At this time, in Embodiment 1, there was a gap between the inner iron core piece 6 and the divided outer iron core pieces 8g to 8j. In this example, this gap is eliminated, and the boundary between the outer peripheral portion of the inner core piece 906 and the inner peripheral portion of the divided outer core piece is punched at a time so as to form arcs R903 and R901 of the same shape. At this time, the center of curvature of the arc R902 of the outer peripheral portion of the divided outer core pieces 908g to 908j is a position different from the center 0 of the rotor insertion hole 906h (the center of the rotating shaft 12 when assembled as the laminated outer core 950). Arranged). Thereby, the curvature radii of the arc R903 and the arc R901 are equal, and the curvature radii of the arc R902, the arc R903, and the arc R901 are different.
By doing in this way, compared with Embodiment 1, since the clearance of the iron core piece at the time of press punching can be eliminated, the yield of the plate material 90w can be further improved.

また、分割外側鉄心の回り止めの凸部951uについても、鉄心片をプレス打ち抜きする際に、同じ形状を有する凹部を内側鉄心片906に同時に構成することができるため、より生産性の高い回転子901を得ることができる。さらに、実施の形態1で示した回転子(図3(b))では、連結部材52の外周の軸方向に垂直な断面が円形状(回り止め部を除く)であることに対し、本実施の形態では、図26に示すように曲率中心の異なる円弧が、連続する形状となっている。このため、より回り止めの効果を大きくすることができる。   Further, with respect to the convex portion 951u of the non-rotating outer core, the concave portion having the same shape can be formed in the inner core piece 906 at the same time when the core piece is stamped out, so that the rotor with higher productivity can be obtained. 901 can be obtained. Further, in the rotor (FIG. 3B) shown in the first embodiment, the cross section perpendicular to the axial direction of the outer periphery of the connecting member 52 is circular (excluding the rotation preventing portion). In this form, as shown in FIG. 26, arcs having different curvature centers have a continuous shape. For this reason, the effect of a rotation stop can be enlarged more.

なお、本構造の回転子901では、積層内側鉄心953の外周部と、積層外側鉄心950の内周部は樹脂等から構成される連結部材952で一体化するため、高い寸法精度は必要とされない。このため、本実施例のように、内側鉄心片906の外周部と、分割外側鉄心片908の内周部を境界として打ち抜いて両鉄心片を構成したとしても、回転電機として必要な精度には影響しない。   In the rotor 901 of this structure, since the outer peripheral portion of the laminated inner core 953 and the inner peripheral portion of the laminated outer iron core 950 are integrated by a connecting member 952 made of resin or the like, high dimensional accuracy is not required. . For this reason, even if both core pieces are formed by punching the outer peripheral portion of the inner core piece 906 and the inner peripheral portion of the divided outer core piece 908 as a boundary as in this embodiment, the accuracy required for the rotating electrical machine is not sufficient. It does not affect.

実施の形態10.
以下、本発明の実施の形態10に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態9と異なる部分を中心に説明する。
図28は、分割積層外側鉄心1051の平面図である。
図29は、本実施の形態に係る回転子1001の断面図である。
図30は、回転子1001用の鉄心片を打ち抜くプレス金型における板材100w上での各鉄心片のレイアウトを示す図である。
Embodiment 10 FIG.
Hereinafter, a rotor of a rotating electrical machine, a rotating electrical machine, a manufacturing method of the rotor, a manufacturing method of the rotating electrical machine, and a core member of the rotor according to the tenth embodiment of the present invention are different from the ninth embodiment with reference to the drawings. The explanation will be focused on.
FIG. 28 is a plan view of the split laminated outer core 1051. FIG.
FIG. 29 is a cross-sectional view of rotor 1001 according to the present embodiment.
FIG. 30 is a diagram showing a layout of each core piece on the plate member 100w in a press mold for punching out the core piece for the rotor 1001. FIG.

本実施の形態は、実施の形態9とは、積層外側鉄心1050を構成する分割積層外側鉄心の数と形状、およびプレス金型での鉄心片のレイアウトが異なる。その他は、実施の形態9と同じであるため説明を省略する。図29に示すように、積層外側鉄心1050は、周方向に均等に6個の分割積層外側鉄心1051に分割されている。また、回り止め凸部1051uは、各分割積層外側鉄心に2個ずつ配置している。   The present embodiment is different from the ninth embodiment in the number and shape of the divided laminated outer cores constituting the laminated outer core 1050 and the layout of the core pieces in the press die. Since others are the same as Embodiment 9, description is abbreviate | omitted. As shown in FIG. 29, the laminated outer core 1050 is divided into six divided laminated outer cores 1051 evenly in the circumferential direction. Further, two anti-rotation convex portions 1051u are arranged on each divided laminated outer core.

図30に示すように、4枚の分割外側鉄心片1008a〜1008dは、内側鉄心片1006の内部から打ち抜かれ、2枚の分割外側鉄心片1008e〜1008fは、内側鉄心片1006の外部から打ち抜かれることで製造される。
図30の配置で打ち抜かれた各分割外側鉄心片1008と内側鉄心片1006を金型内で積層して抜き出し、実施の形態1で示した分割積層外側鉄心の組み立て方法で環状に組み立てて積層外側鉄心1050を製造する。
As shown in FIG. 30, the four divided outer core pieces 1008a to 1008d are punched from the inside of the inner core piece 1006, and the two divided outer core pieces 1008e to 1008f are punched from the outside of the inner core piece 1006. It is manufactured by.
Each of the divided outer core pieces 1008 and the inner core piece 1006 punched out in the arrangement shown in FIG. 30 is stacked and extracted in a mold, and is assembled into an annular shape by the method of assembling the divided stacked outer core shown in the first embodiment. An iron core 1050 is manufactured.

この積層外側鉄心1050と積層内側鉄心1053を連結部材1052で一体化したあと、積層外側鉄心1050の外周面に永久磁石3を接着剤で固定する。そして回転軸12を積層内側鉄心1053の中心に入れることで、回転子1001を得ることができる。   After the laminated outer iron core 1050 and the laminated inner iron core 1053 are integrated by the connecting member 1052, the permanent magnet 3 is fixed to the outer peripheral surface of the laminated outer iron core 1050 with an adhesive. And the rotor 1001 can be obtained by putting the rotating shaft 12 in the center of the laminated inner core 1053.

各分割外側鉄心の接合部1051sの数は、実施の形態1の接合部に比べて半分となっている。このようにすることで、従来例に比べ回転子鉄心の製造に必要となる板材使用量を低減することができる。さらに、実施の形態1に比べ、積層外側鉄心1050の分割数が少ないため、部品点数が少ない回転子1001を得ることができる。   The number of joined portions 1051s of each divided outer iron core is half that of the joined portions of the first embodiment. By doing in this way, the board | plate material usage-amount required for manufacture of a rotor core can be reduced compared with a prior art example. Furthermore, since the number of divisions of the laminated outer core 1050 is smaller than that in the first embodiment, the rotor 1001 having a smaller number of parts can be obtained.

また、実施の形態1に比べ、積層外側鉄心1050の分割面数が少なく、磁気抵抗の増加を抑制することができ、より小型化が可能な(材料使用量が低減可能な)回転子1001を得ることができる。このように、本発明の実施の形態に係る、回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材によれば、電食を抑制でき、積層外側鉄心1050と積層内側鉄心1053の材料使用量を減少させ、かつ、生産性の悪化を抑制可能で、安価な回転電機の回転子1001を提供することができる。   Further, compared to the first embodiment, the number of divided surfaces of the laminated outer core 1050 is small, an increase in magnetic resistance can be suppressed, and the rotor 1001 that can be further downsized (the amount of material used can be reduced) is reduced. Can be obtained. Thus, according to the rotor of the rotating electrical machine, the rotating electrical machine, the manufacturing method of the rotor, the manufacturing method of the rotating electrical machine, and the iron core member of the rotor according to the embodiment of the present invention, the electric corrosion can be suppressed, and the lamination It is possible to provide an inexpensive rotor 1001 for a rotating electrical machine that can reduce the amount of material used for the outer iron core 1050 and the laminated inner iron core 1053 and suppress deterioration in productivity.

実施の形態11.
以下、本発明の実施の形態11に係る回転電機の回転子、回転電機、回転子の製造方法、回転電機の製造方法、回転子の鉄心部材を、図を用いて実施の形態1〜10と異なる部分を中心に説明する。
図31は、回転電機の分割積層固定子ユニット鉄心1125の平面図である。
図32は、分割積層固定子ユニット鉄心1125を4個、環状に配置した積層固定子鉄心1120の平面図である。
図33は、回転子の鉄心を構成する一層の鉄心片と分割固定子ユニット鉄心を構成する一層用の鉄心片を打ち抜くプレス金型における板材1100w上での各鉄心片のレイアウトを示す図である。
Embodiment 11 FIG.
Hereinafter, the rotor of the rotating electrical machine, the rotating electrical machine, the method of manufacturing the rotor, the method of manufacturing the rotating electrical machine, and the iron core member of the rotor according to the eleventh embodiment of the present invention are described as Embodiments 1 to 10 with reference to the drawings. The description will focus on the different parts.
FIG. 31 is a plan view of a split laminated stator unit core 1125 of the rotating electrical machine.
FIG. 32 is a plan view of a laminated stator core 1120 in which four divided laminated stator unit cores 1125 are arranged in an annular shape.
FIG. 33 is a diagram showing a layout of each core piece on the plate material 1100w in a press die for punching out a single core piece constituting the rotor core and a single core piece constituting the split stator unit core. .

本実施の形態では、積層外側鉄心を構成する全ての分割積層外側鉄心と積層内側鉄心および積層固定子鉄心を構成する全ての分割積層固定子ユニット鉄心1125の同一層を形成する鉄心片を、同一プレス金型および同一板材から同時に打ち抜く。
分割積層固定子ユニット鉄心1125は、同一平面上で折り曲げ可能な連結部1125vを介して複数の分割積層固定子鉄心1121を連結している。連結部1125vは薄肉によって構成している。また分割積層固定子鉄心1121の連結数は3個として1個の分割積層固定子ユニット鉄心1125を構成し、4個の分割積層固定子ユニット鉄心1125を環状に配置することで積層固定子鉄心1120を構成する。
In the present embodiment, all the divided laminated outer iron cores constituting the laminated outer iron core, the laminated inner iron core, and the iron core pieces forming the same layer of all the divided laminated stator unit iron cores 1125 constituting the laminated stator iron core are the same. Punching simultaneously from a press die and the same plate material.
The divided laminated stator unit core 1125 connects a plurality of divided laminated stator cores 1121 via a connecting portion 1125v that can be bent on the same plane. The connecting portion 1125v is constituted by a thin wall. Further, the number of connections of the divided laminated stator cores 1121 is set to three to form one divided laminated stator unit core 1125, and the four divided laminated stator unit cores 1125 are arranged in an annular shape to form a laminated stator core 1120. Configure.

また、分割積層固定子鉄心1121のヨークの外周側は円弧状ではなく、直線状になっている。図33に示すように、この分割積層固定子ユニット鉄心1125用の鉄心片は、二列抜きで打ち抜かれる。このとき、二列の分割固定子ユニット鉄心片1104が、一方の列の互いに隣接するティース部1104aの間に、他方の列のティース部1104aが向き合って入るように配置される。このようにすることで、一列で打ち抜く場合に比べ、固定子鉄心の材料使用量を低減している。また、ヨークの外周側を円弧状ではなく、直線状としたことにより、プレスで打ち抜かれる材料幅を小さくできるため、材料使用量を低減することができる。また、回転電機の製造時に必要となるプレス回数を減少させることができる。   Further, the outer peripheral side of the yoke of the divided laminated stator core 1121 is not an arc but a straight line. As shown in FIG. 33, the core pieces for the split laminated stator unit core 1125 are punched out in two rows. At this time, the two rows of divided stator unit core pieces 1104 are arranged so that the teeth 1104a of the other row face each other between the adjacent teeth 1104a of one row. By doing in this way, the amount of material used for the stator core is reduced compared to the case of punching in a single row. In addition, since the outer peripheral side of the yoke is not a circular arc but a straight line, the width of the material punched out by the press can be reduced, so that the amount of material used can be reduced. Moreover, the number of presses required at the time of manufacture of a rotary electric machine can be reduced.

実施の形態1に係る製造方法では、固定子鉄心片を打ち抜くプレス回数に加え、回転子鉄心片を打ち抜く回数が必要となるが、本実施の形態では、固定子鉄心と回転子鉄心を構成する鉄心片を同一プレス金型で製造するため、プレス回数を一度に集約でき、生産性が向上する。また、分割積層固定子ユニット鉄心1125の折り曲げ可能な連結手段として単純な薄肉部を形成するだけで済むために製造が容易となる。   In the manufacturing method according to the first embodiment, in addition to the number of presses for punching out the stator core piece, the number of times of punching out the rotor core piece is required, but in this embodiment, the stator core and the rotor core are configured. Since the core pieces are manufactured with the same press mold, the number of presses can be consolidated at once, and productivity is improved. Further, since it is sufficient to form a simple thin portion as a foldable connecting means for the split laminated stator unit core 1125, the manufacture becomes easy.

このようにして得られた複数の分割積層固定子ユニット鉄心1125に対して巻線を施した後、ヨークが外周側にティースが内周側になるように連結部1125vを同一平面上で折り曲げ、環状に並べ、隣接する分割積層固定子ユニット鉄心1125の接合面を接着や溶接等により固着することで、図32に示すような積層固定子鉄心1120を得ることができる。(巻線やインシュレータは省略し、固定鉄心の状態のみを図示した)   After winding the plurality of divided laminated stator unit cores 1125 thus obtained, the connecting portion 1125v is bent on the same plane so that the yoke is on the outer peripheral side and the teeth are on the inner peripheral side, A laminated stator core 1120 as shown in FIG. 32 can be obtained by arranging in a ring and fixing the joint surfaces of the adjacent divided laminated stator unit cores 1125 by adhesion, welding, or the like. (The windings and insulators are omitted, and only the state of the fixed iron core is shown.)

尚、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

100 回転電機、
1,201,301,501,601,701,801,901,1001 回転子、
12 回転軸、
1w,2w,3w,4aw,20w,30w,70w,80w,90w,100w,1100w 板材、
2 固定子、20,1120 積層固定子鉄心、21,1121 分割積層固定子鉄心、21a 積層ティース部、21b 積層ヨーク部、21c 先端部、22 固定子巻線、3 永久磁石、3a ハウジング部、3b ハウジング部、31a 軸受、
31b 軸受、32 波ワッシャ、4 固定子鉄心片、4a ティース部、
5 積層回転子鉄心、
50,250,350,550,750,750X,750Y 積層外側鉄心、
51,51a〜51k,251,451d,551,751,751a1〜751j1,751a2〜751j2,851,951,1051 分割積層外側鉄心、
51m 孔、51n 外周面、51p 凹部、
51q,451du,951u,1051u 凸部、51s 接合部、
51t,53t,251t,451t 凹部、51v 連結部、
52,252,352,552,652,752,852,952,1052 連結部材、
53,253,353,553,753,853,953,1053 積層内側鉄心、
53a〜53f 肉抜き部、55a〜55e 分割積層外側ユニット鉄心、
6,6x,206,306,706,806,1006 内側鉄心片、7 金型、
71 ボス、72 内周面、
8,8a〜8g,8y,208a,308,708,808,908,908a〜908g,1008 分割外側鉄心片、
8x 外側鉄心片、808a〜808e 分割外側ユニット鉄心片、
251s,1051s 接合部、551d 磁石挿入部、751a 端部、
753a 外周部、806h 回転軸挿入穴、854 回転子挿入部、
906h 回転子挿入穴、1104 分割固定子ユニット鉄心片、
1104a ティース部、1125 分割積層固定子ユニット鉄心、1125v連結部。
100 rotating electric machine,
1,201,301,501,601,701,801,901,1001 rotors,
12 rotation axis,
1w, 2w, 3w, 4aw, 20w, 30w, 70w, 80w, 90w, 100w, 1100w
2 Stator, 20, 1120 Laminated stator core, 21,1121 Divided laminated stator core, 21a Laminated tooth portion, 21b Laminated yoke portion, 21c Tip portion, 22 Stator winding, 3 Permanent magnet, 3a Housing portion, 3b Housing part, 31a bearing,
31b bearing, 32 wave washer, 4 stator core piece, 4a teeth part,
5 laminated rotor core,
50, 250, 350, 550, 750, 750X, 750Y laminated outer core,
51, 51a to 51k, 251, 451d, 551, 751, 751a1 to 751j1, 751a2 to 751j2, 851, 951, and 1051 Split laminated outer cores,
51m hole, 51n outer peripheral surface, 51p recess,
51q, 451du, 951u, 1051u convex part, 51s joint part,
51t, 53t, 251t, 451t recess, 51v coupling part,
52,252,352,552,652,752,852,952,1052 connecting members,
53,253,353,553,753,853,953,1053 laminated inner core,
53a-53f Meat removal part, 55a-55e Split lamination outer unit core,
6,6x, 206,306,706,806,1006 inner core piece, 7 mold,
71 boss, 72 inner surface,
8,8a-8g, 8y, 208a, 308,708,808,908,908a-908g, 1008 split outer core piece,
8x outer core pieces, 808a to 808e split outer unit core pieces,
251s, 1051s joint, 551d magnet insertion part, 751a end,
753a Outer peripheral part, 806h Rotating shaft insertion hole, 854 Rotor insertion part,
906h Rotor insertion hole, 1104 split stator unit core piece,
1104a Teeth part, 1125 split laminated stator unit core, 1125v connecting part.

Claims (25)

鉄心片を積層して構成された円筒状の積層回転子鉄心と、前記積層回転子鉄心に、周方向に等間隔に保持した永久磁石と、
前記積層回転子鉄心の中心に挿入された回転軸を備えた回転電機の回転子において、
前記積層回転子鉄心は、回転軸が締結される積層内側鉄心と、
前記積層内側鉄心の周囲を取り囲むように配置され、周方向に複数個の分割積層外側鉄心に分割された積層外側鉄心と、
前記積層内側鉄心と前記積層外側鉄心の間に形成され、前記積層内側鉄心と前記積層外側鉄心を結合する連結部材とからなり、
前記積層内側鉄心の内部には前記分割積層外側鉄心と同形状の肉抜き部が形成されている回転電機の回転子。
A cylindrical laminated rotor core constituted by laminating iron core pieces, and a permanent magnet held at equal intervals in the circumferential direction on the laminated rotor core,
In the rotor of the rotating electrical machine having a rotating shaft inserted in the center of the laminated rotor core,
The laminated rotor core includes a laminated inner core to which a rotation shaft is fastened,
A laminated outer core disposed so as to surround the laminated inner iron core and divided into a plurality of divided laminated outer iron cores in the circumferential direction;
Formed between the laminated inner iron core and the laminated outer iron core, and comprising a connecting member for coupling the laminated inner iron core and the laminated outer iron core,
A rotor of a rotating electrical machine in which a hollow portion having the same shape as the divided laminated outer core is formed inside the laminated inner core.
前記積層内側鉄心は、前記積層内側鉄心の中心に対して点対称である請求項1に記載の回転電機の回転子。 The rotor of a rotating electrical machine according to claim 1, wherein the laminated inner iron core is point-symmetric with respect to a center of the laminated inner iron core. 前記分割積層外側鉄心の内周側には、径方向に向かって形成された凹部または凸部を有する請求項1または請求項2に記載の回転電機の回転子。 The rotor of the rotating electrical machine according to claim 1 or 2, wherein a concave portion or a convex portion formed in a radial direction is provided on an inner peripheral side of the divided laminated outer core. 前記積層内側鉄心の外周側には、径方向に向かって形成された凹部または凸部を有する請求項1から請求項3のいずれか1項に記載の回転電機の回転子。 The rotor of the rotating electrical machine according to any one of claims 1 to 3, wherein a concave portion or a convex portion formed in a radial direction is provided on an outer peripheral side of the laminated inner core. 前記積層外側鉄心の外周から求める曲率中心と、
前記分割積層外側鉄心の内周から求める曲率中心とが異なる請求項1から請求項4のいずれか1項に記載の回転電機の回転子。
The center of curvature obtained from the outer periphery of the laminated outer core;
The rotor of the rotary electric machine according to any one of claims 1 to 4, wherein a center of curvature obtained from an inner periphery of the divided laminated outer core is different.
前記積層内側鉄心の外周から求める曲率半径と、
前記分割積層外側鉄心の内周から求める曲率半径とが同一である請求項1から請求項4のいずれか1項に記載の回転電機の回転子。
A radius of curvature determined from the outer periphery of the laminated inner core;
The rotor for a rotating electrical machine according to any one of claims 1 to 4, wherein a radius of curvature obtained from an inner periphery of the divided laminated outer core is the same.
前記積層内側鉄心の外周から求める曲率中心と、
前記分割積層外側鉄心の内周から求める曲率中心とが異なる請求項1から請求項4のいずれか1項に記載の回転電機の回転子。
The center of curvature obtained from the outer periphery of the laminated inner core;
The rotor of the rotary electric machine according to any one of claims 1 to 4, wherein a center of curvature obtained from an inner periphery of the divided laminated outer core is different.
前記肉抜き部は、前記分割積層外側鉄心の外周側に相当する部分が前記積層内側鉄心の中心側になるように配置されている請求項1から請求項7のいずれか1項に記載の回転電機の回転子。 The rotation according to any one of claims 1 to 7, wherein the lightening portion is arranged such that a portion corresponding to an outer peripheral side of the divided laminated outer core is on a center side of the laminated inner core. Electric rotor. 前記肉抜き部は、2以上の前記分割積層外側鉄心が、それぞれの前記分割積層外側鉄心の外周部で薄肉連結された分割積層外側鉄心ユニットと同形状である請求項8に記載の回転電機の回転子。 9. The rotating electrical machine according to claim 8, wherein the thinned portion has the same shape as a divided laminated outer core unit in which two or more of the divided laminated outer cores are thinly connected to each other at an outer peripheral portion of each divided laminated outer core. Rotor. 前記肉抜き部は、前記分割積層外側鉄心ユニットの隣接する前記分割積層外側鉄心同士が薄肉連結を頂点として外周側にV字状に折り曲げられた形状と同形状である請求項9に記載の回転電機の回転子。 10. The rotation according to claim 9, wherein the lightening portion has the same shape as a shape in which the divided laminated outer cores adjacent to each other in the divided laminated outer core unit are bent in a V shape on the outer peripheral side with a thin-walled connection as a vertex. Electric rotor. 前記積層外側鉄心の積層方向の厚みをH1、前記積層内側鉄心の積層方向の厚みをH2とするとき、H1>H2であり、H1=α×H2(α=2以上の整数)である請求項1から請求項10のいずれか1項に記載の回転電機の回転子。 The thickness in the stacking direction of the laminated outer iron core is H1, and the thickness in the stacking direction of the laminated inner iron core is H2, H1> H2 and H1 = α × H2 (integer greater than α = 2). The rotor of the rotary electric machine according to any one of claims 1 to 10. 全ての隣接する前記分割積層外側鉄心同士の接合部が前記永久磁石の周方向中央部に位置するように配置されている請求項1から請求項11のいずれか1項に記載の回転電機の回転子。 The rotation of the rotating electrical machine according to any one of claims 1 to 11, wherein a joint portion between all the adjacent laminated laminated outer cores is disposed at a circumferential central portion of the permanent magnet. Child. 全ての前記永久磁石の周方向中央部が、隣接する前記分割積層外側鉄心同士の接合部に位置するように配置されている請求項1から請求項11のいずれか1項に記載の回転電機の回転子。 The rotating electrical machine according to any one of claims 1 to 11, wherein all of the permanent magnets are arranged so that a center portion in a circumferential direction is positioned at a joint portion between the adjacent divided laminated outer cores. Rotor. 隣接する前記分割積層外側鉄心同士は、それぞれの周方向端部に設けられた凹部と凸部により互いに嵌合されている請求項1から請求項13のいずれか1項に記載の回転電機の回転子。 The rotation of the rotating electrical machine according to any one of claims 1 to 13, wherein the adjacent divided laminated outer cores are fitted to each other by a concave portion and a convex portion provided at respective circumferential ends. Child. 前記凹部は蟻溝であり、前記凸部は、蟻桟である請求項14に記載の回転電機の回転子。 The rotor of a rotating electrical machine according to claim 14, wherein the concave portion is a dovetail groove, and the convex portion is a dovetail. 前記連結部材は樹脂である請求項1から請求項15のいずれか1項に記載の回転電機の回転子。 The rotor of the rotating electrical machine according to any one of claims 1 to 15, wherein the connecting member is a resin. 前記積層内側鉄心の前記肉抜き部内にも前記連結部材が充填されている請求項16に記載の回転電機の回転子。 The rotor of the rotating electrical machine according to claim 16, wherein the connecting member is also filled in the thinned portion of the laminated inner iron core. 前記永久磁石は、前記積層内側鉄心及び各前記分割積層外側鉄心と、前記樹脂で一体成形されている請求項16または請求項17に記載の回転電機の回転子。 The rotor of the rotating electrical machine according to claim 16 or 17, wherein the permanent magnet is integrally formed with the laminated inner iron core and each of the divided laminated outer iron cores with the resin. 前記永久磁石と前記分割積層外側鉄心の間に接着剤を有する請求項1から請求項18のいずれか1項に記載の回転電機の回転子。 The rotor of the rotating electrical machine according to any one of claims 1 to 18, further comprising an adhesive between the permanent magnet and the split laminated outer core. 請求項1から請求項19のいずれか1項に記載の回転電機の回転子と、
円環状のヨーク部と、前記ヨーク部から内側に突出するティース部、前記ティース部に巻回した固定子巻線とを有し、
前記回転子を、内側に収納する固定子とを有する回転電機。
The rotor of the rotating electrical machine according to any one of claims 1 to 19,
An annular yoke portion, a teeth portion protruding inward from the yoke portion, and a stator winding wound around the teeth portion;
A rotating electrical machine having a stator that houses the rotor inside.
鉄心片を積層して構成された円筒状の積層回転子鉄心と、前記積層回転子鉄心に、周方向に等間隔に保持された永久磁石と、
前記積層回転子鉄心の中心に挿入された回転軸とを備えた回転子の製造方法であって、
前記回転軸が締結される積層内側鉄心を構成する内側鉄心片と、
前記積層内側鉄心の周囲を取り囲むように配置され、周方向に複数個の分割積層外側鉄心に分割された積層外側鉄心を構成する分割外側鉄心片を同じ板材から切り出す際に、
前記分割外側鉄心片を、前記内側鉄心片の内部から肉抜きして切り出す鉄心片切出工程を有する回転子の製造方法。
A cylindrical laminated rotor core configured by laminating core pieces, and a permanent magnet held at equal intervals in the circumferential direction on the laminated rotor core,
A rotor manufacturing method comprising a rotating shaft inserted into the center of the laminated rotor core,
An inner core piece constituting a laminated inner core to which the rotating shaft is fastened;
When it is arranged so as to surround the periphery of the laminated inner iron core, and the divided outer iron core pieces constituting the laminated outer iron core divided into a plurality of divided laminated outer iron cores in the circumferential direction are cut out from the same plate material,
The manufacturing method of the rotor which has an iron core piece cutting process which cuts out and cuts out the said division | segmentation outer side iron core piece from the inside of the said inner side iron core piece.
前記鉄心片切出工程において、前記積層外側鉄心と前記積層内側鉄心の同一層を構成するすべての鉄心片を同時に、同一板材から打ち抜く請求項21に記載の回転子の製造方法。 The method for manufacturing a rotor according to claim 21, wherein, in the core piece cutting step, all the core pieces constituting the same layer of the laminated outer core and the laminated inner iron core are simultaneously punched from the same plate material. 前記鉄心片切出工程において、前記内側鉄心片から全ての前記分割外側鉄心片を打ち抜く請求項22に記載の回転子の製造方法。 The method of manufacturing a rotor according to claim 22, wherein in the iron core piece cutting step, all the divided outer iron core pieces are punched from the inner iron piece. 請求項21から請求項23のいずれか1項に記載の回転子の製造方法において、
前記回転子を収納する固定子の一層分の鉄心片を、前記板材から同時に切り出す回転電機の製造方法。
In the manufacturing method of the rotor according to any one of claims 21 to 23,
The manufacturing method of the rotary electric machine which cuts out the iron core piece for the layer of the stator which accommodates the said rotor simultaneously from the said board | plate material.
複数の鉄心片からなる回転子の積層回転子鉄心用の鉄心部材であって、
前記積層回転子鉄心のうち、回転軸挿入部を有する積層内側鉄心の一つの層を構成する1枚の内側鉄心片と、
前記積層内側鉄心の外周に絶縁性の連結部材を介して結合される積層外側鉄心を、周方向に等分した複数の分割積層外側鉄心の、前記一つの層と同一の層を構成するそれぞれ1枚、全部で前記分割積層外側鉄心の数と同数の分割外側鉄心片からなり、
前記分割外側鉄心片の内、少なくとも2枚の前記分割外側鉄心片は、前記内側鉄心片の内部から切り抜かれている回転子の鉄心部材。
A core member for a laminated rotor core of a rotor composed of a plurality of core pieces,
Among the laminated rotor cores, one inner core piece constituting one layer of a laminated inner core having a rotating shaft insertion portion,
Each of the plurality of divided laminated outer cores that are equally divided in the circumferential direction of the laminated outer cores joined to the outer circumference of the laminated inner cores via an insulating connecting member constitutes the same layer as the one layer. Sheet, consisting of the same number of divided outer core pieces as the number of the divided laminated outer cores,
Among the divided outer core pieces, at least two of the divided outer core pieces are rotor core members cut out from the inside of the inner core pieces.
JP2013246224A 2013-11-28 2013-11-28 Rotating electric machine rotor, rotating electric machine, manufacturing method of rotor, manufacturing method of rotating electric machine, iron core member of rotor Active JP6218576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013246224A JP6218576B2 (en) 2013-11-28 2013-11-28 Rotating electric machine rotor, rotating electric machine, manufacturing method of rotor, manufacturing method of rotating electric machine, iron core member of rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013246224A JP6218576B2 (en) 2013-11-28 2013-11-28 Rotating electric machine rotor, rotating electric machine, manufacturing method of rotor, manufacturing method of rotating electric machine, iron core member of rotor

Publications (2)

Publication Number Publication Date
JP2015106928A JP2015106928A (en) 2015-06-08
JP6218576B2 true JP6218576B2 (en) 2017-10-25

Family

ID=53436790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013246224A Active JP6218576B2 (en) 2013-11-28 2013-11-28 Rotating electric machine rotor, rotating electric machine, manufacturing method of rotor, manufacturing method of rotating electric machine, iron core member of rotor

Country Status (1)

Country Link
JP (1) JP6218576B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852053B (en) * 2015-08-05 2020-10-23 三菱电机株式会社 Rotor of motor, blower, and refrigeration air conditioner
US10862359B2 (en) 2015-11-26 2020-12-08 Mitsubishi Electric Corporation Rotor, motor, air-conditioning apparatus, and method for manufacturing rotor
JP6711901B2 (en) * 2016-04-21 2020-06-17 三菱電機株式会社 Electric motor and air conditioner
CN107070023B (en) * 2016-12-09 2023-08-15 浙江零跑科技股份有限公司 Lightweight motor and rotor sheet and rotor thereof
JP6855869B2 (en) 2017-03-23 2021-04-07 株式会社富士通ゼネラル Permanent magnet motor
JP7091764B2 (en) * 2018-03-26 2022-06-28 株式会社富士通ゼネラル Permanent magnet motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848580B2 (en) * 2000-07-13 2011-12-28 パナソニック株式会社 Method for manufacturing permanent magnet motor
JP2002186227A (en) * 2000-12-13 2002-06-28 Aisin Aw Co Ltd Method of manufacturing large diameter motor and driver for hybrid vehicle using the same
JP5051275B2 (en) * 2003-06-13 2012-10-17 株式会社安川電機 Permanent magnet motor
JP2006238553A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Rotor for rotary electric machine
JP2007181304A (en) * 2005-12-28 2007-07-12 Hitachi Appliances Inc Motor and method of manufacturing rotor
JP4674655B2 (en) * 2010-05-31 2011-04-20 パナソニック株式会社 motor

Also Published As

Publication number Publication date
JP2015106928A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP6218576B2 (en) Rotating electric machine rotor, rotating electric machine, manufacturing method of rotor, manufacturing method of rotating electric machine, iron core member of rotor
US8890386B2 (en) Rotor and motor
JP2010220288A (en) Core block and magnetic pole core for motors using the core block
WO2013042341A1 (en) Motor and method of manufacturing motor
JPWO2016178368A1 (en) Rotating electric machine and manufacturing method thereof
JP2008067527A (en) Motor and its manufacturing process
JP2005137117A (en) Rotor for rotary electric machine
JP2008104288A (en) Capacitor motor, and manufacturing method therefor
JP2011030320A (en) Dynamo-electric machine and method of manufacturing the same
JP2011147200A (en) Motor armature
CN107919778B (en) Brushless motor and winding method of stator
JP2006325296A (en) Assembling method of stator
JP2002064950A (en) Motor, manufacturing method therefor, and electric vacuum cleaner
JP2009050116A (en) Capacitor motor, and manufacturing method thereof
JP2006325295A (en) Stator
JP2012023805A (en) Stator of electric motor and manufacturing method of the same
CN110574257B (en) Stator for electric motor and electric motor
JP2000032690A (en) Stator core for electric rotating machine and manufacture of stator for the electric rotating machine as well as magnet rotor-type motor
WO2018180345A1 (en) Electric motor stator and electric motor
JP4348982B2 (en) Axial gap type induction motor
JP2008067528A (en) Motor
JP2005124378A (en) Induction motor having annular stator coil
JP2015056984A (en) Rotary electric machine and air-conditioning equipment provided with the same
CN108886304B (en) Stator for electric motor and method for manufacturing the same, electric motor and method for manufacturing the same
JP7147745B2 (en) Stator for electric motor and electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250