JP7091764B2 - Permanent magnet motor - Google Patents

Permanent magnet motor Download PDF

Info

Publication number
JP7091764B2
JP7091764B2 JP2018058723A JP2018058723A JP7091764B2 JP 7091764 B2 JP7091764 B2 JP 7091764B2 JP 2018058723 A JP2018058723 A JP 2018058723A JP 2018058723 A JP2018058723 A JP 2018058723A JP 7091764 B2 JP7091764 B2 JP 7091764B2
Authority
JP
Japan
Prior art keywords
axial
axial hole
hole
side wall
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058723A
Other languages
Japanese (ja)
Other versions
JP2019170143A (en
Inventor
哲也 鶴田
正憲 村上
慎悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018058723A priority Critical patent/JP7091764B2/en
Publication of JP2019170143A publication Critical patent/JP2019170143A/en
Application granted granted Critical
Publication of JP7091764B2 publication Critical patent/JP7091764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、絶縁部材を有する回転子を備えた永久磁石電動機に関する。 The present invention relates to a permanent magnet motor including a rotor having an insulating member.

従来の永久磁石電動機には、回転磁界を発生する固定子の内側に、永久磁石を有する回転子を回転可能に配置したインナーロータ型の永久磁石電動機が知られている。この永久磁石電動機は、例えば、空気調和機に搭載する送風ファンを回転駆動するために用いられる。 As a conventional permanent magnet motor, an inner rotor type permanent magnet motor in which a rotor having a permanent magnet is rotatably arranged inside a stator that generates a rotating magnetic field is known. This permanent magnet motor is used, for example, to rotationally drive a blower fan mounted on an air conditioner.

この永久磁石電動機は、高周波スイッチングを行うPWM方式のインバータで駆動すると、軸受の内輪と外輪の間に電位差(軸電圧)を生じる。この軸電圧が軸受内部の油膜の絶縁破壊電圧に達すると、軸受内部に電流が流れて軸受に電食を発生させる。この軸受の電食を防止するために、例えば、絶縁部材を有する回転子を備えたものが知られている(例えば、特許文献1参照)。この回転子は、例えば、環状の永久磁石と、永久磁石の内径側に位置する環状の外周側鉄心と、外周側鉄心の内径側に位置する環状の内周側鉄心と、外周側鉄心と内周側鉄心の間に位置する絶縁部材と、内周側鉄心の中心軸の方向に貫通する貫通孔に固着されたシャフトを備えている。 When this permanent magnet motor is driven by a PWM type inverter that performs high frequency switching, a potential difference (shaft voltage) is generated between the inner ring and the outer ring of the bearing. When this shaft voltage reaches the breakdown voltage of the oil film inside the bearing, a current flows inside the bearing and causes electrolytic corrosion in the bearing. In order to prevent electrolytic corrosion of this bearing, for example, one provided with a rotor having an insulating member is known (see, for example, Patent Document 1). The rotor includes, for example, an annular permanent magnet, an annular outer peripheral side iron core located on the inner diameter side of the permanent magnet, an annular inner peripheral side iron core located on the inner diameter side of the outer peripheral side iron core, and an outer peripheral side iron core and inner core. It includes an insulating member located between the peripheral cores and a shaft fixed to a through hole penetrating in the direction of the central axis of the inner core.

このような回転子の絶縁部材は、例えば、外周側鉄心と内周側鉄心の間に充填された樹脂で形成されている。 The insulating member of such a rotor is formed of, for example, a resin filled between the outer peripheral side iron core and the inner peripheral side iron core.

特開2012-39875号公報Japanese Unexamined Patent Publication No. 2012-39875

ところで、上述した軸受の電食は、永久磁石電動機をPWM方式のインバータで駆動すると、固定子の巻線の中性点電位が零にならず、コモンモード電圧と呼ばれる電圧が発生する。このコモンモード電圧は、スイッチングによる高周波成分が含まれるため、永久磁石電動機の内部の浮遊容量によって、軸受の外輪と内輪の間に軸電圧を発生させる。 By the way, in the above-mentioned electrolytic corrosion of the bearing, when the permanent magnet motor is driven by the PWM type inverter, the neutral point potential of the winding of the stator does not become zero, and a voltage called a common mode voltage is generated. Since this common mode voltage contains a high frequency component due to switching, an axial voltage is generated between the outer ring and the inner ring of the bearing due to the stray capacitance inside the permanent magnet motor.

コモンモード電圧は、固定子の巻線とシャフトの間の静電容量と、シャフトとインバータ駆動用回路基板の間の静電容量により、軸受の内輪側(シャフト側)の電位として分圧される。そして、コモンモード電圧は、固定子の巻線とブラケットの間の静電容量とブラケットとインバータ駆動用回路基板の間の静電容量により、軸受の外輪側(ブラケット側)の電位として分圧される。この軸受の内輪側と外輪側の電位差が軸電圧となる。 The common mode voltage is divided as a potential on the inner ring side (shaft side) of the bearing by the capacitance between the winding of the stator and the shaft and the capacitance between the shaft and the circuit board for driving the inverter. .. Then, the common mode voltage is divided as a potential on the outer ring side (bracket side) of the bearing by the capacitance between the winding of the stator and the bracket and the capacitance between the bracket and the circuit board for driving the inverter. To. The potential difference between the inner ring side and the outer ring side of this bearing is the shaft voltage.

回転子の絶縁部材の厚みの上限が構造上規制され、且つ材料としてPBT樹脂を使用しても回転子側(軸受内輪側)のインピーダンスが低く、軸電圧が高い場合に、軸電圧を抑制するため、特許文献1に記載の先行技術では、絶縁部材の一部に空気層や空孔を形成するようにしている。空気の比誘電率は、ほぼ1であるため、3程度のPBTに比べて小さい。したがって、空気層や空孔を設けることによって回転子の静電容量を小さくすることが可能となり、回転子側(軸受内輪側)のインピーダンスを高くするようにしている。 The upper limit of the thickness of the insulating member of the rotor is structurally restricted, and even if PBT resin is used as the material, the shaft voltage is suppressed when the impedance on the rotor side (bearing inner ring side) is low and the shaft voltage is high. Therefore, in the prior art described in Patent Document 1, an air layer or a hole is formed in a part of the insulating member. Since the relative permittivity of air is almost 1, it is smaller than the PBT of about 3. Therefore, it is possible to reduce the capacitance of the rotor by providing an air layer and holes, and to increase the impedance on the rotor side (bearing inner ring side).

しかしながら、特許文献1に記載の回転子のように、絶縁部材に空気層を形成するために空孔として貫通孔を形成する場合には、絶縁部材の強度が低下することから、貫通孔の内部に、貫通孔を絶縁部材の軸方向の一端側に開口する第1軸方向穴と、絶縁部材の軸方向の他端側に開口する第2軸方向穴に区切る壁部を設け、この壁部により絶縁部材の強度を確保することが考えられている。この壁部を設けることで、壁部の一端側には第1軸方向穴の底部が形成され、壁部の他端側には第2軸方向穴の底部が形成される。
一方で、永久磁石電動機の使用環境や駆動時の固定子巻線からの発熱によって、絶縁部材に熱応力が生じる。特に、第1軸方向穴の軸方向側壁と底部が交わる部分や、第2軸方向穴の軸方向側壁と底部が交わる部分に熱応力が集中する。熱応力が集中すると、絶縁部材の耐久性の低下や割れやクラックの発生が懸念される。この熱応力集中を緩和するために、第1軸方向穴の軸方向側壁と底部が交わる部分や、第2軸方向穴の軸方向側壁と底部が交わる部分にR面取りやC面取りを形成することが行われている。
However, when a through hole is formed as a hole in order to form an air layer in the insulating member as in the rotor described in Patent Document 1, the strength of the insulating member is lowered, so that the inside of the through hole is formed. A wall portion is provided in the first axial direction hole that opens the through hole on one end side in the axial direction of the insulating member and a second axial direction hole that opens on the other end side in the axial direction of the insulating member. It is considered to secure the strength of the insulating member. By providing this wall portion, the bottom portion of the first axial direction hole is formed on one end side of the wall portion, and the bottom portion of the second axial direction hole is formed on the other end side of the wall portion.
On the other hand, thermal stress is generated in the insulating member due to the usage environment of the permanent magnet motor and the heat generated from the stator winding during driving. In particular, thermal stress is concentrated on the portion where the axial side wall and the bottom of the first axial hole intersect and the portion where the axial side wall and the bottom of the second axial hole intersect. When thermal stress is concentrated, there is a concern that the durability of the insulating member may decrease and cracks or cracks may occur. In order to alleviate this thermal stress concentration, R chamfers and C chamfers are formed at the intersection of the axial side wall and the bottom of the first axial hole and the intersection of the axial side wall and the bottom of the second axial hole. Is being done.

第1軸方向穴および第2軸方向穴は、図3及び図4に示すように、例えば、端面形状が円周方向に沿う円弧状に形成され、端面から軸方向に沿う方向に深さを有している。
しかし、半径が小さく軸方向に厚い回転子に対して静電容量を低減させる場合、第1軸方向穴および第2軸方向穴の深さを深くする必要がある。そして、絶縁部材の機械的強度や、第1軸方向穴および第2軸方向穴の成形時の金型の抜き勾配を考慮した場合、図3及び図4に示すように、第1軸方向穴および第2軸方向穴の半径方向の長さRを十分に取ることができない。
As shown in FIGS. 3 and 4, for example, the end face shape of the first axial hole and the second axial hole is formed in an arc shape along the circumferential direction, and the depth is increased in the direction along the axial direction from the end face. Have.
However, in order to reduce the capacitance for a rotor having a small radius and a thick axial direction, it is necessary to increase the depth of the first axial hole and the second axial hole. Then, when the mechanical strength of the insulating member and the draft of the mold at the time of forming the first axial hole and the second axial hole are taken into consideration, as shown in FIGS. 3 and 4, the first axial hole is formed. And the length R in the radial direction of the second axial hole cannot be sufficiently taken.

結果、図8(a)に示すように、第1軸方向穴の軸方向側壁と底部が交わる部分や、第2軸方向穴の軸方向側壁と底部が交わる部分の熱応力集中を緩和するために、C面取りによって軸方向に対して、例えば、45度の傾斜角θ1の傾斜部を形成する。なお、第2軸方向穴は、壁部に対して第1軸方向穴と対称に形成されているので、図示を省略する。第1軸方向穴および第2軸方向穴を形成する絶縁部材は、壁部を形成する領域A、傾斜部を形成する領域B、軸方向側壁を形成する領域Cを有する構造になっている。第1軸方向穴と第2軸方向穴はそれぞれ、傾斜部と軸方向側壁との境界部分(P3、P4)と、傾斜部と底部との境界部分(P1、P2)の間の領域Bが狭くなり、領域Bの軸方向長さL1を十分にとることができない。この場合には、領域Aでの熱膨張を領域Bで吸収することができず、領域Bと領域Cで示す熱膨張の方向が大きく異なるため、領域Bと領域Cとの境界部分(P3、P4)に熱応力が集中してしまう。 As a result, as shown in FIG. 8A, in order to alleviate the thermal stress concentration in the portion where the axial side wall and the bottom of the first axial hole intersect and the portion where the axial side wall and the bottom of the second axial hole intersect. In addition, a tilted portion having an tilt angle θ1 of, for example, 45 degrees with respect to the axial direction is formed by C chamfering. Since the second axial hole is formed symmetrically with respect to the wall portion, the illustration is omitted. The insulating member forming the first axial hole and the second axial hole has a structure having a region A forming a wall portion, a region B forming an inclined portion, and a region C forming an axial side wall portion. The first axial hole and the second axial hole have a region B between the boundary portion between the inclined portion and the axial side wall (P3, P4) and the boundary portion between the inclined portion and the bottom portion (P1, P2), respectively. It becomes narrow and the axial length L1 of the region B cannot be sufficiently taken. In this case, the thermal expansion in the region A cannot be absorbed in the region B, and the directions of the thermal expansion shown in the region B and the region C are significantly different. Therefore, the boundary portion between the region B and the region C (P3, Thermal stress is concentrated on P4).

一方、図8(b)に示すように、第1軸方向穴の軸方向側壁と底部が交わる部分や、第2軸方向穴の軸方向側壁と底部が交わる部分の熱応力集中を緩和するために、C面取りによって軸方向に対して、例えば、22.5度の傾斜角θ2の傾斜部を形成する。第1軸方向穴と第2軸方向穴はそれぞれ、傾斜部と軸方向側壁との境界部分(P3、P4)と、傾斜部と底部との境界部分(P1、P2)の間の領域Bが図8(a)と比べて広くなり、領域Bの軸方向長さL1を十分にとることができる。この場合には、領域Bと領域Cとの境界部分(P3、P4)での熱応力集中を緩和することができる反面、領域Aと領域Bでは矢印で示す熱膨張の方向が大きく異なるため、領域Bと領域Aの境界部分(P1、P2)に熱応力が集中してしまう。
このように、図8(a)や図8(b)のように、C面取りによって軸方向に対して傾斜部を形成して、第1軸方向穴の軸方向側壁と底部が交わる部分や、第2軸方向穴の軸方向側壁と底部が交わる部分の熱応力集中を緩和するようにしても、第1軸方向穴の傾斜部と軸方向側壁との境界部分(P3、P4)や、第2軸方向穴の傾斜部と軸方向側壁との境界部分(P3、P4)に熱応力が集中したり、第1軸方向穴の傾斜部と底部との境界部分(P1、P2)や、第2軸方向穴の傾斜部と底部との境界部分(P1、P2)に熱応力が集中してしまう。
On the other hand, as shown in FIG. 8B, in order to alleviate the thermal stress concentration at the portion where the axial side wall and the bottom of the first axial hole intersect and the portion where the axial side wall and the bottom of the second axial hole intersect. In addition, a tilted portion having an tilt angle θ2 of, for example, 22.5 degrees is formed in the axial direction by C chamfering. The first axial hole and the second axial hole have a region B between the boundary portion between the inclined portion and the axial side wall (P3, P4) and the boundary portion between the inclined portion and the bottom portion (P1, P2), respectively. It is wider than that of FIG. 8A, and the axial length L1 of the region B can be sufficiently taken. In this case, the thermal stress concentration at the boundary between the region B and the region C (P3, P4) can be relaxed, but the direction of thermal expansion indicated by the arrow is significantly different between the region A and the region B. Thermal stress is concentrated on the boundary portion (P1, P2) between the region B and the region A.
In this way, as shown in FIGS. 8 (a) and 8 (b), the portion where the axial side wall and the bottom of the first axial hole intersect with each other by forming an inclined portion in the axial direction by C chamfering, and Even if the thermal stress concentration at the intersection of the axial side wall and the bottom of the second axial hole is relaxed, the boundary portion (P3, P4) between the inclined portion and the axial side wall of the first axial hole and the second Thermal stress is concentrated on the boundary portion (P3, P4) between the inclined portion of the biaxial hole and the axial side wall, the boundary portion (P1, P2) between the inclined portion and the bottom of the first axial hole, and the first. Thermal stress is concentrated on the boundary portion (P1, P2) between the inclined portion and the bottom portion of the biaxial hole.

そこで、本発明は、上記特許文献1に記載された先行技術の課題に着目してなされたものであり、絶縁部材の貫通孔の内部に第1軸方向穴と第2軸方向穴に区切る壁部を設け、壁部の一端側に第1軸方向穴の底部が形成され、壁部の他端側に第2軸方向穴の底部が形成される場合に、第1軸方向穴および第2軸方向穴の少なくとも一方の軸方向側壁と底部の境界部分や、第1軸方向穴および第2軸方向穴の傾斜部と軸方向側壁の境界部分や、第1軸方向穴および第2軸方向穴の傾斜部と底部との境界部分に対する熱応力の集中を緩和できる永久磁石電動機を提供することを目的としている。 Therefore, the present invention has been made by paying attention to the problem of the prior art described in Patent Document 1, and is a wall that divides the inside of the through hole of the insulating member into a first axial hole and a second axial hole. When a portion is provided and the bottom portion of the first axial hole is formed on one end side of the wall portion and the bottom portion of the second axial hole is formed on the other end side of the wall portion, the first axial hole and the second portion are formed. The boundary between the axial side wall and the bottom of at least one of the axial holes, the boundary between the inclined portion and the axial side wall of the first axial hole and the second axial hole, and the first axial hole and the second axial direction. It is an object of the present invention to provide a permanent magnet motor capable of relaxing the concentration of thermal stress on the boundary portion between the inclined portion and the bottom portion of the hole.

上記課題を解決するために、本発明の永久磁石電動機の一態様は、モータ外郭に固定された固定子と固定子の内側に配置された回転子を備え、回転子は、永久磁石を配置した環状の外周側鉄心と、外周側鉄心の内径側に位置する環状の内周側鉄心と、外周側鉄心と内周側鉄心の間に位置する絶縁部材と、内周側鉄心を支持し、モータ外郭に軸受によって回転自在に支持されたシャフトを備え絶縁部材は、軸方向の一端面に開口する第1軸方向穴と、軸方向の他端面に開口する第2軸方向穴と、第1軸方向穴と第2軸方向穴の間に形成する壁部を設け、第1軸方向穴と前記第2軸方向穴のそれぞれは、内径側の側壁と外径側の側壁と底部とを有し、内径側の側壁と外径側の側壁と底部とは金型による成型で形成され、第1軸方向穴および第2軸方向穴の少なくとも一方には、内径側の側壁と底部の境界部分の周辺、および、外径側の側壁と底部との境界部分の周辺熱応力を緩和するための2段以上の応力緩和傾斜部を形成した永久磁石電動機であるIn order to solve the above problems, one aspect of the permanent magnet motor of the present invention includes a stator fixed to the outer shell of the motor and a rotor arranged inside the stator, and the rotor is arranged with a permanent magnet. A motor that supports an annular outer peripheral side core, an annular inner peripheral core located on the inner diameter side of the outer peripheral core, an insulating member located between the outer peripheral core and the inner peripheral core, and an inner peripheral core. The outer shell is provided with a shaft rotatably supported by bearings, and the insulating member includes a first axial hole that opens at one end surface in the axial direction, a second axial hole that opens at the other end surface in the axial direction, and a first. A wall portion formed between the axial hole and the second axial hole is provided, and each of the first axial hole and the second axial hole has a side wall on the inner diameter side, a side wall on the outer diameter side, and a bottom. The inner side wall, the outer diameter side side wall, and the bottom portion are formed by molding with a mold, and at least one of the first axial direction hole and the second axial direction hole is a boundary between the inner diameter side side wall and the bottom portion. It is a permanent magnet motor in which two or more stages of stress relaxation inclined portions for relieving thermal stress are formed around the portion and around the boundary portion between the side wall and the bottom on the outer diameter side .

本発明の永久磁石電動機の一態様によれば、軸受の電食を防止するために、絶縁部材に軸方向に延びる第1軸方向穴と第2軸方向穴に区切る壁部を設け、壁部の一端側に第1軸方向穴の底部が形成され、壁部の他端側に第2軸方向穴の底部が形成される場合に、第1軸方向穴および第2軸方向穴の軸方向側壁と底部の境界部分や、第1軸方向穴および第2軸方向穴の傾斜部と軸方向側壁の境界部分や、第1軸方向穴および第2軸方向穴の傾斜部と底部との境界部分に対する熱応力の集中を緩和することができる。 According to one aspect of the permanent magnet electric motor of the present invention, in order to prevent electrolytic corrosion of the bearing, the insulating member is provided with a wall portion that separates the first axial hole and the second axial hole extending in the axial direction, and the wall portion is provided. When the bottom of the first axial hole is formed on one end side of the wall and the bottom of the second axial hole is formed on the other end side of the wall, the axial direction of the first axial hole and the second axial hole. The boundary between the side wall and the bottom, the boundary between the inclined portion of the first axial hole and the second axial hole and the axial side wall, and the boundary between the inclined portion and the bottom of the first axial hole and the second axial hole. The concentration of thermal stress on the part can be relaxed.

本発明に係る永久磁石電動機を示す説明図である。It is explanatory drawing which shows the permanent magnet electric motor which concerns on this invention. 本発明に係る永久磁石電動機の回転子の第1実施形態を示す斜視図である。It is a perspective view which shows the 1st Embodiment of the rotor of the permanent magnet electric motor which concerns on this invention. 図2の回転子の平面図である。It is a top view of the rotor of FIG. 図2の回転子の底面図である。It is a bottom view of the rotor of FIG. 図3のA-A断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図5のC部の部分断面図である。It is a partial cross-sectional view of the part C of FIG. 外周側鉄心に永久磁石を装着した状態を示す回転子の平面図である。It is a top view of the rotor which shows the state which the permanent magnet is attached to the iron core on the outer peripheral side. 従来の第1軸方向穴の底部周辺における熱応力集中と、本発明の第1軸方向穴の底部周辺における熱応力集中の緩和を説明する図であり、(a)と(b)は従来の説明図であり、(c)は本発明の説明図である。It is a figure explaining the relaxation of the thermal stress concentration around the bottom of the 1st axial hole of the present invention, and the relaxation of the thermal stress concentration around the bottom of the 1st axial hole of this invention, (a) and (b) are conventional It is explanatory drawing, and (c) is explanatory drawing of this invention.

次に、図面を参照して、本発明の一実施形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは異なることに留意すべきである。したがって、具体的な構成部品については以下の説明を参酌して判断すべきものである。 Next, an embodiment of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic and differ from the actual ones. Therefore, specific components should be judged in consideration of the following explanations.

また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Further, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the shape, structure, arrangement, etc. of components. It is not specific to the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims described in the claims.

以下に、本発明の一実施形態に係る永久磁石電動機について説明する。 Hereinafter, the permanent magnet motor according to the embodiment of the present invention will be described.

<電動機の全体構成>
図1乃至図6は、第1実施形態における永久磁石電動機1の構成を説明する図である。図1乃至図6に示すように、この永久磁石電動機1は、例えば、ブラシレスDCモータである。この永久磁石電動機1は、空気調和機の室内機に搭載される送風ファンを回転駆動するために用いられる。
<Overall configuration of motor>
1 to 6 are diagrams illustrating the configuration of the permanent magnet motor 1 according to the first embodiment. As shown in FIGS. 1 to 6, the permanent magnet motor 1 is, for example, a brushless DC motor. The permanent magnet motor 1 is used to rotationally drive a blower fan mounted on an indoor unit of an air conditioner.

以下では、回転磁界を発生する固定子2の内部に、永久磁石31を有する回転子3を回転可能に配置したインナーロータ型の永久磁石電動機1を例に説明する。本実施形態における永久磁石電動機1は、固定子2と、回転子3と、モータ外郭6を備えている。 Hereinafter, an inner rotor type permanent magnet motor 1 in which a rotor 3 having a permanent magnet 31 is rotatably arranged inside a stator 2 that generates a rotating magnetic field will be described as an example. The permanent magnet motor 1 in the present embodiment includes a stator 2, a rotor 3, and a motor outer shell 6.

<固定子と回転子>
固定子2は、円筒形状のヨーク部とヨーク部から内径側に延びる複数のティース部を有した固定子鉄心21と、インシュレータ22を介してティース部に巻回された巻線23を備えている。この固定子2は、固定子鉄心21の内周面を除いて、樹脂で形成されたモータ外郭6で覆われている。
<Stator and rotor>
The stator 2 includes a stator core 21 having a cylindrical yoke portion and a plurality of teeth portions extending from the yoke portion to the inner diameter side, and a winding 23 wound around the teeth portion via an insulator 22. .. The stator 2 is covered with a motor outer shell 6 made of resin, except for the inner peripheral surface of the stator core 21.

回転子3は、固定子2の固定子鉄心21の内周側に所定の空隙(ギャップ)を持って回転自在に配置されている。この回転子は、固定子鉄心21に対向する外周面に環状に永久磁石31を配置した表面磁石形である。永久磁石31は、後述する外周側鉄心32、絶縁部材33および内周側鉄心34を介してシャフト35の周囲に固定されている。このシャフト35は、第1軸受41および第2軸受42によって支持され、第1軸受41が第1ブラケット51に、第2軸受42が第2ブラケット52にそれぞれ支持されることで、回転子3が回転自在に支持されている。 The rotor 3 is rotatably arranged with a predetermined gap on the inner peripheral side of the stator core 21 of the stator 2. This rotor is a surface magnet type in which a permanent magnet 31 is arranged in an annular shape on an outer peripheral surface facing the stator core 21. The permanent magnet 31 is fixed around the shaft 35 via the outer peripheral side iron core 32, the insulating member 33, and the inner peripheral side iron core 34, which will be described later. The shaft 35 is supported by the first bearing 41 and the second bearing 42, and the first bearing 41 is supported by the first bracket 51 and the second bearing 42 is supported by the second bracket 52, so that the rotor 3 is supported. It is rotatably supported.

<軸受とブラケット>
第1軸受41は、回転子3のシャフト35の一端側(出力側)を支持している。第2軸受42は、回転子3のシャフト35の他端側(反出力側)を支持している。第1軸受41および第2軸受42は、例えば、ボールベアリングが用いられる。
<Bearings and brackets>
The first bearing 41 supports one end side (output side) of the shaft 35 of the rotor 3. The second bearing 42 supports the other end side (counter-output side) of the shaft 35 of the rotor 3. As the first bearing 41 and the second bearing 42, for example, ball bearings are used.

第1ブラケット51は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の一端側すなわちシャフト35の出力側に固定されている。この第1ブラケット51は、一端を開放し、他端を底面板部510で閉塞した円筒形状のブラケット本体511と、底面板部510に設けられ第1軸受41を収容するための第1軸受収容部512を有する。ブラケット本体511は、開放端側がモータ外郭6の外周面に圧入されている。第1軸受収容部512は、底面板部510の中央部からモータ外郭6とは反対側に突出された底部を有する円筒状に形成されている。この第1軸受収容部512の円筒内面に第1軸受41の外輪が圧入され、この第1軸受41の内輪に支持されたシャフト35の出力側が底部の中央に形成された貫通孔から外部に突出されている。 The first bracket 51 is made of metal (steel plate, aluminum, etc.) and is fixed to one end side of the motor outer shell 6, that is, the output side of the shaft 35. The first bracket 51 has a cylindrical bracket body 511 having one end open and the other end closed by a bottom plate portion 510, and a first bearing accommodating the first bearing 41 provided in the bottom plate portion 510 to accommodate the first bearing 41. It has a portion 512. The open end side of the bracket body 511 is press-fitted into the outer peripheral surface of the motor outer shell 6. The first bearing accommodating portion 512 is formed in a cylindrical shape having a bottom portion protruding from the central portion of the bottom plate portion 510 to the side opposite to the motor outer shell 6. The outer ring of the first bearing 41 is press-fitted into the inner surface of the cylinder of the first bearing accommodating portion 512, and the output side of the shaft 35 supported by the inner ring of the first bearing 41 projects outward from a through hole formed in the center of the bottom. Has been done.

第2ブラケット52は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の他端側すなわちシャフト35の反出力側に配置されている。この第2ブラケット52は、第2軸受42を収容するための第2軸受収容部521と、第2軸受収容部521の開放端から周りに広がるフランジ部522を有する。第2軸受収容部521は、底部を有する円筒形状に形成されており、第2ブラケット52のフランジ部522は、モータ外郭6の成形時にインサート成形され、モータ外郭6と一体になっている。 The second bracket 52 is made of metal (steel plate, aluminum, etc.) and is arranged on the other end side of the motor outer shell 6, that is, on the counter-output side of the shaft 35. The second bracket 52 has a second bearing accommodating portion 521 for accommodating the second bearing 42, and a flange portion 522 extending around from the open end of the second bearing accommodating portion 521. The second bearing accommodating portion 521 is formed in a cylindrical shape having a bottom portion, and the flange portion 522 of the second bracket 52 is insert-molded at the time of molding the motor outer shell 6 and is integrated with the motor outer shell 6.

第1軸受41は、第1ブラケット51に設けられた第1軸受収容部512に収容され、第2軸受42は、第2ブラケット52に設けられた第2軸受収容部521に収容されている。そして、第1軸受41と第1軸受収容部512、第2軸受42と第2軸受収容部521はそれぞれ電気的に導通している。 The first bearing 41 is housed in a first bearing accommodating portion 512 provided in the first bracket 51, and the second bearing 42 is accommodated in a second bearing accommodating portion 521 provided in the second bracket 52. The first bearing 41 and the first bearing accommodating portion 512, and the second bearing 42 and the second bearing accommodating portion 521 are electrically conductive, respectively.

<回転子の具体的な構成>
以上のように構成された永久磁石電動機1では、第1軸受41や第2軸受42に電食が生じないようにするため、図1に示すように、回転子3の一部に絶縁部材33を備えている。以下、回転子3の具体的構成について説明する。
<Specific configuration of rotor>
In the permanent magnet motor 1 configured as described above, in order to prevent electrolytic corrosion in the first bearing 41 and the second bearing 42, as shown in FIG. 1, a part of the rotor 3 is an insulating member 33. It is equipped with. Hereinafter, a specific configuration of the rotor 3 will be described.

回転子3は、図1乃至図6に示すように、外径側から内径側に向かって、永久磁石31と、外周側鉄心32と、絶縁部材33と、内周側鉄心34と、シャフト35を備えている。 As shown in FIGS. 1 to 6, the rotor 3 has a permanent magnet 31, an outer peripheral side iron core 32, an insulating member 33, an inner peripheral side iron core 34, and a shaft 35 from the outer diameter side to the inner diameter side. It is equipped with.

永久磁石31は、図1及び図7に示すように、N極とS極が周方向に等間隔に交互に表れるように複数(例えば8個)の永久磁石片311で環状に形成されている。なお、永久磁石31は、磁石粉末を樹脂で固めることで環状に形成されたプラスチックマグネットを用いてもよい。 As shown in FIGS. 1 and 7, the permanent magnet 31 is formed in an annular shape by a plurality of (for example, eight) permanent magnet pieces 311 so that the north and south poles appear alternately at equal intervals in the circumferential direction. .. As the permanent magnet 31, a plastic magnet formed in an annular shape by solidifying the magnet powder with a resin may be used.

外周側鉄心32は、図3に示すように、環状に形成されており、永久磁石31の内径側に位置している。外周側鉄心32には、図示を省略するが、後述する絶縁部材33との回り止めの機能を確保するために、内周面321(図5参照)から内径側に突出する複数(例えば4個)の外周側凸部と内周面321から外径側に凹む外周側凹部を備えている。複数の外周側凸部および外周側凹部は、中心軸Oの方向に延びるとともに周方向に等間隔に配置されている。 As shown in FIG. 3, the outer peripheral side iron core 32 is formed in an annular shape and is located on the inner diameter side of the permanent magnet 31. Although not shown, the outer peripheral side iron core 32 has a plurality (for example, four) protruding from the inner peripheral surface 321 (see FIG. 5) toward the inner diameter side in order to secure the function of preventing rotation with the insulating member 33 described later. ), It is provided with an outer peripheral side convex portion and an outer peripheral side concave portion recessed from the inner peripheral surface 321 to the outer diameter side. The plurality of outer peripheral side convex portions and outer peripheral side concave portions extend in the direction of the central axis O and are arranged at equal intervals in the circumferential direction.

内周側鉄心34は、図3に示すように、環状に形成されており、外周側鉄心32の内径側に位置している。内周側鉄心34には、図示を省略するが、後述する絶縁部材33との回り止めの機能を確保するために、外周面341(図5参照)から内径側に凹む複数(例えば8個)の内周側凹部を備えている。複数の内周側凹部は、中心軸Oの方向に延びるとともに周方向に等間隔に配置されている。そして、内周側鉄心34には、中心に中心軸Oの方向に貫通する貫通穴343を備えている。 As shown in FIG. 3, the inner peripheral side iron core 34 is formed in an annular shape and is located on the inner diameter side of the outer peripheral side iron core 32. Although not shown, the inner peripheral side iron core 34 has a plurality (for example, eight) recessed from the outer peripheral surface 341 (see FIG. 5) toward the inner diameter side in order to secure the function of preventing rotation with the insulating member 33 described later. It has a recess on the inner peripheral side of the. The plurality of inner peripheral recesses extend in the direction of the central axis O and are arranged at equal intervals in the circumferential direction. The inner peripheral side iron core 34 is provided with a through hole 343 that penetrates in the direction of the central axis O at the center.

絶縁部材33は、PBTやPETなどの誘電体の樹脂で形成されており、外周側鉄心32と内周側鉄心34の間に位置している。絶縁部材33は、外周側鉄心32と内周側鉄心34の間に樹脂が充填されることで、外周側鉄心32と内周側鉄心34と一体に成形されている。この絶縁部材33は、外周側鉄心32と内周側鉄心34の間の静電容量(固定子2の巻線23とシャフト35の間の静電容量の一部)を小さくして第1軸受41および第2軸受42の内輪側の電位を下げて内輪側と外輪側の電位を合わせている。 The insulating member 33 is made of a dielectric resin such as PBT or PET, and is located between the outer peripheral side iron core 32 and the inner peripheral side iron core 34. The insulating member 33 is integrally formed with the outer peripheral side iron core 32 and the inner peripheral side iron core 34 by filling the resin between the outer peripheral side iron core 32 and the inner peripheral side iron core 34. The insulating member 33 has a first bearing in which the capacitance between the outer peripheral side iron core 32 and the inner peripheral side iron core 34 (a part of the capacitance between the winding 23 of the stator 2 and the shaft 35) is reduced. The potentials on the inner ring side of the 41 and the second bearing 42 are lowered to match the potentials on the inner ring side and the outer ring side.

シャフト35は、内周側鉄心34に備えた貫通穴343に圧入やカシメなどによって固着されている。 The shaft 35 is fixed to a through hole 343 provided in the inner peripheral side iron core 34 by press fitting or caulking.

<本発明に係る回転子の構造、作用および効果>
次に、本実施形態における永久磁石電動機1において、図2乃至図5を用いて、本発明に係る回転子3の構造やその作用および効果について説明する。
<Structure, action and effect of rotor according to the present invention>
Next, in the permanent magnet motor 1 of the present embodiment, the structure of the rotor 3 according to the present invention, its action and effect will be described with reference to FIGS. 2 to 5.

空気調和機に搭載する送風ファンを回転駆動するために用いられる永久磁石電動機1は、PWM方式のインバータで駆動されるため、巻線の中性点電位が零にならず、コモンモード電圧と呼ばれる電圧が発生する。このコモンモード電圧に起因して、永久磁石電動機1の内部の浮遊容量によって、第1軸受41や第2軸受42の外輪と内輪の間に電位差(軸電圧)が発生する。この軸電圧が軸受内部油膜の絶縁破壊電圧に達すると、軸受内部に電流が流れて軸受内部に電食を発生させる。 Since the permanent magnet motor 1 used to drive the blower fan mounted on the air conditioner to rotate is driven by a PWM type inverter, the neutral point potential of the winding does not become zero, which is called a common mode voltage. Voltage is generated. Due to this common mode voltage, a potential difference (shaft voltage) is generated between the outer ring and the inner ring of the first bearing 41 and the second bearing 42 due to the floating capacity inside the permanent magnet motor 1. When this shaft voltage reaches the breakdown voltage of the oil film inside the bearing, a current flows inside the bearing and causes electrolytic corrosion inside the bearing.

上記した回転子3の構成において、絶縁部材33は、図2乃至図4に示すように、円筒形状を有し、回転子3の静電容量を低減させるために、軸方向の一端に第1軸方向穴331が形成され、軸方向の他端に同様に回転子3の静電容量を低減させるための第2軸方向穴332が形成されている。これらの第1軸方向穴331および第2軸方向穴332は、円周方向に等間隔に複数(例えば8個)形成されている。複数の第1軸方向穴331のそれぞれの間、および、複数の第2軸方向穴332のそれぞれの間には、隔壁334が形成され、隣接する第1軸方向穴331同士、および、隣接する第2軸方向穴332同士を区切っている。 In the configuration of the rotor 3 described above, the insulating member 33 has a cylindrical shape as shown in FIGS. 2 to 4, and is first at one end in the axial direction in order to reduce the electrostatic capacity of the rotor 3. An axial hole 331 is formed, and a second axial hole 332 for reducing the electrostatic capacity of the rotor 3 is similarly formed at the other end in the axial direction. A plurality (for example, eight) of these first axial holes 331 and the second axial holes 332 are formed at equal intervals in the circumferential direction. A partition wall 334 is formed between each of the plurality of first axial holes 331 and between each of the plurality of second axial holes 332, and adjacent first axial holes 331 are adjacent to each other and adjacent to each other. The second axial hole 332 is separated from each other.

さらに、第1軸方向穴331と第2軸方向穴332は、図3乃至図5に示すように、軸方向で互いに対向しており、軸方向中央位置で互いの深さが同じになるように区切る壁部333が設けられている。この壁部333を設けることで、壁部333の一端側には第1軸方向穴331の底部335cが形成され、壁部333の他端側には第2軸方向穴332の底部335cが形成されている。そして、第1軸方向穴331と第2軸方向穴332のそれぞれの底部335cから軸方向に沿って側壁335aおよび側壁335bが形成されている。このように、第1軸方向穴331と第2軸方向穴332は、壁部333と隔壁334の形成によって、端面形状が円周方向に沿う円弧状に形成され、端面から軸方向に沿う方向に深さを有する構造になっており、それぞれが等間隔に複数(例えば8個)形成されている。 Further, the first axial hole 331 and the second axial hole 332 face each other in the axial direction as shown in FIGS. 3 to 5, so that the depths of the first axial hole 331 and the second axial hole 332 are the same at the central position in the axial direction. A wall portion 333 is provided. By providing the wall portion 333, the bottom portion 335c of the first axial direction hole 331 is formed on one end side of the wall portion 333, and the bottom portion 335c of the second axial direction hole 332 is formed on the other end side of the wall portion 333. Has been done. A side wall 335a and a side wall 335b are formed along the axial direction from the bottom portions 335c of the first axial hole 331 and the second axial hole 332, respectively. In this way, the first axial hole 331 and the second axial hole 332 are formed in an arc shape along the circumferential direction by forming the wall portion 333 and the partition wall 334, and the direction along the axial direction from the end face. It has a structure having a certain depth, and each of them is formed at equal intervals (for example, 8 pieces).

ここで、例えば、半径が小さく軸方向に厚い回転子3に対して第1軸方向穴331と第2軸方向穴332を形成するときは、回転子3の半径が小さくなるので、第1軸方向穴331と第2軸方向穴332の半径方向の長さ(幅)Rも小さくなる。このような回転子3の静電容量を低減させるには、第1軸方向穴331と第2軸方向穴332の深さを深くする必要がある。しかしながら、第1軸方向穴331と第2軸方向穴332の深さを深くしすぎると、第1軸方向穴331と第2軸方向穴332を区切る壁部333の厚さが薄くなり、絶縁部材33の機械的強度が低下することから、機械的強度を確保するためには適当な厚さの壁部333が必要となる。 Here, for example, when the first axial hole 331 and the second axial hole 332 are formed with respect to the rotor 3 having a small radius and a thick axial direction, the radius of the rotor 3 becomes small, so that the first axis The length (width) R of the direction hole 331 and the second axial hole 332 in the radial direction is also reduced. In order to reduce the capacitance of the rotor 3, it is necessary to increase the depth of the first axial hole 331 and the second axial hole 332. However, if the depth of the first axial hole 331 and the second axial hole 332 is made too deep, the thickness of the wall portion 333 that separates the first axial hole 331 and the second axial hole 332 becomes thin, and insulation is provided. Since the mechanical strength of the member 33 is lowered, a wall portion 333 having an appropriate thickness is required to secure the mechanical strength.

したがって、第1軸方向穴331と第2軸方向穴332の深さは、回転子3の静電容量の低減と機械的強度の確保の両方を考慮して設定する。 Therefore, the depths of the first axial hole 331 and the second axial hole 332 are set in consideration of both the reduction of the capacitance of the rotor 3 and the securing of the mechanical strength.

そして、絶縁部材33は、PBTやPETなどの誘電体の樹脂を外周側鉄心32および内周側鉄心34とともに一体成型することから、回転子3の機械的強度や、第1軸方向穴331と第2軸方向穴332の成型時の金型の抜き勾配を考慮した場合には、上記で説明したように、図2乃至図5に示すように、第1軸方向穴331と第2軸方向穴332は、壁部333と隔壁334の形成により、端面形状が円周方向に沿う円弧状に形成され、端面から軸方向に沿う方向に深さを有する構造になっており、第1軸方向穴331および第2軸方向穴332の半径方向の長さ(幅)Rを十分にとることができない。 Since the insulating member 33 is integrally molded with a dielectric resin such as PBT or PET together with the outer peripheral side iron core 32 and the inner peripheral side iron core 34, the mechanical strength of the rotor 3 and the first axial direction hole 331 are combined with the insulating member 33. When the draft of the mold at the time of molding the second axial hole 332 is taken into consideration, as described above, as shown in FIGS. 2 to 5, the first axial hole 331 and the second axial direction The hole 332 is formed in an arc shape along the circumferential direction by forming the wall portion 333 and the partition wall 334, and has a structure having a depth in the direction along the axial direction from the end face in the first axial direction. The length (width) R in the radial direction of the hole 331 and the second axial hole 332 cannot be sufficiently taken.

ところで、一般的に、絶縁部材33の線膨張係数は、周囲の金属製の外周側鉄心32および内周側鉄心34の線膨張係数に比較して大きく、温度上昇時の膨張量や温度降下時の収縮量が外周側鉄心32および内周側鉄心34に比較して大きくなる。 By the way, in general, the coefficient of linear expansion of the insulating member 33 is larger than the coefficient of linear expansion of the surrounding metal outer peripheral side iron core 32 and the inner peripheral side iron core 34, and the expansion amount at the time of temperature rise and the linear expansion coefficient at the time of temperature decrease The amount of shrinkage is larger than that of the outer peripheral side iron core 32 and the inner peripheral side iron core 34.

絶縁部材33は、図6に示すように、絶縁部材33における側壁335a、335bの膨張量や収縮量は、側壁335a、335bが半径方向に薄く、軸方向に厚いため、半径方向に比較して軸方向の方が大きくなる。 As shown in FIG. 6, in the insulating member 33, the amount of expansion and contraction of the side walls 335a and 335b in the insulating member 33 is smaller in the radial direction and thicker in the axial direction than the radial side. It is larger in the axial direction.

また、絶縁部材33の壁部333の膨張量や収縮量は、半径方向の成分と軸方向の成分に分けられるが、半径方向は外周側鉄心32および内周側鉄心34によって規制されるので、半径方向の膨張や収縮に比べて軸方向の膨張や収縮の方が大きくなる。 Further, the amount of expansion and contraction of the wall portion 333 of the insulating member 33 is divided into a radial component and an axial component, but the radial direction is regulated by the outer peripheral side iron core 32 and the inner peripheral side iron core 34. Axial expansion and contraction is greater than radial expansion and contraction.

このため、温度上昇による壁部333の膨張を考えたときに、半径方向への膨張に比べて軸方向への膨張が多くなり、この壁部333の膨張の影響により、第1軸方向穴331の底部335cと側壁335aおよび335bが交わる部分や、第2軸方向穴332の底部335cと側壁335aおよび335bが交わる部分に熱応力が集中する。 Therefore, when considering the expansion of the wall portion 333 due to the temperature rise, the expansion in the axial direction becomes larger than the expansion in the radial direction, and due to the influence of the expansion of the wall portion 333, the first axial hole 331 Thermal stress is concentrated on the portion where the bottom portion 335c and the side walls 335a and 335b intersect, and the portion where the bottom portion 335c and the side walls 335a and 335b of the second axial hole 332 intersect.

ここで、第1軸方向穴331について熱応力の集中度合いを検討する。通常は、図8(a)で点線図示のように、第1軸方向穴331を形成する絶縁部材33の互いに対向する側壁335aおよび335bに対して底部335cがほぼ直角となっており、第1軸方向穴331を形成する絶縁部材33は、壁部333を形成する領域A、側壁335aおよび335bを形成する領域Cを有するものとなり、このままでは、領域Aと領域Cで矢印が示す熱膨張の方向が大きく異なるため、側壁335aと底部335cとの境界部分P0aおよび側壁335bと底部335cとの境界部分P0bで熱応力が集中する。 Here, the degree of concentration of thermal stress is examined for the first axial hole 331. Normally, as shown by the dotted line in FIG. 8A, the bottom portion 335c is substantially perpendicular to the side walls 335a and 335b of the insulating member 33 forming the first axial hole 331 facing each other, and the first The insulating member 33 forming the axial hole 331 has a region A forming the wall portion 333 and a region C forming the side walls 335a and 335b. Since the directions are significantly different, thermal stress is concentrated at the boundary portion P0a between the side wall 335a and the bottom portion 335c and the boundary portion P0b between the side wall 335b and the bottom portion 335c.

このため、境界部分P0aおよびP0bへの熱応力の集中を緩和するために、図8(a)に示すように、側壁335aおよび335bと底部335cの間に、例えば45度の角度でカットするC面取りを行って傾斜部335dおよび335eを形成することが考えられる。この場合には、第1軸方向穴331を形成する絶縁部材33は、壁部333を形成する領域A、傾斜部335dおよび335eを形成する領域B、側壁335aおよび335bを形成する領域Cを有するものとなり、傾斜部335dの形成によって、底部335cと側壁335aの境界部分P0aでの熱応力の緩和を行い、傾斜部335eの形成によって、底部335cと側壁335bの境界部分P0bでの熱応力の緩和を行い、熱応力の集中を抑制することができる。 Therefore, in order to alleviate the concentration of thermal stress on the boundary portions P0a and P0b, as shown in FIG. 8A, a cut is made between the side walls 335a and 335b and the bottom 335c at an angle of, for example, 45 degrees. It is conceivable to chamfer to form the inclined portions 335d and 335e. In this case, the insulating member 33 forming the first axial hole 331 has a region A forming the wall portion 333, a region B forming the inclined portions 335d and 335e, and a region C forming the side walls 335a and 335b. By forming the inclined portion 335d, the thermal stress is relaxed at the boundary portion P0a between the bottom portion 335c and the side wall 335a, and by forming the inclined portion 335e, the thermal stress is relaxed at the boundary portion P0b between the bottom portion 335c and the side wall 335b. It is possible to suppress the concentration of thermal stress.

ところで、第1軸方向穴331を形成する絶縁部材33は、壁部333を形成する領域Aの軸方向厚さや、側壁335aおよび335bを形成する領域Cの径方向厚さや、回転子3の半径の長さや、面取りの形状によっては、傾斜部335dおよび335eを形成する領域Bの軸方向長さL1を、壁部333を形成する領域Aの軸方向の熱膨張を吸収することで熱応力を緩和することができる軸方向長さLSにすることができないことがある。例えば、領域Aの軸方向厚さが領域Cの径方向厚さよりも十分に大きく、回転子3の半径の長さも十分大きいものとした場合、第1軸方向穴331の半径方向の長さRが十分大きくなるため、45度の角度でカットするC面取りによって傾斜部335dおよび335eを形成する領域Bの軸方向長さL1を長く形成することができるので、この軸方向長さL1を熱応力を緩和することができる軸方向長さLSに設定することができる。
しかしながら、図8(a)に示すように、第1軸方向穴331の半径方向の長さRが小さいとき、領域Bの軸方向長さに相当する、側壁335aと傾斜部335dの境界部分P3と、側壁335aと底部335cの境界部分P0aとの間と、側壁335bと傾斜部335eの境界部分P4と、側壁335bと底部335cの境界部分P0bとの間のそれぞれの軸方向長さL1が熱応力を緩和することができる軸方向長さLsに比較して短くなる。このため、側壁335aと傾斜部335dの境界部分P3と、側壁335bと傾斜部335eの境界部分P4に熱応力が集中してしまう。
By the way, the insulating member 33 forming the first axial hole 331 has the axial thickness of the region A forming the wall portion 333, the radial thickness of the region C forming the side walls 335a and 335b, and the radius of the rotor 3. Depending on the length and the shape of the chamfer, the axial length L1 of the region B forming the inclined portions 335d and 335e is absorbed by the axial thermal expansion of the region A forming the wall portion 333 to reduce the thermal stress. It may not be possible to have an axial length LS that can be relaxed. For example, assuming that the axial thickness of the region A is sufficiently larger than the radial thickness of the region C and the radial length of the rotor 3 is also sufficiently large, the radial length R of the first axial hole 331 is assumed to be sufficiently large. Is sufficiently large, so that the axial length L1 of the region B forming the inclined portions 335d and 335e can be formed long by the C chamfer cutting at an angle of 45 degrees, so that the axial length L1 is thermally stressed. Can be set to an axial length LS that can be relaxed.
However, as shown in FIG. 8A, when the radial length R of the first axial hole 331 is small, the boundary portion P3 between the side wall 335a and the inclined portion 335d, which corresponds to the axial length of the region B. The axial length L1 between the side wall 335a and the boundary portion P0a of the bottom portion 335c, the boundary portion P4 between the side wall 335b and the inclined portion 335e, and the boundary portion P0b between the side wall 335b and the bottom portion 335c is heat. It is shorter than the axial length Ls that can relieve stress. Therefore, the thermal stress is concentrated on the boundary portion P3 between the side wall 335a and the inclined portion 335d and the boundary portion P4 between the side wall 335b and the inclined portion 335e.

この側壁335aと傾斜部335dの境界部分P3および側壁335bと傾斜部335dの境界部分P4での熱応力の集中を緩和するためには、図8(b)に示すように、境界部分P3およびP4と底部335cの間の軸方向長さL1を熱応力を緩和することができる軸方向長さLsに設定する必要がある。このように、軸方向長さL1を熱応力を緩和することができる軸方向長さLsに設定するため、例えば、図8(b)に示す寸法により22.5度の面取りを行って傾斜部335dおよび335eを形成すると、傾斜部335dの側壁335aに対する傾斜角θ2と、傾斜部335eの側壁335bに対する傾斜角θ2がそれぞれ、図8(a)に示す傾斜角θ1より緩やかとなり、側壁335aと傾斜部335dの境界部分P3と、側壁335bと傾斜部335eの境界部分P4での熱応力の集中を緩和することができる。しかしながら、傾斜部335dと底部335cの境界部分P1と、傾斜部335eと底部335cの境界部分P2では、図8(b)で熱膨張の方向が矢印で示すように、底部335cでは軸方向となるのに対して傾斜部335dおよび335eでは熱膨張の方向がC面に相当する傾斜面に対して垂直方向となって、その方向が軸方向に対して90度近く大きく異なるため、境界部分P1およびP2に熱応力が集中してしまう。 In order to alleviate the concentration of thermal stress at the boundary portion P3 between the side wall 335a and the inclined portion 335d and the boundary portion P4 between the side wall 335b and the inclined portion 335d, the boundary portions P3 and P4 are shown in FIG. It is necessary to set the axial length L1 between the bottom 335c and the bottom 335c to the axial length Ls that can relieve the thermal stress. In this way, in order to set the axial length L1 to the axial length Ls that can relieve the thermal stress, for example, the inclined portion is chamfered by 22.5 degrees according to the dimensions shown in FIG. 8 (b). When 335d and 335e are formed, the inclination angle θ2 with respect to the side wall 335a of the inclined portion 335d and the inclination angle θ2 with respect to the side wall 335b of the inclined portion 335e are gentler than the inclination angle θ1 shown in FIG. It is possible to relax the concentration of thermal stress at the boundary portion P3 of the portion 335d and the boundary portion P4 between the side wall 335b and the inclined portion 335e. However, in the boundary portion P1 between the inclined portion 335d and the bottom portion 335c and the boundary portion P2 between the inclined portion 335e and the bottom portion 335c, the direction of thermal expansion is the axial direction at the bottom portion 335c as shown by an arrow in FIG. 8B. On the other hand, in the inclined portions 335d and 335e, the direction of thermal expansion is perpendicular to the inclined surface corresponding to the C plane, and the directions differ greatly by nearly 90 degrees with respect to the axial direction. Thermal stress is concentrated on P2.

このように、側壁335aおよび335bと底部335cの間に一箇所に面取りを行ってC面に相当する傾斜面を有する傾斜部335dおよび335eを形成する場合には、側壁335a側の境界部分P3および側壁335b側の境界部分P4に熱応力が集中するか、または、底部335c側の境界部分P1およびP2に熱応力が集中することになる。図8(a)のC面取りに代えてR面取りを行った場合でも、R面取りの湾曲部と側壁335aおよび335bの境界部分は、C面取りの傾斜部335dと側壁335aの境界部分P3および傾斜部335eと側壁335bの境界部分P4と同じ位置となり、境界部分P3およびP4と底部335cの間の軸方向長さL1は熱応力を緩和することができる軸方向長さLsより短くなり、熱応力緩和を十分に行うことができない。 In this way, when chamfering is performed at one place between the side walls 335a and 335b and the bottom portion 335c to form the inclined portions 335d and 335e having an inclined surface corresponding to the C surface, the boundary portion P3 on the side wall 335a side and the boundary portion P3 and The thermal stress is concentrated on the boundary portion P4 on the side wall 335b side, or the thermal stress is concentrated on the boundary portions P1 and P2 on the bottom portion 335c side. Even when R chamfering is performed instead of C chamfering in FIG. 8A, the boundary portion between the curved portion of the R chamfer and the side walls 335a and 335b is the boundary portion P3 and the inclined portion of the inclined portion 335d and the side wall 335a of the C chamfer. It is at the same position as the boundary portion P4 between the 335e and the side wall 335b, and the axial length L1 between the boundary portions P3 and P4 and the bottom 335c is shorter than the axial length Ls capable of relieving thermal stress, and the thermal stress is relieved. Cannot be done sufficiently.

そこで、本実施形態では、図8(c)に示すように、底部335cから熱応力を緩和することができる軸方向長さLsに相当する側壁335aおよび335bの端部から軸方向に対して、例えば、図8(c)に示す寸法により約6.4度の面取りを行って第1傾斜角θ3の第1応力緩和傾斜部336aおよび336bを形成し、底部335c側については応力緩和を行うことができる図8(a)に示すような、例えば、図8(c)に示す寸法により45度の面取りを行って第2傾斜角θ4の第2応力緩和傾斜部336cおよび336dを形成している。45度の面取りを行った第2応力緩和傾斜部336cおよび336dの形成によって、第2応力緩和傾斜部336cと側壁335aとの間と、第2応力緩和傾斜部336dと側壁335bとの間の角度θ4はそれぞれ45度に形成され、第2応力緩和傾斜部336cおよび336dと底部335cとの間の角度θ5は45度に形成される。これにより、第1軸方向穴331の側壁335aおよび335bと底部335cの間には、第1応力緩和傾斜部336aと第2応力緩和傾斜部336c、第1応力緩和傾斜部336bと第2応力緩和傾斜部336dの組合わせにより、それぞれ2段の応力緩和傾斜部336が形成されている。したがって、絶縁部材33に形成される第1軸方向穴331の側壁335aと底部335cの境界部分P0aの周辺や、第1軸方向穴331の側壁335bと底部335cの境界部分P0bの周辺には、壁部333を形成する領域A、第2応力緩和傾斜部336cおよび336dを形成する領域B-1と、第1応力緩和傾斜部336aおよび336bを形成する領域B-2と、側壁335aおよび335bを形成する領域Cを有するものとなる。なお、半径方向に対向する側壁335aおよび335bと底部335cの間に2段の応力緩和傾斜部336を形成する場合に限らず、円周方向の両端部の側壁334にも底部335cとの間に2段の応力緩和傾斜部を形成してもよい。 Therefore, in the present embodiment, as shown in FIG. 8C, from the ends of the side walls 335a and 335b corresponding to the axial length Ls capable of relieving the thermal stress from the bottom 335c, with respect to the axial direction. For example, the first stress relaxation inclined portions 336a and 336b having the first inclination angle θ3 are formed by chamfering about 6.4 degrees according to the dimensions shown in FIG. 8 (c), and stress relaxation is performed on the bottom portion 335c side. The second stress relaxation inclined portions 336c and 336d having the second inclined angle θ4 are formed by chamfering at 45 degrees according to the dimensions shown in FIG. 8 (c), for example, as shown in FIG. 8 (a). .. The angle between the second stress relaxation slope 336c and the side wall 335a and between the second stress relaxation slope 336d and the side wall 335b due to the formation of the second stress relaxation slopes 336c and 336d chamfered by 45 degrees. θ4 is formed at 45 degrees, respectively, and the angle θ5 between the second stress relaxation inclined portions 336c and 336d and the bottom portion 335c is formed at 45 degrees. As a result, between the side walls 335a and 335b of the first axial hole 331 and the bottom portion 335c, the first stress relaxation inclined portion 336a and the second stress relaxation inclined portion 336c, the first stress relaxation inclined portion 336b and the second stress relaxation are performed. By combining the inclined portions 336d, two stages of stress relaxation inclined portions 336 are formed. Therefore, around the boundary portion P0a between the side wall 335a and the bottom portion 335c of the first axial direction hole 331 formed in the insulating member 33, and around the boundary portion P0b between the side wall 335b and the bottom portion 335c of the first axial direction hole 331. The region A forming the wall portion 333, the region B-1 forming the second stress relaxation inclined portions 336c and 336d, the region B-2 forming the first stress relaxation inclined portions 336a and 336b, and the side walls 335a and 335b are formed. It has a region C to be formed. Not only when the two-stage stress relaxation inclined portion 336 is formed between the side walls 335a and 335b facing each other in the radial direction and the bottom portion 335c, but also between the side walls 334 at both ends in the circumferential direction and the bottom portion 335c. A two-stage stress relaxation slope may be formed.

また、上記のように、第2応力緩和傾斜部336c、336dの軸方向に対する第2傾斜角θ4は、第1応力緩和傾斜部336a、336bの軸方向に対する第1傾斜角θ3より大きく設定されている。そして、図8(c)に示すように、第1傾斜角θ3および第2傾斜角θ4は、壁部333の熱膨張による軸方向の膨張量に応じて熱応力の集中を緩和可能な角度に設定されている。 Further, as described above, the second inclination angle θ4 with respect to the axial direction of the second stress relaxation inclined portions 336c and 336d is set to be larger than the first inclination angle θ3 with respect to the axial direction of the first stress relaxation inclined portions 336a and 336b. There is. Then, as shown in FIG. 8C, the first inclination angle θ3 and the second inclination angle θ4 are set to angles at which the concentration of thermal stress can be relaxed according to the amount of expansion in the axial direction due to the thermal expansion of the wall portion 333. It is set.

このように、2段の応力緩和傾斜部336を形成することにより、側壁335aと第1応力緩和傾斜部336aの境界部分P13と底部335cの間、および、側壁335bと第1応力緩和傾斜部336bの境界部分P14と底部335cの間の軸方向長さL1を熱応力を緩和することができる軸方向長さLsとすることができるとともに、第1応力緩和傾斜部336aおよび336bを形成する領域B-2と、側壁335aおよび335bを形成する領域Cの間で熱膨張の方向の変化が小さくなるため、境界部分P13およびP14での壁部333の軸方向の熱膨張による熱応力の集中を緩和することができる。 By forming the two-stage stress relaxation inclined portion 336 in this way, between the boundary portion P13 and the bottom portion 335c of the side wall 335a and the first stress relaxation inclined portion 336a, and between the side wall 335b and the first stress relaxation inclined portion 336b. The axial length L1 between the boundary portion P14 and the bottom portion 335c can be the axial length Ls capable of relieving thermal stress, and the region B forming the first stress relief inclined portions 336a and 336b. Since the change in the direction of thermal expansion between -2 and the region C forming the side walls 335a and 335b is small, the concentration of thermal stress due to the axial thermal expansion of the wall portion 333 at the boundary portions P13 and P14 is relaxed. can do.

そして、底部335cと第2応力緩和傾斜部336cの境界部分P11と、底部335cと第2応力緩和傾斜部336dの境界部分P12においても、壁部333を形成する領域Aと、第2応力緩和傾斜部336cおよび336dを形成する領域B-1の間で熱膨張の方向の変化が図8(b)に比べて小さく、熱膨張の方向が大きく変化するのを抑制するため、境界部分P11およびP12での壁部333の軸方向の熱膨張による熱応力の集中を緩和することができる。 Further, in the boundary portion P11 between the bottom portion 335c and the second stress relaxation inclined portion 336c and the boundary portion P12 between the bottom portion 335c and the second stress relaxation inclined portion 336d, the region A forming the wall portion 333 and the second stress relaxation inclination are also formed. The change in the direction of thermal expansion between the regions B-1 forming the portions 336c and 336d is smaller than that in FIG. 8 (b), and the boundary portions P11 and P12 are suppressed in order to suppress a large change in the direction of thermal expansion. It is possible to alleviate the concentration of thermal stress due to the axial thermal expansion of the wall portion 333 in the wall portion 333.

さらに、第1応力緩和傾斜部336aと第2応力緩和傾斜部336cの境界部分と、第1応力緩和傾斜部336bと第2応力緩和傾斜部336dの境界部分においても、第2応力緩和傾斜部336cおよび336dを形成する領域B-1と、第1応力緩和傾斜部336aおよび336bを形成する領域B-2の間で熱膨張の方向の変化が大きく変化するのを抑制するため、第1応力緩和傾斜部336aと第2応力緩和傾斜部336cの境界部分P15、第1応力緩和傾斜部336bと第2応力緩和傾斜部336dの境界部分P16での壁部333の軸方向の熱膨張による熱応力の集中を緩和することができる。 Further, at the boundary portion between the first stress relaxation inclined portion 336a and the second stress relaxation inclined portion 336c and the boundary portion between the first stress relaxation inclined portion 336b and the second stress relaxation inclined portion 336d, the second stress relaxation inclined portion 336c is also formed. And the first stress relaxation in order to suppress a large change in the direction of thermal expansion between the region B-1 forming the 336d and the region B-2 forming the first stress relaxation inclined portions 336a and 336b. Thermal stress due to axial thermal expansion of the wall portion 333 at the boundary portion P15 between the inclined portion 336a and the second stress relaxation inclined portion 336c and the boundary portion P16 between the first stress relaxation inclined portion 336b and the second stress relaxation inclined portion 336d. Concentration can be eased.

本出願人により実際に熱応力解析を行った結果では、第1軸方向穴331の半径方向の長さRを例えば3mmしか取れない構造であっても、図8(a)および図8(b)のように、1段の面取りを行って傾斜部335dおよび335eを形成した場合に比較して熱応力を約3分の2まで低下させることが可能となった。 As a result of actual thermal stress analysis by the applicant, FIGS. 8 (a) and 8 (b) have a structure in which the radial length R of the first axial hole 331 can be obtained only, for example, 3 mm. ), It has become possible to reduce the thermal stress to about two-thirds as compared with the case where the inclined portions 335d and 335e are formed by one-step chamfering.

したがって、側壁335aおよび335bと底部335cの間に2段の応力緩和傾斜部336を形成することにより、壁部333の軸方向の熱膨張による第1軸方向穴331の底部335cの周辺(底部周辺)における熱応力の集中を解消することができ、絶縁部材33の繰り返しの熱応力の集中による耐久性の低下を抑制することができ、割れやクラックの発生を抑制して長寿命化することができる。ここで、第1軸方向穴331の底部335cの周辺(底部周辺)とは、第1軸方向穴331の側壁335aと底部335cの境界部分P0aの周辺や、第1軸方向穴331の側壁335bと底部335cの境界部分P0bの周辺のことを示す。以下の説明では底部周辺と省略して表記することとする。 Therefore, by forming the two-stage stress relaxation inclined portion 336 between the side walls 335a and 335b and the bottom portion 335c, the periphery of the bottom portion 335c of the first axial hole 331 due to the axial thermal expansion of the wall portion 333 (around the bottom portion). ), The concentration of thermal stress can be eliminated, the deterioration of durability due to the repeated concentration of thermal stress of the insulating member 33 can be suppressed, the occurrence of cracks and cracks can be suppressed, and the life can be extended. can. Here, the periphery of the bottom portion 335c of the first axial direction hole 331 (periphery of the bottom portion) is the periphery of the boundary portion P0a between the side wall 335a of the first axial direction hole 331 and the bottom portion 335c, and the side wall 335b of the first axial direction hole 331. And the periphery of the boundary portion P0b of the bottom 335c. In the following explanation, it will be abbreviated as around the bottom.

また、第1軸方向穴331と同様に、第2軸方向穴332についても、第2軸方向穴332の底部周辺には、第1応力緩和傾斜部336aおよび336bと、第2応力緩和傾斜部336cおよび336dが形成されており、2段の応力緩和傾斜部336を形成することにより、上記と同様の作用効果を得ることができる。 Further, similarly to the first axial hole 331, the second axial hole 332 also has the first stress relaxation inclined portions 336a and 336b and the second stress relaxation inclined portion around the bottom of the second axial direction hole 332. 336c and 336d are formed, and by forming the two-stage stress relaxation inclined portion 336, the same action and effect as described above can be obtained.

以上のとおり説明してきた本実施形態によれば、回転子3の直径が小さく、回転子3の静電容量を低減させる場合で、第1軸方向穴331および第2軸方向穴332の底部周辺に十分な大きさの1段の面取りを行うことができないときでも、熱応力の集中を緩和して絶縁部材33の第1軸方向穴331と第2軸方向穴332の底部周辺の熱応力を低減させて、絶縁部材33を割れやクラックか発生しづらくさせることができ、耐久性を向上させることができる。 According to the present embodiment described above, when the diameter of the rotor 3 is small and the electrostatic capacity of the rotor 3 is reduced, the periphery of the bottom of the first axial hole 331 and the second axial hole 332. Even when one-step chamfering of sufficient size cannot be performed, the concentration of thermal stress is relaxed to reduce the thermal stress around the bottoms of the first axial hole 331 and the second axial hole 332 of the insulating member 33. By reducing the number, the insulating member 33 can be made less likely to be cracked or cracked, and the durability can be improved.

上記説明では、永久磁石電動機1の使用環境や駆動状態で固定子2の巻線23での発熱によって壁部333が熱膨張する場合について説明したが、永久磁石電動機1の使用環境や駆動状態によって温度降下する際の熱収縮時にも第1軸方向穴331および第2軸方向穴332の底部周辺における熱応力の集中を緩和することができる。 In the above description, the case where the wall portion 333 thermally expands due to the heat generated by the winding 23 of the stator 2 in the usage environment and the driving state of the permanent magnet motor 1 has been described, but it depends on the usage environment and the driving state of the permanent magnet motor 1. The concentration of thermal stress around the bottoms of the first axial hole 331 and the second axial hole 332 can be relaxed even during thermal shrinkage when the temperature drops.

したがって、シャフト35を支持する第1軸受41および第2軸受42の電食を防止するために回転子3に絶縁部材33を配置し、絶縁部材33に第1軸方向穴331と第2軸方向穴332を形成した場合に、直径の小さな回転子3を製作する際に問題となる絶縁部材33に発生する熱応力の集中を緩和させることができる。結果、回転子3の静電容量を低減するとともに、耐久性を有する小型の回転子3を製作することができ、永久磁石電動機1自体も小型化することができる。 Therefore, in order to prevent electrolytic corrosion of the first bearing 41 and the second bearing 42 that support the shaft 35, the insulating member 33 is arranged in the rotor 3, and the insulating member 33 has the first axial hole 331 and the second axial direction. When the hole 332 is formed, it is possible to alleviate the concentration of thermal stress generated in the insulating member 33, which is a problem when the rotor 3 having a small diameter is manufactured. As a result, the capacitance of the rotor 3 can be reduced, a small rotor 3 having durability can be manufactured, and the permanent magnet motor 1 itself can be miniaturized.

なお、上記実施形態では、第1応力緩和傾斜部336aおよび336bと第2応力緩和傾斜部336cおよび336dを、それぞれ平面による面取りの形状とした場合について説明したが、これに限定されるものではなく、平面による面取りに代えて湾曲面による面取りを適用することもできる。 In the above embodiment, the case where the first stress relaxation inclined portions 336a and 336b and the second stress relaxation inclined portions 336c and 336d are chamfered by a plane has been described, but the present invention is not limited thereto. , Chamfering with a curved surface can be applied instead of chamfering with a flat surface.

また、上記実施形態では、第1軸方向穴331および第2軸方向穴332の底部周辺に2段の熱応力緩和傾斜部336を形成した場合について説明したが、これに限定されるものではなく、3段以上の熱応力傾斜部を形成するようにしてもよい。 Further, in the above embodiment, the case where the two-stage thermal stress relaxation inclined portion 336 is formed around the bottom of the first axial hole 331 and the second axial hole 332 has been described, but the present invention is not limited thereto. It is also possible to form three or more stages of thermal stress gradients.

また、上記実施形態では、第1軸方向穴331および第2軸方向穴332の端面形状は、円周方向に沿う円弧状に形成する場合に限らず、円周方向の両端部を半円形状とすることができる。また、第1軸方向穴331および第2軸方向穴332の個数は8個に限定されるものではなく、絶縁部材33の機械的強度を確保できれば、任意の個数とすることができる。また、第1軸方向穴331および第2軸方向穴332の個数は、複数に限定されるものではなく、第1軸方向穴331および第2軸方向穴332を1個の穴として円周方向に連続する形状に形成する場合でもよい。 Further, in the above embodiment, the end face shapes of the first axial hole 331 and the second axial hole 332 are not limited to the case where they are formed in an arc shape along the circumferential direction, and both ends in the circumferential direction are semicircular. Can be. Further, the number of the first axial hole 331 and the second axial hole 332 is not limited to eight, and can be any number as long as the mechanical strength of the insulating member 33 can be secured. Further, the number of the first axial hole 331 and the second axial hole 332 is not limited to a plurality, and the first axial hole 331 and the second axial hole 332 are regarded as one hole in the circumferential direction. It may be formed into a continuous shape.

また、上記実施形態では、第1軸方向穴331と第2軸方向穴332を壁部333に対して対称形状に形成しているので、第1軸方向穴331と第2軸方向穴332のそれぞれの底部周辺に応力緩和傾斜部336を形成するようにしたが、これに限定されるものではなく、第1軸方向穴331と第2軸方向穴332を壁部333に対して非対称形状に形成した場合には、第1軸方向穴331および第2軸方向穴332のいずれか一方の、熱応力の集中度合いの強い方の底部周辺に応力緩和傾斜部を形成してもよい。 Further, in the above embodiment, since the first axial hole 331 and the second axial hole 332 are formed symmetrically with respect to the wall portion 333, the first axial hole 331 and the second axial hole 332 are formed. A stress relaxation inclined portion 336 is formed around each bottom, but the present invention is not limited to this, and the first axial hole 331 and the second axial hole 332 have an asymmetrical shape with respect to the wall 333. When formed, a stress relaxation inclined portion may be formed around the bottom of either the first axial hole 331 or the second axial hole 332, whichever has a stronger degree of concentration of thermal stress.

さらに、上記実施形態では、外周側鉄心32の外周面に永久磁石31を配置した表面磁石形の回転子3に本発明を適用した場合について説明したが、これに限定されるものではなく、外周側鉄心32の外周面に対する弦位置に軸方向に延長するスロットを形成し、このスロット内に永久磁石を配置した埋込磁石形の回転子にも本発明を適用することができる。 Further, in the above embodiment, the case where the present invention is applied to the surface magnet type rotor 3 in which the permanent magnet 31 is arranged on the outer peripheral surface of the outer peripheral side iron core 32 has been described, but the present invention is not limited to this, and the outer periphery is not limited thereto. The present invention can also be applied to an embedded magnet type rotor in which a slot extending in the axial direction is formed at a chord position with respect to the outer peripheral surface of the side iron core 32 and a permanent magnet is arranged in this slot.

1…永久磁石電動機
2…固定子
21…固定子鉄心
22…インシュレータ
23…巻線
3…回転子
31…永久磁石
311…永久磁石片
32…外周側鉄心
321…内周面
33…絶縁部材
33a…一端面
33b…他端面
331…第1軸方向穴
332…第2軸方向穴
333…壁部
334…隔壁
335a,335b…側壁
335c…底部
335d、335e…傾斜部
336…応力緩和傾斜部
336a,336b…第1応力緩和傾斜部
336c,336d…第2応力緩和傾斜部
34…内周側鉄心
341…外周面
343…貫通穴
35…シャフト
41…第1軸受
42…第2軸受
51…第1ブラケット
511…ブラケット本体
512…第1軸受収容部
52…第2ブラケット
521…第2軸受収容部
522…フランジ部
O…中心軸
1 ... Permanent magnet motor 2 ... Steader 21 ... Steader iron core 22 ... Insulator 23 ... Winding 3 ... Rotor 31 ... Permanent magnet 311 ... Permanent magnet piece 32 ... Outer peripheral side iron core 321 ... Inner peripheral surface 33 ... Insulating member 33a ... One end surface 33b ... End surface 331 ... First axial hole 332 ... Second axial hole 333 ... Wall part 334 ... Partition 335a, 335b ... Side wall 335c ... Bottom 335d, 335e ... Inclined part 336 ... Stress relaxation inclined part 336a, 336b ... 1st stress relaxation inclined portion 336c, 336d ... 2nd stress relaxation inclined portion 34 ... Inner peripheral side iron core 341 ... Outer peripheral surface 343 ... Through hole 35 ... Shaft 41 ... 1st bearing 42 ... 2nd bearing 51 ... 1st bracket 511 ... Bracket body 512 ... 1st bearing accommodating part 52 ... 2nd bracket 521 ... 2nd bearing accommodating part 522 ... Flange part O ... Central axis

Claims (4)

モータ外郭に固定された固定子と前記固定子の内側に配置された回転子を備え、
前記回転子は、永久磁石を配置した環状の外周側鉄心と、前記外周側鉄心の内径側に位置する環状の内周側鉄心と、前記外周側鉄心と前記内周側鉄心の間に位置する絶縁部材と、前記内周側鉄心を支持し、前記モータ外郭に軸受によって回転自在に支持されたシャフトを備え、
前記絶縁部材は、軸方向の一端面に開口する第1軸方向穴と、軸方向の他端面に開口する第2軸方向穴と、前記第1軸方向穴と前記第2軸方向穴の間に形成する壁部を設け、
前記第1軸方向穴と前記第2軸方向穴のそれぞれは、内径側の側壁と外径側の側壁と底部とを有し、前記内径側の側壁と前記外径側の側壁と前記底部とは金型による成型で形成され、
前記第1軸方向穴および前記第2軸方向穴の少なくとも一方には、前記内径側の側壁と前記底部の境界部分の周辺、および、前記外径側の側壁と前記底部との境界部分の周辺熱応力を緩和するための2段以上の応力緩和傾斜部を形成したことを特徴とする永久磁石電動機。
It has a stator fixed to the outer shell of the motor and a rotor placed inside the stator.
The rotor is located between the annular outer peripheral side iron core in which the permanent magnet is arranged, the annular inner peripheral side iron core located on the inner diameter side of the outer peripheral side iron core, and the outer peripheral side iron core and the inner peripheral side iron core. An insulating member and a shaft that supports the inner peripheral side iron core and is rotatably supported by bearings on the outer shell of the motor are provided.
The insulating member is between a first axial hole that opens on one end surface in the axial direction, a second axial hole that opens on the other end surface in the axial direction, and a first axial hole and a second axial hole. A wall part to be formed is provided in
Each of the first axial hole and the second axial hole has a side wall on the inner diameter side, a side wall on the outer diameter side, and a bottom portion, and the side wall on the inner diameter side, the side wall on the outer diameter side, and the bottom portion. Is formed by molding with a mold,
At least one of the first axial hole and the second axial hole is the periphery of the boundary portion between the inner diameter side side wall and the bottom portion , and the boundary portion between the outer diameter side side wall and the bottom portion. A permanent magnet motor characterized by forming two or more stages of stress relaxation slopes around it to relieve thermal stress.
前記第1軸方向穴および前記第2軸方向穴の少なくとも一方の前記側壁と前記底部の境界部分の周辺には、前記壁部の軸方向の熱膨張を吸収することで熱応力を緩和することができる前記底部からの軸方向長さに相当する前記第1軸方向穴および前記第2軸方向穴の少なくとも一方の側壁の端部から軸方向に対して第1傾斜角により傾斜する第1応力緩和傾斜部が形成され、前記第1応力緩和傾斜部と前記底部の間に第2傾斜角により傾斜する第2応力緩和傾斜部が形成されていることを特徴とする請求項1に記載の永久磁石電動機。 Around the boundary between the side wall and the bottom of at least one of the first axial hole and the second axial hole, thermal stress is relaxed by absorbing the axial thermal expansion of the wall portion. First stress that is inclined by the first tilt angle with respect to the axial direction from the end of at least one side wall of the first axial hole and the second axial hole corresponding to the axial length from the bottom. The permanent according to claim 1, wherein a relaxation inclined portion is formed, and a second stress relaxation inclined portion inclined by a second inclination angle is formed between the first stress relaxation inclined portion and the bottom portion. Magnet electric motor. 前記第2応力緩和傾斜部の軸方向に対する第2傾斜角は、前記第1応力緩和傾斜部の軸方向に対する第1傾斜角より大きく設定されていることを特徴とする請求項2に記載の永久磁石電動機。 The permanent according to claim 2, wherein the second inclination angle of the second stress relaxation inclination portion with respect to the axial direction is set to be larger than the first inclination angle of the first stress relaxation inclination portion with respect to the axial direction. Magnet motor. 前記第1軸方向穴と前記第2軸方向穴は、円周方向に複数設けられ、複数の前記第1軸方向穴のそれぞれの間、および、複数の前記第2軸方向穴のそれぞれの間に隔壁が形成され、前記第1軸方向穴と前記第2軸方向穴の端面形状が円周方向に沿う円弧状に形成されることを特徴とする請求項1から3の何れか一項に記載の永久磁石電動機。 A plurality of the first axial hole and the second axial hole are provided in the circumferential direction, and between each of the plurality of first axial holes and between each of the plurality of second axial holes. The partition wall is formed in the above, and the end face shapes of the first axial hole and the second axial hole are formed in an arc shape along the circumferential direction, according to any one of claims 1 to 3. The described permanent magnet motor.
JP2018058723A 2018-03-26 2018-03-26 Permanent magnet motor Active JP7091764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058723A JP7091764B2 (en) 2018-03-26 2018-03-26 Permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058723A JP7091764B2 (en) 2018-03-26 2018-03-26 Permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2019170143A JP2019170143A (en) 2019-10-03
JP7091764B2 true JP7091764B2 (en) 2022-06-28

Family

ID=68107658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058723A Active JP7091764B2 (en) 2018-03-26 2018-03-26 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP7091764B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220473A (en) 2010-05-31 2010-09-30 Panasonic Corp Motor
JP2014112038A (en) 2012-12-05 2014-06-19 Alps Electric Co Ltd Physical quantity sensor and physical quantity sensor device
JP2015106928A (en) 2013-11-28 2015-06-08 三菱電機株式会社 Rotor for rotary electric machine, rotary electric machine, manufacturing method of rotor, manufacturing method of rotary electric machine, and core member for rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220473A (en) 2010-05-31 2010-09-30 Panasonic Corp Motor
JP2014112038A (en) 2012-12-05 2014-06-19 Alps Electric Co Ltd Physical quantity sensor and physical quantity sensor device
JP2015106928A (en) 2013-11-28 2015-06-08 三菱電機株式会社 Rotor for rotary electric machine, rotary electric machine, manufacturing method of rotor, manufacturing method of rotary electric machine, and core member for rotor

Also Published As

Publication number Publication date
JP2019170143A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US8896175B2 (en) Rotor of an electric machine with embedded permanent magnets and electric machine
JP6711901B2 (en) Electric motor and air conditioner
JP6599005B2 (en) Consecutive pole type rotor, electric motor and air conditioner
US11658527B2 (en) Rotor and motor comprising same
JP6832935B2 (en) Consequential pole type rotor, electric motor and air conditioner
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
JPWO2018179831A1 (en) motor
JP6855869B2 (en) Permanent magnet motor
JP6332376B2 (en) Permanent magnet motor
JP7091764B2 (en) Permanent magnet motor
JP5193094B2 (en) Permanent magnet motor
JPWO2018179832A1 (en) motor
WO2020203292A1 (en) Rotor and electric motor including rotor
JP5256147B2 (en) Rotor and motor
JP7119509B2 (en) permanent magnet motor
WO2020203293A1 (en) Electric motor
JP5589662B2 (en) Split rotor and electric motor
JP2020010539A (en) Rotor and brushless motor
JP5258406B2 (en) Permanent magnet motor
JP4374507B2 (en) Electric motor
JP2017085804A (en) Permanent magnet electric motor
JP7361813B2 (en) rotating electric machine
WO2020213336A1 (en) Rotor, and motor provided with rotor
JP2024107634A (en) Rotor and pump device
WO2020110604A1 (en) Motor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R151 Written notification of patent or utility model registration

Ref document number: 7091764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151