JP7119509B2 - permanent magnet motor - Google Patents

permanent magnet motor Download PDF

Info

Publication number
JP7119509B2
JP7119509B2 JP2018069714A JP2018069714A JP7119509B2 JP 7119509 B2 JP7119509 B2 JP 7119509B2 JP 2018069714 A JP2018069714 A JP 2018069714A JP 2018069714 A JP2018069714 A JP 2018069714A JP 7119509 B2 JP7119509 B2 JP 7119509B2
Authority
JP
Japan
Prior art keywords
axial
axial hole
stress relaxation
side wall
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018069714A
Other languages
Japanese (ja)
Other versions
JP2019180187A (en
Inventor
哲也 鶴田
正憲 村上
慎悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018069714A priority Critical patent/JP7119509B2/en
Publication of JP2019180187A publication Critical patent/JP2019180187A/en
Application granted granted Critical
Publication of JP7119509B2 publication Critical patent/JP7119509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、絶縁部材を有する回転子を備えた永久磁石電動機に関する。 The present invention relates to a permanent magnet motor with a rotor having insulating members.

従来の永久磁石電動機には、回転磁界を発生する固定子の内側に、永久磁石を有する回転子を回転可能に配置したインナーロータ型の永久磁石電動機が知られている。この永久磁石電動機は、例えば、空気調和機に搭載する送風ファンの回転駆動用として用いられる。 2. Description of the Related Art Among conventional permanent magnet motors, there is known an inner rotor type permanent magnet motor in which a rotor having permanent magnets is rotatably arranged inside a stator that generates a rotating magnetic field. This permanent magnet motor is used, for example, for rotating a blower fan mounted on an air conditioner.

この永久磁石電動機は、高周波スイッチングを行うPWM方式のインバータで駆動する場合に、軸受の内輪と外輪の間に電位差(軸電圧)を生じる。この軸電圧が軸受内部の油膜の絶縁破壊電圧に達すると、軸受内部に電流が流れて軸受に電食を発生させる。この軸受の電食を防止するために、例えば、絶縁部材を有する回転子を備えたものが知られている(例えば、特許文献1参照)。 When this permanent magnet motor is driven by a PWM type inverter that performs high-frequency switching, a potential difference (shaft voltage) is generated between the inner ring and the outer ring of the bearing. When this shaft voltage reaches the dielectric breakdown voltage of the oil film inside the bearing, a current flows inside the bearing, causing electrolytic corrosion in the bearing. In order to prevent the electrolytic corrosion of the bearing, for example, a bearing having a rotor having an insulating member is known (see, for example, Patent Document 1).

この回転子は、例えば、環状の永久磁石と、永久磁石の内径側に位置する環状の外周側鉄心と、外周側鉄心の内径側に位置する環状の内周側鉄心と、外周側鉄心と内周側鉄心の間に位置する絶縁部材と、内周側鉄心の中心軸の方向に貫通する貫通孔に固着されたシャフトを備えている。 This rotor includes, for example, an annular permanent magnet, an annular outer core located on the inner diameter side of the permanent magnet, an annular inner core located on the inner diameter side of the outer core, an outer core and an inner core. It has an insulating member positioned between the peripheral cores, and a shaft fixed to a through hole penetrating the inner peripheral core in the direction of the central axis.

このような回転子の絶縁部材は、例えば、外周側鉄心と内周側鉄心の間に充填された樹脂で形成されている。 Such an insulating member of the rotor is made of, for example, a resin filled between the outer core and the inner core.

特開2012-39875号公報JP 2012-39875 A

ところで、上述した軸受の電食は、永久磁石電動機をPWM方式のインバータで駆動すると、固定子の巻線の中性点電位が零にならず、コモンモード電圧と呼ばれる電圧が発生する。このコモンモード電圧は、スイッチングによる高周波成分が含まれるため、永久磁石電動機の内部の浮遊容量によって、軸受の外輪と内輪の間に軸電圧を発生させる。 By the way, when the permanent magnet motor is driven by a PWM type inverter, the neutral point potential of the windings of the stator does not become zero, and a voltage called common mode voltage is generated in the above-described electrolytic corrosion of the bearing. Since this common mode voltage contains a high frequency component due to switching, the stray capacitance inside the permanent magnet motor generates a shaft voltage between the outer ring and the inner ring of the bearing.

コモンモード電圧は、固定子の巻線とシャフトの間の静電容量分布と、シャフトとインバータ駆動用回路基板の間の静電容量により、軸受の内輪側(シャフト側)の電位として分圧される。そして、コモンモード電圧は、固定子の巻線とブラケットの間の静電容量とブラケットとインバータ駆動用回路基板の間の静電容量により、軸受の外輪側(ブラケット側)の電位として分圧される。この軸受の内輪側と外輪側の電位差が軸電圧となる。 The common mode voltage is divided as potential on the inner ring side (shaft side) of the bearing by the electrostatic capacitance distribution between the stator windings and the shaft and the electrostatic capacitance between the shaft and the inverter drive circuit board. be. The common mode voltage is divided as the potential on the outer ring side (bracket side) of the bearing by the capacitance between the stator windings and the bracket and the capacitance between the bracket and the inverter drive circuit board. be. The potential difference between the inner ring side and the outer ring side of this bearing becomes the shaft voltage.

回転子の絶縁部材の厚みの上限が構造上規制され、且つ材料としてPBT樹脂を使用しても回転子側(軸受内輪側)のインピーダンスが低く、軸電圧が高い場合に、軸電圧を抑制するため、特許文献1に記載の先行技術では、絶縁部材の一部に空気層や空孔を形成するようにしている。空気の比誘電率は、ほぼ1であるため、3程度のPBTに比べて小さい。したがって、空気層や空孔を設けることによって回転子の静電容量を小さくすることが可能となり、回転子側(軸受内輪側)のインピーダンスを高くするようにしている。 Shaft voltage is suppressed when the upper limit of the thickness of the rotor insulation member is structurally regulated, and the impedance on the rotor side (bearing inner ring side) is low even if PBT resin is used as the material, and the shaft voltage is high. Therefore, in the prior art described in Patent Document 1, an air layer or holes are formed in a part of the insulating member. The dielectric constant of air is approximately 1, which is small compared to PBT, which is about 3. Therefore, by providing an air layer or air holes, the electrostatic capacity of the rotor can be reduced, and the impedance on the rotor side (bearing inner ring side) is increased.

しかしながら、特許文献1に記載の回転子のように、絶縁部材に空気層を形成するために空孔として貫通孔を形成する場合には、絶縁部材の強度が低下することから、貫通孔の内部に、貫通孔を絶縁部材の軸方向の一端側に開口する第1軸方向穴と、絶縁部材の軸方向の他端側に開口する第2軸方向穴に区切る壁部を設け、この壁部により絶縁部材の強度を確保することが考えられている。この壁部を設けることで、壁部の一端側には第1軸方向穴の底部が形成され、壁部の他端側には第2軸方向穴の底部が形成される。
一方で、永久磁石電動機の使用環境や駆動時の固定子巻線からの発熱によって、絶縁部材に熱応力が生じる。特に、第1軸方向穴の軸方向側壁と底部が交わる部分や、第2軸方向穴の軸方向側壁と底部が交わる部分に熱応力が集中する。熱応力が集中すると、絶縁部材の耐久性の低下や割れやクラックの発生が懸念される。この熱応力集中を緩和するために、第1軸方向穴の軸方向側壁と底部が交わる部分や、第2軸方向穴の軸方向側壁と底部が交わる部分にR面取りやC面取りを形成することが行われている。
However, as in the rotor described in Patent Document 1, when through holes are formed as holes to form an air layer in the insulating member, the strength of the insulating member is reduced, so the inside of the through holes a wall portion that divides the through-hole into a first axial hole opening at one axial end side of the insulating member and a second axial hole opening at the other axial end side of the insulating member; It is considered to ensure the strength of the insulating member by By providing this wall portion, the bottom portion of the first axial hole is formed on one end side of the wall portion, and the bottom portion of the second axial direction hole is formed on the other end side of the wall portion.
On the other hand, thermal stress is generated in the insulating member due to the operating environment of the permanent magnet motor and the heat generated from the stator windings during driving. In particular, the thermal stress concentrates on the portion where the axial side wall and the bottom of the first axial hole intersect and the portion where the axial side wall and the bottom of the second axial hole intersect. When the thermal stress concentrates, there is a concern that the insulating member may be deteriorated in durability or cracked. In order to alleviate this thermal stress concentration, the portion where the axial side wall and bottom of the first axial hole intersect and the portion where the axial side wall and bottom of the second axial hole intersect are rounded or chamfered. is being done.

第1軸方向穴および第2軸方向穴は、図3および図4に示すように、例えば、端面形状が円周方向に沿う円弧状に形成され、端面から軸方向に沿う方向に深さを有している。
しかし、半径が小さく軸方向に厚い回転子に対して静電容量を低減させる場合、第1軸方向穴および第2軸方向穴の深さを深くする必要がある。そして、絶縁部材の機械的強度や、第1軸方向穴および第2軸方向穴の成形時の金型の抜き勾配を考慮した場合、図3および図4に示すように、第1軸方向穴および第2軸方向穴の半径方向の長さRを十分に取ることができない。
As shown in FIGS. 3 and 4, the first axial hole and the second axial hole are, for example, arcuate in the end face shape along the circumferential direction, and the depth extends from the end face in the axial direction. have.
However, if the capacitance is to be reduced for a rotor that is small in radius and thick in the axial direction, it is necessary to increase the depth of the first axial hole and the second axial hole. Considering the mechanical strength of the insulating member and the draft angle of the mold when forming the first axial hole and the second axial hole, as shown in FIGS. and the radial length R of the second axial hole cannot be sufficiently taken.

結果、図9に示すように、第1軸方向穴HL1の側壁SW1と底部BSが交わる部分や、第1軸方向穴HL1の側壁SW2と底部BSが交わる部分、あるいは、同様に第2軸方向穴の両側壁と底部が交わる部分の熱応力集中を緩和するために、C面取りによって軸方向に対して、例えば、45度の傾斜角θ1の傾斜部IS1、IS2を形成する。なお、第2軸方向穴は、壁部W0に対して第1軸方向穴HL1と対称に形成されているので、図示を省略する。第1軸方向穴HL1および第2軸方向穴を形成する絶縁部材IRは、壁部W0を形成する領域A、傾斜部IS1、IS2を形成する領域B、側壁SW1、SW2を形成する領域Cを有する構造になっている。第1軸方向穴HL1と第2軸方向穴はそれぞれ、傾斜部IS1、IS2と側壁SW1、SW2との境界部分P3、P4と、傾斜部IS1、IS2と底部BSとの境界部分P1、P2の間の領域Bが狭くなり、領域Bの軸方向長さL1を十分にとることができない。この場合には、領域Aでの熱膨張を領域Bで吸収することができず、領域Bと領域Cで示す熱膨張の方向が大きく異なるため、領域Bと領域Cとの境界部分P3、P4に熱応力が集中してしまう。 As a result, as shown in FIG. 9, the portion where the side wall SW1 of the first axial hole HL1 and the bottom portion BS intersect, the portion where the side wall SW2 of the first axial hole HL1 and the bottom portion BS intersect, or similarly the second axial direction In order to relieve the concentration of thermal stress at the intersections of the both side walls and the bottom of the hole, the inclined portions IS1 and IS2 are formed at an inclination angle θ1 of, for example, 45 degrees with respect to the axial direction by C-chamfering. The second axial hole is formed symmetrically with the first axial hole HL1 with respect to the wall W0, so illustration thereof is omitted. The insulating member IR forming the first axial hole HL1 and the second axial hole has a region A forming the wall portion W0, a region B forming the inclined portions IS1 and IS2, and a region C forming the side walls SW1 and SW2. It has a structure with The first axial hole HL1 and the second axial hole are formed at boundary portions P3 and P4 between the inclined portions IS1 and IS2 and the side walls SW1 and SW2 and boundary portions P1 and P2 between the inclined portions IS1 and IS2 and the bottom portion BS, respectively. The area B between them becomes narrow, and the axial length L1 of the area B cannot be sufficiently secured. In this case, the thermal expansion in the region A cannot be absorbed by the region B, and the directions of thermal expansion shown in the regions B and C are greatly different. Thermal stress is concentrated in

一般的に、金属製の内周側鉄心Ci及び外周側鉄心Coや絶縁部材IRは、温度が上昇すると膨張する。その膨張方向は、軸方向への膨張と内周側から外周側への膨張に分けられる。また、絶縁部材IRの線膨張係数は、絶縁部材IRの内周側のシャフトSHに固定された内周側鉄心Ciや、絶縁部材IRの外周側の外周側鉄心Coの線膨張係数に対して大きい。これによって、外周側の側壁SW2およびC面取りの傾斜部IS2では、最外周位置に外周側鉄心Coが存在することから、外周側鉄心Coによって内周側から外周側への熱膨張が阻止される。 In general, the metal inner core Ci, outer core Co, and insulating member IR expand when the temperature rises. The direction of expansion is divided into expansion in the axial direction and expansion from the inner peripheral side to the outer peripheral side. Further, the coefficient of linear expansion of the insulating member IR is relative to the coefficient of linear expansion of the inner peripheral core Ci fixed to the shaft SH on the inner peripheral side of the insulating member IR and the outer peripheral core Co of the outer peripheral side of the insulating member IR. big. As a result, in the outer peripheral side wall SW2 and the C-chamfered inclined portion IS2, the outer peripheral core Co is present at the outermost peripheral position, so thermal expansion from the inner peripheral side to the outer peripheral side is prevented by the outer peripheral core Co. .

このため、領域Aと領域Bで示す熱膨張の方向は、底部BSと傾斜部IS2において、それぞれの底面や傾斜面に垂直な方向にならず、外周側に傾いた方向になる。これにより、領域Bと領域Cで示す熱膨張の方向の変化は、内周側の傾斜部IS1と側壁SW1で示す方向の変化と比べて、外周側の傾斜部IS2と側壁SW2で示す方向の変化の方が大きくなっている。したがって、内周側のC面取りの傾斜部IS1と側壁SW1の境界部分P3よりも、外周側のC面取りの傾斜部IS2と側壁SW2の境界部分P4に熱応力がより集中してしまう。 Therefore, the directions of thermal expansion indicated by the regions A and B are not perpendicular to the bottom surfaces and inclined surfaces of the bottom portion BS and the inclined portion IS2, but are inclined toward the outer periphery. As a result, the change in the direction of thermal expansion indicated by the regions B and C is greater than the change in the direction indicated by the inclined portion IS1 and the side wall SW1 on the inner peripheral side. The change is bigger. Therefore, the thermal stress concentrates more at the boundary portion P4 between the C-chamfered inclined portion IS2 on the outer peripheral side and the side wall SW2 than on the boundary portion P3 between the C-chamfered inclined portion IS1 on the inner peripheral side and the side wall SW1.

そこで、本発明は、上記特許文献1に記載された先行技術の課題に着目してなされたものであり、絶縁部材の貫通孔の内部に第1軸方向穴と第2軸方向穴に区切る壁部を設け、壁部の一端側に第1軸方向穴の底部が形成され、壁部の他端側に第2軸方向穴の底部が形成される場合に、第1軸方向穴および第2軸方向穴の側壁と底部の境界部分や、第1軸方向穴および第2軸方向穴の傾斜部と側壁の境界部分の外周側に対する熱応力の集中を緩和できる永久磁石電動機を提供することを目的としている。 Therefore, the present invention has been made by paying attention to the problem of the prior art described in the above-mentioned Patent Document 1, and includes a wall that divides the interior of the through hole of the insulating member into a first axial hole and a second axial hole. is provided, the bottom of the first axial hole is formed on one end of the wall, and the bottom of the second axial hole is formed on the other end of the wall, the first axial hole and the second To provide a permanent magnet motor capable of alleviating the concentration of thermal stress on the boundary between the side wall and the bottom of an axial hole and on the outer peripheral side of the boundary between the inclined portion and the side wall of a first axial hole and a second axial hole. purpose.

上記課題を解決するために、本発明の永久磁石電動機の一態様は、モータ外郭に固定された固定子と固定子の内側に配置された回転子を備え、回転子は、永久磁石を配置した環状の外周側鉄心と、外周側鉄心の内径側に位置する環状の内周側鉄心と、外周側鉄心と内周側鉄心の間に位置する絶縁部材と、内周側鉄心を支持し、モータ外郭に軸受によって回転自在に支持されたシャフトを備え、絶縁部材は、軸方向の一端面に開口する第1軸方向穴と、軸方向の他端面に開口する第2軸方向穴と、第1軸方向穴と第2軸方向穴の間に形成される壁部を有し、壁部の一端側に第1軸方向穴の底部が形成され、壁部の他端側に第2軸方向穴の底部が形成され、第1軸方向穴と第2軸方向穴のそれぞれは、軸方向に沿って形成された内周側の側壁と、軸方向に沿って形成された外周側の側壁と、を有し、第1軸方向穴および第2軸方向穴の少なくとも一方の、内周側の側壁と底部の境界部分の周辺に熱応力を緩和するための第1応力緩和傾斜部形成され、第1応力緩和傾斜部は内周側の側壁に対して傾斜し、外周側の側壁と底部の境界部分の周辺に熱応力を緩和するための第2応力緩和傾斜部形成され、第2応力緩和傾斜部は外周側の側壁に対して傾斜し、第2応力緩和傾斜部の軸方向長さを、第1応力緩和傾斜部の軸方向長さよりも長くした永久磁石電動機である
In order to solve the above problems, one aspect of the permanent magnet electric motor of the present invention comprises a stator fixed to the motor shell and a rotor arranged inside the stator, and the rotor is arranged with permanent magnets. An annular outer core, an annular inner core positioned on the inner diameter side of the outer core, an insulating member positioned between the outer core and the inner core, and a motor supporting the inner core. The insulating member has a shaft rotatably supported by a bearing on the outer shell, and the insulating member includes a first axial hole opening at one end face in the axial direction, a second axial hole opening at the other end face in the axial direction, a first A wall formed between the axial hole and the second axial hole, the bottom of the first axial hole being formed on one end of the wall, and the second axial hole being formed on the other end of the wall and each of the first axial hole and the second axial hole has an inner side wall formed along the axial direction, an outer side wall formed along the axial direction, and a first stress relieving inclined portion for relieving thermal stress is formed around a boundary portion between an inner peripheral side wall and a bottom portion of at least one of the first axial hole and the second axial hole. , the first stress relaxation inclined portion is inclined with respect to the inner peripheral side wall, and the second stress relaxation inclined portion for relaxing thermal stress is formed around the boundary portion between the outer peripheral side wall and the bottom , The second stress relaxation inclined portion is inclined with respect to the side wall on the outer peripheral side, and the second stress relaxation inclined portion is longer in the axial direction than the first stress relaxation inclined portion.

本発明の永久磁石電動機の一態様によれば、軸受の電食を防止するために、絶縁部材に軸方向に延びる第1軸方向穴と第2軸方向穴に区切る壁部を設け、壁部の一端側に第1軸方向穴の底部が形成され、壁部の他端側に第2軸方向穴の底部が形成される場合に、第1軸方向穴および第2軸方向穴の側壁と底部の境界部分や、第1軸方向穴および第2軸方向穴の傾斜部と側壁の境界部分に対する熱応力の集中を緩和することができる。 According to one aspect of the permanent magnet motor of the present invention, in order to prevent electrolytic corrosion of the bearing, the insulating member is provided with a wall portion that divides the axially extending first axial hole and the second axial hole, and the wall portion When the bottom portion of the first axial hole is formed on one end side and the bottom portion of the second axial hole is formed on the other end side of the wall portion, the sidewalls of the first axial hole and the second axial hole and The concentration of thermal stress on the boundary portion of the bottom and the boundary portion between the inclined portions of the first axial hole and the second axial hole and the side wall can be alleviated.

本発明に係る永久磁石電動機を示す説明図である。It is an explanatory view showing a permanent magnet motor according to the present invention. 本発明に係る永久磁石電動機の回転子の第1実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of a rotor of a permanent magnet motor according to the present invention; FIG. 図2の回転子の平面図である。3 is a plan view of the rotor of FIG. 2; FIG. 図2の回転子の底面図である。3 is a bottom view of the rotor of FIG. 2; FIG. 図3の断面図であり、(a)はA-A断面図、(b)は(a)のC部の部分断面図である。FIG. 4 is a cross-sectional view of FIG. 3, where (a) is a cross-sectional view taken along line AA, and (b) is a partial cross-sectional view of part C of (a). 外周側鉄心に永久磁石を装着した状態を示す回転子の平面図である。FIG. 3 is a plan view of a rotor showing a state in which permanent magnets are attached to an outer core; 従来の第1軸方向穴の底部周辺における熱応力集中と、本発明の第1軸方向穴の底部周辺における熱応力集中の緩和を説明する図であり、(a)は従来の説明図であり、(b)は本発明の説明図である。FIG. 10A is a conventional explanatory diagram illustrating thermal stress concentration around the bottom of a conventional first axial hole and mitigation of thermal stress concentration around the bottom of the first axial hole according to the present invention; , (b) are explanatory diagrams of the present invention. 本発明に係る永久磁石電動機の回転子の第2実施形態を示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing a second embodiment of the rotor of the permanent magnet motor according to the present invention; 従来の第1軸方向穴の底部周辺における熱応力集中を説明する図である。It is a figure explaining the thermal-stress concentration around the bottom part of the conventional 1st axial direction hole.

次に、図面を参照して、本発明の一実施形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは異なることに留意すべきである。したがって、具体的な構成部品については以下の説明を参酌して判断すべきものである。 An embodiment of the present invention will now be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and differ from reality. Therefore, specific components should be determined with reference to the following description.

また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Further, the embodiments shown below are examples of apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the shape, structure, arrangement, etc. of the component parts. It is not specific to the following. Various modifications can be made to the technical idea of the present invention within the technical scope defined by the claims.

以下に、本発明の一実施形態に係る永久磁石電動機について説明する。 A permanent magnet motor according to an embodiment of the present invention will be described below.

<電動機の全体構成>
図1乃至図5は、第1実施形態における永久磁石電動機1の構成を説明する図である。図1乃至図5に示すように、この永久磁石電動機1は、例えば、ブラシレスDCモータである。この永久磁石電動機1は、空気調和機の室内機に搭載される送風ファンを回転駆動するために用いられる。
<Overall configuration of electric motor>
1 to 5 are diagrams for explaining the configuration of a permanent magnet motor 1 according to the first embodiment. As shown in FIGS. 1 to 5, this permanent magnet motor 1 is, for example, a brushless DC motor. This permanent magnet motor 1 is used to rotationally drive a blower fan mounted in an indoor unit of an air conditioner.

以下では、回転磁界を発生する固定子2の内部に、永久磁石31を有する回転子3を回転可能に配置したインナーロータ型の永久磁石電動機1を例に説明する。本実施形態における永久磁石電動機1は、固定子2と、回転子3と、モータ外郭6を備えている。 In the following, an inner rotor type permanent magnet electric motor 1 in which a rotor 3 having permanent magnets 31 is rotatably arranged inside a stator 2 that generates a rotating magnetic field will be described as an example. A permanent magnet motor 1 in this embodiment includes a stator 2 , a rotor 3 , and a motor shell 6 .

<固定子と回転子>
固定子2は、円筒形状のヨーク部とヨーク部から内径側に延びる複数のティース部を有した固定子鉄心21と、インシュレータ22を介してティース部に巻回された巻線23を備えている。この固定子2は、固定子鉄心21の内周面を除いて、樹脂で形成されたモータ外郭6で覆われている。
<Stator and rotor>
The stator 2 includes a stator core 21 having a cylindrical yoke and a plurality of teeth extending radially inward from the yoke, and windings 23 wound around the teeth via insulators 22 . . The stator 2 is covered with a motor shell 6 made of resin except for the inner peripheral surface of the stator core 21 .

回転子3は、固定子2の固定子鉄心21の内周側に所定の空隙(ギャップ)を持って回転自在に配置されている。この回転子3は、固定子鉄心21に対向する外周面に環状に永久磁石31を配置した表面磁石形である。永久磁石31は、後述する外周側鉄心32、絶縁部材33および内周側鉄心34を介してシャフト35の周囲に固定されている。このシャフト35は、第1軸受41および第2軸受42によって支持され、第1軸受41が第1ブラケット51に、第2軸受42が第2ブラケット52にそれぞれ支持されることで、回転子3が回転自在に支持されている。 The rotor 3 is rotatably arranged on the inner peripheral side of the stator core 21 of the stator 2 with a predetermined gap. The rotor 3 is of a surface magnet type in which permanent magnets 31 are annularly arranged on the outer peripheral surface facing the stator core 21 . The permanent magnet 31 is fixed around the shaft 35 via an outer core 32, an insulating member 33, and an inner core 34, which will be described later. The shaft 35 is supported by a first bearing 41 and a second bearing 42. The first bearing 41 is supported by the first bracket 51 and the second bearing 42 is supported by the second bracket 52, so that the rotor 3 is It is rotatably supported.

<軸受とブラケット>
第1軸受41は、回転子3のシャフト35の一端側(出力側)を支持している。第2軸受42は、回転子3のシャフト35の他端側(反出力側)を支持している。第1軸受41および第2軸受42は、例えば、ボールベアリングが用いられる。
<Bearing and bracket>
The first bearing 41 supports one end side (output side) of the shaft 35 of the rotor 3 . The second bearing 42 supports the other end side (anti-output side) of the shaft 35 of the rotor 3 . Ball bearings, for example, are used for the first bearing 41 and the second bearing 42 .

第1ブラケット51は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の一端側すなわちシャフト35の出力側に固定されている。この第1ブラケット51は、一端を開放し、他端を底面板部510で閉塞した円筒形状のブラケット本体511と、底面板部510に設けられ第1軸受41を収容するための第1軸受収容部512を有する。 The first bracket 51 is made of metal (steel plate, aluminum, etc.) and is fixed to one end side of the motor shell 6 , that is, the output side of the shaft 35 . The first bracket 51 includes a cylindrical bracket main body 511 with one end open and the other end closed by a bottom plate portion 510 , and a first bearing housing provided on the bottom plate portion 510 for housing the first bearing 41 . A portion 512 is provided.

ブラケット本体511は、開放端側がモータ外郭6の外周面に圧入されている。第1軸受収容部512は、底面板部510の中央部からモータ外郭6とは反対側に突出された底部を有する円筒状に形成されている。この第1軸受収容部512の円筒内面に第1軸受41の外輪が圧入され、この第1軸受41の内輪に支持されたシャフト35の出力側が底部の中央に形成された貫通孔から外部に突出されている。 The bracket main body 511 is press-fitted to the outer peripheral surface of the motor shell 6 at the open end side. The first bearing accommodating portion 512 is formed in a cylindrical shape having a bottom projecting from the central portion of the bottom plate portion 510 to the side opposite to the motor shell 6 . The outer ring of the first bearing 41 is press-fitted into the cylindrical inner surface of the first bearing accommodating portion 512, and the output side of the shaft 35 supported by the inner ring of the first bearing 41 protrudes outside from a through hole formed in the center of the bottom. It is

第2ブラケット52は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の他端側すなわちシャフト35の反出力側に配置されている。この第2ブラケット52は、第2軸受42を収容するための第2軸受収容部521と、第2軸受収容部521の開放端から周りに広がるフランジ部522を有する。第2軸受収容部521は、底部を有する円筒形状に形成されており、第2ブラケット52のフランジ部522は、モータ外郭6の成形時にインサート成形され、モータ外郭6と一体になっている。 The second bracket 52 is made of metal (steel plate, aluminum, etc.) and is arranged on the other end side of the motor shell 6 , that is, on the counter-output side of the shaft 35 . The second bracket 52 has a second bearing housing portion 521 for housing the second bearing 42 and a flange portion 522 extending from the open end of the second bearing housing portion 521 . The second bearing accommodating portion 521 is formed in a cylindrical shape having a bottom portion, and the flange portion 522 of the second bracket 52 is insert-molded during molding of the motor shell 6 and integrated with the motor shell 6 .

第1軸受41は、第1ブラケット51に設けられた第1軸受収容部512に収容され、第2軸受42は、第2ブラケット52に設けられた第2軸受収容部521に収容されている。そして、第1軸受41と第1軸受収容部512、第2軸受42と第2軸受収容部521はそれぞれ電気的に導通している。 The first bearing 41 is housed in a first bearing housing portion 512 provided in the first bracket 51 , and the second bearing 42 is housed in a second bearing housing portion 521 provided in the second bracket 52 . The first bearing 41 and the first bearing accommodating portion 512, and the second bearing 42 and the second bearing accommodating portion 521 are electrically connected.

<回転子の具体的な構成>
以上のように構成された永久磁石電動機1では、第1軸受41や第2軸受42に電食が生じないようにするため、図1に示すように、回転子3の一部に絶縁部材33を備えている。以下、回転子3の具体的構成について説明する。
<Specific Configuration of Rotor>
In the permanent magnet motor 1 configured as described above, in order to prevent electrolytic corrosion from occurring in the first bearing 41 and the second bearing 42, as shown in FIG. It has A specific configuration of the rotor 3 will be described below.

回転子3は、図1乃至図5に示すように、外径側から内径側に向かって、永久磁石31と、外周側鉄心32と、絶縁部材33と、内周側鉄心34と、シャフト35を備えている。 As shown in FIGS. 1 to 5, the rotor 3 includes a permanent magnet 31, an outer core 32, an insulating member 33, an inner core 34, and a shaft 35 from the outer diameter to the inner diameter. It has

永久磁石31は、図1及び図6に示すように、N極とS極が周方向に等間隔に交互に表れるように複数(例えば8個)の永久磁石片311で環状に形成されている。なお、永久磁石31は、磁石粉末を樹脂で固めることで環状に形成されたプラスチックマグネットを用いてもよい。 As shown in FIGS. 1 and 6, the permanent magnet 31 is annularly formed of a plurality of (e.g., eight) permanent magnet pieces 311 so that N poles and S poles appear alternately at equal intervals in the circumferential direction. . It should be noted that the permanent magnet 31 may be a plastic magnet that is annularly formed by solidifying magnet powder with resin.

外周側鉄心32は、図3に示すように、環状に形成されており、永久磁石31の内径側に位置している。外周側鉄心32には、図示を省略するが、後述する絶縁部材33との回り止めの機能を確保するために、内周面321(図5参照)から内径側に突出する複数(例えば4個)の外周側凸部と内周面321から外径側に凹む外周側凹部を備えている。複数の外周側凸部および外周側凹部は、中心軸Oの方向に延びるとともに周方向に等間隔に配置されている。 As shown in FIG. 3 , the outer core 32 is formed in an annular shape and positioned on the inner diameter side of the permanent magnet 31 . Although not shown, the outer core 32 has a plurality of (for example, four) protruding radially inwardly from an inner peripheral surface 321 (see FIG. 5) in order to secure a detent function with an insulating member 33, which will be described later. ) and an outer peripheral concave portion recessed from the inner peripheral surface 321 toward the outer diameter side. The plurality of outer-peripheral-side protrusions and outer-peripheral-side recesses extend in the direction of the central axis O and are arranged at regular intervals in the circumferential direction.

内周側鉄心34は、図3に示すように、環状に形成されており、外周側鉄心32の内径側に位置している。内周側鉄心34には、図示を省略するが、後述する絶縁部材33との回り止めの機能を確保するために、外周面341(図5参照)から内径側に凹む複数(例えば8個)の内周側凹部を備えている。複数の内周側凹部は、中心軸Oの方向に延びるとともに周方向に等間隔に配置されている。そして、内周側鉄心34には、中心に中心軸Oの方向に貫通する貫通穴343を備えている。 As shown in FIG. 3 , the inner peripheral core 34 is formed in an annular shape and positioned on the inner diameter side of the outer peripheral core 32 . Although not shown, the inner peripheral iron core 34 has a plurality (e.g., eight) recessed from the outer peripheral surface 341 (see FIG. 5) toward the inner diameter side in order to secure the function of preventing rotation with the insulating member 33, which will be described later. inner peripheral recessed portion. The plurality of inner peripheral recesses extend in the direction of the central axis O and are arranged at regular intervals in the circumferential direction. A through hole 343 penetrating in the direction of the central axis O is provided in the center of the inner peripheral core 34 .

絶縁部材33は、PBTやPETなどの誘電体の樹脂で形成されており、外周側鉄心32と内周側鉄心34の間に位置している。絶縁部材33は、外周側鉄心32と内周側鉄心34の間に樹脂が充填されることで、外周側鉄心32と内周側鉄心34と一体に成形されている。この絶縁部材33は、外周側鉄心32と内周側鉄心34の間の静電容量(固定子2の巻線23とシャフト35の間の静電容量の一部)を小さくして第1軸受41および第2軸受42の内輪側の電位を下げて内輪側と外輪側の電位を合わせている。 The insulating member 33 is made of dielectric resin such as PBT or PET, and is positioned between the outer core 32 and the inner core 34 . The insulating member 33 is formed integrally with the outer core 32 and the inner core 34 by filling resin between the outer core 32 and the inner core 34 . The insulating member 33 reduces the capacitance between the outer core 32 and the inner core 34 (a part of the capacitance between the windings 23 of the stator 2 and the shaft 35) to reduce the first bearing. The electric potential on the inner ring side of 41 and the second bearing 42 is lowered to match the electric potential on the inner ring side and the outer ring side.

シャフト35は、内周側鉄心34に備えた貫通穴343に圧入やカシメなどによって固着されている。 The shaft 35 is fixed to a through hole 343 provided in the inner peripheral iron core 34 by press fitting or caulking.

<本発明に係る回転子の構造、作用および効果>
次に、本実施形態における永久磁石電動機1において、図2乃至図5を用いて、本発明に係る回転子3の構造やその作用および効果について説明する。
<Structure, action and effect of the rotor according to the present invention>
Next, in the permanent magnet motor 1 according to this embodiment, the structure of the rotor 3 according to the present invention and its action and effect will be described with reference to FIGS. 2 to 5. FIG.

空気調和機に搭載する送風ファンを回転駆動するために用いられる永久磁石電動機1は、PWM方式のインバータで駆動されるため、巻線の中性点電位が零にならず、コモンモード電圧と呼ばれる電圧が発生する。このコモンモード電圧に起因して、永久磁石電動機1の内部の浮遊容量によって、第1軸受41や第2軸受42の外輪と内輪の間に電位差(軸電圧)が発生する。この軸電圧が軸受内部油膜の絶縁破壊電圧に達すると、軸受内部に電流が流れて軸受内部に電食を発生させる。 The permanent magnet motor 1, which is used to rotationally drive a blower fan mounted on an air conditioner, is driven by a PWM type inverter, so the neutral point potential of the winding does not become zero, and is called a common mode voltage. voltage is generated. Due to this common mode voltage, a potential difference (shaft voltage) is generated between the outer and inner rings of the first bearing 41 and the second bearing 42 due to the stray capacitance inside the permanent magnet motor 1 . When this shaft voltage reaches the dielectric breakdown voltage of the oil film inside the bearing, a current flows inside the bearing, causing electrolytic corrosion inside the bearing.

上記した回転子3の構成において、絶縁部材33は、図2乃至図4に示すように、円筒形状を有し、回転子3の静電容量を低減させるために、軸方向の一端に第1軸方向穴331が形成され、軸方向の他端に同様に回転子3の静電容量を低減させるための第2軸方向穴332が形成されている。これらの第1軸方向穴331および第2軸方向穴332は、円周方向に等間隔に複数(例えば8個)形成されている。複数の第1軸方向穴331のそれぞれの間、および、複数の第2軸方向穴332のそれぞれの間には、隔壁334が形成され、隣接する第1軸方向穴331同士、および、隣接する第2軸方向穴332同士を区切っている。 In the configuration of the rotor 3 described above, the insulating member 33 has a cylindrical shape, as shown in FIGS. An axial hole 331 is formed, and a second axial hole 332 is formed at the other axial end for similarly reducing the electrostatic capacity of the rotor 3 . A plurality (for example, eight) of these first axial holes 331 and second axial holes 332 are formed at equal intervals in the circumferential direction. Between each of the plurality of first axial holes 331 and between each of the plurality of second axial holes 332, partition walls 334 are formed to allow adjacent first axial holes 331 and adjacent It separates the second axial holes 332 from each other.

さらに、第1軸方向穴331と第2軸方向穴332は、図3乃至図5に示すように、軸方向で互いに対向しており、軸方向中央位置で互いの深さが同じになるように区切る壁部333が設けられている。この壁部333を設けることで、壁部333の一端側には第1軸方向穴331の底部335cが形成され、壁部333の他端側には第2軸方向穴332の底部335cが形成されている。そして、第1軸方向穴331と第2軸方向孔332のそれぞれの底部335cから軸方向に沿って側壁335aおよび側壁335bが形成されている。このように、第1軸方向穴331と第2軸方向穴332は、壁部333と隔壁334の形成によって、端面形状が円周方向に沿う円弧状に形成され、端面から軸方向に沿う方向に深さを有する構造になっており、それぞれが等間隔に複数(例えば8個)形成されている。 Furthermore, as shown in FIGS. 3 to 5, the first axial hole 331 and the second axial hole 332 face each other in the axial direction and have the same depth at the central position in the axial direction. A wall portion 333 is provided to separate the two. By providing this wall portion 333, the bottom portion 335c of the first axial hole 331 is formed on one end side of the wall portion 333, and the bottom portion 335c of the second axial direction hole 332 is formed on the other end side of the wall portion 333. It is A side wall 335a and a side wall 335b are formed along the axial direction from the bottom 335c of each of the first axial hole 331 and the second axial hole 332, respectively. As described above, the first axial hole 331 and the second axial hole 332 are formed in an arcuate end face shape along the circumferential direction due to the formation of the wall portion 333 and the partition wall 334, and the direction along the axial direction from the end face is formed in an arc shape. , and a plurality (for example, 8) of them are formed at regular intervals.

ここで、例えば、半径が小さく軸方向に厚い回転子3に対して第1軸方向穴331と第2軸方向穴332を形成するときは、回転子3の半径が小さくなるので、第1軸方向穴331と第2軸方向穴332の半径方向の長さ(幅)Rも小さくなる。このような回転子3の静電容量を低減させるには、第1軸方向穴331と第2軸方向穴332の深さを深くする必要がある。しかしながら、第1軸方向穴331と第2軸方向穴332の深さを深くしすぎると、第1軸方向穴331と第2軸方向穴332を区切る壁部333の厚さが薄くなり、絶縁部材33の機械的強度が低下することから、機械的強度を確保するためには適当な厚さの壁部333が必要となる。 Here, for example, when the first axial hole 331 and the second axial hole 332 are formed in the rotor 3 which has a small radius and is thick in the axial direction, the radius of the rotor 3 becomes small. The radial length (width) R of the directional hole 331 and the second axial hole 332 is also reduced. In order to reduce the electrostatic capacitance of the rotor 3, the depth of the first axial hole 331 and the second axial hole 332 must be increased. However, if the depths of the first axial hole 331 and the second axial hole 332 are made too deep, the thickness of the wall portion 333 separating the first axial hole 331 and the second axial hole 332 becomes thin, resulting in insulation. Since the mechanical strength of the member 33 is lowered, the wall portion 333 with an appropriate thickness is required to ensure the mechanical strength.

したがって、第1軸方向穴331と第2軸方向穴332の深さは、回転子3の静電容量の低減と機械的強度の確保の両方を考慮して設定する。 Therefore, the depths of the first axial hole 331 and the second axial hole 332 are set in consideration of both reducing the electrostatic capacity of the rotor 3 and ensuring mechanical strength.

そして、絶縁部材33は、PBTやPETなどの誘電体の樹脂を外周側鉄心32および内周側鉄心34とともに一体成型することから、回転子3の機械的強度や、第1軸方向孔331と第2軸方向穴332の成型時の金型の抜き勾配を考慮した場合には、上記で説明したように、図2乃至図5に示すように、第1軸方向穴331と第2軸方向穴332は、壁部333と隔壁334の形成により、端面形状が円周方向に沿う円弧状に形成され、端面から軸方向に沿う方向に深さを有する構造になっており、第1軸方向穴331および第2軸方向穴332の半径方向の長さ(幅)Rを十分にとることができない。 Since the insulating member 33 is formed by integrally molding a dielectric resin such as PBT or PET together with the outer core 32 and the inner core 34, the mechanical strength of the rotor 3 and the first axial hole 331 are reduced. Considering the draft angle of the mold when molding the second axial hole 332, as described above, as shown in FIGS. The hole 332 has an arc-shaped end surface along the circumferential direction due to the formation of the wall portion 333 and the partition wall 334, and has a depth in the direction along the axial direction from the end surface. A sufficient radial length (width) R of the hole 331 and the second axial hole 332 cannot be ensured.

ところで、一般的に、絶縁部材33の線膨張係数は、周囲の金属製の外周側鉄心32および内周側鉄心34の線膨張係数に比較して大きく、温度上昇時の膨張量や温度降下時の収縮量が外周側鉄心32および内周側鉄心34に比較して大きくなる。 By the way, generally, the coefficient of linear expansion of the insulating member 33 is larger than the coefficient of linear expansion of the outer peripheral iron core 32 and the inner peripheral iron core 34 made of metal. is greater than that of the outer core 32 and the inner core 34 .

絶縁部材33は、図5(a)に示すように、絶縁部材33における側壁335a、335bの膨張量や収縮量は、側壁335a、335bが半径方向に薄く、軸方向に厚いため、半径方向に比較して軸方向の方が大きくなる。 As shown in FIG. 5(a), the insulating member 33 expands and shrinks in the side walls 335a and 335b of the insulating member 33 because the side walls 335a and 335b are thin in the radial direction and thick in the axial direction. In comparison, the axial direction is larger.

また、絶縁部材33の壁部333の膨張量や収縮量は、半径方向の成分と軸方向の成分に分けられるが、半径方向は外周側鉄心32および内周側鉄心34によって規制されるので、半径方向の膨張や収縮に比べて軸方向の膨張や収縮の方が大きくなる。 The amount of expansion and contraction of the wall portion 333 of the insulating member 33 can be divided into a component in the radial direction and a component in the axial direction. Axial expansion or contraction is greater than radial expansion or contraction.

このため、温度上昇による絶縁部材33の壁部333の膨張を考えたときに、半径方向への膨張に比べて軸方向への膨張が多くなり、この壁部333の膨張の影響により、第1軸方向穴331の底部335cと側壁335aおよび335bが交わる部分や、第2軸方向穴332の底部335cと側壁335aおよび335bが交わる部分に熱応力が集中する。 Therefore, when considering the expansion of the wall portion 333 of the insulating member 33 due to the temperature rise, the expansion in the axial direction is greater than the expansion in the radial direction. Thermal stress is concentrated at the intersection of the bottom 335c of the axial hole 331 and the side walls 335a and 335b and the intersection of the bottom 335c of the second axial hole 332 and the side walls 335a and 335b.

ここで、第1軸方向穴331について熱応力の集中度合を検討する。なお、第2軸方向穴332は、壁部333に対して第1軸方向穴331と対称に形成されているので、説明を省略する。通常は、図7(a)で点線図示のように、第1軸方向穴331を形成する絶縁部材33の互いに対向する側壁335aおよび335bに対して底部335cがほぼ直角となっており、第1軸方向穴331を形成する絶縁部材33は、壁部333を形成する領域A、側壁335aおよび335bを形成する領域Cを有するものとなり、このままでは、領域Aと領域Cで矢印が示す熱膨張の方向が大きく異なるため、側壁335aと底部335cとの境界部分P0aおよび側壁335bと底部335cとの境界部分P0bで熱応力が集中する。 Here, the degree of concentration of thermal stress in the first axial hole 331 will be examined. In addition, since the second axial hole 332 is formed symmetrically with the first axial hole 331 with respect to the wall portion 333, a description thereof will be omitted. Normally, as indicated by the dotted line in FIG. 7A, the bottom portion 335c is substantially perpendicular to the opposing side walls 335a and 335b of the insulating member 33 forming the first axial hole 331. The insulating member 33 forming the axial hole 331 has a region A forming the wall portion 333 and a region C forming the side walls 335a and 335b. Since the directions are significantly different, the thermal stress concentrates at the boundary portion P0a between the side wall 335a and the bottom portion 335c and the boundary portion P0b between the side wall 335b and the bottom portion 335c.

このため、境界部分P0aおよびP0bへの熱応力の集中を緩和するために、図7(a)に示すように、側壁335aおよび335bと底部335cの間に、例えば45度の角度でカットするC面取りを行って傾斜部335dおよび335eを形成することが考えられる。この場合には、第1軸方向穴331を形成する絶縁部材33は、壁部333を形成する領域A、傾斜部335dおよび335eを形成する領域B、側壁335aおよび335bを形成する領域Cを有するものとなり、傾斜部335dの形成によって、底部335cと側壁335aの境界部分P0aでの熱応力の緩和を行い、傾斜部335eの形成によって、底部335cと側壁335bの境界部分P0bでの熱応力の緩和を行い、熱応力の集中を抑制することができる。 For this reason, in order to alleviate the concentration of thermal stress on the boundary portions P0a and P0b, as shown in FIG. Chamfering may be performed to form ramps 335d and 335e. In this case, the insulating member 33 forming the first axial hole 331 has a region A forming the wall portion 333, a region B forming the ramps 335d and 335e, and a region C forming the sidewalls 335a and 335b. Thus, the formation of the inclined portion 335d relaxes the thermal stress at the boundary portion P0a between the bottom portion 335c and the side wall 335a, and the formation of the inclined portion 335e relaxes the thermal stress at the boundary portion P0b between the bottom portion 335c and the side wall 335b. can be performed to suppress the concentration of thermal stress.

ところで、第1軸方向穴331を形成する絶縁部材33は、壁部333を形成する領域Aの軸方向厚さや、側壁335aおよび335bを形成する領域Cの径方向厚さや、回転子3の半径の長さや、面取りの形状によっては、傾斜部335dおよび335eを形成する領域Bの軸方向長さL1を、壁部333を形成する領域Aの軸方向の熱膨張を吸収することで熱応力を緩和することができる軸方向長さLSにすることができないことがある。例えば、一般的に、金属製の内周側鉄心34及び外周側鉄心32や絶縁部材33は、温度が上昇すると膨張する。その膨張方向は、軸方向への膨張と内周側から外周側への膨張に分けられる。また、絶縁部材33の線膨張係数は、絶縁部材33の内周側のシャフト35に固定された内周側鉄心34や、絶縁部材33の外周側の外周側鉄心32の線膨張係数に対して大きい。これによって、内周側の側壁335aおよび傾斜部335dでは、絶縁部材33の熱膨張を阻止する外周側鉄心32が存在しないことから、内周側から外周側への熱膨張が阻止されることがないが、外周側の側壁335bおよび傾斜部335eでは、絶縁部材33の最外周位置に外周側鉄心32が存在することから、外周側鉄心32によって内周側から外周側への熱膨張が阻止される。 By the way, the insulating member 33 forming the first axial hole 331 has an axial thickness of the region A forming the wall portion 333, a radial thickness of the region C forming the side walls 335a and 335b, and a radius of the rotor 3. Depending on the length and the shape of the chamfer, the axial length L1 of the region B forming the inclined portions 335d and 335e is reduced by absorbing the thermal expansion in the axial direction of the region A forming the wall portion 333 to reduce the thermal stress. It may not be possible to have an axial length LS that can be relaxed. For example, in general, the metal inner core 34, outer core 32, and insulating member 33 expand when the temperature rises. The direction of expansion is divided into expansion in the axial direction and expansion from the inner peripheral side to the outer peripheral side. In addition, the coefficient of linear expansion of the insulating member 33 is relative to the coefficient of linear expansion of the inner peripheral core 34 fixed to the shaft 35 on the inner peripheral side of the insulating member 33 and the outer peripheral core 32 on the outer peripheral side of the insulating member 33. big. As a result, since the outer peripheral side iron core 32 that prevents the thermal expansion of the insulating member 33 does not exist in the inner peripheral side wall 335a and the inclined portion 335d, thermal expansion from the inner peripheral side to the outer peripheral side is prevented. However, in the outer peripheral side wall 335b and the inclined portion 335e, the outer peripheral iron core 32 exists at the outermost peripheral position of the insulating member 33, so that the outer peripheral iron core 32 prevents thermal expansion from the inner peripheral side to the outer peripheral side. be.

このため、領域Aと領域Bで示す熱膨張の方向は、底部335cと外周側の傾斜部335eにおいて、それぞれの底面や傾斜面に垂直な方向にならず、外周側に傾いた方向になる。これにより、領域Bと領域Cで示す熱膨張の方向の変化は、内周側の傾斜部335dと側壁335aで示す方向の変化と比べて、外周側の傾斜部335eと側壁335bで示す方向の変化の方が大きくなっている。この結果、外周側の傾斜部335eと側壁335bの境界部分P4の熱応力集中の大きさは、内周側の傾斜部335dと側壁335aの境界部分P3の熱応力集中の大きさよりも大きくなる。 For this reason, the directions of thermal expansion indicated by the regions A and B are not perpendicular to the bottom surfaces and inclined surfaces of the bottom portion 335c and the inclined portion 335e on the outer peripheral side, but are inclined toward the outer peripheral side. As a result, the change in the direction of thermal expansion indicated by the regions B and C is greater than the change in the direction indicated by the inclined portion 335d and the side wall 335a on the inner peripheral side. The change is bigger. As a result, the magnitude of thermal stress concentration at the boundary portion P4 between the outer peripheral side inclined portion 335e and the side wall 335b becomes greater than the magnitude of the thermal stress concentration at the boundary portion P3 between the inner peripheral side inclined portion 335d and the side wall 335a.

したがって、例えば、領域Aの軸方向厚さが領域Cの径方向厚さよりも十分に大きく、回転子3の半径の長さも十分大きいものとした場合、第1軸方向穴331の半径方向の長さRが十分大きくなるため、45度の角度でカットするC面取りによって傾斜部335dおよび335eを形成する領域Bの軸方向長さL1を長く形成することができるので、この軸方向長さL1を熱応力を緩和することができる軸方向長さLSに設定することができる。しかしながら、図7(a)に示すように、第1軸方向穴331の半径方向の長さRが小さい場合、同じ大きさのC面取りによって内周側の傾斜部335dと外周側の傾斜部335eを形成することができるものの、内周側の傾斜部335dと側壁335aの境界部分P3よりも、外周側の傾斜部335eと側壁335bの境界部分P4の方が熱応力集中が大きいため、次のような問題が生じる。 Therefore, for example, when the axial thickness of the region A is sufficiently larger than the radial thickness of the region C and the radial length of the rotor 3 is also sufficiently large, the radial length of the first axial hole 331 is Since the length R is sufficiently large, the axial length L1 of the region B forming the inclined portions 335d and 335e can be increased by C chamfering cut at an angle of 45 degrees. It can be set to an axial length LS that can relax thermal stress. However, as shown in FIG. 7(a), when the radial length R of the first axial hole 331 is small, the C-chamfering of the same size causes the inner peripheral inclined portion 335d and the outer peripheral inclined portion 335e to be separated from each other. However, the thermal stress concentration is greater at the boundary portion P4 between the inclined portion 335e on the outer peripheral side and the side wall 335b than at the boundary portion P3 between the inclined portion 335d on the inner peripheral side and the side wall 335a. such a problem arises.

領域Bの軸方向長さに相当する、内周側の傾斜部335dと側壁335aの境界部分P3と、側壁335aと底部335cの境界部分P0aとの間の軸方向長さL1は、小さな熱応力集中の大きさに応じて熱応力を緩和することができる軸方向長さに設定することができる。しかしながら、外周側の傾斜部335eと側壁335bの境界部分P4と、側壁335bと底部335cの境界部分P0bとの間の軸方向長さL1は、大きな熱応力集中の大きさに応じて熱応力を緩和することができる軸方向長さLsに比較して短くなる。このため、外周側の傾斜部335eと側壁335bの境界部分P4には依然として熱応力が集中してしまう。 The axial length L1, which corresponds to the axial length of the region B, between the boundary portion P3 between the inner peripheral side inclined portion 335d and the side wall 335a and the boundary portion P0a between the side wall 335a and the bottom portion 335c is small thermal stress. The length in the axial direction can be set so as to relax the thermal stress according to the degree of concentration. However, the axial length L1 between the boundary portion P4 between the inclined portion 335e and the side wall 335b on the outer peripheral side and the boundary portion P0b between the side wall 335b and the bottom portion 335c reduces thermal stress according to the magnitude of large thermal stress concentration. It is short compared to the axial length Ls1 that can be relaxed. Therefore, the thermal stress still concentrates on the boundary portion P4 between the inclined portion 335e on the outer peripheral side and the side wall 335b.

そこで、本実施形態では、図7(b)に示すように、内周側の側壁335aと底部335cの境界部分P0aの周辺と、外周側の側壁335bと底部335cの境界部分P0bの周辺での熱応力の集中を緩和するために、内周側の側壁335aと底部335cの境界部分P0aの周辺に45度のC面取りによって傾斜角θ1の熱応力を緩和するための第1応力緩和傾斜部336aを形成し、外周側の側壁335bと底部335cの境界部分P0bの周辺に45度のC面取りによって傾斜角θ1の熱応力を緩和するための第2応力緩和傾斜部336bを形成している。
第1応力緩和傾斜部336aは、内周側での小さな熱応力集中の大きさに応じて、側壁335aの内面を壁部333まで延長させた仮想面に対して第1応力緩和傾斜部336aを半径方向に投影したときの軸方向長さ(以下、単に軸方向長さと称す)L2を熱応力緩和に必要な軸方向長さLsに設定している。例えば、第1軸方向穴331の半径方向の長さRを3mm、熱応力緩和に必要な長さL2を0.8mmとした。これにより、内周側の側壁335aと第1応力緩和傾斜部336aの境界部分P3を形成している。
また、第2応力緩和傾斜部336bは、外周側の大きな熱応力集中の大きさに応じて、側壁335bの内面を壁部333まで延長させた仮想面に対して第2応力緩和傾斜部336bを半径方向に投影したときの軸方向長さ(以下、単に軸方向長さと称す)L1を熱応力緩和に必要な軸方向長さLsに設定している。例えば、第1軸方向穴331の半径方向の長さRを3mm、熱応力緩和に必要な長さL1を1.7mmとした。この結果、外周側の側壁335bと第2応力緩和傾斜部336bの境界部分P4を形成している。
Therefore, in this embodiment, as shown in FIG. In order to alleviate the concentration of thermal stress, a first stress relaxation inclined portion 336a for alleviating the thermal stress at the inclination angle θ1 is formed around the boundary portion P0a between the inner side wall 335a and the bottom portion 335c by chamfering at an angle of 45 degrees. , and a second stress relaxation inclined portion 336b for relaxing thermal stress at the inclination angle θ1 is formed around the boundary portion P0b between the outer peripheral side wall 335b and the bottom portion 335c by chamfering at 45 degrees.
The first stress relieving sloped portion 336a is formed by extending the inner surface of the side wall 335a to the wall portion 333 in accordance with the small thermal stress concentration on the inner peripheral side. The axial length (hereinafter simply referred to as the axial length) L2 when projected in the radial direction is set to the axial length Ls2 required for thermal stress relaxation. For example, the radial length R of the first axial hole 331 is set to 3 mm, and the length L2 required for thermal stress relaxation is set to 0.8 mm. This forms a boundary portion P3 between the side wall 335a on the inner peripheral side and the first stress relaxation inclined portion 336a.
In addition, the second stress relaxation sloped portion 336b is formed by extending the inner surface of the side wall 335b to the wall portion 333, depending on the magnitude of the large thermal stress concentration on the outer peripheral side. The axial length (hereinafter simply referred to as the axial length) L1 when projected in the radial direction is set to the axial length Ls1 required for thermal stress relaxation. For example, the radial length R of the first axial hole 331 is set to 3 mm, and the length L1 required for thermal stress relaxation is set to 1.7 mm. As a result, a boundary portion P4 is formed between the side wall 335b on the outer peripheral side and the second stress relaxation inclined portion 336b.

したがって、外周側の第2応力緩和傾斜部336bの熱応力の緩和に必要な軸方向長さL1を、内周側の第1応力緩和傾斜部336aの熱応力の緩和に必要な軸方向長さL2よりも長く設定することにより、第1軸方向穴331の内周側と外周側の熱応力集中の大きさの違いに応じて、温度上昇による壁部333からの軸方向の熱膨張を吸収することができる。このため、内周側の側壁335aと第1応力緩和傾斜部336aの境界部分P3とともに、外周側の側壁335bと第2応力緩和傾斜部336bの境界部分P4での応力集中を緩和することができる。
なお、図7(b)に示す熱応力の緩和に必要な軸方向長さL1とL2の関係は、第1軸方向穴331の内周側と外周側の熱応力集中の大きさの違いに応じて、内周側の第1応力緩和傾斜部336aでは、図7(a)での軸方向長さL1が熱応力緩和に必要な軸方向長さLsより過剰な長さとなるため、この軸方向長さL1より短く、熱応力緩和に必要な軸方向長さLsと等しい軸方向長さL2になるようにし、外周側の第2応力緩和傾斜部336bでは、図7(a)での軸方向長さL1が熱応力緩和に必要な軸方向長さLsに対して不足した長さとなるため、この軸方向長さL1より長い熱応力緩和に必要な軸方向長さLs(L1)になるようにした。このような軸方向長さL1およびL2を確保するために、図7(b)に示すように、第1応力緩和傾斜部336aのC面取りと第2応力緩和傾斜部336bのC面取りの位置を第1軸方向穴331の半径方向の中央位置から内周側にずらすようにしている。
Therefore, the axial length L1 required to relax the thermal stress of the second stress relaxation sloped portion 336b on the outer peripheral side is replaced by the axial length L1 required to relax the thermal stress of the first stress relaxation sloped portion 336a on the inner peripheral side. By setting the length longer than L2, the axial thermal expansion from the wall portion 333 due to the temperature rise is absorbed according to the difference in the degree of thermal stress concentration between the inner peripheral side and the outer peripheral side of the first axial direction hole 331 . can do. Therefore, the stress concentration at the boundary portion P3 between the inner peripheral side wall 335a and the first stress relaxation sloped portion 336a as well as the boundary portion P4 between the outer peripheral side wall 335b and the second stress relaxation sloped portion 336b can be relaxed. .
Note that the relationship between the axial lengths L1 and L2 required for alleviating the thermal stress shown in FIG. Accordingly, in the first stress relaxation inclined portion 336a on the inner peripheral side, the axial length L1 in FIG. The axial length L2 is set to be shorter than the axial length L1 and equal to the axial length Ls2 required for thermal stress relaxation. Since the axial length L1 of is insufficient with respect to the axial length Ls1 required for thermal stress relaxation, the axial length Ls1 required for thermal stress relaxation longer than this axial length L1 ( L1). In order to secure such axial lengths L1 and L2, as shown in FIG. He is trying to shift from the center position of the radial direction of the 1st axial direction hole 331 to the inner peripheral side.

本出願人により実際に熱応力解析を行った結果では、第1軸方向穴331の半径方向の長さRを3mmしか取れない構造であっても、図7(a)のように、C面取りのみを行った場合に比較して熱応力を約5分の4まで低下させることが可能となった。 As a result of actual thermal stress analysis by the present applicant, even in a structure in which the radial length R of the first axial hole 331 can be only 3 mm, as shown in FIG. It became possible to reduce the thermal stress to about four-fifths compared to the case where only the heat treatment was performed.

したがって、内周側の側壁335aと底部335cの境界部分P0aの周辺に熱応力を緩和するための第1応力緩和傾斜部336aを形成し、外周側の側壁335bと底部335cの境界部分P0bの周辺に熱応力を緩和するための第2応力緩和傾斜部336bを形成し、第2応力緩和傾斜部336bの熱応力の緩和に必要な軸方向長さL1(=Ls)を、第1応力緩和傾斜部336aの熱応力の緩和に必要な軸方向長さL2(=Ls)よりも長く設定することにより、壁部333の軸方向の熱膨張の影響による第1軸方向穴331の底部335cの周辺(底部周辺)の外周側における熱応力の集中を解消することができる。このため、絶縁部材33の繰り返しの熱応力の集中による耐久性の低下を抑制することができ、割れやクラックの発生を抑制して長寿命化することができる。ここで、第1軸方向穴331の底部335cの周辺(底部周辺)とは、内周側の側壁335aと底部335cの境界部分P0aの周辺や、外周側の側壁335bと底部335cの境界部分P0bの周辺のことを示す。以下の説明では底部周辺と省略して表記することとする。 Therefore, a first stress relaxation inclined portion 336a for relieving thermal stress is formed around the boundary portion P0a between the inner side wall 335a and the bottom portion 335c. A second stress relaxation sloped portion 336b for relaxing the thermal stress is formed in the second stress relaxation sloped portion 336b, and the axial length L1 (=Ls 1 ) required for relaxing the thermal stress of the second stress relaxation sloped portion 336b is set to the first stress relaxation sloped portion 336b. By setting the length longer than the axial length L2 (=Ls 2 ) required to relax the thermal stress of the inclined portion 336a, the bottom portion 335c of the first axial hole 331 is affected by the thermal expansion of the wall portion 333 in the axial direction. It is possible to eliminate the concentration of thermal stress on the outer peripheral side of the periphery (periphery of the bottom). For this reason, it is possible to suppress deterioration in durability due to repeated concentration of thermal stress on the insulating member 33, and to suppress the occurrence of cracks and fractures, thereby extending the life of the insulating member 33. Here, the periphery of the bottom portion 335c of the first axial hole 331 (the periphery of the bottom portion) means the periphery of the boundary portion P0a between the inner peripheral side wall 335a and the bottom portion 335c, or the boundary portion P0b between the outer peripheral side wall 335b and the bottom portion 335c. Shows the surroundings. In the following description, it will be abbreviated as bottom peripheral.

また、第1軸方向穴331と同様に、第2軸方向穴322についても、図5(b)に示すように、第2軸方向穴332の底部周辺には、第1応力緩和傾斜部336aと第2応力緩和傾斜部336bを形成し、第2応力緩和傾斜部336bの軸方向に対する熱応力の緩和に必要な軸方向長さL1を、第1応力緩和傾斜部335dの軸方向に対する熱応力の緩和に必要な軸方向長さL2よりも長く設定することにより、上記と同様の作用効果を得ることができる。
しかも、第1応力緩和傾斜部336aと第2応力緩和傾斜部336bで必要とする軸方向長さは、C面取りの位置を第1軸方向穴331の半径方向の中心線を挟んで対称な位置から内周側にずらすだけで容易に確保することができる。
As with the first axial hole 331, the second axial hole 322 also has a first stress relaxation inclined portion 336a around the bottom portion of the second axial hole 332, as shown in FIG. 5(b). and the second stress relaxation sloped portion 336b, and the axial length L1 required to relax the thermal stress in the axial direction of the second stress relaxation sloped portion 336b is defined by the thermal stress in the axial direction of the first stress relaxation sloped portion 335d By setting the length longer than the axial length L2 required for alleviation of , the same effect as described above can be obtained.
Moreover, the axial length required for the first stress relaxation sloped portion 336a and the second stress relaxation sloped portion 336b is such that the position of the C chamfer is symmetrical across the radial center line of the first axial hole 331. It can be easily secured by simply shifting from the center to the inner peripheral side.

以上のとおり説明してきた第1の実施形態によれば、回転子3の直径が小さく、回転子3の静電容量を低減させるために、第1軸方向穴331および第2軸方向穴332の底部周辺に十分な大きさのC面取りを行うことができないときでも、第1軸方向穴331および第2軸方向穴332に対して、内周側の側壁335aと底部335cの境界部分P0aの周辺に熱応力を緩和するための第1応力緩和傾斜部336aを形成し、外周側の側壁335bと底部335cの境界部分P0bの周辺に熱応力を緩和するための第2応力緩和傾斜部336bを形成し、第2応力緩和傾斜部336bの軸方向長さL1を、第1応力緩和傾斜部336aの軸方向長さL2よりも長く設定することにより、第1軸方向穴331及び第2軸方向穴332の外周側の側壁335bと底部335cの境界部分P0bや、第1軸方向穴331および第2軸方向穴332の外周側の第2応力緩和傾斜部336bと側壁335bの境界部分P4に対する熱応力の集中を緩和することができる。 According to the first embodiment described above, the diameter of the rotor 3 is small, and in order to reduce the electrostatic capacity of the rotor 3, the first axial hole 331 and the second axial hole 332 are Even when the C chamfering of a sufficient size cannot be performed around the bottom portion, the periphery of the boundary portion P0a between the side wall 335a on the inner peripheral side and the bottom portion 335c with respect to the first axial hole 331 and the second axial hole 332 A first stress relaxation slanted portion 336a for relieving thermal stress is formed in the outer peripheral side wall 335b and a second stress relieving slanted portion 336b for relieving thermal stress around the boundary portion P0b between the outer peripheral side wall 335b and the bottom portion 335c. By setting the axial length L1 of the second stress relaxation inclined portion 336b longer than the axial length L2 of the first stress relaxation inclined portion 336a, the first axial hole 331 and the second axial hole 332 and the boundary portion P0b between the outer peripheral side wall 335b and the bottom portion 335c, and the boundary portion P4 between the outer peripheral side second stress relaxation inclined portion 336b and the side wall 335b of the first axial hole 331 and the second axial hole 332. concentration can be eased.

上記説明では、永久磁石電動機1の使用環境や駆動状態で固定子2の巻線23での発熱によって壁部333が熱膨張する場合について説明したが、永久磁石電動機1の使用環境や駆動状態によって温度降下する際の熱収縮時にも第1軸方向穴331および第2軸方向穴332の底部周辺における熱応力の集中を緩和することができる。 In the above description, the case where the wall portion 333 thermally expands due to the heat generated by the windings 23 of the stator 2 under the usage environment and driving state of the permanent magnet motor 1 has been described. The concentration of thermal stress around the bottoms of the first axial hole 331 and the second axial hole 332 can be alleviated even during thermal contraction when the temperature drops.

したがって、シャフト35を支持する第1軸受41および第2軸受42の電食を防止するために回転子3に絶縁部材33を配置し、絶縁部材33に第1軸方向穴331と第2軸方向穴332を形成した場合に、直径の小さな回転子3を製作する際に問題となる絶縁部材33に発生する熱応力の集中を緩和させることができる。結果、回転子3の静電容量を低減するとともに、耐久性を有する小型の回転子3を製作することができ、永久磁石電動機1自体も小型化することができる。 Therefore, in order to prevent electrolytic corrosion of the first bearing 41 and the second bearing 42 that support the shaft 35, the rotor 3 is provided with the insulating member 33, and the insulating member 33 is provided with a first axial hole 331 and a second axial hole 331. When the holes 332 are formed, concentration of thermal stress occurring in the insulating member 33, which is a problem when manufacturing the rotor 3 with a small diameter, can be alleviated. As a result, the electrostatic capacity of the rotor 3 can be reduced, and a small rotor 3 having durability can be manufactured, and the permanent magnet motor 1 itself can also be miniaturized.

なお、上記第1の実施形態では、第1応力緩和傾斜部336aおよび第2応力緩和傾斜部336bを、それぞれC面取りの形状とした場合について説明したが、これに限定されるものではなく、C面取りの形状に代えてR面取りの形状を適用することもできる。また、上記第1の実施形態では、内周側の側壁335aと底部335cの境界部分P0aの周辺に45度のC面取りによって傾斜角θ1の第1応力緩和傾斜部336aと、外周側の側壁335bと底部335cの境界部分P0bの周辺に45度のC面取りによって傾斜角θ1の第2応力緩和傾斜部336bとを形成した場合について説明したが、これに限定されるものではなく、内周側の第1応力緩和傾斜部336aと外周側の第2応力緩和傾斜部336bで傾斜角を変えてもよく、例えば、45度のC面取りによって内周側の第1応力緩和傾斜部336aの傾斜角を45度にし、面取りによって長さL1を1.7mmより大きくして外周側の第2応力緩和傾斜部336bの傾斜角を30度にし、内周側の傾斜角よりも外周側の傾斜角を小さくしてもよい。 In the above-described first embodiment, the first stress relaxation sloped portion 336a and the second stress relaxation sloped portion 336b are respectively C chamfered. An R-chamfered shape can also be applied instead of the chamfered shape. In addition, in the first embodiment, the first stress relaxation inclined portion 336a having the inclination angle θ1 and the outer peripheral side wall 335b are formed by chamfering 45 degrees around the boundary portion P0a between the inner peripheral side wall 335a and the bottom portion 335c. and the second stress relaxation sloped portion 336b having the slope angle θ1 is formed around the boundary portion P0b of the bottom portion 335c by C chamfering of 45 degrees. The first stress relaxation inclined portion 336a and the second stress relaxation inclined portion 336b on the outer peripheral side may have different inclination angles. 45 degrees, the length L1 is made larger than 1.7 mm by chamfering, the inclination angle of the second stress relaxation inclined portion 336b on the outer peripheral side is made 30 degrees, and the inclination angle on the outer peripheral side is smaller than the inclination angle on the inner peripheral side. You may

なお、上記実施形態では、第1応力緩和傾斜部336aの軸方向長さL1を応力緩和に必要な軸方向長さLsと等しく設定した場合について説明したが、これに限定されるものではなく、軸方向長さL1を応力緩和に必要な軸方向長さLsより長く設定するようにしてもよい。同様に、第2応力緩和傾斜部336bの軸方向長さL2についても応力緩和に必要な軸方向長さLsより長く設定するようにしてもよい。 In the above embodiment, the axial length L1 of the first stress relaxation inclined portion 336a is set equal to the axial length Ls1 required for stress relaxation, but the present invention is not limited to this. , the axial length L1 may be set longer than the axial length Ls1 required for stress relaxation. Similarly, the axial length L2 of the second stress relaxation inclined portion 336b may be set longer than the axial length Ls2 required for stress relaxation.

次に、本発明の第2の実施形態について図8を用いて説明する。
この第2の実施形態では、第1応力緩和傾斜部336aと第2応力緩和傾斜部336bを、C面取りの形状とする場合に代えて、2段の応力緩和傾斜部を適用するようにしたものである。なお、第1軸方向穴331と第2軸方向穴332は壁部333に対して対称形状に形成されているため、第2軸方向穴332の説明は省略する。
Next, a second embodiment of the invention will be described with reference to FIG.
In this second embodiment, instead of the first stress relaxation sloped portion 336a and the second stress relaxation sloped portion 336b having a C-chamfered shape, a two-stage stress relaxation sloped portion is applied. is. Since the first axial hole 331 and the second axial hole 332 are formed symmetrically with respect to the wall portion 333, the explanation of the second axial hole 332 is omitted.

すなわち、第2の実施形態では、図8に示すように、底部335cから熱応力を緩和することができる軸方向長さLs(L4)に相当する内周側の側壁335aの端部から軸方向に対して、例えば、図8に示す寸法により15度の面取りを行って第1傾斜角θ2の第3応力緩和傾斜部336c1を形成し、底部335c側については応力緩和を行うことができる、例えば、図8に示す寸法により45度の面取りを行って第2傾斜角θ3の第4応力緩和傾斜部336c2を形成している。 That is, in the second embodiment, as shown in FIG. 8, the axial direction from the end of the inner peripheral side wall 335a corresponding to the axial length Ls 2 (L4) capable of relaxing the thermal stress from the bottom 335c. With respect to the direction, for example, chamfering is performed at 15 degrees according to the dimensions shown in FIG. For example, the fourth stress relaxation inclined portion 336c2 having the second inclination angle θ3 is formed by chamfering at 45 degrees according to the dimensions shown in FIG.

45度の面取りを行った第4応力緩和傾斜部336c2の形成によって、第4応力緩和傾斜部336c2と側壁335aとの間の角度θ3は45度に形成され、第4応力緩和傾斜部336c2と底部335cとの間の角度θ4は45度に形成される。これにより、第1軸方向穴331の内周側の側壁335aと底部335cの間には、第3応力緩和傾斜部336c1と第4応力緩和傾斜部336c2の組合わせにより、2段の応力緩和傾斜部336が形成されている。したがって、絶縁部材33に形成される第1軸方向穴331の内周側の側壁335aと底部335cの境界部分P0aの周辺には、壁部333を形成する領域A、第3応力緩和傾斜部336c1および第4応力緩和傾斜部336c2を形成する領域Bと、内周側の側壁335aを形成する領域Cを有するものとなる。 By forming the fourth stress relaxation sloped portion 336c2 chamfered at 45 degrees, the angle θ3 between the fourth stress relaxation sloped portion 336c2 and the side wall 335a is formed to be 45 degrees, and the fourth stress relaxation sloped portion 336c2 and the bottom The angle θ4 between 335c is formed at 45 degrees. As a result, between the side wall 335a and the bottom portion 335c on the inner peripheral side of the first axial hole 331, a two-stage stress relaxation slope is formed by the combination of the third stress relaxation slope portion 336c1 and the fourth stress relaxation slope portion 336c2. A portion 336 is formed. Therefore, around the boundary portion P0a between the side wall 335a on the inner peripheral side of the first axial hole 331 formed in the insulating member 33 and the bottom portion 335c, the region A forming the wall portion 333 and the third stress relaxation inclined portion 336c1 and a region B forming the fourth stress relaxation inclined portion 336c2, and a region C forming the side wall 335a on the inner peripheral side.

また、図8に示すように、底部335cから熱応力を緩和することができる軸方向長さLs(L3)に相当する外周側の側壁335bの端部から軸方向に対して、例えば、図8に示す寸法により約13度の面取りを行って第3傾斜角θ5の第5応力緩和傾斜部336d1を形成し、底部335c側については応力緩和を行うことができる、例えば、図8に示す寸法により45度の面取りを行って第4傾斜角θ6の第6応力緩和傾斜部336d2を形成している。 Further, as shown in FIG. 8, from the end of the side wall 335b on the outer peripheral side corresponding to the axial length Ls 1 (L3) in which the thermal stress can be relieved from the bottom 335c, in the axial direction, for example, 8 is chamfered at about 13 degrees to form a fifth stress relaxation inclined portion 336d1 with a third inclination angle θ5, and stress relaxation can be performed on the bottom portion 335c side. 45 degree chamfering is performed to form the sixth stress relaxation inclined portion 336d2 having the fourth inclination angle θ6.

45度の面取りを行った第6応力緩和傾斜部336d2の形成によって、第6応力緩和傾斜部336d2と側壁335bとの間の角度θ6は45度に形成され、第6応力緩和傾斜部336d2と底部335cとの間の角度θ7は45度に形成される。これにより、第1軸方向穴331の外周側の側壁335bと底部335cの間には、第5応力緩和傾斜部336d1と第6応力緩和傾斜部336d2の組合わせにより、2段の応力緩和傾斜部336が形成されている。したがって、絶縁部材33に形成される第1軸方向穴331の外周側の側壁335bと底部335cの境界部分P0bの周辺には、壁部333を形成する領域A、第5応力緩和傾斜部336d1および第6応力緩和傾斜部336d2を形成する領域Bと、外周側の側壁335bを形成する領域Cを有するものとなる。 By forming the sixth stress relaxation sloped portion 336d2 chamfered at 45 degrees, the angle θ6 between the sixth stress relaxation sloped portion 336d2 and the side wall 335b is formed to be 45 degrees, and the sixth stress relaxation sloped portion 336d2 and the bottom The angle θ7 between 335c is formed at 45 degrees. As a result, between the outer peripheral side wall 335b and the bottom portion 335c of the first axial hole 331, the combination of the fifth stress relaxation sloped portion 336d1 and the sixth stress relaxation sloped portion 336d2 provides a two-stage stress relaxation sloped portion. 336 is formed. Therefore, around the boundary portion P0b between the outer peripheral side wall 335b and the bottom portion 335c of the first axial hole 331 formed in the insulating member 33, the area A forming the wall portion 333, the fifth stress relaxation inclined portion 336d1 and It has a region B forming the sixth stress relaxation inclined portion 336d2 and a region C forming the side wall 335b on the outer peripheral side.

また、上記のように、第4応力緩和傾斜部336c2の軸方向に対する第2傾斜角θ3は、第3応力緩和傾斜部336c1の軸方向に対する第1傾斜角θ2より大きく設定され、第6応力緩和傾斜部336d2の軸方向に対する第4傾斜角θ6は、第5応力緩和傾斜部336d1の軸方向に対する第3傾斜角θ5より大きく設定されている。 Further, as described above, the second tilt angle θ3 of the fourth stress relaxation sloped portion 336c2 with respect to the axial direction is set larger than the first tilt angle θ2 of the third stress relaxation sloped portion 336c1 with respect to the axial direction. The fourth inclination angle θ6 with respect to the axial direction of the inclined portion 336d2 is set larger than the third inclination angle θ5 with respect to the axial direction of the fifth stress relaxation inclined portion 336d1.

この第2の実施形態によると、第1軸方向穴331の底部周辺の内周側に2段の第3応力緩和傾斜部336c1及び第4応力緩和傾斜部336c2を設け、第1軸方向穴331の底部周辺の外周側に2段の第5応力緩和傾斜部336d1及び第6応力緩和傾斜部336d2を設けることにより、矢印で示す第3応力緩和傾斜部336c1と内周側の側壁335aの境界部分P3での熱膨張の方向の変化を図7(b)と比べて小さくすることができ、矢印で示す第5応力緩和傾斜部336d1と外周側の側壁335bの境界部分P4での熱膨張の方向の変化を図7(b)と比べて小さくすることができる。このため、第3応力緩和傾斜部336c1と内周側の側壁335aの境界部分P3と、第5応力緩和傾斜部336d1と外周側の側壁335bの境界部分P4での熱応力の集中を第1の実施形態に比較してより抑制することができる。 According to the second embodiment, the first axial hole 331 is provided with the third stress relaxation sloped portion 336c1 and the fourth stress relaxation sloped portion 336c2 on the inner circumference side around the bottom portion of the first axial hole 331, and the first axial hole 331 By providing two stages of the fifth stress relaxation sloped portion 336d1 and the sixth stress relaxation sloped portion 336d2 on the outer peripheral side of the bottom portion of the , the boundary portion between the third stress relaxation sloped portion 336c1 and the inner peripheral side wall 335a indicated by the arrow The change in the direction of thermal expansion at P3 can be made smaller than that in FIG. can be made smaller than in FIG. 7(b). Therefore, the concentration of thermal stress at the boundary portion P3 between the third stress relaxation sloped portion 336c1 and the inner peripheral side wall 335a and the boundary portion P4 between the fifth stress relaxation sloped portion 336d1 and the outer peripheral side wall 335b is reduced to the first degree. It can be suppressed more than the embodiment.

なお、上記第2の実施形態においては、2段の第3応力緩和傾斜部336c1及び第4応力緩和傾斜部336c2を内周側に形成し、2段の第5応力緩和傾斜部336d1及び第6応力緩和傾斜部336d2を外周側に形成した場合について説明した。本発明は、上記構成に限定されるものではなく、3段以上の応力緩和傾斜部336を形成するようにしてもよい。また、本発明は、上記構成に限定されるものではなく、1段の応力緩和傾斜部336を内周側に形成し、2段の第5応力緩和傾斜部336d1及び第6応力緩和傾斜部336d2を外周側に形成して、外周側だけ2段の応力緩和傾斜部336にしてもよい。 In the second embodiment, the two-step third stress relaxation sloped portion 336c1 and the fourth stress relaxation sloped portion 336c2 are formed on the inner peripheral side, and the two-step fifth stress relaxation sloped portion 336d1 and the sixth stress relaxation sloped portion 336d1 are formed on the inner peripheral side. The case where the stress relaxation inclined portion 336d2 is formed on the outer peripheral side has been described. The present invention is not limited to the configuration described above, and the stress relaxation inclined portion 336 may be formed in three or more stages. In addition, the present invention is not limited to the above configuration, and the one-step stress relaxation inclined portion 336 is formed on the inner peripheral side, and the two steps of the fifth stress-relaxation inclined portion 336d1 and the sixth stress-relaxation inclined portion 336d2 are formed. may be formed on the outer peripheral side to form the two-step stress relaxation inclined portion 336 only on the outer peripheral side.

また、第3応力緩和傾斜部336c1および第4応力緩和傾斜部336c2と、第5応力緩和傾斜部336d1及び第6応力緩和傾斜部336d2は、面取りによって直線的な傾斜面を形成するものに限定されず、面取りによって湾曲面を形成することができる。 Further, the third stress relaxation sloped portion 336c1 and the fourth stress relaxation sloped portion 336c2, and the fifth stress relaxation sloped portion 336d1 and the sixth stress relaxation sloped portion 336d2 are limited to those forming straight slopes by chamfering. Instead, a curved surface can be formed by chamfering.

また、上記各実施形態では、第1軸方向穴331および第2軸方向穴332の端面形状は、円周方向に沿う円弧状に形成する場合に限らず、円周方向の両端部を半円形状とすることができる。また、第1軸方向穴331および第2軸方向穴332の個数は8個に限定されるものではなく、絶縁部材33の機械的強度を確保できれば、任意の個数とすることができる。また、第1軸方向穴331および第2軸方向穴332の個数は、複数に限定されるものではなく、第1軸方向穴331および第2軸方向穴332を1個の穴として円周方向に連続する形状に形成する場合でもよい。 Further, in each of the above-described embodiments, the end face shape of the first axial hole 331 and the second axial hole 332 is not limited to the arc shape along the circumferential direction. shape. Further, the number of the first axial holes 331 and the second axial holes 332 is not limited to eight, and may be any number as long as the mechanical strength of the insulating member 33 can be ensured. In addition, the number of the first axial holes 331 and the second axial holes 332 is not limited to a plurality. It may be formed in a shape continuous with the .

また、上記各実施形態では、第1軸方向穴331と第2軸方向穴332を壁部333に対して対称形状に形成しているので、第1軸方向穴331と第2軸方向穴332のそれぞれの底部周辺に応力緩和傾斜部336を形成するようにしたが、これに限定されるものではなく、第1軸方向穴331と第2軸方向穴332を壁部333に対して非対称形状に形成した場合には、第1軸方向穴331または第2軸方向穴332のいずれか一方の、熱応力の集中度合いの強い方の底部周辺に応力緩和傾斜部を形成してもよい。 Further, in each of the above-described embodiments, the first axial hole 331 and the second axial hole 332 are formed symmetrically with respect to the wall portion 333, so that the first axial hole 331 and the second axial hole 332 Although the stress relieving slant portion 336 is formed around the bottom portion of each, the present invention is not limited to this. , the stress relaxation inclined portion may be formed around the bottom of either the first axial hole 331 or the second axial hole 332, which has a higher degree of concentration of thermal stress.

さらに、上記各実施形態では、外周側鉄心32の外周面に永久磁石31を配置した表面磁石形の回転子3に本発明を適用した場合について説明したが、これに限定されるものではなく、外周側鉄心32の外周面に対する弦位置に軸方向に延長するスロットを形成し、このスロット内に永久磁石を配置した埋込磁石形の回転子にも本発明を適用することができる。 Furthermore, in each of the above embodiments, the case where the present invention is applied to the surface magnet type rotor 3 in which the permanent magnets 31 are arranged on the outer peripheral surface of the outer core 32 has been described, but the present invention is not limited to this. The present invention can also be applied to an embedded magnet type rotor in which slots extending in the axial direction are formed at the chord position with respect to the outer peripheral surface of the outer core 32 and permanent magnets are arranged in these slots.

1…永久磁石電動機
2…固定子
21…固定子鉄心
22…インシュレータ
23…巻線
3…回転子
31…永久磁石
311…永久磁石片
32…外周側鉄心
321…内周面
33…絶縁部材
33a…一端面
33b…他端面
331…第1軸方向穴
332…第2軸方向穴
333…壁部
334…隔壁
335a,335b…側壁
335c…底部
335d,335e…傾斜部
336a…第1応力緩和傾斜部
336b…第2応力緩和傾斜部
336c1…第3応力緩和傾斜部
336c2…第4応力緩和傾斜部
336d1…第5応力緩和傾斜部
336d2…第6応力緩和傾斜部
34…内周側鉄心
341…外周面
343…貫通穴
35…シャフト
41…第1軸受
42…第2軸受
51…第1ブラケット
511…ブラケット本体
512…第1軸受収容部
52…第2ブラケット
521…第2軸受収容部
522…フランジ部
O…中心軸
REFERENCE SIGNS LIST 1 Permanent magnet motor 2 Stator 21 Stator core 22 Insulator 23 Winding 3 Rotor 31 Permanent magnet 311 Permanent magnet piece 32 Outer core 321 Inner surface 33 Insulating member 33a One end surface 33b Other end surface 331 First axial hole 332 Second axial hole 333 Wall portion 334 Partition wall 335a, 335b Side wall 335c Bottom portion 335d, 335e Inclined portion 336a First stress relaxation inclined portion 336b Second stress relaxation sloped portion 336c1 Third stress relaxation sloped portion 336c2 Fourth stress relaxation sloped portion 336d1 Fifth stress relaxation sloped portion 336d2 Sixth stress relaxation sloped portion 34 Inner core 341 Outer peripheral surface 343 Through hole 35 Shaft 41 First bearing 42 Second bearing 51 First bracket 511 Bracket main body 512 First bearing housing portion 52 Second bracket 521 Second bearing housing portion 522 Flange O central axis

Claims (5)

モータ外郭に固定された固定子と前記固定子の内側に配置された回転子を備え、
前記回転子は、永久磁石を配置した環状の外周側鉄心と、前記外周側鉄心の内径側に位置する環状の内周側鉄心と、前記外周側鉄心と前記内周側鉄心の間に位置する絶縁部材と、前記内周側鉄心を支持し、前記モータ外郭に軸受によって回転自在に支持されたシャフトを備え、
前記絶縁部材は、軸方向の一端面に開口する第1軸方向穴と、軸方向の他端面に開口する第2軸方向穴と、前記第1軸方向穴と前記第2軸方向穴の間に形成される壁部を有し、
前記壁部の一端側に前記第1軸方向穴の底部が形成され、前記壁部の他端側に前記第2軸方向穴の底部が形成され、
前記第1軸方向穴と前記第2軸方向穴のそれぞれは、前記軸方向に沿って形成された内周側の側壁と、前記軸方向に沿って形成された外周側の側壁と、を有し、
前記第1軸方向穴および前記第2軸方向穴の少なくとも一方の、前記内周側の側壁と前記底部の境界部分の周辺に熱応力を緩和するための第1応力緩和傾斜部形成され、前記第1応力緩和傾斜部は前記内周側の側壁に対して傾斜し前記外周側の側壁と前記底部の境界部分の周辺に熱応力を緩和するための第2応力緩和傾斜部形成され、前記第2応力緩和傾斜部は前記外周側の側壁に対して傾斜し
前記第2応力緩和傾斜部の軸方向長さを、前記第1応力緩和傾斜部の軸方向長さよりも長くしたことを特徴とする永久磁石電動機。
A stator fixed to the motor shell and a rotor arranged inside the stator,
The rotor includes an annular outer core in which permanent magnets are arranged, an annular inner core positioned on the inner diameter side of the outer core, and positioned between the outer core and the inner core. an insulating member, and a shaft that supports the inner peripheral iron core and is rotatably supported by a bearing on the outer shell of the motor,
The insulating member has a first axial hole opening at one axial end surface, a second axial hole opening at the other axial end surface, and a space between the first axial hole and the second axial hole. having a wall formed at
a bottom portion of the first axial hole is formed on one end side of the wall portion, and a bottom portion of the second axial hole is formed on the other end side of the wall portion;
Each of the first axial hole and the second axial hole has an inner side wall formed along the axial direction and an outer side wall formed along the axial direction. death,
At least one of the first axial hole and the second axial hole has a first stress relaxation inclined portion around a boundary portion between the inner circumferential side wall and the bottom portion for alleviating thermal stress. , the first stress relaxation inclined portion is inclined with respect to the inner peripheral side wall, and a second stress relaxation inclined portion for relaxing thermal stress is formed around a boundary portion between the outer peripheral side wall and the bottom portion. formed , wherein the second stress relaxation inclined portion is inclined with respect to the side wall on the outer peripheral side ;
A permanent magnet motor, wherein the axial length of the second stress relaxation inclined portion is longer than the axial length of the first stress relaxation inclined portion.
モータ外郭に固定された固定子と前記固定子の内側に配置された回転子を備え、
前記回転子は、永久磁石を配置した環状の外周側鉄心と、前記外周側鉄心の内径側に位置する環状の内周側鉄心と、前記外周側鉄心と前記内周側鉄心の間に位置する絶縁部材と、前記内周側鉄心を支持し、前記モータ外郭に軸受によって回転自在に支持されたシャフトを備え、
前記絶縁部材は、軸方向の一端面に開口する第1軸方向穴と、軸方向の他端面に開口する第2軸方向穴と、前記第1軸方向穴と前記第2軸方向穴の間に形成される壁部を有し、前記壁部の一端側に前記第1軸方向穴の底部が形成され、前記壁部の他端側に前記第2軸方向穴の底部が形成され、
前記第1軸方向穴および前記第2軸方向穴の少なくとも一方の、内周側の側壁と前記底部の境界部分の周辺には、熱応力を緩和することができる前記底部からの軸方向長さに相当する前記第1軸方向穴および前記第2軸方向穴の少なくとも一方の内周側の側壁の端部から軸方向に対して第1傾斜角で傾斜する第3応力緩和傾斜部が形成され、前記第3応力緩和傾斜部と前記底部の間に第2傾斜角で傾斜する第4応力緩和傾斜部が形成され、
前記第1軸方向穴および前記第2軸方向穴の少なくとも一方の、外周側の側壁と前記底部の境界部分の周辺には、熱応力を緩和することができる前記底部からの軸方向長さに相当する前記第1軸方向穴および前記第2軸方向穴の少なくとも一方の内周側の側壁の端部から軸方向に対して第3傾斜角で傾斜する第5応力緩和傾斜部が形成され、前記第5応力緩和傾斜部と前記底部の間に第4傾斜角で傾斜する第6応力緩和傾斜部が形成され、
前記第5応力緩和傾斜部及び前記第6応力緩和傾斜部の熱応力の緩和に必要な軸方向長さを、前記第3応力緩和傾斜部および前記第4応力緩和傾斜部の熱応力の緩和に必要な軸方向長さよりも長くしたことを特徴とする永久磁石電動機。
A stator fixed to the motor shell and a rotor arranged inside the stator,
The rotor includes an annular outer core in which permanent magnets are arranged, an annular inner core positioned on the inner diameter side of the outer core, and positioned between the outer core and the inner core. an insulating member, and a shaft that supports the inner peripheral iron core and is rotatably supported by a bearing on the outer shell of the motor,
The insulating member has a first axial hole opening at one axial end surface, a second axial hole opening at the other axial end surface, and a space between the first axial hole and the second axial hole. a bottom portion of the first axial hole is formed on one end side of the wall portion, and a bottom portion of the second axial hole is formed on the other end side of the wall portion;
At least one of the first axial hole and the second axial hole has an axial length from the bottom that can relax thermal stress around the boundary portion between the inner peripheral side wall and the bottom. A third stress relaxation inclined portion inclined at a first inclination angle with respect to the axial direction is formed from the end portion of the side wall on the inner peripheral side of at least one of the first axial hole and the second axial hole corresponding to , a fourth stress relaxation sloped portion inclined at a second slope angle is formed between the third stress relaxation sloped portion and the bottom;
In at least one of the first axial hole and the second axial hole, around the boundary portion between the side wall on the outer peripheral side and the bottom portion, there is an axial length from the bottom portion that can relax the thermal stress. a fifth stress relaxation inclined portion inclined at a third angle of inclination with respect to the axial direction from the end portion of the inner peripheral side wall of at least one of the corresponding first axial hole and the second axial hole; A sixth stress relaxation sloped portion inclined at a fourth slope angle is formed between the fifth stress relaxation sloped portion and the bottom portion,
The axial length required for relaxing the thermal stress of the fifth stress relaxation sloped portion and the sixth stress relaxation sloped portion is adjusted to the thermal stress relaxation of the third stress relaxation sloped portion and the fourth stress relaxation sloped portion. A permanent magnet motor characterized by having an axial length longer than required.
前記第4応力緩和傾斜部の軸方向に対する第2傾斜角は、前記第3応力緩和傾斜部の軸方向に対する第1傾斜角より大きく設定され、前記第6応力緩和傾斜部の軸方向に対する第4傾斜角は、前記第5応力緩和傾斜部の軸方向に対する第3傾斜角より大きく設定されていることを特徴とする請求項2に記載の永久磁石電動機。 A second inclination angle of the fourth stress relaxation inclined portion with respect to the axial direction is set larger than a first inclination angle of the third stress relaxation inclined portion with respect to the axial direction. 3. The permanent magnet motor according to claim 2, wherein the inclination angle is set larger than the third inclination angle with respect to the axial direction of the fifth stress relaxation inclined portion. 前記第1軸方向穴および前記第2軸方向穴の少なくとも一方に、3段以上の応力緩和傾斜部を形成したことを特徴とする請求項2または3に記載の永久磁石電動機。 4. The permanent magnet motor according to claim 2, wherein at least one of said first axial hole and said second axial hole is formed with three or more stages of stress relaxation inclined portions. 前記第1軸方向穴と前記第2軸方向穴は、円周方向に複数設けられ、複数の前記第1軸方向穴のそれぞれの間、および、複数の前記第2軸方向穴のそれぞれの間に隔壁が形成され、前記第1軸方向穴と前記第2軸方向穴の端面形状が円周方向に沿う円弧状に形成されることを特徴とする請求項1から4の何れか一項に記載の永久磁石電動機。 A plurality of the first axial holes and the second axial holes are provided in a circumferential direction between the plurality of first axial holes and between the plurality of second axial holes. 5. A partition wall is formed in the first axial hole and the end faces of the second axial hole are arcuate along the circumferential direction. Permanent magnet motor as described.
JP2018069714A 2018-03-30 2018-03-30 permanent magnet motor Active JP7119509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018069714A JP7119509B2 (en) 2018-03-30 2018-03-30 permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018069714A JP7119509B2 (en) 2018-03-30 2018-03-30 permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2019180187A JP2019180187A (en) 2019-10-17
JP7119509B2 true JP7119509B2 (en) 2022-08-17

Family

ID=68279125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069714A Active JP7119509B2 (en) 2018-03-30 2018-03-30 permanent magnet motor

Country Status (1)

Country Link
JP (1) JP7119509B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005854A (en) 2015-06-10 2017-01-05 日本電産テクノモータ株式会社 Rotor, motor, and manufacturing method of rotor
CN106787311A (en) 2016-11-24 2017-05-31 广东威灵电机制造有限公司 Rotor and motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005854A (en) 2015-06-10 2017-01-05 日本電産テクノモータ株式会社 Rotor, motor, and manufacturing method of rotor
CN106787311A (en) 2016-11-24 2017-05-31 广东威灵电机制造有限公司 Rotor and motor

Also Published As

Publication number Publication date
JP2019180187A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US9088191B2 (en) Armature and motor
JP2010098929A (en) Double gap motor
WO2019026273A1 (en) Rotor, electric motor, fan, and method for manufacturing air conditioner and rotor
WO2018037449A1 (en) Consequent-pole-type rotor, electric motor, and air conditioner
WO2018037455A1 (en) Consequent pole-type rotor, electric motor, and air conditioner
JP2006333614A (en) Rotating electric machine and its manufacturing method
JPWO2018179831A1 (en) motor
JP6855869B2 (en) Permanent magnet motor
US11336131B2 (en) Stator and electric motor equipped with stator
JP6332376B2 (en) Permanent magnet motor
JP2018023186A (en) Rotary electric machine rotor
WO2024084869A1 (en) Insulating sheet, stator provided with same, and motor
JP2012200116A (en) Electric motor
JP7119509B2 (en) permanent magnet motor
JP7293807B2 (en) Electric motor
JP7091764B2 (en) Permanent magnet motor
JP7331418B2 (en) Electric motor with rotor and rotor
JP7334450B2 (en) Rotors and electric motors with rotors
KR20200096414A (en) Roter and motor
JP4374507B2 (en) Electric motor
JP2020014368A (en) Brushless motor and manufacturing method thereof
WO2022244590A1 (en) Rotor and electric motor
JP7337001B2 (en) Axial gap type rotary electric machine
JP7178547B2 (en) brushless motor
JP2006087244A (en) Rotating electric machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151