JP6216483B2 - Mixer, vacuum processing equipment - Google Patents

Mixer, vacuum processing equipment Download PDF

Info

Publication number
JP6216483B2
JP6216483B2 JP2017527376A JP2017527376A JP6216483B2 JP 6216483 B2 JP6216483 B2 JP 6216483B2 JP 2017527376 A JP2017527376 A JP 2017527376A JP 2017527376 A JP2017527376 A JP 2017527376A JP 6216483 B2 JP6216483 B2 JP 6216483B2
Authority
JP
Japan
Prior art keywords
gas
cylinder
main body
mixing container
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017527376A
Other languages
Japanese (ja)
Other versions
JPWO2017061498A1 (en
Inventor
慎太郎 田宮
慎太郎 田宮
洋介 神保
洋介 神保
阿部 洋一
洋一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Application granted granted Critical
Publication of JP6216483B2 publication Critical patent/JP6216483B2/en
Publication of JPWO2017061498A1 publication Critical patent/JPWO2017061498A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/19Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Description

本発明は、気体の混合器と、その混合器を用いた真空処理装置の技術分野に関する。   The present invention relates to a technical field of a gas mixer and a vacuum processing apparatus using the mixer.

異なる種類のガスを混合させるために、二本の配管に流れる異なる種類のガスを合流させて屈曲部を有する一本の配管内に流し、二種類のガスが屈曲部を流れると、屈曲部で発生する渦流によって、二種類のガスが混合される。
この混合方法は、形状が単純で低コストで済むが、屈曲部で発生する圧力損失が大きい。
In order to mix different types of gas, different types of gas flowing in two pipes are merged and flow into one pipe having a bent portion, and when two types of gas flow in the bent portion, Two kinds of gases are mixed by the generated vortex.
This mixing method is simple in shape and low in cost, but has a large pressure loss generated at the bent portion.

特に、二種類のガスのうち、一方のガス源の圧力が高く、他方のガス源の圧力が低い場合には、圧力損失のため、低い圧力のガス源から供給されるガスの量が減少し、ガス流量比が所望の値からずれてしまう。   In particular, when the pressure of one gas source is high and the pressure of the other gas source is low, the amount of gas supplied from the low pressure gas source decreases due to pressure loss. The gas flow rate ratio deviates from a desired value.

特に、一方のガスが、常温常圧で気体であり、そのガスのガス源がボンベであり、他方のガスが、固体又は液体の原料物質を加熱して昇華又は蒸発させて発生した気体の原料物質であり、二種類のガスを反応させて薄膜を形成する場合は、気体の原料物質の供給量が低下すると薄膜の成長速度が低下する。   In particular, one gas is a gas at normal temperature and pressure, the gas source of the gas is a cylinder, and the other gas is a gas material generated by sublimation or evaporation by heating a solid or liquid source material. In the case where a thin film is formed by reacting two kinds of gases, the growth rate of the thin film decreases when the supply amount of the gaseous raw material decreases.

直方体の容器を混合容器として用い、異なる種類のガスが流れる配管を混合容器に接続し、混合容器内で発生する渦流によって二種類のガスを混合させ、一本の配管で混合ガスを取り出す方法があり、圧力損失が小さいという利点がある。   A method of using a rectangular parallelepiped container as a mixing container, connecting pipes through which different types of gas flow to the mixing container, mixing two kinds of gas by the vortex generated in the mixing container, and taking out the mixed gas with a single pipe There is an advantage that the pressure loss is small.

しかしながら、配管が混合容器に接続された位置によって、混合の程度が影響を受け、二種類のガスが均一に混合されていないという問題がある。特に、流量が大きく異なる二種類のガスが混合容器内に導入されると、混合容器内部で、二種類のガスが別々の領域に位置し、得られた混合ガスで薄膜を形成すると、膜厚分布が悪い薄膜しか得られない。   However, there is a problem that the degree of mixing is affected by the position where the pipe is connected to the mixing container, and the two types of gases are not uniformly mixed. In particular, when two types of gases with greatly different flow rates are introduced into the mixing vessel, the two types of gases are located in different regions within the mixing vessel, and when a thin film is formed with the obtained mixed gas, the film thickness Only thin films with poor distribution can be obtained.

特に、近年では半導体素子に用いるSiO2膜の材料として、TEOSを原料とするプラズマCVD方法が広く用いられており、TEOSガスと酸素ガスとが混合容器の内部で混合された後、プラズマ化される。
TEOS等、常温で液体となる物質をガス化して気体輸送する場合は、その気体圧力はその物質がもつ蒸気圧と温度で決定される。
In particular, in recent years, a plasma CVD method using TEOS as a raw material has been widely used as a material for a SiO 2 film used for a semiconductor element. After a TEOS gas and an oxygen gas are mixed inside a mixing vessel, the plasma is converted into plasma. The
When a substance that is liquid at room temperature, such as TEOS, is gasified and transported in gas, the gas pressure is determined by the vapor pressure and temperature of the substance.

気体輸送を行う場合、蒸発場所(又は昇華場所)での原料ガスの圧力は高い方が装置設計上都合が良いが、装置の温度を一定以上に保つ事は装置構成上難しい。従って、常温で液体や個体となる物質の蒸気圧、つまり輸送する原料ガスの圧力には上限が存在する。   When performing gas transportation, it is convenient in terms of device design that the pressure of the raw material gas at the evaporation site (or sublimation site) is high, but it is difficult to maintain the temperature of the device at a certain level or more. Therefore, there is an upper limit to the vapor pressure of a substance that becomes a liquid or solid at room temperature, that is, the pressure of the material gas to be transported.

一般に、液体のTEOSの蒸気圧は、2600Pa以上の値を確保する事は難しいため、TEOSガスの生成場所の圧力と混合容器内の圧力との間の差圧は小さくなるから、ガスボンベに高圧で充填された酸素ガスの流量を増加させることは簡単であるが、TEOSガスの流量を増加させることは困難である。
混合容器を用いた従来技術が下記文献に記載されている。
In general, the vapor pressure of liquid TEOS is difficult to ensure a value of 2600 Pa or higher, so the differential pressure between the pressure at the TEOS gas generation site and the pressure in the mixing vessel is small. Although it is easy to increase the flow rate of the filled oxygen gas, it is difficult to increase the flow rate of the TEOS gas.
Prior art using a mixing vessel is described in the following document.

特開平10−150030号公報Japanese Patent Laid-Open No. 10-150030 特開2001−335941号公報JP 2001-335941 A

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、二種類のガスを均一に混合できる混合器と、その混合器を用いた真空処理装置を提供することにある。   The present invention was created to solve the above-described disadvantages of the prior art, and an object thereof is to provide a mixer capable of uniformly mixing two kinds of gases and a vacuum processing apparatus using the mixer. It is in.

上記課題を解決するため、本発明は、内部の空間が外部の雰囲気から分離された混合容器と、根元側に導入された第一ガスが先端側の第一筒開口から流出する筒形状の第一筒本体と、根元側に導入された第二ガスが先端側の第二筒開口から流出する筒形状の第二筒本体と、前記混合容器の壁に設けられた流出口と、を有し、前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面から離間して前記混合容器の内部に配置され、前記第二筒本体の少なくとも一部は、前記第二筒本体の外周側面が前記第一筒本体の内周側面とは非接触にされた状態で前記第一筒本体の内部に配置され、前記第一筒本体の内周側面と前記第二筒本体の外周側面との間の隙間を前記第一ガスが流れるようにされ、前記第二筒開口は、前記第一筒本体の内部に配置され、前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面から、前記第二筒開口よりも近い位置に配置され、前記第一筒本体と前記第二筒本体とは、互いに平行な直線に沿ってそれぞれ伸ばされており、前記第一筒開口から前記混合容器内に流出して直進している前記第一ガスと、前記第二筒開口から前記混合容器内に流出して直進している前記第二ガスとが前記流出口に入射しないように、前記流出口が配置され、前記第一、第二ガスは、前記第一筒開口から前記混合容器の内部に放出されて前記混合容器の内部であって前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記第一筒本体とを中心とするドーナツ状の混合空間で形成された前記第一、第二ガスの渦で混合され、前記第一、第二ガスが混合されて生成された混合ガスは、前記流出口から前記混合容器の外部に流出する混合器である
発明は、前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉した部分の壁面である交叉部分の外側の前記壁面に設けられた混合器である。
また、本発明は、前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉する位置に少なくとも一部が配置され、前記第一筒開口と前記流出口との間には邪魔板部材が設けられた混合器である。
本発明は、前記混合容器は直方体であり、前記混合容器の六個の壁のうち四個の壁の壁面は前記第一筒本体の外周と平行に配置されて前記第一筒本体の外周側面と対面された混合器である。
本発明は、前記第一筒本体と前記第二筒本体とは内周側面の断面形状が円形である混合器である。
本発明は、ガス供給装置と、混合器と、ガス移送管と、真空槽と、ガス放出装置と、を有し、前記ガス供給装置から前記混合器に第一ガスと第二ガスとが導入され、前記第一ガスと前記第二ガスとは前記混合器で混合されて混合ガスが生成され、生成された混合ガスは、前記ガス移送管によって前記混合器から前記ガス放出装置に移送され、前記ガス放出装置から前記真空槽の内部に放出され、前記真空槽の内部に配置された処理対象物が真空処理される真空処理装置であって、前記混合器は、内部の空間が外部の雰囲気から分離された混合容器と、根元側に導入された前記第一ガスが先端側の第一筒開口から流出する筒形状の第一筒本体と、根元側に導入された前記第二ガスが先端側の第二筒開口から流出する筒形状の第二筒本体と、前記混合容器の壁に設けられ、前記ガス移送管が接続される流出口と、を有し、前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面と離間して前記混合容器の内部に配置され、前記第二筒本体の少なくとも一部は、前記第二筒本体の外周側面が前記第一筒本体の内周側面と非接触にされた状態で前記第一筒本体の内部に配置され、前記第一筒本体の内周側面と前記第二筒本体の外周側面との間の隙間を前記第一ガスが流れるようにされ、前記第二筒開口は、前記第一筒本体の内部に配置され、前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面から、前記第二筒開口よりも近い位置に配置され、前記第一筒本体と前記第二筒本体とは、互いに平行な直線に沿ってそれぞれ伸ばされており、前記第一筒開口から前記混合容器内に流出して直進している前記第一ガスと、前記第二筒開口から前記混合容器内に流出して直進している前記第二ガスとが前記流出口に入射しないように、前記流出口が配置され、前記第一、第二ガスは、前記第一筒開口から前記混合容器の内部に放出されて前記混合容器の内部であって前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記第一筒本体とを中心とするドーナツ状の混合空間で形成された前記第一、第二ガスの渦で混合され、前記第一、第二ガスが混合されて生成された混合ガスは、前記流出口から前記ガス移送管の内部に流入する真空処理装置である。
本発明は、前記ガス供給装置は、原料物質を配置するガス生成容器と、前記ガス生成容器内の前記原料物質を加熱する加熱装置と、を有し、前記第一ガス又は前記第二ガスのいずれか一方のガスとして、前記原料物質が前記加熱装置によって加熱され、昇華又は蒸発によって生成された原料ガスが前記混合容器に供給され、他方のガスとして、少なくとも常温常圧において気体であるガスが前記混合容器に供給される真空処理装置である。
本発明は、前記真空槽内に放出された前記混合ガスに含有される前記第一ガスと前記第二ガスの化学反応により、前記真空槽の内部に配置された処理対象物表面に薄膜が形成される真空処理装置である。
本発明は、前記混合器から供給された前記混合ガスをプラズマ化するプラズマ装置が設けられた真空処理装置である
発明は、前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉した部分の壁面である交叉部分の外側の前記壁面に設けられた真空処理装置である。
本発明は、前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉した部分の壁面である交叉部分と少なくとも一部が重なるように配置され、前記第一筒開口と前記流出口との間には邪魔板部材が設けられた真空処理装置である。
本発明は、前記混合容器は直方体であり、前記混合容器の六個の壁のうち四個の壁の壁面は前記第一筒本体の外周と平行に配置されて前記第一筒本体の外周側面と対面された真空処理装置である。
さらに、本発明は、前記第一筒本体と前記第二筒本体とは内周側面の断面形状が円形である真空処理装置である。
In order to solve the above-described problems, the present invention provides a mixing container in which an internal space is separated from an external atmosphere, and a cylindrical first in which a first gas introduced to the root side flows out from a first cylinder opening on the tip side. A cylindrical main body, a cylindrical second cylindrical body through which the second gas introduced to the base side flows out from the second cylindrical opening on the tip side, and an outlet provided in the wall of the mixing container The first cylinder opening is disposed in the mixing container so as to be separated from the wall surface of the mixing container facing the first cylinder opening, and at least a part of the second cylinder main body is the second cylinder main body. The outer peripheral side surface of the first cylindrical main body is disposed in contact with the inner peripheral side surface of the first cylindrical main body, the inner peripheral side surface of the first cylindrical main body and the outer peripheral surface of the second cylindrical main body. The first gas is allowed to flow through a gap between side surfaces, and the second cylinder opening is formed inside the first cylinder body. Disposed, said first cylindrical opening, the wall of the mixing vessel the first cylindrical opening face, is positioned closer than the second cylindrical opening, and said first cylindrical body and the second tubular body Are respectively extended along straight lines parallel to each other, the first gas flowing out from the first cylinder opening into the mixing container and going straight, and the second cylinder opening into the mixing container The outflow port is disposed so that the second gas flowing out and going straight does not enter the outflow port, and the first and second gases are introduced into the mixing container from the first cylinder opening. A donut shape centered on the first cylinder main body and a virtual cylinder that is released and is virtually extended in the direction in which the first cylinder main body extends in the direction in which the first cylinder main body extends. the first formed by mixing space, are mixed in the vortex of a second gas, before First, a mixed gas the second gas is generated by mixing is a mixer for flow out of said mixing vessel from said outlet.
In the present invention, the outlet is a wall surface of a portion where a virtual cylinder obtained by virtually extending an outer peripheral side surface of the first cylinder body in a direction in which the first cylinder body extends and a wall surface of the mixing container intersect. It is a mixer provided in the said wall surface of the outer side of a crossing part.
Further, in the present invention, the outlet is at least at a position where a virtual cylinder obtained by virtually extending an outer peripheral side surface of the first cylinder main body in a direction in which the first cylinder main body extends and a wall surface of the mixing container intersect. A mixer in which a part is arranged and a baffle plate member is provided between the first cylinder opening and the outlet.
In the present invention, the mixing container is a rectangular parallelepiped, and wall surfaces of four walls among the six walls of the mixing container are arranged in parallel with the outer periphery of the first cylinder body, and the outer peripheral side surface of the first cylinder body It is a mixer faced with.
The present invention is a mixer in which the first cylinder main body and the second cylinder main body have circular inner cross-sectional shapes.
The present invention includes a gas supply device, a mixer, a gas transfer pipe, a vacuum chamber, and a gas discharge device, and the first gas and the second gas are introduced from the gas supply device into the mixer. The first gas and the second gas are mixed in the mixer to generate a mixed gas, and the generated mixed gas is transferred from the mixer to the gas discharge device by the gas transfer pipe, A vacuum processing apparatus in which an object to be processed, which is discharged from the gas releasing apparatus into the vacuum chamber and disposed inside the vacuum chamber, is vacuum-processed, and the mixer has an internal space in an external atmosphere. a first cylindrical body, said second gas introduced into the root side tip of the cylindrical shape and separated mixing vessel, said first gas introduced into the root side flows out from the first cylindrical opening in the distal end side from A cylindrical second cylinder body that flows out from the second cylinder opening on the side; An outlet port connected to the gas transfer pipe and connected to the gas transfer pipe, and the first cylinder opening is spaced apart from the wall surface of the mixing container facing the first cylinder opening. Disposed in the container, and at least a part of the second cylinder main body is configured such that the outer peripheral side surface of the second cylinder main body is not in contact with the inner peripheral side surface of the first cylinder main body. The first cylinder is disposed inside, and is configured to allow the first gas to flow through a gap between an inner peripheral side surface of the first cylinder main body and an outer peripheral side surface of the second cylinder main body, and the second cylinder opening The first cylinder opening is disposed inside the main body, the first cylinder opening is disposed at a position closer to the second cylinder opening than the wall surface of the mixing container facing the first cylinder opening, and the first cylinder main body and the first cylinder opening The two-cylinder main body is stretched along straight lines parallel to each other, and the mixing cylinder is opened from the first cylinder opening. The first gas flowing out into the container and going straight and the second gas flowing out into the mixing container and going straight from the second cylinder opening do not enter the outlet. An outlet is disposed, and the first and second gases are discharged from the first cylinder opening into the mixing container and are inside the mixing container and extend in the direction in which the first cylinder body extends. The first and second gas vortices formed in a donut-shaped mixing space centered on a virtual cylinder obtained by virtually extending the outer peripheral side surface of the cylinder main body and the first cylinder main body, The mixed gas generated by mixing the second gas is a vacuum processing apparatus that flows into the gas transfer pipe from the outlet.
In the present invention, the gas supply device includes a gas generation container in which a raw material is arranged, and a heating device that heats the raw material in the gas generation container, and the first gas or the second gas As one of the gases, the source material is heated by the heating device, the source gas generated by sublimation or evaporation is supplied to the mixing container, and the other gas is a gas that is a gas at least at normal temperature and pressure. It is a vacuum processing apparatus supplied to the said mixing container.
In the present invention, a thin film is formed on the surface of an object to be processed disposed inside the vacuum chamber by a chemical reaction between the first gas and the second gas contained in the mixed gas discharged into the vacuum chamber. Vacuum processing apparatus.
The present invention is a vacuum processing apparatus provided with a plasma apparatus for converting the mixed gas supplied from the mixer into plasma .
In the present invention, the outlet is a wall surface of a portion where a virtual cylinder obtained by virtually extending an outer peripheral side surface of the first cylinder body in a direction in which the first cylinder body extends and a wall surface of the mixing container intersect. It is the vacuum processing apparatus provided in the said wall surface outside a crossing part.
In the present invention, the outlet is a wall surface of a portion where a virtual cylinder obtained by virtually extending an outer peripheral side surface of the first cylinder body in a direction in which the first cylinder body extends and a wall surface of the mixing container intersect. The vacuum processing apparatus is arranged so that at least a part of the crossing portion overlaps, and a baffle plate member is provided between the first cylinder opening and the outlet.
In the present invention, the mixing container is a rectangular parallelepiped, and wall surfaces of four walls among the six walls of the mixing container are arranged in parallel with the outer periphery of the first cylinder body, and the outer peripheral side surface of the first cylinder body It is a vacuum processing apparatus that faces.
Furthermore, the present invention is a vacuum processing apparatus in which the first cylinder main body and the second cylinder main body have circular inner cross-sectional shapes.

本発明の混合器は、混合器に導入される互いに異なる種類の第一ガスと第二ガスとを均一に混合させることができる。特に、本発明の混合器は、第一ガスと第二ガスとの流量差が大きい場合でも第一ガスと第二ガスとを均一に混合することができる。   The mixer of the present invention can uniformly mix different types of first gas and second gas introduced into the mixer. In particular, the mixer of the present invention can uniformly mix the first gas and the second gas even when the flow rate difference between the first gas and the second gas is large.

また、第一又は第二ガスが、混合器の内部の圧力に近い圧力で混合器に供給される場合も、第一、第二ガスを均一に混合することができる。
また、小さな圧力損失で混合させることができる。
従って、本発明の真空処理装置は、処理対象物の表面を均一に真空処理することができる。
Also, when the first or second gas is supplied to the mixer at a pressure close to the pressure inside the mixer, the first and second gases can be mixed uniformly.
Moreover, it can mix with a small pressure loss.
Therefore, the vacuum processing apparatus of the present invention can uniformly vacuum process the surface of the processing object.

(a):本発明の真空処理装置の一例 (b):本発明の真空処理装置の他の例(a): An example of the vacuum processing apparatus of the present invention (b): Another example of the vacuum processing apparatus of the present invention 本発明の混合器の第一実施例First embodiment of the mixer of the present invention 本発明の混合器の第二実施例Second embodiment of the mixer of the present invention 本発明の混合器の第三実施例Third embodiment of the mixer of the present invention 本発明の混合器の第四実施例Fourth embodiment of the mixer of the present invention 本発明の混合器の第五実施例Fifth embodiment of the mixer of the present invention 第一比較例である混合器First comparative example mixer 第二比較例である混合器Second comparative example mixer 第三比較例である混合器Third comparative example mixer (a):第二実施例の混合器のTEOSガスの質量分率分布(導入例1) (b):分布の境界線と混合容器の寸法を示す図(a): Mass fraction distribution of TEOS gas in the mixer of the second embodiment (Introduction example 1) (b): Diagram showing distribution boundaries and dimensions of the mixing vessel (a):第二実施例の混合器のTEOSガスの質量分率分布(導入例2) (b):分布の境界線(a): TEOS gas mass fraction distribution of the mixer of the second embodiment (Introduction example 2) (b): Distribution boundary (a):助走空間の長さを変えた第二実施例の混合器のTEOSガスの質量分率分布(導入例1) (b):分布の境界線と混合容器の寸法を示す図(a): Mass fraction distribution of TEOS gas in the mixer of the second embodiment in which the length of the run-up space is changed (Introduction example 1) (b): Diagram showing the distribution boundary and the dimensions of the mixing vessel (a):助走空間の長さを変えた第二実施例の混合器のTEOSガスの質量分率分布(導入例2) (b):分布の境界線(a): TEOS gas mass fraction distribution of the mixer of the second embodiment with the length of the run-up space changed (introduction example 2) (b): Distribution boundary (a):第四実施例の混合器のTEOSガスの質量分率分布(導入例1) (b):分布の境界線(a): TEOS gas mass fraction distribution of the mixer of the fourth embodiment (Introduction example 1) (b): Distribution boundary (a):第一比較例の混合器のTEOSガスの質量分率分布(導入例1) (b):分布の境界線(a): TEOS gas mass fraction distribution of the mixer of the first comparative example (Introduction example 1) (b): Distribution boundary (a):第二比較例の混合器のTEOSガスの質量分率分布(導入例1) (b):分布の境界線(a): TEOS gas mass fraction distribution in the mixer of the second comparative example (Introduction example 1) (b): Distribution boundary (a):第三比較例の混合器のTEOSガスの質量分率分布(導入例1) (b):分布の境界線(a): TEOS gas mass fraction distribution in the mixer of the third comparative example (Introduction example 1) (b): Distribution boundary (a):第三比較例の混合器のTEOSガスの質量分率分布(導入例2) (b):分布の境界線(a): TEOS gas mass fraction distribution in the mixer of the third comparative example (introduction example 2) (b): Distribution boundary 模様とTEOSガスの質量分率の対応関係を示す図The figure which shows the correspondence of a pattern and the mass fraction of TEOS gas

図1(a)の符号2は、本発明の真空処理装置を示している。
この真空処理装置2は、真空槽24を有しており、真空槽24には、放出装置19と、ガス供給装置4と、本発明の第一実施例である混合器3とが設けられている。
The code | symbol 2 of Fig.1 (a) has shown the vacuum processing apparatus of this invention.
The vacuum processing apparatus 2 has a vacuum tank 24, and the vacuum tank 24 is provided with a discharge device 19, a gas supply device 4, and a mixer 3 according to the first embodiment of the present invention. Yes.

真空槽24には、真空排気装置33が接続されており、真空排気装置33によって真空槽24の内部を真空排気すると、混合器3の内部も真空排気されるようになっている。
混合器3とガス供給装置4とは、真空槽24の外部に配置されている。
An evacuation device 33 is connected to the vacuum chamber 24, and when the inside of the vacuum chamber 24 is evacuated by the evacuation device 33, the inside of the mixer 3 is also evacuated.
The mixer 3 and the gas supply device 4 are disposed outside the vacuum chamber 24.

ガス供給装置4は、補助原料ガス供給装置8と、主原料ガス供給装置9とを有している。
補助原料ガス供給装置8は、ここではガスボンベであり、補助原料ガス供給装置8には、常温(「常温」は5℃−35℃の温度を意味する。:日本工業規格 JIS Z 8703)且つ常圧(「常圧は」は1013hPaの圧力を意味する。)において気体である補助原料ガスが充填されている。
The gas supply device 4 includes an auxiliary raw material gas supply device 8 and a main raw material gas supply device 9.
The auxiliary raw material gas supply device 8 is a gas cylinder here, and the auxiliary raw material gas supply device 8 has a normal temperature (“normal temperature” means a temperature of 5 ° C. to 35 ° C .: Japanese Industrial Standard JIS Z 8703). An auxiliary raw material gas which is a gas at a pressure (“normal pressure” means a pressure of 1013 hPa) is filled.

主原料ガス供給装置9は、ガス生成容器5と、原料物質6と、加熱装置7とを有している。原料物質6はガス生成容器5の内部に配置されており、真空排気装置33によってガス生成容器5の内部が真空排気された状態で、加熱装置7によってガス生成容器5が加熱されると、原料物質6が昇温し、昇華温度又は蒸発温度になると、昇華又は蒸発によって原料物質6の気体である主原料ガスが生成される。加熱装置7によって、原料物質6を直接加熱して、昇華又は蒸発によって原料物質6の気体である主原料ガスを発生させるようにしてもよい。   The main raw material gas supply device 9 includes a gas generation container 5, a raw material 6, and a heating device 7. The raw material 6 is disposed inside the gas generation container 5. When the gas generation container 5 is heated by the heating device 7 in a state where the inside of the gas generation container 5 is evacuated by the vacuum exhaust device 33, When the substance 6 rises in temperature and reaches a sublimation temperature or evaporation temperature, a main raw material gas that is a gas of the raw material 6 is generated by sublimation or evaporation. The source material 6 may be directly heated by the heating device 7 to generate a main source gas that is a gas of the source material 6 by sublimation or evaporation.

補助原料ガス供給装置8と主原料ガス供給装置9とのうち、いずれか一方の装置は第一配管26によって混合器3に接続され、他方の装置は第二配管27によって混合器3に接続されており、補助原料ガス供給装置8から供給される補助原料ガスと、主原料ガス供給装置9から供給される主原料ガスとのうち、いずれか一方のガスが、第一ガスとして、第一配管26を通って混合器3に供給され、他方のガスが、第二ガスとして第二配管27を通って混合器3に供給される。   One of the auxiliary source gas supply device 8 and the main source gas supply device 9 is connected to the mixer 3 by the first pipe 26, and the other device is connected to the mixer 3 by the second pipe 27. One of the auxiliary raw material gas supplied from the auxiliary raw material gas supply device 8 and the main raw material gas supplied from the main raw material gas supply device 9 serves as the first gas as the first pipe. 26 is supplied to the mixer 3, and the other gas is supplied to the mixer 3 through the second pipe 27 as the second gas.

真空槽24の内部と混合器3の内部とは真空排気装置33によって真空排気されており、第一、第二ガスが混合器3に供給されても、混合器3と真空槽24の内部は真空雰囲気が維持されている。   The inside of the vacuum chamber 24 and the inside of the mixer 3 are evacuated by the evacuation device 33, and even if the first and second gases are supplied to the mixer 3, the inside of the mixer 3 and the vacuum chamber 24 remains A vacuum atmosphere is maintained.

図2は混合器3の構造を示している。
混合器3は、内部の空間が外部の雰囲気から分離された混合容器10を有しており、混合容器10の内部の空間には、内部中空で断面円形である筒形状の第一筒本体11が配置されている。第一筒本体11の筒形状の内側には、内部中空で断面円形である筒形状の第二筒本体12が配置されている。混合容器10は直方体であり、長手方向に伸びる四面のうち、最大面積であって互いに平行な二面が水平に配置されている。第一筒本体11と第二筒本体12とは、筒形状の中心軸線が水平であるように配置されている。図2は、混合器3の水平断面図であり、上方から断面を見た場合の図である。
FIG. 2 shows the structure of the mixer 3.
The mixer 3 has a mixing container 10 in which the internal space is separated from the external atmosphere, and the internal space of the mixing container 10 has a cylindrical first cylinder body 11 that is hollow inside and circular in cross section. Is arranged. A cylindrical second cylinder body 12 that is hollow inside and circular in cross section is disposed inside the cylindrical shape of the first cylinder body 11. The mixing container 10 is a rectangular parallelepiped, and two surfaces having the maximum area and parallel to each other among the four surfaces extending in the longitudinal direction are horizontally arranged. The 1st cylinder main body 11 and the 2nd cylinder main body 12 are arrange | positioned so that a cylindrical center axis line may be horizontal. FIG. 2 is a horizontal cross-sectional view of the mixer 3, and is a view when the cross-section is viewed from above.

本実施例の混合器3は小室21を有しており、第一配管26は小室21に接続され、第一配管26を通った第一ガスは真空排気された小室21の内部22に導入されるようになっている。
小室21の壁には小孔23が設けられており、小室21の壁には、第一筒本体11の一端が、第一筒本体11の中空部分が小孔23に接続されるように固定され、第一筒本体11の他端は、混合容器10の内部に配置されている。小室21の内部は、第一筒本体11によって、混合容器10の内部に接続され、第一配管26によって小室21の内部に導入された第一ガスは、第一配管26を通過して、混合容器10の内部に供給されるようになっている。小室21の内部は、第一筒本体11以外の部分では、小室21は混合容器10の内部から分離されている。
ここでは、混合容器10の壁のうち、混合容器10の外部の雰囲気に接する壁は、小室21の壁にされており、その小室21の壁には第一、第二導入口37、38が設けられている。第一配管26の先端は第一導入口37に接続され、第一配管26を通った第一ガスは第一導入口37から小室21の内部22に導入されるようになっている。
The mixer 3 of this embodiment has a small chamber 21, the first pipe 26 is connected to the small chamber 21, and the first gas that has passed through the first pipe 26 is introduced into the interior 22 of the small chamber 21 that has been evacuated. It has become so.
A small hole 23 is provided in the wall of the small chamber 21, and one end of the first cylinder main body 11 is fixed to the wall of the small chamber 21 so that a hollow portion of the first cylinder main body 11 is connected to the small hole 23. The other end of the first cylinder body 11 is disposed inside the mixing container 10. The inside of the small chamber 21 is connected to the inside of the mixing container 10 by the first cylinder body 11, and the first gas introduced into the small chamber 21 by the first pipe 26 passes through the first pipe 26 and is mixed. It is supplied to the inside of the container 10. The inside of the small chamber 21 is separated from the inside of the mixing container 10 in portions other than the first cylinder body 11.
Here, of the walls of the mixing container 10, the wall in contact with the atmosphere outside the mixing container 10 is the wall of the small chamber 21, and the first and second introduction ports 37 and 38 are formed on the wall of the small chamber 21. Is provided. The tip of the first pipe 26 is connected to a first inlet 37, and the first gas that has passed through the first pipe 26 is introduced into the interior 22 of the small chamber 21 from the first inlet 37.

小孔23は、小室21の壁のうち、混合容器10の内部の雰囲気に接触する壁に形成されている。   The small hole 23 is formed in the wall of the small chamber 21 that comes into contact with the atmosphere inside the mixing container 10.

第二筒本体12は、第二導入口38と小孔23とに挿通され、第二筒本体12の先端側の少なくとも一部分は、第一筒本体11の内部に位置するようにされており、第一筒本体11の外周側面と第二筒本体12の内周側面との間には、隙間47が形成されている。
第一導入口37の縁部分と第一配管26の先端との間と、第二導入口38の縁部分と第二筒本体12の外周面との間とは、気密にされ、小室21の内部や混合容器10の内部には、第一、第二導入口37、38から大気が侵入しないようにされている。
ここでは、第二筒本体12のうち、第一筒本体11に挿入され、第一筒本体11の内部に位置する部分の外周側面は、第一筒本体11の内周側面と非接触にされている。
The second cylinder main body 12 is inserted through the second introduction port 38 and the small hole 23, and at least a part of the distal end side of the second cylinder main body 12 is positioned inside the first cylinder main body 11. A gap 47 is formed between the outer peripheral side surface of the first cylinder main body 11 and the inner peripheral side surface of the second cylinder main body 12.
The space between the edge portion of the first introduction port 37 and the tip of the first pipe 26 and the space between the edge portion of the second introduction port 38 and the outer peripheral surface of the second cylinder body 12 are hermetically sealed. Air is prevented from entering the inside and the inside of the mixing container 10 from the first and second introduction ports 37 and 38.
Here, the outer peripheral side surface of the portion of the second cylinder main body 12 that is inserted into the first cylinder main body 11 and is located inside the first cylinder main body 11 is not in contact with the inner peripheral side surface of the first cylinder main body 11. ing.

第一筒本体11の内周側面と第二筒本体12の外周側面との間に形成された隙間47は、根元側の部分が小室21の内部空間に接続されており、小室21に導入された第一ガスは、隙間47の根元側から第二筒本体12の外周側面と第一筒本体11の内周側面との間の部分である隙間47内に導入される。   A gap 47 formed between the inner peripheral side surface of the first cylinder main body 11 and the outer peripheral side surface of the second cylinder main body 12 is connected to the inner space of the small chamber 21 at the root side, and is introduced into the small chamber 21. The first gas is introduced from the base side of the gap 47 into the gap 47 which is a portion between the outer peripheral side surface of the second cylinder main body 12 and the inner peripheral side surface of the first cylinder main body 11.

第一筒本体11の混合容器10の内部に位置する先端には、第一筒開口45が設けられており、第二筒本体12の先端側には、第二筒開口46が設けられている。
第二筒本体12の根元側は第二配管27に接続され、第二筒本体12の内部と第二配管27の内部とが第二導入口38を介して接続されており、第二導入口38から第二筒本体12の内部に、第二配管27を通った第二ガスが導入される。
A first cylinder opening 45 is provided at the tip of the first cylinder body 11 located inside the mixing container 10, and a second cylinder opening 46 is provided at the tip of the second cylinder body 12. .
The base side of the second cylinder body 12 is connected to the second pipe 27, and the inside of the second cylinder body 12 and the inside of the second pipe 27 are connected via the second inlet 38. The second gas passing through the second pipe 27 is introduced into the second cylinder body 12 from 38.

第二筒開口46は、第一筒本体11の内部中空部分に位置しており、第二筒開口46からは、第一筒本体11の内部に第二ガスが流出する。   The second cylinder opening 46 is located in the inner hollow portion of the first cylinder body 11, and the second gas flows out from the second cylinder opening 46 into the first cylinder body 11.

第一筒本体11の内部の中空部分であって、第一筒開口45と第二筒開口46との間の部分を助走空間48と呼ぶと、第二ガスは、第二筒開口46から助走空間48に流出する。   When the hollow portion inside the first cylinder body 11 and between the first cylinder opening 45 and the second cylinder opening 46 is called a running space 48, the second gas runs from the second cylinder opening 46. It flows out into the space 48.

隙間47は、第二筒開口46の周囲で助走空間48に接続されており、隙間47を流れた第一ガスは、隙間47の助走空間48に接続された部分から助走空間48に流出する。
助走空間48は、第一筒本体11によって取り囲まれており、助走空間48に流出した第一、第二ガスは広がることができない。
The gap 47 is connected to the running space 48 around the second cylinder opening 46, and the first gas flowing through the gap 47 flows out from the portion of the gap 47 connected to the running space 48 into the running space 48.
The run-up space 48 is surrounded by the first cylinder body 11, and the first and second gases that have flowed into the run-up space 48 cannot spread.

助走空間48に流出した第一ガスが流れる方向は、隙間47を流れていたときと同じ方向であり、助走空間48に流出した第二ガスが流れる方向も、第二筒本体12の内部を流れていたときと同じ方向である。   The direction in which the first gas flowing out into the run-up space 48 flows is the same direction as when flowing through the gap 47, and the direction in which the second gas flowing out into the run-up space 48 flows also inside the second cylinder body 12. The direction is the same as when you were.

第一、第二筒本体11、12は、太さが一定の管であり、直線状に伸ばされており、隙間47の内部の第一ガスは第一筒本体11が伸びる方向に沿って直進し、第二筒本体12の内部の第二ガスは第二筒本体12が伸びる方向に沿って直進する。助走空間48内では、第一、第二ガスは、助走空間48に流出する直前と同じ方向に流れる。第二ガスは、筒状に流れている第一ガスの内側を流れるため、助走空間48の内部では、第二ガスは第一ガスによって周囲を包まれた状態で流れ、第一、第二ガスは、第二ガスが第一ガスに包まれた状態で、第一筒開口45から、混合容器10の内部に流出する。   The first and second cylinder main bodies 11 and 12 are pipes having a constant thickness and are straightened, and the first gas inside the gap 47 goes straight along the direction in which the first cylinder main body 11 extends. Then, the second gas inside the second cylinder main body 12 goes straight along the direction in which the second cylinder main body 12 extends. In the approach space 48, the first and second gases flow in the same direction as immediately before flowing into the approach space 48. Since the second gas flows inside the first gas flowing in a cylindrical shape, the second gas flows inside the run-up space 48 while being surrounded by the first gas. Flows out from the first tube opening 45 into the mixing container 10 while the second gas is wrapped in the first gas.

第一筒開口45から流出した第一、第二ガスの周囲には第一筒本体11は位置していないから、従って、第一筒開口45から流出した第一、第二ガスの流れは広がるが、その広がりは小さいので、第一筒開口45から流出した第一、第二ガスは、助走空間48を流れていたときと同じ方向に直進すると見做すことができる。   Since the first cylinder main body 11 is not positioned around the first and second gases flowing out from the first cylinder opening 45, the flow of the first and second gases flowing out from the first cylinder opening 45 is widened. However, since the spread is small, it can be considered that the first and second gases flowing out from the first cylinder opening 45 go straight in the same direction as when flowing in the running space 48.

隙間47の形状はドーナツ状であり、助走空間48内では、隙間47から流出した第一ガスは第二ガスの周囲を流れており、第二ガスは、第一ガスによって包まれた状態で流れている。
図2の符号29は、第一筒本体11の外周側面を、第一筒本体11が伸びる方向に仮想的に延長したときの筒である仮想筒を示しており、第一、第二ガスは、この仮想筒29が伸びる方向に直進する。
The shape of the gap 47 is a donut shape, and the first gas that has flowed out of the gap 47 flows around the second gas in the running space 48, and the second gas flows in a state surrounded by the first gas. ing.
2 indicates a virtual cylinder which is a cylinder when the outer peripheral side surface of the first cylinder main body 11 is virtually extended in a direction in which the first cylinder main body 11 extends. The virtual cylinder 29 goes straight in the extending direction.

混合容器10の壁には、ガス移送管25の一端に接続された流出口28が設けられている。ガス移送管25の他端は放出装置19に接続されており、混合容器10の内部空間と、放出装置19の内部空間とは、流出口28及びガス移送管25とによって接続されている。   An outlet 28 connected to one end of the gas transfer pipe 25 is provided on the wall of the mixing container 10. The other end of the gas transfer pipe 25 is connected to the discharge device 19, and the internal space of the mixing container 10 and the internal space of the discharge device 19 are connected by the outlet 28 and the gas transfer pipe 25.

仮想筒29は、混合容器10の壁面のうち、第一筒開口45と対面している壁面と交叉しており、流出口28は、壁面のうち、仮想筒29が壁面に交叉して形成される部分である交叉部分14よりも外側に位置する部分の壁面に設けられている。   The virtual cylinder 29 intersects the wall surface of the mixing container 10 facing the first cylinder opening 45, and the outlet 28 is formed by intersecting the virtual cylinder 29 of the wall surface with the wall surface. It is provided on the wall surface of the portion located outside the crossing portion 14 which is a portion to be fixed.

第一筒本体11が伸びる方向と第二筒本体12が伸びる方向とは平行であり、第一筒開口45から流出した第一、第二ガスは、第一筒本体11が伸びる方向と平行な方向に直進する。直進した第一、第二ガスが流出口28の中に流入することはない。   The direction in which the first cylinder main body 11 extends and the direction in which the second cylinder main body 12 extends are parallel, and the first and second gases flowing out from the first cylinder opening 45 are parallel to the direction in which the first cylinder main body 11 extends. Go straight in the direction. The straight and first gas does not flow into the outlet 28.

第一筒開口45から流出した第二ガスは、第一ガスによって包まれた状態で混合容器10内を流れて仮想筒29が交叉する壁面に衝突する。壁面に衝突した第二ガスは壁面に沿って四方に向けて流れるため、四方に向けて流れる第二ガスに衝突した第一ガスは、壁面に沿って広がる第二ガスによって壁面に衝突しなくても壁面に沿った四方に向けて流れるようになる。
その結果、第一筒開口45から流出した第一、第二ガスの両方が第一筒開口45と対向する壁面に沿って広がる。
The second gas flowing out from the first cylinder opening 45 flows in the mixing container 10 in a state of being wrapped by the first gas and collides with the wall surface where the virtual cylinder 29 intersects. Since the second gas that collided with the wall surface flows in four directions along the wall surface, the first gas that collided with the second gas flowing in the four directions does not collide with the wall surface due to the second gas spreading along the wall surface. Also starts to flow in all directions along the wall.
As a result, both the first and second gases flowing out from the first cylinder opening 45 spread along the wall surface facing the first cylinder opening 45.

仮想筒29の周囲と第一筒本体11の周囲とには、仮想筒29と第一筒本体11とを中心とするドーナツ状の混合空間13が設けられている。
第二ガスが衝突した壁面に沿って広がった第一、第二ガスは、混合容器10の他の壁面に衝突し、また、第一筒本体11の外周表面に衝突し、第一、第二ガスの流れる方向が変わり、第一、第二ガスは、混合空間13の内部に進入し、混合空間13の中に、第一、第二ガスの渦が形成される。この渦が形成されると、混合空間13の内部を流れる第一、第二ガスは、渦を形成することによって均一に混合され、混合ガスが生成される。
Around the virtual cylinder 29 and the first cylinder main body 11, a donut-shaped mixing space 13 centering on the virtual cylinder 29 and the first cylinder main body 11 is provided.
The first and second gases that have spread along the wall surface with which the second gas has collided collide with the other wall surface of the mixing container 10, collide with the outer peripheral surface of the first cylinder body 11, and The direction in which the gas flows changes, and the first and second gases enter the inside of the mixing space 13, and vortices of the first and second gases are formed in the mixing space 13. When this vortex is formed, the first and second gases flowing inside the mixing space 13 are uniformly mixed by forming the vortex, and a mixed gas is generated.

生成された混合ガスは混合空間13から流出口28に流入し、ガス移送管25を通って放出装置19に移動する。
放出装置19は、内部に空洞39が設けられた放出容器35を有しており、ガス移送管25内を移動した混合ガスは空洞39に導入される。
The generated mixed gas flows into the outlet 28 from the mixing space 13 and moves to the discharge device 19 through the gas transfer pipe 25.
The discharge device 19 has a discharge container 35 in which a cavity 39 is provided, and the mixed gas that has moved through the gas transfer pipe 25 is introduced into the cavity 39.

真空槽24の内部には、台31が配置されており、台31上には、基板等の処理対象物30が配置されている。放出容器35の表面のうち、少なくとも一面は真空槽24の内部に配置されており、その面は台31が位置する方向に向けられている。   A base 31 is disposed inside the vacuum chamber 24, and a processing object 30 such as a substrate is disposed on the base 31. At least one surface of the surface of the discharge container 35 is disposed inside the vacuum chamber 24, and the surface is directed in the direction in which the table 31 is located.

台31が位置する方向に向けられた放出容器35の面には、複数の放出口36が形成されており、空洞39に導入された混合ガスは放出口36から処理対象物30に向けて真空槽24の内部に放出される。この真空処理装置2では、放出容器35は、プラズマ用電源で構成されたプラズマ装置34に接続されており、プラズマ装置34が放出容器35に電圧を印加すると混合ガスのプラズマが生成され、第一ガスと第二ガスとが化学反応し、固体が生成されると、処理対象物30の表面に生成された固体から成る薄膜が成長する。   A plurality of discharge ports 36 are formed on the surface of the discharge container 35 directed in the direction in which the table 31 is located, and the mixed gas introduced into the cavity 39 is vacuumed from the discharge port 36 toward the processing object 30. It is discharged into the tank 24. In this vacuum processing apparatus 2, the discharge container 35 is connected to a plasma apparatus 34 constituted by a plasma power source. When the plasma apparatus 34 applies a voltage to the discharge container 35, plasma of a mixed gas is generated, and the first When the gas and the second gas chemically react to generate a solid, a thin film made of the solid generated on the surface of the object to be processed 30 grows.

薄膜が所定膜厚に成長したところでプラズマ装置34の電圧出力を停止し、第一、第二配管26,27に設けられたバルブを閉じ、真空槽24内部への混合ガスの供給を停止し、処理対象物30を真空槽24の外部に移動させ、未処理の処理対象物30を真空槽24の内部に搬入し、台31上に置き、バルブを開けて、放出装置19によって真空槽24の内部に混合ガスを供給し、プラズマ装置34から電圧を出力させ、混合ガスのプラズマを形成して、処置対象物30の表面に薄膜を形成する。
このように、第一,第二ガスから混合ガスを生成し、真空雰囲気中で混合ガスのプラズマを発生させ、複数の処理対象物30に薄膜を形成する。
When the thin film has grown to a predetermined thickness, the voltage output of the plasma device 34 is stopped, the valves provided in the first and second pipes 26 and 27 are closed, and the supply of the mixed gas into the vacuum chamber 24 is stopped. The processing object 30 is moved to the outside of the vacuum chamber 24, the unprocessed processing object 30 is carried into the vacuum chamber 24, placed on the table 31, the valve is opened, and the discharge device 19 A mixed gas is supplied to the inside and a voltage is output from the plasma device 34 to form plasma of the mixed gas, thereby forming a thin film on the surface of the treatment object 30.
In this way, a mixed gas is generated from the first and second gases, plasma of the mixed gas is generated in a vacuum atmosphere, and thin films are formed on the plurality of objects to be processed 30.

上記混合器3では流出口28は、第一筒開口45が直接対面する壁面に設けられていたが、流出口28は、第一筒開口45から流出して直進する第一、第二ガスが流入しない位置に配置されていればよく、また、仮想筒29が交叉する壁面以外の壁面に配置されていてもよい。   In the mixer 3, the outflow port 28 is provided on the wall surface directly facing the first cylinder opening 45, but the outflow port 28 is provided with first and second gases that flow out of the first cylinder opening 45 and go straight. It may be arranged at a position where it does not flow, and may be arranged on a wall surface other than the wall surface where the virtual cylinder 29 intersects.

<他の例の真空処理装置>
図1(b)の符号2aは本発明の他の例の真空処理装置を示している。
図1(b)、図3の混合器3aは、第一、第二筒本体11a,12aの第一、第二筒開口45a、46aが混合容器10の内部に配置されており、流出口28aは、第一筒開口45aが直接対面する壁面に垂直な壁面に設けられており、第一実施例の混合器3を変形した第二実施例の混合器3aである。
<Vacuum processing apparatus of another example>
Reference numeral 2a in FIG. 1 (b) represents a vacuum processing apparatus of another example of the present invention.
In the mixer 3a shown in FIGS. 1B and 3, the first and second cylinder openings 45a and 46a of the first and second cylinder bodies 11a and 12a are disposed inside the mixing container 10, and the outlet 28a is provided. Is a mixer 3a of the second embodiment, which is a modification of the mixer 3 of the first embodiment, provided on the wall surface perpendicular to the wall surface where the first cylinder opening 45a directly faces.

下記に示す様に、TEOSガス質量分率の評価値から、通常は第一ガスには、液体のTEOS(テトラエトキシシラン:分子量208.37)を蒸発させて生成したTEOSガスを用い、第二ガスには、ボンベに充填された酸素ガス(O2:分子量31.99)を用いるが、上記例では、第一ガスには、ボンベに充填された酸素ガスを用い、第二ガスには、液体のTEOSを蒸発させて生成したTEOSガスを用いている。As shown below, from the evaluation value of the TEOS gas mass fraction, a TEOS gas generated by evaporating liquid TEOS (tetraethoxysilane: molecular weight 208.37) is usually used as the first gas. As the gas, oxygen gas (O 2 : molecular weight 31.99) filled in a cylinder is used. In the above example, the oxygen gas filled in the cylinder is used as the first gas, and the second gas is used as the second gas. A TEOS gas generated by evaporating liquid TEOS is used.

<第一、第二ガスの交換>
図10(a)は、図3の第二実施例の混合器3aに、導入例1として、第一ガスにTEOSガスを用い第二ガスに酸素ガスを用いて第一、第二筒本体11a,12aにそれぞれ導入し、流出口28aに流出させたときの混合容器10の内部の複数の算出場所でのTEOSガスの質量と酸素ガス質量を分布シミュレーションによって算出し、次式、
TEOSガス質量分率=TEOSガス質量/(TEOSガス質量+酸素ガス質量)
から混合容器10の内部の算出場所でのTEOSガス質量分率を求め、図10(a)のTEOSガスの質量分率分布図を作成した。
<Exchange of first and second gas>
FIG. 10 (a) shows the first and second cylinder main bodies 11a using the TEOS gas as the first gas and the oxygen gas as the second gas as an introduction example 1 to the mixer 3a of the second embodiment of FIG. , 12a, and the TEOS gas mass and the oxygen gas mass at a plurality of calculation locations inside the mixing container 10 when flowing into the outlet port 28a are calculated by distribution simulation.
TEOS gas mass fraction = TEOS gas mass / (TEOS gas mass + oxygen gas mass)
From this, the TEOS gas mass fraction at the calculation location inside the mixing vessel 10 was obtained, and the TEOS gas mass fraction distribution diagram of FIG.

そして、分布図を作成すると共に、混合溶器10の内部から流出口28aに流出する場所でのTEOSガスの質量分率の値のうち、最大値をA、最小値をBとしたときに、次式、
評価値(%)=±(A−B)/(A+B)×100
によってTEOSガスの質量分率分布の評価値を算出した。
And while creating a distribution map and setting the maximum value as A and the minimum value as B among the mass fraction values of the TEOS gas at the location flowing out from the inside of the mixing melter 10 to the outlet 28a, The following formula,
Evaluation value (%) = ± (A−B) / (A + B) × 100
Was used to calculate the evaluation value of the mass fraction distribution of the TEOS gas.

なお、図10(a)及び質量分率分布を示す後述の他の図と、後述の質量分布段階の境界線を示す各図とでは、流出口は省略する。同図(a)及び質量分率分布を示す後述の各図中では、TEOSガス質量分率の値を4段階に分けて模様付けして示している。これらの模様とTEOSガス質量分率との関係は図19に示した。   In addition, an outflow port is abbreviate | omitted in Fig.10 (a) and the other figure mentioned later which shows mass fraction distribution, and each figure which shows the boundary line of the mass distribution stage mentioned later. In the figure (a) and later-described figures showing the mass fraction distribution, the TEOS gas mass fraction values are shown in four stages. The relationship between these patterns and the TEOS gas mass fraction is shown in FIG.

図10(a)の質量分率分布図は、酸素ガスはTEOSガスよりも大きな流量で第一又は第二筒本体11a,12aに流れたものとして質量分率分布図が求められており、ここでは、TEOSガスとO2ガスの流量比は12:600とし、また、混合容器10の内部は2000Paとして混合容器10内の質量分率分布が計算されている。The mass fraction distribution diagram of FIG. 10 (a) is obtained by assuming that the oxygen gas flows into the first or second cylinder body 11a, 12a at a larger flow rate than the TEOS gas. Then, the flow rate ratio of TEOS gas and O 2 gas is 12: 600, and the inside of the mixing container 10 is 2000 Pa, and the mass fraction distribution in the mixing container 10 is calculated.

以下の実施例と比較例のTEOSガスと酸素ガスは、この図10(a)と同じ圧力で第一、第二筒本体11a,12aに導入されたとして質量分率の分布図が求められている。
図10(a)を見ると分かるように、この導入例1では、混合空間13に形成される渦によって、第一ガスと第二ガスとは均一に混合される。
流出口28aから供給される混合ガス中のTEOSガスの質量分率分布の評価値は、±0.48%の値である。
Since the TEOS gas and oxygen gas of the following examples and comparative examples were introduced into the first and second cylinder bodies 11a and 12a at the same pressure as in FIG. Yes.
As can be seen from FIG. 10A, in this introduction example 1, the first gas and the second gas are uniformly mixed by the vortex formed in the mixing space 13.
The evaluation value of the mass fraction distribution of the TEOS gas in the mixed gas supplied from the outlet port 28a is a value of ± 0.48%.

図10(b)は、第一、第二筒本体11a,12aと壁面とに関する距離と、図10(a)から模様を除去したときの隣接するTEOSガス質量分率の値の段階を示す境界線が示されている。   FIG. 10B shows the distance between the first and second cylinder main bodies 11a and 12a and the wall surface, and the boundary between the adjacent TEOS gas mass fraction values when the pattern is removed from FIG. 10A. A line is shown.

第一ガスは隙間47の中で20mmの距離を流れた後、第一、第二ガスは、助走空間48の中で42.5mmの距離を流れ、第一筒開口45aから流出して52.5mmの距離を流れて、第二ガスが混合容器10の壁面に衝突している。   After the first gas flows a distance of 20 mm in the gap 47, the first and second gases flow a distance of 42.5 mm in the running space 48 and flow out of the first tube opening 45a. The second gas collides with the wall surface of the mixing container 10 through a distance of 5 mm.

図10(a)は、隙間47を通る第一ガスの方が第二筒本体12aを通る第二ガスよりも低流量(低圧力)の場合の質量分率分布が示されているが、それとは逆に、導入例2として、同じ混合器3aの第一ガスには酸素ガスを導入し、第二ガスとしてTEOSガスを導入し、第二筒本体12aを通る第二ガスが、隙間47を通る第一ガスの方よりも低流量(低圧力)にした。   FIG. 10A shows a mass fraction distribution in the case where the first gas passing through the gap 47 has a lower flow rate (lower pressure) than the second gas passing through the second cylinder body 12a. On the contrary, as an introduction example 2, oxygen gas is introduced into the first gas of the same mixer 3a, TEOS gas is introduced as the second gas, and the second gas passing through the second cylinder body 12a passes through the gap 47. The flow rate was lower (lower pressure) than the first gas passing through.

その導入例2のTEOSガスの質量分率分布の境界を図11(a)、(b)に示す。図11(a)の質量分率分布は、図10(a)の質量分率分布と同程度の分布であり、同程度に混合されている。図11(a)の場合は、流出口28aから供給される混合ガス中のTEOSガスの質量分率分布の評価値は、±0.42%の値である。   The boundaries of the mass fraction distribution of TEOS gas in the introduction example 2 are shown in FIGS. The mass fraction distribution in FIG. 11A is the same as the mass fraction distribution in FIG. 10A and is mixed to the same degree. In the case of FIG. 11 (a), the evaluation value of the mass fraction distribution of the TEOS gas in the mixed gas supplied from the outlet 28a is a value of ± 0.42%.

次に、図10(a)、図11(a)の質量分率分布を測定したときの第一筒本体11aを20mm短くし、導入例1と同じく、第一ガスにはTEOSガスを用い、第二ガスには酸素ガスを用い、質量分率分布を算出した。質量分率分布は図12(a)に示し、異なる値の境界と寸法を同図(b)に示す。第一筒本体11aの長さ以外の寸法は図10(b)と同じである。   Next, the first cylinder main body 11a when measuring the mass fraction distribution of FIG. 10 (a) and FIG. 11 (a) is shortened by 20 mm. As in the introduction example 1, TEOS gas is used as the first gas, An oxygen gas was used as the second gas, and a mass fraction distribution was calculated. The mass fraction distribution is shown in FIG. 12 (a), and the boundaries and dimensions of different values are shown in FIG. 12 (b). Dimensions other than the length of the first cylinder body 11a are the same as those in FIG.

第一筒本体11aを短くしたため、図12(a)の質量分率の分布は、第一筒本体11aに平行な二壁面のうち、第一筒本体11aに近い壁面付近で不均一になっており、図10(a)の質量分率の分布よりも均一性が悪い。それは渦流が形成される空間である混合空間13の中央付近に第一筒開口45aを配置しなかったためと言える。   Since the first cylinder body 11a is shortened, the distribution of the mass fraction in FIG. 12 (a) becomes non-uniform in the vicinity of the wall surface close to the first cylinder body 11a out of the two wall surfaces parallel to the first cylinder body 11a. Therefore, the uniformity is worse than the mass fraction distribution of FIG. It can be said that the first cylinder opening 45a is not arranged near the center of the mixing space 13, which is a space where vortex flow is formed.

第一筒開口45aの適切な位置は、混合溶器10の壁面に加え、小室21の壁面と後述の邪魔板部材44の表面とを「壁面」とし、第一、第二筒本体11a、12aが伸びる方向の混合溶器10内の混合空間13を形成する二壁面間の距離である混合空間距離Lを“1”としたときに、第一、第二筒本体11a、12aの根元側の壁面から2/5以上3/5以下の距離の範囲内に位置する。   Appropriate positions of the first cylinder opening 45a include the wall surface of the small chamber 21 and the surface of a baffle plate member 44 described later as “wall surfaces” in addition to the wall surface of the mixing fuser 10, and the first and second cylinder bodies 11a, 12a. When the mixing space distance L, which is the distance between the two wall surfaces forming the mixing space 13 in the mixing melter 10 in the direction in which the length of the mixing fuselage 10 extends, is “1”, the root side of the first and second cylinder main bodies 11a, 12a It is located within a range of a distance of 2/5 or more and 3/5 or less from the wall surface.

図10(a)から混合空間13の中央は小室21から57.5mm離間した位置となり、2/5以上3/5以下の範囲に対応する位置は46mm以上69mm以下の範囲となるから、図10(a)の第一筒開口45aは、混合容器10から見れば2/5以上3/5以下の距離の範囲内に位置しているが、混合空間13の中央位置から見ると範囲外となる。   10A, the center of the mixing space 13 is a position spaced 57.5 mm from the small chamber 21, and the position corresponding to the range of 2/5 or more and 3/5 or less is the range of 46 mm or more and 69 mm or less. The first cylinder opening 45a of (a) is located within a distance range of 2/5 or more and 3/5 or less when viewed from the mixing container 10, but is outside the range when viewed from the center position of the mixing space 13. .

しかし、流出口28aから供給される混合ガス中のTEOSガスの質量分率分布の評価値は、±0.93%の値であり、分布の値は、第一ガスと第二ガスとは比較的均一に混合されていると判断できる範囲内の値であるから、流出口28aは、第一筒本体11aに平行な二壁面のうち、遠い方の壁面近くに設ける必要性を考慮するなど、求める質量分率分布の度合いに応じて配置を選択する必要が出る。しかし、図10の構成であればこのような注意をする必要が無い。   However, the evaluation value of the mass fraction distribution of the TEOS gas in the mixed gas supplied from the outlet 28a is a value of ± 0.93%, and the value of the distribution is a comparison between the first gas and the second gas. Since it is a value within a range where it can be determined that the mixture is uniformly mixed, the outflow port 28a is considered to be necessary to be provided near the far wall of the two wall surfaces parallel to the first cylinder body 11a, etc. It is necessary to select an arrangement according to the degree of mass fraction distribution to be obtained. However, with the configuration of FIG.

次に、図12の寸法の混合器3aに、第一ガスには酸素ガスを用い、第二ガスにはTEOSガスを用いた場合(導入例2)の質量分率分布の境界線を図13(a)、(b)に示す。
図13(a)から、流出口28aは、第一筒開口45aと対面する壁面の中央に設ければ良いことが分かる。流出口28aから供給される混合ガス中のTEOSガスの質量分率分布の評価値は±1.04%の値であり、第一ガスと第二ガスとは比較的均一に混合されていると判断できる。
Next, the boundary line of the mass fraction distribution when oxygen gas is used as the first gas and TEOS gas is used as the second gas (Introduction Example 2) in the mixer 3a having the dimensions shown in FIG. Shown in (a) and (b).
From FIG. 13 (a), it is understood that the outflow port 28a may be provided at the center of the wall surface facing the first cylinder opening 45a. The evaluation value of the mass fraction distribution of the TEOS gas in the mixed gas supplied from the outlet 28a is a value of ± 1.04%, and the first gas and the second gas are mixed relatively uniformly. I can judge.

<第三実施例>
以上説明した混合器3、3aでは、第一ガスを混合容器10内部に設けた小室21に導入し、小室21内の第一ガスを隙間47に移動させていたが、図4に示す第三実施例の混合器3bの様に、小室21を設けずに、混合容器10の外部にも隙間47を形成して混合容器10の外部で第一ガスを隙間47に導入してもよい。
<Third embodiment>
In the mixers 3 and 3a described above, the first gas is introduced into the small chamber 21 provided inside the mixing container 10, and the first gas in the small chamber 21 is moved to the gap 47, but the third gas shown in FIG. Like the mixer 3 b of the embodiment, the first chamber may be introduced outside the mixing container 10 by forming the gap 47 outside the mixing container 10 without providing the small chamber 21.

この場合の第一、第二筒本体11b,12bの第一、第二筒開口45b、46bは混合容器10の内部に配置されているが、隙間47は混合容器10の外部でも形成されているから、第一、第二筒本体11b、12bには、混合容器10の外部で隙間47を形成する部分も含まれる。   In this case, the first and second cylinder openings 45b and 46b of the first and second cylinder bodies 11b and 12b are arranged inside the mixing container 10, but the gap 47 is also formed outside the mixing container 10. Therefore, the first and second cylinder main bodies 11b and 12b also include a portion that forms the gap 47 outside the mixing container 10.

<第四実施例>
上記第三実施例の混合器3bのように混合容器10の外部にも第一、第二筒本体11b,12bが伸ばされている場合は、図5の第四実施例の混合器3cのように、第一筒本体11cを混合容器10の内部と外部に位置させ、第一筒開口45cを混合容器10の内部に位置させ、他方、第二筒本体12cを第一筒本体11cの外部の部分に挿入させ、第二筒開口46cを、混合容器10の壁と同じ位置か、又は混合容器10の壁の外に位置させることもできる。
<Fourth embodiment>
When the first and second cylinder bodies 11b and 12b are extended outside the mixing container 10 as in the mixer 3b in the third embodiment, the mixer 3c in the fourth embodiment in FIG. The first cylinder body 11c is positioned inside and outside the mixing container 10, the first cylinder opening 45c is positioned inside the mixing container 10, and the second cylinder body 12c is positioned outside the first cylinder body 11c. It is possible to insert the second cylindrical opening 46c into the portion, and to place the second cylindrical opening 46c at the same position as the wall of the mixing container 10 or outside the wall of the mixing container 10.

この混合器3cの質量分率分布を図14に示す。第一ガスはTEOSガスであり、第二ガスは酸素ガスである(導入例1)。第一筒開口45cが2/5以上3/5以下の範囲内に位置するため、良好な混合が可能であり、均一な混合になっている。   The mass fraction distribution of the mixer 3c is shown in FIG. The first gas is TEOS gas, and the second gas is oxygen gas (Introduction Example 1). Since the 1st cylinder opening 45c is located in the range of 2/5 or more and 3/5 or less, favorable mixing is possible and it has become uniform mixing.

<第五実施例>
第一〜第四実施例の混合器3,3a〜3cでは、流出口28、28aは、仮想筒29と混合容器10の壁面とが交叉する部分14の外側に設けられていたが、図6の第五実施例の混合器3dは、流出口28は、図2の第一実施例の混合器3で、第一筒本体11dが伸びる方向に第一筒本体11dの外周側面を仮想的に延長させた仮想筒29と混合容器10の壁面とが交叉した部分の壁面である交叉部分14と、全部又は少なくとも一部が重なるように配置されている。
<Fifth embodiment>
In the mixers 3 and 3a to 3c of the first to fourth embodiments, the outlets 28 and 28a are provided outside the portion 14 where the virtual cylinder 29 and the wall surface of the mixing container 10 intersect. In the mixer 3d of the fifth embodiment, the outlet 28 is the mixer 3 of the first embodiment of FIG. 2, and the outer peripheral side surface of the first cylinder body 11d is virtually arranged in the direction in which the first cylinder body 11d extends. The extending virtual cylinder 29 and the mixing container 10 are arranged so that all or at least a part of the intersecting portion 14, which is a wall surface where the wall surface of the mixing container 10 intersects, overlaps.

そして、第五実施例の混合器3dでは、第一筒開口45dと流出口28との間に邪魔板部材44が配置されている。
邪魔板部材44は、第一筒開口45dと流出口28との間に位置し、且つ、第二筒開口46dと流出口28との間とに位置しており、第二筒開口46dから放出されて第二筒本体12dが伸びる方向と平行な方向に直進する第二ガスは、邪魔板部材44の表面に衝突し、邪魔板部材44の表面に沿った方向に広がる。
And in the mixer 3d of 5th Example, the baffle plate member 44 is arrange | positioned between 45 d of 1st cylinder openings, and the outflow port 28. As shown in FIG.
The baffle plate member 44 is located between the first cylinder opening 45d and the outlet 28, and is located between the second cylinder opening 46d and the outlet 28, and is discharged from the second cylinder opening 46d. Then, the second gas that travels straight in a direction parallel to the direction in which the second cylinder main body 12 d extends collides with the surface of the baffle plate member 44 and spreads in a direction along the surface of the baffle plate member 44.

第一筒開口45dから放出されて第一筒本体45dが伸びる方向と平行な方向に直進する第一ガスは、邪魔板部材44の表面に沿って広がる第二ガスによって邪魔板部材44の表面に沿った方向に流され、又は、邪魔板部材44の表面に衝突して邪魔板部材44の表面に沿った方向に流されるので、第一筒開口45dから放出されて直進する第一、第二ガスは流出口28に流入せずに混合空間13で混合され、第一ガスと第二ガスとが均一に混合された混合ガスが流出口28に流入して放出装置19に供給される。   The first gas discharged from the first cylinder opening 45d and going straight in the direction parallel to the direction in which the first cylinder main body 45d extends extends to the surface of the baffle plate member 44 by the second gas spreading along the surface of the baffle plate member 44. The first and second air that is discharged from the first tube opening 45d and travels straight is caused to flow along the surface of the baffle plate member 44 and collide with the surface of the baffle plate member 44. The gas does not flow into the outlet 28 but is mixed in the mixing space 13, and a mixed gas in which the first gas and the second gas are uniformly mixed flows into the outlet 28 and is supplied to the discharge device 19.

第一〜第四実施例の混合器3,3a〜3cでは、流出口28,28aは混合容器10の壁面のうち、交叉部分14の外側の壁面に設けられている。交叉部分14の外側の壁面には、混合容器10の壁面のうち、第一筒開口45が直接対面する壁面以外の壁面が含まれる。
第一筒開口45,45a〜45cでは、第一筒開口45,45a〜45cの混合容器10の壁面との間には、邪魔板部材44は配置されていない。
In the mixers 3, 3 a to 3 c of the first to fourth embodiments, the outlets 28 and 28 a are provided on the outer wall surface of the crossing portion 14 among the wall surfaces of the mixing container 10. The outer wall surface of the crossing portion 14 includes wall surfaces other than the wall surface of the mixing container 10 that the first cylinder opening 45 directly faces.
In the 1st cylinder opening 45 and 45a-45c, the baffle plate member 44 is not arrange | positioned between the wall surfaces of the mixing container 10 of the 1st cylinder opening 45, 45a-45c.

第一〜第四実施例の混合器3,3a〜3cの混合容器10と、第五実施例の混合器3dの混合容器10とが同じ大きさの場合は、第一〜第四実施例の第一筒開口45,45a〜45cと第一筒開口45,45a〜45cが対面する壁面との間の距離よりも、第五実施例の第一筒開口45dと邪魔板部材44との間の距離の方が短くなる。   When the mixing containers 10 of the mixers 3, 3 a to 3 c of the first to fourth embodiments and the mixing container 10 of the mixer 3 d of the fifth embodiment are the same size, the first to fourth embodiments The distance between the first cylinder opening 45d and the baffle plate member 44 of the fifth embodiment is larger than the distance between the first cylinder openings 45, 45a to 45c and the wall surface facing the first cylinder openings 45, 45a to 45c. The distance is shorter.

邪魔板部材44と第五実施例の第一筒開口45dとの間の距離を大きくしようとすると、邪魔板部材44は、流出口28に近づき、流出口28付近のコンダクタンスが小さくなるため、排出の際の圧力損失が大きくなる。
従って、圧力損失が大きくならないように、邪魔板部材44の大きさ、位置、流出口28の大きさ、位置等を求めれば良い。
If it is attempted to increase the distance between the baffle plate member 44 and the first cylinder opening 45d of the fifth embodiment, the baffle plate member 44 approaches the outflow port 28, and the conductance near the outflow port 28 is reduced. In this case, the pressure loss increases.
Therefore, the size and position of the baffle plate member 44, the size and position of the outflow port 28, and the like may be obtained so that the pressure loss does not increase.

<第一、二比較例>
次に、本発明の比較例を説明する。
図7の第一比較例の混合器103aと図8の第二比較例の混合器103bのように、第一筒開口145a、145bと、第二筒開口146a、146bとを、同一平面上に位置させ、助走空間を有しない混合器103a、103bを作成し、質量分率分布を算出した。
<First and second comparative examples>
Next, a comparative example of the present invention will be described.
Like the mixer 103a of the first comparative example in FIG. 7 and the mixer 103b of the second comparative example in FIG. 8, the first cylinder openings 145a and 145b and the second cylinder openings 146a and 146b are on the same plane. The mixers 103a and 103b that were positioned and did not have a running space were created, and the mass fraction distribution was calculated.

図7の混合器103aでは、第一筒本体111aと第二筒本体112aとは、混合容器10内に突き出されておらず、図8の混合器103bでは、第一筒本体111bと第二筒本体112bとは混合容器10内に突き出されている点で異なる構造になっているが、助走空間を有しない点で同じである。   In the mixer 103a of FIG. 7, the first cylinder main body 111a and the second cylinder main body 112a are not protruded into the mixing container 10, and in the mixer 103b of FIG. Although it has a different structure from the main body 112b in that it protrudes into the mixing container 10, it is the same in that it does not have a running space.

図7、図8の第一、二比較例の混合器103a、103bでは、第一ガスにはTEOSガスを用い、第二ガスには酸素ガスを用いた。
第一比較例の混合器103aのTEOSガスの質量分率分布は図15に示し、第二比較例の混合器103bのTEOSガスの質量分率分布は図16に示す。
いずれの場合も、第一ガスは隙間47の全周から均一には放出されておらず、混合容器10内で均一に混合されないことが分かる。
In the mixers 103a and 103b of the first and second comparative examples in FIGS. 7 and 8, TEOS gas was used as the first gas, and oxygen gas was used as the second gas.
The mass fraction distribution of TEOS gas in the mixer 103a of the first comparative example is shown in FIG. 15, and the mass fraction distribution of TEOS gas in the mixer 103b of the second comparative example is shown in FIG.
In any case, it can be seen that the first gas is not uniformly released from the entire circumference of the gap 47 and is not uniformly mixed in the mixing container 10.

第一、第二比較例の混合器103a、103bから放出装置19に供給される混合ガス中のTEOSガスは、図15の第一比較例の混合器103aの混合ガスのTEOSガスの質量分率分布の評価値は±3.36%の値であり、図16の第二比較例の混合器103bのTEOSガスの質量分率分布の評価値は±0.69%の値である。   The TEOS gas in the mixed gas supplied from the mixers 103a and 103b of the first and second comparative examples to the discharge device 19 is the mass fraction of the TEOS gas in the mixed gas of the mixer 103a of the first comparative example in FIG. The evaluation value of the distribution is ± 3.36%, and the evaluation value of the mass fraction distribution of the TEOS gas in the mixer 103b of the second comparative example in FIG. 16 is ± 0.69%.

<第三比較例>
次に、図9に示す第三比較例の混合器103cのように、第一筒本体111cを混合容器10の内部に突き出させて第一筒開口145cを混合容器10の内部に位置させ、第二筒本体112cを、第一筒本体111cの第一筒開口145cから混合容器10の内部に突き出させ、第二筒開口146cを、第一筒開口145cよりも、対面する壁面近くに位置させた。
<Third comparative example>
Next, as in the mixer 103c of the third comparative example shown in FIG. 9, the first cylinder body 111c is protruded into the mixing container 10, and the first cylinder opening 145c is positioned in the mixing container 10, The two-cylinder main body 112c is protruded into the mixing container 10 from the first cylinder opening 145c of the first cylinder main body 111c, and the second cylinder opening 146c is positioned closer to the facing wall than the first cylinder opening 145c. .

図17(a)、(b)は、第三比較例の混合器103cに、第一ガスとしてTEOSガスを用い、第二ガスとして酸素ガスを用いたときのTEOSガスの質量分率分布である。
図17では、第二筒開口146cと、第二筒開口146cに近い壁面との間に酸素ガスによる渦が形成され、隙間47からその部分に供給されるTEOSガスが酸素ガスの渦に押されて隙間47から流出しにくくなり、第一、第二ガスは均一に混合されていないことが分かる。放出装置19に供給される混合ガスのTEOSガスの質量分率分布の評価値は、±2.5%の値である。
FIGS. 17A and 17B are mass fraction distributions of TEOS gas when TEOS gas is used as the first gas and oxygen gas is used as the second gas in the mixer 103c of the third comparative example. .
In FIG. 17, a vortex by oxygen gas is formed between the second cylinder opening 146c and the wall surface close to the second cylinder opening 146c, and the TEOS gas supplied to the portion from the gap 47 is pushed by the vortex of oxygen gas. Thus, it is difficult to flow out from the gap 47, and it can be seen that the first and second gases are not uniformly mixed. The evaluation value of the mass fraction distribution of the TEOS gas of the mixed gas supplied to the discharge device 19 is a value of ± 2.5%.

図18(a)、(b)は、図17(a)、(b)とは逆に、第一ガスとして酸素ガスを用い、第二ガスとしてTEOSガスを用いたときの、TEOSガスの質量分率分布である。
隙間47の先端と、隙間47の先端に近い壁面との間には、隙間47の先端から供給される酸素ガスの渦が形成され、突き出された第二筒本体112cの周囲には複雑な質量分率分布が形成される。その結果、TEOSガスと酸素ガスとが、第二筒開口146cに対向する壁面と垂直に交叉するように入射せず、不均一に混合されている。
なお、混合ガス中のTEOSガスの質量分率分布の評価値は、±1.8%の値である。
18 (a) and 18 (b) show the mass of TEOS gas when oxygen gas is used as the first gas and TEOS gas is used as the second gas, contrary to FIGS. 17 (a) and (b). It is a fraction distribution.
A vortex of oxygen gas supplied from the tip of the gap 47 is formed between the tip of the gap 47 and the wall surface near the tip of the gap 47, and a complex mass is formed around the protruding second cylinder body 112c. A fraction distribution is formed. As a result, TEOS gas and oxygen gas are not incident so as to intersect perpendicularly to the wall surface facing the second cylinder opening 146c, but are mixed non-uniformly.
The evaluation value of the mass fraction distribution of the TEOS gas in the mixed gas is a value of ± 1.8%.

<混合の他の例>
以上の質量分率分布図とその評価値とから、流量に差がある二種類のガスを混合させる場合、本発明の混合器3,3a〜3dでは、高流量(高圧力)のガスと低流量(低圧力)のガスのいずれを第一ガスとし他方を第二ガスとしても、均一に混合される。
<Other examples of mixing>
From the above mass fraction distribution diagram and its evaluation value, when mixing two kinds of gases having a difference in flow rate, in the mixers 3, 3a to 3d of the present invention, a high flow rate (high pressure) gas and a low gas amount are mixed. Even if any of the gas at the flow rate (low pressure) is the first gas and the other is the second gas, they are uniformly mixed.

また、以上説明した本発明の混合器3,3a〜3dの第一、第二筒本体11,11a〜11d,12,12a〜12dは断面円形であったが、多角形であってもよく、正多角形であればもっとよい。   Moreover, although the 1st, 2nd cylinder main body 11, 11a-11d, 12, 12a-12d of the mixer 3, 3a-3d of this invention demonstrated above was circular in cross section, a polygon may be sufficient, A regular polygon is better.

以上の比較例一〜三の質量分率分布の計算結果により、助走空間48がない混合器103a〜103cでは第一筒本体111a〜111cと第二筒本体112a〜112cを用いても、第一、第二ガスは均一に混合されないことが分かるが、助走空間48を設けても、助走空間48中を第一、第二ガスが流れる距離が短い場合は均一に混合されないと考えられる。最適な助走空間48の長さは、用いる混合容器10の内部の寸法や、第一、第二筒本体11,11a〜11d,12,12a〜12dの太さや長さが影響を与えるので、混合容器10の大きさ等が変わると、最適な助走空間48の長さは算出し直すとよい。   According to the calculation results of the mass fraction distributions of Comparative Examples 1 to 3 above, the mixers 103a to 103c without the running space 48 can be used even if the first cylinder main bodies 111a to 111c and the second cylinder main bodies 112a to 112c are used. It can be seen that the second gas is not uniformly mixed, but even if the run-up space 48 is provided, it is considered that the second gas is not uniformly mixed if the distance in which the first and second gases flow in the run-up space 48 is short. The optimum length of the run-up space 48 is affected by the internal dimensions of the mixing container 10 used and the thickness and length of the first and second cylinder bodies 11, 11a to 11d, 12, and 12a to 12d. When the size or the like of the container 10 changes, the optimal length of the run-up space 48 may be calculated again.

また、混合容器10が直方体の場合は第一筒開口45,45a〜45dの適切な位置は、混合溶器10の壁面と、小室21の壁面と、邪魔板部材44の表面とを「壁面」とし、第一、第二筒本体11,11a〜11d、12,12a〜12dが伸びる方向の混合溶器10内の混合空間13を形成する二壁面間の距離である混合空間距離Lを“1”としたときに、第一、第二筒本体11,11a〜11d,12,12a〜12dの根元側の壁面から2/5以上3/5以下の距離の範囲内に位置する。第一〜第五実施例の混合器3,3a〜3dの混合容器10内で混合空間13に安定した渦ができ、第一、第二ガスが均一に混合された質量分率の分布が算出される。   Further, when the mixing container 10 is a rectangular parallelepiped, the appropriate positions of the first cylinder openings 45, 45 a to 45 d are “wall surfaces” of the wall surface of the mixing fuser 10, the wall surface of the small chamber 21, and the surface of the baffle plate member 44. The mixing space distance L, which is the distance between the two wall surfaces forming the mixing space 13 in the mixing melter 10 in the direction in which the first and second cylinder bodies 11, 11a to 11d, 12, 12a to 12d extend, is “1”. ", The first and second cylinder bodies 11, 11a to 11d, 12, 12a to 12d are located within a range of a distance of not less than 2/5 and not more than 3/5 from the wall surface on the root side. A stable vortex is formed in the mixing space 13 in the mixing vessel 10 of the mixers 3, 3 a to 3 d of the first to fifth embodiments, and the distribution of the mass fraction in which the first and second gases are uniformly mixed is calculated. Is done.

更に、助走空間48の、第一、第二ガスが流れる方向の長さは、混合容器10の、第一、第二筒本体11,11a〜11d,12,12a〜12dが伸びる方向と平行な辺の長さの1/5以上にすると第一、第二ガスが均一に混合された分布を算出することができる。   Furthermore, the length of the running space 48 in the direction in which the first and second gases flow is parallel to the direction in which the first and second cylinder bodies 11, 11 a to 11 d, 12, 12 a to 12 d of the mixing container 10 extend. When the length is longer than 1/5 of the side length, a distribution in which the first and second gases are uniformly mixed can be calculated.

第一筒開口45,45a〜45dが対面する壁面との間の距離についても、最適な値は、混合容器10の内部の寸法や、第一、第二筒本体11,11a〜11d,12,12a〜12dの太さや長さが影響を与えるので、混合容器10の内部の寸法等が変わると、最適な距離の値は算出し直すとよい。   As for the distances between the first cylinder openings 45 and 45a to 45d, the optimum values are the internal dimensions of the mixing container 10, the first and second cylinder bodies 11, 11a to 11d, 12, Since the thicknesses and lengths of 12a to 12d have an effect, the optimal distance value may be recalculated if the internal dimensions of the mixing container 10 change.

混合空間距離Lと垂直な方向の長さであって、第一筒本体11,11a〜11dの外周と、混合溶器10の壁面との間の距離を混合空間13の幅とすると、その幅の最小値は、第一筒開口45,45a〜45dの直径(内径)Dの2倍以上の長さが望ましいので、寸法変更によって、混合空間13の幅の最小値が第一筒開口45,45a〜45dの直径Dの2倍未満になったときには、寸法を算出し直すと良い。   The width in the direction perpendicular to the mixing space distance L, where the distance between the outer circumference of the first cylinder main bodies 11, 11 a to 11 d and the wall surface of the mixing fuser 10 is the width of the mixing space 13. Is preferably at least twice the diameter (inner diameter) D of the first cylinder openings 45, 45a to 45d. Therefore, the minimum value of the width of the mixing space 13 can be reduced by changing the dimensions. When the diameter D is less than twice the diameter D of 45a to 45d, the dimensions may be recalculated.

なお、上記実施例では、混合器3,3a〜3dでTEOSガスと酸素ガスとを混合させたが、他の種類のガスも混合させることができる。特に、昇華又は蒸発によって生成された原料ガスと、常温では気体であるガスとのうち、一方のガスが第一ガス、他方のガスが第二ガスにされればよい。
また、上記真空処理装置2では、プラズマを用いて薄膜を形成したが、プラズマを用いずに薄膜を形成する真空処理装置も含まれる。また、薄膜を形成せず、エッチングや表面処理等の真空処理を行う真空処理装置も本発明に含まれる。
In the above embodiment, the TEOS gas and the oxygen gas are mixed by the mixers 3, 3a to 3d, but other types of gases can also be mixed. In particular, one of the source gas generated by sublimation or evaporation and the gas that is a gas at normal temperature may be a first gas and the other gas may be a second gas.
Moreover, in the said vacuum processing apparatus 2, although the thin film was formed using plasma, the vacuum processing apparatus which forms a thin film without using plasma is also contained. Further, a vacuum processing apparatus that performs vacuum processing such as etching or surface treatment without forming a thin film is also included in the present invention.

なお、上記各実施例1〜5の第一筒本体11、11a〜11dと、第二筒本体12、12a〜12dは非接触であったが、隙間47を流れる第一ガスの流れを乱さない程小さなスペーサを第一筒本体11、11a〜11dの内周側面と、第二筒本体12、12a〜12dの外周側面とに密着させて配置してもよい。   In addition, although the 1st cylinder main body 11, 11a-11d of each said Examples 1-5 and the 2nd cylinder main body 12, 12a-12d were non-contact, it does not disturb the flow of the 1st gas which flows through the clearance gap 47. Small spacers may be disposed in close contact with the inner peripheral side surfaces of the first cylinder main bodies 11 and 11a to 11d and the outer peripheral side surfaces of the second cylinder main bodies 12 and 12a to 12d.

混合ガス中のTEOSガスの質量分率分布の評価値が±41.8%の混合器で基板表面に薄膜を形成したところ、形成された薄膜の膜厚分布は使用できない程非常に悪かった。
また、評価値が±7.4%の混合器では、評価値の大きさに応じた面内膜厚分布の値が悪かった。
When a thin film was formed on the substrate surface with a mixer having an evaluation value of the mass fraction distribution of TEOS gas in the mixed gas of ± 41.8%, the film thickness distribution of the formed thin film was so bad that it could not be used.
Further, in the mixer having an evaluation value of ± 7.4%, the value of the in-plane film thickness distribution according to the magnitude of the evaluation value was bad.

他方、評価値が±0.5%以下の混合器では、評価値の大きさに応じた面内膜厚分布ではなくなり、膜厚分布に影響を与える要因が、評価値の大きさではない他の要因になったと考えられる。   On the other hand, in a mixer with an evaluation value of ± 0.5% or less, the in-plane film thickness distribution corresponding to the evaluation value is no longer in effect, and the factor that affects the film thickness distribution is not the size of the evaluation value. It is thought that it became the factor of.

3,3a〜3d……混合器
5……ガス生成容器
6……原料物質
7……加熱装置
10……混合容器
11,11a〜11d……第一筒本体
12,12a〜12d……第二筒本体
13……混合空間
14……交叉部分
19……放出装置
24……真空槽
25……ガス移送管
28、28a……流出口
29……仮想筒
30……処理対象物
34……プラズマ装置
45,45a〜45d……第一筒開口
46,46a〜46d……第二筒開口
47……隙間
48……助走空間
3, 3a to 3d …… Mixer 5 …… Gas generating container 6 …… Raw material 7 …… Heating device 10 …… Mixing container 11, 11a to 11d …… First cylinder body 12, 12a to 12d …… Second Cylinder body 13 ... mixing space 14 ... crossover part 19 ... discharge device 24 ... vacuum chamber 25 ... gas transfer pipes 28, 28a ... outlet 29 ... virtual cylinder 30 ... treatment object 34 ... plasma Device 45, 45a-45d ...... First cylinder opening 46, 46a-46d ...... Second cylinder opening 47 ...... Gap 48 ... Running space

Claims (13)

内部の空間が外部の雰囲気から分離された混合容器と、
根元側に導入された第一ガスが先端側の第一筒開口から流出する筒形状の第一筒本体と、
根元側に導入された第二ガスが先端側の第二筒開口から流出する筒形状の第二筒本体と、
前記混合容器の壁に設けられた流出口と、
を有し、
前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面から離間して前記混合容器の内部に配置され、
前記第二筒本体の少なくとも一部は、前記第二筒本体の外周側面が前記第一筒本体の内周側面とは非接触にされた状態で前記第一筒本体の内部に配置され、
前記第一筒本体の内周側面と前記第二筒本体の外周側面との間の隙間を前記第一ガスが流れるようにされ、
前記第二筒開口は、前記第一筒本体の内部に配置され、
前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面から、前記第二筒開口よりも近い位置に配置され、
前記第一筒本体と前記第二筒本体とは、互いに平行な直線に沿ってそれぞれ伸ばされており、
前記第一筒開口から前記混合容器内に流出して直進している前記第一ガスと、前記第二筒開口から前記混合容器内に流出して直進している前記第二ガスとが前記流出口に入射しないように、前記流出口が配置され、
前記第一、第二ガスは、前記第一筒開口から前記混合容器の内部に放出されて前記混合容器の内部であって前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記第一筒本体とを中心とするドーナツ状の混合空間で形成された前記第一、第二ガスの渦で混合され、前記第一、第二ガスが混合されて生成された混合ガスは、前記流出口から前記混合容器の外部に流出する混合器。
A mixing vessel in which the internal space is separated from the external atmosphere;
A cylindrical first cylinder body in which the first gas introduced into the root side flows out from the first cylinder opening on the tip side;
A cylindrical second cylinder body in which the second gas introduced into the root side flows out from the second cylinder opening on the tip side;
An outlet provided in the wall of the mixing vessel;
Have
The first cylinder opening is disposed inside the mixing container away from the wall surface of the mixing container facing the first cylinder opening,
At least a part of the second cylinder main body is disposed inside the first cylinder main body in a state where the outer peripheral side surface of the second cylinder main body is not in contact with the inner peripheral side surface of the first cylinder main body,
The first gas flows through a gap between the inner peripheral side surface of the first cylinder body and the outer peripheral side surface of the second cylinder body;
The second cylinder opening is disposed inside the first cylinder main body,
The first cylinder opening is arranged at a position closer to the second cylinder opening from the wall surface of the mixing container facing the first cylinder opening,
The first cylinder body and the second cylinder body are respectively stretched along straight lines parallel to each other,
The first gas flowing out from the first cylinder opening into the mixing container and traveling straight and the second gas flowing out from the second cylinder opening into the mixing container and proceeding straight are the flow. The outlet is arranged so as not to enter the outlet,
Said 1st, 2nd gas is discharge | released from the said 1st cylinder opening to the inside of the said mixing container, and the outer peripheral side surface of the said 1st cylinder main body is the inside of the said mixing container, and the said 1st cylinder main body extends. The first and second gases are mixed by the vortex of the first and second gases formed in a donut-shaped mixing space centered on the virtually extended virtual cylinder and the first cylinder main body. The mixed gas thus generated flows out of the mixing container from the outlet.
前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉した部分の壁面である交叉部分の外側の前記壁面に設けられた請求項記載の混合器。 The outflow port is an outer side of a crossing portion that is a wall surface of a portion where a virtual tube obtained by virtually extending an outer peripheral side surface of the first tube main body in a direction in which the first tube main body extends and a wall surface of the mixing container intersect. mixer according to claim 1, wherein provided in the wall of. 前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉する位置に少なくとも一部が配置され、
前記第一筒開口と前記流出口との間には邪魔板部材が設けられた請求項記載の混合器。
The outlet is at least partially arranged at a position where a virtual cylinder obtained by virtually extending an outer peripheral side surface of the first cylinder main body in a direction in which the first cylinder main body extends and a wall surface of the mixing container intersect.
Mixer according to claim 1, wherein the baffle member is provided between said first cylindrical opening and the outlet.
前記混合容器は直方体であり、前記混合容器の六個の壁のうち四個の壁の壁面は前記第一筒本体の外周と平行に配置されて前記第一筒本体の外周側面と対面された請求項1記載の混合器。 The mixing container is a rectangular parallelepiped, and wall surfaces of four walls among the six walls of the mixing container are arranged in parallel with the outer periphery of the first cylinder main body and face the outer peripheral side surface of the first cylinder main body. mixer according to claim 1 Symbol placement. 前記第一筒本体と前記第二筒本体とは内周側面の断面形状が円形である請求項1記載の混合器。 The mixer of claim 1 Symbol placing the cross-sectional shape of the inner peripheral surface is circular and the first cylindrical body and the second tubular body. ガス供給装置と、
混合器と、
ガス移送管と、
真空槽と、
ガス放出装置と、
を有し、
前記ガス供給装置から前記混合器に第一ガスと第二ガスとが導入され、前記第一ガスと前記第二ガスとは前記混合器で混合されて混合ガスが生成され、生成された混合ガスは、前記ガス移送管によって前記混合器から前記ガス放出装置に移送され、前記ガス放出装置から前記真空槽の内部に放出され、前記真空槽の内部に配置された処理対象物が真空処理される真空処理装置であって、
前記混合器は、
内部の空間が外部の雰囲気から分離された混合容器と、
根元側に導入された前記第一ガスが先端側の第一筒開口から流出する筒形状の第一筒本体と、
根元側に導入された前記第二ガスが先端側の第二筒開口から流出する筒形状の第二筒本体と、
前記混合容器の壁に設けられ、前記ガス移送管が接続される流出口と、
を有し、
前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面と離間して前記混合容器の内部に配置され、
前記第二筒本体の少なくとも一部は、前記第二筒本体の外周側面が前記第一筒本体の内周側面と非接触にされた状態で前記第一筒本体の内部に配置され、
前記第一筒本体の内周側面と前記第二筒本体の外周側面との間の隙間を前記第一ガスが流れるようにされ、
前記第二筒開口は、前記第一筒本体の内部に配置され、
前記第一筒開口は、前記第一筒開口が対面する前記混合容器の壁面から、前記第二筒開口よりも近い位置に配置され、
前記第一筒本体と前記第二筒本体とは、互いに平行な直線に沿ってそれぞれ伸ばされており、
前記第一筒開口から前記混合容器内に流出して直進している前記第一ガスと、前記第二筒開口から前記混合容器内に流出して直進している前記第二ガスとが前記流出口に入射しないように、前記流出口が配置され、
前記第一、第二ガスは、前記第一筒開口から前記混合容器の内部に放出されて前記混合容器の内部であって前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記第一筒本体とを中心とするドーナツ状の混合空間で形成された前記第一、第二ガスの渦で混合され、前記第一、第二ガスが混合されて生成された混合ガスは、前記流出口から前記ガス移送管の内部に流入する真空処理装置。
A gas supply device;
A mixer;
A gas transfer pipe;
A vacuum chamber;
A gas release device;
Have
The first gas and the second gas are introduced into the mixer from the gas supply device, the first gas and the second gas are mixed in the mixer to generate a mixed gas, and the generated mixed gas Is transferred from the mixer to the gas discharge device by the gas transfer pipe, discharged from the gas discharge device to the inside of the vacuum chamber, and a processing object disposed inside the vacuum chamber is vacuum processed. A vacuum processing apparatus,
The mixer is
A mixing vessel in which the internal space is separated from the external atmosphere;
A first cylindrical body of the cylindrical shape the first gas introduced into the base side flows out from the first cylindrical opening in the distal end side,
A second cylindrical body of the cylindrical shape the second gas introduced into the base side flows out from the second cylindrical opening in the distal end side,
An outlet provided on the wall of the mixing vessel to which the gas transfer pipe is connected;
Have
The first cylinder opening is disposed inside the mixing container apart from the wall surface of the mixing container facing the first cylinder opening,
At least a part of the second cylinder main body is disposed inside the first cylinder main body in a state where the outer peripheral side surface of the second cylinder main body is not in contact with the inner peripheral side surface of the first cylinder main body.
The first gas flows through a gap between the inner peripheral side surface of the first cylinder body and the outer peripheral side surface of the second cylinder body;
The second cylinder opening is disposed inside the first cylinder main body,
The first cylinder opening is arranged at a position closer to the second cylinder opening from the wall surface of the mixing container facing the first cylinder opening,
The first cylinder body and the second cylinder body are respectively stretched along straight lines parallel to each other,
The first gas flowing out from the first cylinder opening into the mixing container and traveling straight and the second gas flowing out from the second cylinder opening into the mixing container and proceeding straight are the flow. The outlet is arranged so as not to enter the outlet,
Said 1st, 2nd gas is discharge | released from the said 1st cylinder opening to the inside of the said mixing container, and the outer peripheral side surface of the said 1st cylinder main body is the inside of the said mixing container, and the said 1st cylinder main body extends. The first and second gases are mixed by the vortex of the first and second gases formed in a donut-shaped mixing space centered on the virtually extended virtual cylinder and the first cylinder main body. The mixed gas thus generated flows into the gas transfer pipe from the outflow port.
前記ガス供給装置は、
原料物質を配置するガス生成容器と、
前記ガス生成容器内の前記原料物質を加熱する加熱装置と、を有し、
前記第一ガス又は前記第二ガスのいずれか一方のガスとして、前記原料物質が前記加熱装置によって加熱され、昇華又は蒸発によって生成された原料ガスが前記混合容器に供給され、
他方のガスとして、少なくとも常温常圧において気体であるガスが前記混合容器に供給される請求項記載の真空処理装置。
The gas supply device includes:
A gas generating container in which the raw material is disposed;
A heating device for heating the source material in the gas generation container,
As the first gas or the second gas, the raw material is heated by the heating device, and the raw material gas generated by sublimation or evaporation is supplied to the mixing container,
The vacuum processing apparatus according to claim 6 , wherein a gas that is a gas at least at normal temperature and pressure is supplied to the mixing container as the other gas.
前記真空槽内に放出された前記混合ガスに含有される前記第一ガスと前記第二ガスの化学反応により、前記真空槽の内部に配置された処理対象物表面に薄膜が形成される請求項記載の真空処理装置。 A thin film is formed on the surface of a processing object disposed inside the vacuum chamber by a chemical reaction between the first gas and the second gas contained in the mixed gas released into the vacuum chamber. 8. The vacuum processing apparatus according to 7 . 前記混合器から供給された前記混合ガスをプラズマ化するプラズマ装置が設けられた請求項記載の真空処理装置。 The vacuum processing apparatus according to claim 8 , further comprising a plasma apparatus that converts the mixed gas supplied from the mixer into plasma. 前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉した部分の壁面である交叉部分の外側の前記壁面に設けられた請求項記載の真空処理装置。 The outflow port is an outer side of a crossing portion that is a wall surface of a portion where a virtual tube obtained by virtually extending an outer peripheral side surface of the first tube main body in a direction in which the first tube main body extends and a wall surface of the mixing container intersect. The vacuum processing apparatus of Claim 6 provided in the said wall surface. 前記流出口は、前記第一筒本体が伸びる方向に前記第一筒本体の外周側面を仮想的に延長させた仮想筒と前記混合容器の壁面とが交叉した部分の壁面である交叉部分と少なくとも一部が重なるように配置され、
前記第一筒開口と前記流出口との間には邪魔板部材が設けられた請求項記載の真空処理装置。
The outlet port includes at least a crossover portion that is a wall surface of a portion where a virtual tube obtained by virtually extending an outer peripheral side surface of the first tube body in a direction in which the first tube body extends and a wall surface of the mixing container intersect. It is arranged so that a part overlaps,
The vacuum processing apparatus according to claim 6 , wherein a baffle plate member is provided between the first cylinder opening and the outlet.
前記混合容器は直方体であり、前記混合容器の六個の壁のうち四個の壁の壁面は前記第一筒本体の外周と平行に配置されて前記第一筒本体の外周側面と対面された請求項記載の真空処理装置。 The mixing container is a rectangular parallelepiped, and wall surfaces of four walls among the six walls of the mixing container are arranged in parallel with the outer periphery of the first cylinder main body and face the outer peripheral side surface of the first cylinder main body. The vacuum processing apparatus according to claim 6 . 前記第一筒本体と前記第二筒本体とは内周側面の断面形状が円形である請求項記載の真空処理装置。 The vacuum processing apparatus according to claim 6, wherein the first cylinder main body and the second cylinder main body have circular inner cross-sectional shapes.
JP2017527376A 2015-10-06 2016-10-05 Mixer, vacuum processing equipment Active JP6216483B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015198275 2015-10-06
JP2015198275 2015-10-06
PCT/JP2016/079681 WO2017061498A1 (en) 2015-10-06 2016-10-05 Mixer and vacuum processing device

Publications (2)

Publication Number Publication Date
JP6216483B2 true JP6216483B2 (en) 2017-10-18
JPWO2017061498A1 JPWO2017061498A1 (en) 2017-10-19

Family

ID=58487766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017527376A Active JP6216483B2 (en) 2015-10-06 2016-10-05 Mixer, vacuum processing equipment

Country Status (5)

Country Link
JP (1) JP6216483B2 (en)
KR (1) KR102159868B1 (en)
CN (1) CN108138321B (en)
TW (1) TWI667367B (en)
WO (1) WO2017061498A1 (en)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129973A (en) * 1987-11-13 1989-05-23 Hitachi Ltd Reaction treatment equipment
JP2508717Y2 (en) * 1989-08-31 1996-08-28 株式会社島津製作所 Mixing chamber for gas introduction in film forming equipment
US5525780A (en) * 1993-08-31 1996-06-11 Texas Instruments Incorporated Method and apparatus for uniform semiconductor material processing using induction heating with a chuck member
JPH10150030A (en) 1996-11-19 1998-06-02 Kokusai Electric Co Ltd Film forming device
JP4570732B2 (en) 2000-05-25 2010-10-27 株式会社アルバック Gas ejection device and vacuum processing device
JP2003226976A (en) * 2002-02-04 2003-08-15 Tokura Kogyo Kk Gas mixing device
US7045060B1 (en) * 2002-12-05 2006-05-16 Inflowsion, L.L.C. Apparatus and method for treating a liquid
CN1781586A (en) * 2004-11-30 2006-06-07 沈阳化工学院 Single tube multiple swirler mixing device and its mixing operation method
JP2008114097A (en) * 2005-02-22 2008-05-22 Hoya Advanced Semiconductor Technologies Co Ltd Gas mixer, film forming device, and manufacturing method of thin film
JP4895167B2 (en) * 2006-01-31 2012-03-14 東京エレクトロン株式会社 Gas supply apparatus, substrate processing apparatus, and gas supply method
EP2045002A1 (en) * 2007-10-02 2009-04-08 Ineos Europe Limited Mixing apparatus
WO2010042883A2 (en) * 2008-10-10 2010-04-15 Alta Devices, Inc. Concentric showerhead for vapor deposition
WO2010083151A2 (en) * 2009-01-13 2010-07-22 Avl North America Inc. Ejector type egr mixer
CN101537319B (en) * 2009-04-30 2011-09-14 赵纪仲 Adjustable jet flow mixing device and mixed flow adjusting method
JP5370027B2 (en) * 2009-09-10 2013-12-18 Jfeエンジニアリング株式会社 Fluid mixing method and fluid mixing apparatus
KR101553453B1 (en) * 2010-06-14 2015-09-15 가부시키가이샤 알박 Film formation device
NL2006526C2 (en) * 2011-04-01 2012-10-02 Heatmatrix Group B V Device and method for mixing two fluids.
JP5871266B2 (en) * 2012-03-13 2016-03-01 国立研究開発法人産業技術総合研究所 High pressure atomization method for molten resin and low viscosity produced by mixing carbon dioxide and method for producing resin fine particles
CN202497835U (en) * 2012-03-22 2012-10-24 淮南舜化机械制造有限公司 Gas mixing device
US10232324B2 (en) * 2012-07-12 2019-03-19 Applied Materials, Inc. Gas mixing apparatus
CN203955054U (en) * 2014-06-24 2014-11-26 浙江深度能源技术有限公司 Two medium blenders of SCR denitrification apparatus

Also Published As

Publication number Publication date
WO2017061498A1 (en) 2017-04-13
KR102159868B1 (en) 2020-09-24
KR20180050367A (en) 2018-05-14
CN108138321A (en) 2018-06-08
TWI667367B (en) 2019-08-01
JPWO2017061498A1 (en) 2017-10-19
TW201726969A (en) 2017-08-01
CN108138321B (en) 2020-03-20

Similar Documents

Publication Publication Date Title
TWI746470B (en) An apparatus for mixing at least one gas and a reaction system for forming a film
TWI722880B (en) Chemical delivery chamber for self-assembled monolayer processes
JP6435967B2 (en) Vertical heat treatment equipment
KR102610827B1 (en) Method and apparatus for providing improved gas flow to the processing volume of a processing chamber
US11628456B2 (en) Apparatus for increasing flux from an ampoule
KR102436438B1 (en) Azimuthal mixer
CN110904437B (en) Film preparation equipment and reaction chamber thereof
JP4502639B2 (en) Shower plate, plasma processing apparatus, and product manufacturing method
TWI804993B (en) Substrate processing apparatus, method and program for manufacturing semiconductor device
TWI824691B (en) Gas injection device of semiconductor heat treatment equipment and semiconductor heat treatment equipment
JP2012175057A (en) Film forming method and film forming apparatus
JP6216483B2 (en) Mixer, vacuum processing equipment
TW201626862A (en) Corrosion resistant abatement system
US11600468B2 (en) Multi channel splitter spool
JP4273983B2 (en) Surface wave excitation plasma CVD equipment
CN207546458U (en) A kind of gas liquid reaction gas distributor
TW202123284A (en) Gas baffle structure of plasma processing equipment, method of plasma processing equipment improving the uneven etching phenomenon on the surface of the wafer to be processed at the same distance from its center to different locations
CN115206845B (en) Gas inlet device for semiconductor reaction equipment and semiconductor reaction equipment
KR102612872B1 (en) Valve and substrate processing apparatus
JP7022982B2 (en) Exhaust structure for plasma processing room
CN109210374A (en) Air inlet pipeline and semiconductor processing equipment
CN218182164U (en) Silicon reaction device
CN220550223U (en) Furnace tube structure and hot furnace
TWM610143U (en) Gas mixing device and semiconductor manufacturing equipment
KR200266070Y1 (en) Semiconductor manufacturing apparatus for progressing a process after suppling process gas in tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170519

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170922

R150 Certificate of patent or registration of utility model

Ref document number: 6216483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250