JP6214691B2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP6214691B2
JP6214691B2 JP2016013140A JP2016013140A JP6214691B2 JP 6214691 B2 JP6214691 B2 JP 6214691B2 JP 2016013140 A JP2016013140 A JP 2016013140A JP 2016013140 A JP2016013140 A JP 2016013140A JP 6214691 B2 JP6214691 B2 JP 6214691B2
Authority
JP
Japan
Prior art keywords
partition
pixel array
color filter
width
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016013140A
Other languages
English (en)
Other versions
JP2017063171A (ja
Inventor
智傑 張
智傑 張
綺涵 林
綺涵 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VisEra Technologies Co Ltd
Original Assignee
VisEra Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/861,378 external-priority patent/US9634049B2/en
Application filed by VisEra Technologies Co Ltd filed Critical VisEra Technologies Co Ltd
Publication of JP2017063171A publication Critical patent/JP2017063171A/ja
Application granted granted Critical
Publication of JP6214691B2 publication Critical patent/JP6214691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、撮像装置に関し、特に、固体撮像装置の隔壁(partition)グリッドに関するものである。
固体撮像装置、例えば、電荷結合素子(CCD)イメージセンサ、および相補性金属酸化膜半導体(CMOS)イメージセンサは、各種の画像取込み装置、例えばデジタル静止画カメラ、デジタルビデオカメラなどに広く用いられている。固体撮像装置では、複数の画素がシリコンチップなどの半導体基板上に配列される。各画素は、フォトダイオードなどの光電変換素子を有し、フォトダイオードで受光された入射光の光電変換を行うことによって信号電荷を生成する。フォトダイオードで生成された光電子に対応する信号電荷は、CCD型またはCMOS型の読み出し回路によって得られる。
固体撮像装置は、受光ユニットに入射した方向に関して大きく2つのグループに分類される。1つは、読み出し回路の配線層が形成されている半導体基板の表面に入射する光を受光する表面照射型(FSI)撮像装置である。もう1つは、配線層が形成されていない半導体基板の裏面に入射する光を受光する裏面照射型(BSI)撮像装置である。カラー画像を撮像するために、カラーフィルタがFSIとBSI撮像装置に提供される。FSIとBSI撮像装置は、一般的に、画像間の光をブロックする遮光グリッド構造を有し、混色を防止する。FSIとBSI撮像装置では、遮光グリッド構造は、一般的に、撮像装置の画素アレイの全ての位置に均一の幅と高さを有する。
固体撮像装置では、画素アレイの端部に照射する入射光の傾斜角度は、画素アレイの中心部に照射する入射光の垂直角度より大きい。入射光の角度は、固体撮像装置の受光面の法線からの角度である。例えば、画素アレイの端部に照射する入射光の傾斜角度は、約+/−20度〜約+/−40度であり、画素アレイの中心部に照射する入射光の垂直角度は、約0度である。従って、画素アレイの端部にあるフォトダイオードは、画素アレイの中心部にあるフォトダイオードの感度より低い感度を有する。
本開示の実施形態に係る、固体画像装置の隔壁グリッドの各種の寸法設計は、画素アレイの端部にあるフォトダイオードの感度を向上させるように提供される。また、固体画像装置の隔壁グリッドの各種の寸法設計は、画素アレイの端部にあるフォトダイオードの均一な感度を得ることができる。従って、固体撮像装置の角度応答(AR)の向上も得ることができる。結果として、固体撮像装置の画素アレイの端部にあるフォトダイオードは、均一な量子効果(QE)を有する。従って、固体撮像装置の画素アレイの端部にある画素の性能は、色彩、またはその他の効果、例えば、量子効果(QE)と感度で対称的である。
いくつかの実施形態では、固体画像装置が提供される。固体撮像装置は、画素アレイ内に配置された複数の光電変換素子を含む基板を含む。固体撮像装置は、光電変換素子の上方に配置された複数のカラーフィルタセグメントを含むカラーフィルタ層も含む。固体撮像装置は、複数の隔壁を含む隔壁グリッドを更に含む。各隔壁は、2つの隣接するカラーフィルタセグメントの間に配置される。カラーフィルタ層と隔壁グリッドは、同じ層に配置される。また、隔壁は、画素アレイの中心線に配置された第1の隔壁と画素アレイの端部に配置された第2の隔壁を含む。第2の隔壁は、第1の隔壁の上部幅より大きい上部幅を有する。
いくつかの実施形態では、固体画像装置が提供される。固体撮像装置は、画素アレイ内に配置された複数の光電変換素子を含む基板を含む。固体撮像装置は、光電変換素子の上方に配置された複数のカラーフィルタセグメントを含むカラーフィルタ層も含む。固体撮像装置は、複数の隔壁を含む隔壁グリッドを更に含む。各隔壁は、1つのカラーフィルタセグメントを囲む。カラーフィルタ層と隔壁グリッドは、同じ層に配置される。また、カラーフィルタ層は、複数のカラーフィルタセグメントのユニットを有する。ユニットの1つのカラーフィルタセグメントは、第1の隔壁で囲まれ、ユニットのもう1つのカラーフィルタセグメントは、第2の隔壁で囲まれる。第1の隔壁は、第2の隔壁の上部幅より大きい上部幅を有する。
詳細な説明は、添付の図面と併せて以下の実施形態に説明される。
添付の図面とともに以下の本発明の様々な実施形態の詳細な説明を検討することで、本発明はより完全に理解できる。
本開示のいくつかの実施形態に係る固体撮像装置の概略部分断面図を示している。 本開示のいくつかの実施形態に係る固体撮像装置の隔壁グリッドの概略平面図を示している。 本開示のいくつかの実施形態に係る、図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置の各種の隔壁グリッドの複数の隔壁の概略断面図を示している。 本開示のいくつかの実施形態に係る、図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置の各種の隔壁グリッドの複数の隔壁の概略断面図を示している。 本開示のいくつかの実施形態に係る、図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置の各種の隔壁グリッドの複数の隔壁の概略断面図を示している。 本開示のいくつかの実施形態に係る、図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置の各種の隔壁グリッドの複数の隔壁の概略断面図を示している。 本開示のいくつかの実施形態に係る、図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置の各種の隔壁グリッドの複数の隔壁の概略断面図を示している。 本開示のいくつかの実施形態に係る、図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置の各種の隔壁グリッドの複数の隔壁の概略断面図を示している。 本開示のいくつかの実施形態に係る固体撮像装置の一部の隔壁グリッドで囲まれたカラーフィルタ層の複数のカラーフィルタセグメントのユニットの概略平面図を示している。 本開示のいくつかの実施形態に係る図4の断面線4−4’に沿った、固体撮像装置の各種の隔壁グリッドで囲まれた複数のカラーフィルタセグメントのユニットの概略断面図を示している。 本開示のいくつかの実施形態に係る図4の断面線4−4’に沿った、固体撮像装置の各種の隔壁グリッドで囲まれた複数のカラーフィルタセグメントのユニットの概略断面図を示している。 本開示のいくつかの実施形態に係る各種の隔壁の上部幅を有する固体撮像装置のR、G、B、およびW画素の量子効率(QE)対波長の曲線のグラフを示している。 本開示の隔壁グリッドの寸法設計がない画素応答対固体撮像装置に照射する入射光の角度の曲線のグラフを示している。 本開示のいくつかの実施形態に係る隔壁グリッドの寸法設計がある画素応答対固体撮像装置に照射する入射光の角度の曲線のグラフを示している。
以下の説明は、本発明を実施するベストモードが開示されている。この説明は、本発明の一般原理を例示する目的のためのもので本発明を限定するものではない。本発明の範囲は、添付の請求の範囲を参考にして決定される。
図1に示すように、いくつかの実施形態に係る固体撮像装置100の断面図が示されている。固体撮像装置100は、相補型金属酸化物半導体(CMOS)イメージセンサ、または電荷結合素子(CCD)イメージセンサで形成されることができる。固体撮像装置100は、基板102、例えば、表面102Fと裏面102Rを有する半導体基板を含む。半導体基板は、ウエハまたはチップであることができる。基板102は、例えばその中に形成されたフォトダイオードなどの複数の光電変換素子106を含み、光電変換素子106は、画素アレイ内に配置される。光電変換素子106は、以降フォトダイオード106と称する。各フォトダイオード106は、固体撮像装置100の画素アレイの1つの各々の画素に配置される。基板102のフォトダイオード106は、互いに分離される。図1は、4つの画素を示しているが、実際には固体撮像装置100は、数百万画素を有する。
いくつかの実施形態では、フォトダイオード106は、基板102の裏面102R上に形成される。固体撮像装置100に必要な各種の配線と電子回路を含む配線層104は、基板102の表面102F上に形成される。入射光140と141は、基板102の裏面102Rに照射し、フォトダイオード106によって受光される。従って、図1に示されるように、固体撮像装置100は、BSI撮像装置と呼ばれる。図1に示されるように、BSI撮像装置100では、入射光140と141は、基板102の裏面102Rに照射し、基板102の表面102F上に形成された配線層104を通過することなく、フォトダイオード106に届く。
いくつかの他の実施形態では、固体撮像装置は、FSI撮像装置であることができる。入射光は、基板の表面に照射し、配線層104を通過して基板の裏面上に形成されたフォトダイオード106によって受光される。フォトダイオードに届くFSI画像装置を通過する入射光の経路は、BSI撮像装置を通過する入射光の経路より長い。従って、BSI撮像装置の画素アレイの端部に照射する傾斜入射光の角度応答(angular response; AR)と量子効率(QE)における効果は、FSI撮像装置における効果よりも劣る。本開示の実施形態に係る、BSI撮像装置の角度応答(AR)と量子効率(QE)の向上は、FSI撮像装置より、より大きくすることができる。
一般的に、入射光140と141は、異なる角度で固体撮像装置100の画素アレイの中心部Cと端部Eに照射する。入射光141は、傾斜角度で固体撮像装置100の画素アレイの端部Eに照射する。この傾斜角度は、例えば、基板102の裏面102Rの法線から約+/−20度〜約+/−40度の傾斜角度である。入射光140は、垂直角度で固体撮像装置100の画素アレイの中心部Cに照射する。この垂直角度は、例えば、基板102の裏面102Rの法線から約0度の垂直角度である。固体撮像装置100の画素アレイの端部Eに照射する入射光141の主光線角度(CRA)は、画素アレイの中心部Cに照射する入射光140の主光線角度(CRA)より大きい。従って、より大きいCRAの傾斜入射光141を受光する画素アレイの端部Eにあるフォトダイオード106は、より小さいCRAの垂直入射光140を受光する画素アレイの中心部Cにあるフォトダイオード106の量子効率(QE)と感度より低い量子効率(QE)と感度を有する。
本開示のいくつかの実施形態に基づいて、図1に示されるように、固体撮像装置100は、基板102の裏面102R上に配置された隔壁グリッド108を含む。隔壁グリッド108は、複数の隔壁108Pを含む。いくつかの実施形態では、隔壁108Pの上部幅と底部幅は、画素アレイの中心部Cから端部Eに増加する。図1は、5つの隔壁を示しているが、実際には図2に示されたように、隔壁グリッド108は、複数の交差した列と行に配列されたより多くの隔壁を有する。
いくつかの実施形態では、固体撮像装置100は、基板102の裏面102R上に形成されたパッシベーション層107を含み、光電変換素子106をカバーする。また、パッシベーション層107は、平面を有する。パッシベーション層107の材料は、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、または他の適切な絶縁材料を含む。
図1に示されるように、固体撮像装置100は、パッシベーション層107の平面上に形成されたカラーフィルタ層120を更に含む。カラーフィルタ層120は、光電変換素子106の上方に配置された複数のカラーフィルタセグメント120−Sを含む。各カラーフィルタセグメント120−Sは、1つの各々の光電変換素子106に対応する。図1は、4つのカラーフィルタセグメントを示しているが、実際にはフィルター層120は、より多くのカラーフィルタセグメントを含む。いくつかの実施形態では、カラーフィルタセグメント120−Sは、適切な配置で配列された赤色(R)、緑色(G)、および青色(B)カラーフィルタセグメントの3原色である。いくつかの他の実施形態では、カラーフィルタセグメント120−Sは、適切な配置でR、G、およびBカラーフィルタセグメントと一緒に配列された白色(W)カラーフィルタセグメントを含む。
いくつかの実施形態では、フィルター層120と隔壁グリッド108は、パッシベーション層107の上方の同一層に配置される。いくつかの実施形態では、画素アレイの端部にある隔壁以外の隔壁グリッド108の隔壁の各々は、2つの隣接するカラーフィルタセグメントの間に配置される。例えば、各隔壁108Pは、2つの隣接するカラーフィルタセグメント120−Sの間に配置される。
いくつかの実施形態では、隔壁グリッドは、堆積、フォトリソグラフィ、およびエッチングプロセスによって形成される、または印刷プロセスによって形成されることができる。
また、図1に示されるように、固体撮像装置100は、カラーフィルタ層120と隔壁グリッド108の同一平面上に配置されるマイクロレンズ構造130も含む。マイクロレンズ構造130は、アレイに配列された複数のマイクロレンズ素子を有する。マイクロレンズ構造130は、入射光をフォトダイオード106に効率よく照射させるように提供される。いくつかの実施形態では、化学気相蒸着(CVD)酸化物薄膜(図示されていない)は、マイクロレンズ構造130の表面上に更に堆積される。CVD薄膜の材料は、酸化ケイ素、窒化ケイ素、またはその組み合わせを含む。
図2に示すように、いくつかの実施形態に係る固体撮像装置100の隔壁グリッドの平面図が示されている。隔壁グリッド108は、画素アレイ110の中心線CLから端部Eの上部幅の異なる寸法を有する複数の隔壁108Pを含む。画素アレイ110の中心線CLに配置された第1の隔壁108P−CLは、上部幅WCLを有する。画素アレイ110の端部Eに配置された第2の隔壁108P−Eは、第1の隔壁108P−CLの上部幅WCLより大きい上部幅Wを有する。いくつかの実施形態では、隔壁グリッド108は、光透過性材料でできている。従って、固体撮像装置100に照射する入射光は、隔壁グリッド108の隔壁グリッド108Pを通過することができる。また、隔壁グリッド108は、カラーフィルタ層の屈折率より低い屈折率を有する。従って、隔壁108Pとカラーフィルタセグメント120−Sとの間のインターフェースで全反射が生じる。いくつかの実施形態では、隔壁グリッド108の材料は、ケイ素酸化物または有機フォトレジストなどの低屈折率(n)材料である。
本実施形態に基づくと、より大きい上部幅Wを有する画素アレイ110の端部Eにある第2の隔壁108P−Eは、大量の入射光を通過させることができ、固体撮像装置100の画素アレイ110の端部Eにあるフォトダイオード106に伝送する。従って、図1に示されたように、傾斜入射光141を受光しているとき、より大きい上部幅Wを有する画素アレイ110の端部Eにある第2の隔壁108P−Eは、固体撮像装置100の画素アレイ110の端部Eにあるフォトダイオード106の量子効率(QE)と感度を向上させることができる。従って、本実施形態に係る隔壁グリッド108の寸法は、固体撮像装置100のチップエッジ応答(chip edge response)を向上させることができる。また、固体撮像装置100の角度応答(AR)は、本実施形態に係る隔壁グリッド108の寸法によっても改善されるため、画素アレイの端部の均一な性能が得られる。
図3Aに示すように、本開示のいくつかの実施形態に係る図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置100の各種の隔壁グリッド108の複数の隔壁108P−1〜108P−5の断面図が示されている。実施形態では、隔壁グリッド108の隔壁108P−1〜108P−5の各々は、隔壁108P−1〜108P−5の底部幅BW1〜BW5と同じ上部幅TW1〜TW5を有する。例えば、TW1=BW1、TW2=BW2、TW3=BW3、TW4=BW4、およびTW5=BW5である。隔壁グリッド108の全ての隔壁は、垂直な側壁を有する。また、隔壁グリッド108の全ての隔壁は、同じ高さHを有する。
また、画素アレイの中心線CLから端部Eの隔壁108P−1〜108P−5は、互いに異なる上部幅TW1〜TW5を有する。また、隔壁108P−1〜108P−5の上部幅TW1〜TW5は、固体撮像装置100の画素アレイの中心線CLから端部Eへ徐々に増加する。隔壁グリッド108の他の隔壁108P−1〜108P−4の上部幅TW1〜TW4より大きい上部幅TW5を有する隔壁グリッド108の端部Eにある隔壁108P−5は、固体撮像装置100の画素アレイの端部にある画素の感度を向上させることができる。
また、いくつかの実施形態では、図2に示されたX軸方向とY軸方向に沿った、隔壁グリッド108の全ての隔壁のピッチ(pitch)、例えば、隔壁108P−1〜108P−5のピッチP1、P2、P3、およびP4は、等しい。固体撮像装置100では、隔壁グリッド108の全ての隔壁は、同じピッチで配置される。画素アレイの各画素は、1つのカラーフィルタセグメントと1つの隔壁の面積を含む。画素アレイの全ての画素は、同じサイズである。また、いくつかの実施形態では、カラーフィルタ層のカラーフィルタセグメントは、同じサイズである。いくつかの実施形態では、カラーフィルタ層のカラーフィルタセグメントは、異なるサイズである。
いくつかの他の実施形態では、図2に示されたX軸方向とY軸方向に沿った、隔壁グリッド108の全ての隔壁のピッチ、例えば、隔壁108P−1〜108P−5のピッチP1、P2、P3、およびP4は、互いに異なる。X軸方向とY軸方向に沿った、隔壁グリッド108の隔壁は、固体撮像装置100の画素アレイの中心線CLから端部Eへ徐々に増加したピッチ、または徐々に減少したピッチで配置される。画素アレイの画素は、異なるサイズである。また、いくつかの実施形態では、カラーフィルタ層の全てのカラーフィルタセグメントは、同じサイズである。いくつかの他の実施形態では、カラーフィルタ層の全てのカラーフィルタセグメントは、異なるサイズである。
図3Bに示すように、いくつかの実施形態に係る図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置100の各種の隔壁グリッド108の複数の隔壁108P−1〜108P−5の断面図が示されている。実施形態では、画素アレイの中心線CLから端部Eの隔壁グリッド108の隔壁108P−1〜108P−5は、互いに異なる高さH1〜H5を有する。いくつかの実施形態では、隔壁108P−1〜108P−5の高さH1〜H5は、画素アレイの中心線CLから端部Eへ徐々に増加する。図3Bの実施形態では、隔壁グリッド108の隔壁108P−1〜108P−5の、高さH1〜H5を除く、上部幅、底部幅、ピッチ、および材料のその他の条件は、図3Aのこれらと同じであることができる。また、図3Bの実施形態の画素アレイの画素サイズの条件は、図3Aの実施形態と同じであることができる。
図3Bの実施形態では、画素アレイの端部Eにある隔壁グリッド108の隔壁108P−5は、隔壁グリッド108の他の隔壁108P−1〜108P−4より大きい上部幅TW5と高い高さH5を有する。従って、隔壁グリッド108の隔壁の上部幅と高さの寸法は、固体撮像装置100の画素アレイの端部にある画素の感度を向上させることができる。
図3Cに示すように、いくつかの実施形態に係る図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置100の各種の隔壁グリッド108の複数の隔壁108P−1〜108P−5の断面図が示されている。実施形態では、画素アレイの第1の領域A1に配置された隔壁グリッド108の隔壁108P−1〜108P−2は、その底部幅BW1〜BW2より小さい上部幅TW1〜TW2を有する。例えば、隔壁108P−1は、底部幅BW1より小さい上部幅TW1を有し、隔壁108P−2は、底部幅BW2より小さい上部幅TW2を有する。
画素アレイの第2の領域A2に配置された隔壁グリッド108の隔壁108P−3〜108P−5は、隔壁108P−3〜108P−5の底部幅BW3〜BW5と同じ上部幅TW3〜TW5を有する。例えば、TW3=BW3、TW4=BW4、およびTW5=BW5である。
いくつかの実施形態では、第1の領域A1は、0から+/−20度の角度の入射光で照射された領域によって定義される。第2の領域A2は、+/−20度より大きい角度の入射光で照射された領域によって定義される。実施形態では、第2の領域A2の隔壁108P−3〜108P−5の上部幅TW3〜TW5は、第1の領域A1の隔壁108P−1〜108P−2の上部幅TW1〜TW2より大きい。また、隔壁グリッド108の全ての隔壁108P−1〜108P−5は、同じ高さHを有する。
図3Cに示されるように、第1の領域A1の隔壁108P−1〜108P−2の各々は、テーパー状断面および傾斜側壁を有する。第2の領域A2の隔壁108P−3〜108P−5の各々は、矩形断面および垂直側壁を有する。垂直側壁を有する第2の領域A2の隔壁108P−3〜108P−5は、第1の領域A1の隔壁108P−1〜108P−2の傾斜側壁で生成された全反射の角度より大きい全反射の角度を生成する。また、第2の領域A2の隔壁グリッド108の隔壁108P−3〜108P−5は、第1の領域A1の隔壁108P−1〜108P−2の上部幅TW1〜TW2より大きい上部幅TW3〜TW5を有する。従って、+/−20度より大きい角度の入射光で照射された第2の領域A2の隔壁グリッド108の隔壁は、固体撮像装置100の画素アレイの端部Eを含む第2の領域A2の画素の感度を向上させることができる。
いくつかの実施形態では、第1の領域A1の隔壁は、同じ上部幅TW1〜TW2と同じ底部幅BW1〜BW2を有する。例えば、TW1=TW2およびBW1=BW2である。また、第2の領域A2の隔壁は、同じ上部幅TW3〜TW5と同じ底部幅BW3〜BW5を有する。例えば、TW3=TW4=TW5、およびBW3=BW4=BW5である。
いくつかの実施形態では、画素アレイの第1の領域A1に配置された隔壁108P−1〜108P−2は、互いに異なる上部幅TW1〜TW2を有する。また、隔壁108P−1は、隔壁108P−2の底部幅BW2と異なる底部幅BW1を有する。画素アレイの第2の領域A2に配置された隔壁108P−3〜108P−5は、互いに異なる上部幅TW3〜TW5を有する。また、画素アレイの第2の領域A2に配置された隔壁108P−3〜108P−5は、互いに異なる底部幅BW3〜BW5を有する。例えば、TW3≠TW4≠TW5、およびBW3≠BW4≠BW5である。いくつかの実施形態では、第1の領域A1の隔壁108P−1〜108P−2の上部幅TW1〜TW2は、画素アレイの中心線CLから端部Eへの方向に沿って徐々に増加する。第2の領域A2の隔壁108P−3〜108P−5の上部幅TW3〜TW5は、画素アレイの中心線CLから端部Eへの方向に沿って徐々に増加する。
また、いくつかの実施形態では、図2に示されたX軸方向とY軸方向に沿った、隔壁グリッド108の全ての隔壁のピッチ、例えば、隔壁108P−1〜108P−5のピッチP1、P2、P3、およびP4は、等しい。また、画素アレイの全ての画素は、同じサイズである。
いくつかの他の実施形態では、図2に示されたX軸方向とY軸方向に沿った、隔壁グリッド108の全ての隔壁のピッチ、例えば、隔壁108P−1〜108P−5のピッチP1、P2、P3、およびP4は、互いに異なる。X軸方向とY軸方向に沿った、隔壁グリッド108の隔壁は、固体撮像装置100の画素アレイの中心線CLから端部Eへ徐々に増加したピッチ、または徐々に減少したピッチで配置されることができる。また、画素アレイの全ての画素は、全て異なるサイズである。
図3Dに示すように、本開示のいくつかの実施形態に係る図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置100の各種の隔壁グリッド108の複数の隔壁108P−1〜108P−5の断面図が示されている。実施形態では、画素アレイの中心線CLから端部Eの隔壁グリッド108の隔壁108P−1〜108P−5は、互いに異なる高さH1〜H5を有する。いくつかの実施形態では、隔壁108P−1〜108P−5の高さH1〜H5は、画素アレイの中心線CLから端部Eへ徐々に増加する。図3Dの実施形態では、障壁108P−1〜108P−5の上部幅、底部幅、ピッチ、および材料のその他の条件は、図3Cのこれらと同じであることができる。また、図3Dの実施形態の画素アレイの画素サイズの条件は、図3Cの実施形態と同じであることができる。
図3Dの実施形態では、画素アレイの端部Eにある隔壁グリッド108の隔壁108P−5は、画素アレイの他の領域にある他の隔壁108P−1〜108P−4の上部幅TW1〜TW4と高さH1〜H4より大きい上部幅TW5と高い高さH5を有する。従って、固体撮像装置100の画素アレイの端部Eにある隔壁グリッド108の隔壁の寸法は、固体撮像装置100の画素アレイの端部Eにある画素の感度を向上させることができる。
図3Eに示すように、本開示のいくつかの実施形態に係る図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置100の各種の隔壁グリッド108の複数の隔壁108P−1〜108P−5の断面図が示されている。実施形態では、画素アレイの中心線CLから端部Eの隔壁グリッド108の隔壁108P−1〜108P−5は、互いに異なる上部幅TW1〜TW5を有する。また、画素アレイの中心線CLから端部Eの隔壁グリッド108の隔壁108P−1〜108P−5はまた互いに異なる底部幅BW1〜BW5を有する。
隔壁108P−1〜108P−5の上部幅TW1〜TW5は、画素アレイの中心線CLから端部Eへ徐々に増加する。隔壁108P−1〜108P−5の底部幅BW1〜BW5は、画素アレイの中心線CLから端部Eへ徐々に減少する。また、隔壁108P−1〜108P−4の上部幅TW1〜TW4は、隔壁108P−1〜108P−4の底部幅BW1〜BW4より小さい。画素アレイの端部Eにある隔壁108P−5の上部幅TW5は、隔壁108P−5の底部幅BW5と等しい。
実施形態では、隔壁108P−1〜108P−5の各々は、上部幅対底部幅の比率を有する。隔壁108P−1〜108P−5の上部幅対底部幅の比率は、画素アレイの中心線CLから端部Eへ徐々に増加する。また、画素アレイの端部Eにある隔壁108P−5の上部幅対底部幅の比率は、1に等しい。画素アレイの他の領域にある隔壁108P−1の上部幅対底部幅の比率は、1より小さい。また、隔壁グリッド108の全ての隔壁は、同じ高さHを有する。例えば、隔壁108P−1〜108P−5は、同じ高さHを有する。
また、いくつかの実施形態では、図2に示されたX軸方向とY軸方向に沿った、隔壁グリッド108の全ての隔壁のピッチ、例えば、隔壁108P−1〜108P−5のピッチP1、P2、P3、およびP4は、等しい。また、画素アレイの全ての画素は、同じサイズである。
いくつかの他の実施形態では、図2に示されたX軸方向とY軸方向に沿った、隔壁グリッド108の全ての隔壁のピッチ、例えば、隔壁108P−1〜108P−5のピッチP1、P2、P3、およびP4は、互いに異なる。X軸方向とY軸方向に沿った、隔壁グリッド108の隔壁は、固体撮像装置100の画素アレイの中心線CLから端部Eへ徐々に増加したピッチ、または徐々に減少したピッチで配置されることができる。また、画素アレイの全ての画素は、全て異なるサイズである。
図3Eに示されるように、画素アレイの端部Eに配置されていない隔壁108P−1〜108P−4の各々は、テーパー状断面および傾斜側壁を有する。画素アレイの端部Eに配置された隔壁108P−5は、矩形断面および垂直側壁を有する。画素アレイの端部Eにある隔壁108P−5は、隔壁108P−1〜108P−4の傾斜側壁で生成された全反射効果より良い全反射効果を生成する垂直側壁を有する。また、画素アレイの端部Eにある隔壁グリッド108の隔壁108P−5は、隔壁108P−1〜108P−4の上部幅より大きい上部幅TW5を有する。従って、画素アレイの端部Eにある隔壁グリッド108の隔壁の寸法設計と断面形状は、傾斜入射光を受光しているとき、固体撮像装置100の画素アレイの端部Eの画素の量子効率(QE)と感度を向上させることができる。
図3Fに示すように、本開示のいくつかの実施形態に係る図2に示されたX軸方向とY軸方向に沿った、画素アレイの中心線CLから端部Eの固体撮像装置100の各種の隔壁グリッド108の複数の隔壁108P−1〜108P−5の断面図が示されている。実施形態では、画素アレイの中心線CLから端部Eの隔壁グリッド108の隔壁108P−1〜108P−5は、互いに異なる高さH1〜H5を有する。いくつかの実施形態では、隔壁108P−1〜108P−5の高さH1〜H5は、画素アレイの中心線CLから端部Eへ徐々に増加する。また、図3Fの実施形態では、隔壁グリッド108の隔壁108P−1〜108P−5の上部幅、底部幅、ピッチ、および材料の条件は、図3Eのこれらと同じであることができる。また、図3Fの実施形態の画素アレイの画素サイズの条件は、図3Eの実施形態と同じであることができる。
図3Fの実施形態では、また、画素アレイの端部Eにある隔壁グリッド108の隔壁108P−5は、その他の隔壁108P−1〜108P−4の上部幅TW1〜TW4と高さH1〜H4より大きい上部幅TW5と高い高さH5を有する。従って、隔壁グリッド108の隔壁の寸法設計は、固体撮像装置100の画素アレイの端部Eの画素の感度と量子効率(QE)を向上させることができる。
図4Aに示すように、いくつかの実施形態に係る固体撮像装置100の部分隔壁グリッド108’で囲まれた複数のカラーフィルタセグメント120−A〜120−Dを含むユニット150の平面図が示されている。図4Aに示されたユニット150は、図1のカラーフィルタ層120と隔壁グリッド108の繰り返しユニットであることができる。実施形態では、固体撮像装置100の他の素子は、図1に示された固体撮像装置100の素子と同じであることができ、説明の簡素化のためにここでは再度述べない。
図4Aに示されるように、部分隔壁グリッド108’の隔壁108P−A〜108P−Bの各々は、カラーフィルタセグメント120−A〜120−Dの1つをそれぞれ囲む。画素アレイの1つの画素は、1つのカラーフィルタセグメントと1つの隔壁を含む。実施形態では、カラーフィルタ層120と隔壁グリッド108は、図1に示されたように固体撮像装置100のいくつかの層に配置される。言い換えれば、部分隔壁グリッド108’のカラーフィルタセグメント120−A〜120−Dと隔壁108P−A〜108P−Bは、固体撮像装置の同じ層に配置される。また、隔壁グリッド108は、カラーフィルタ層120の屈折率より低い屈折率を有する。言い換えれば、隔壁108P−A〜108P−Bは、カラーフィルタセグメント120−A〜120−Dの屈折率より低い屈折率を有する。
いくつかの実施形態では、ユニット150の1つのカラーフィルタセグメント120−Aは、上部幅TWAを有する第1の隔壁108P−Aによって囲まれる。ユニット150の他のカラーフィルタセグメント120−B〜120−Dの各々は、上部幅TWBを有する第2の隔壁108P−Bによって囲まれる。いくつかの実施形態では、第1の隔壁108P−Aの上部幅TWAは、第2の隔壁108P−Bの上部幅TWBより大きい。
いくつかの実施形態では、第1の隔壁108P−Aによって囲まれたカラーフィルタセグメント120−Aは、第2の隔壁108P−Bによって囲まれた他のカラーフィルタセグメント120−B〜120−Dのカラーと異なる色を有する。例えば、カラーフィルタセグメント120−Aは、赤色を有し、他のカラーフィルタセグメント120−B〜120−Dは、緑色と青色を有する。カラーフィルタセグメント120−Aを囲む第1の隔壁108P−Aは、他のカラーフィルタセグメント120−B〜120−Dを囲む第2の隔壁108P−Bの上部幅TWBより大きい上部幅TWAを有する。従って、第1の隔壁108P−Aを有する固体撮像装置100の画素の感度と量子効率(QE)は、より大きい上部幅TWAにより向上する。
図4Bは、本開示のいくつかの実施形態に係る、図4に示された断面線4−4’に沿った、部分隔壁グリッド108’で囲まれた複数のカラーフィルタセグメント120−A〜120−Dを含むユニット150の断面図である。実施形態では、第1の隔壁108P−Aは、上部幅TWA対底部幅BWAの比率が1に等しい比率を有する。第2の隔壁108P−Bは、上部幅TWB対底部幅BWBの比率が1に等しい比率を有する。従って、第1の隔壁108P−Aと第2の隔壁108P−Bは、矩形断面および垂直側壁を有する。
また、第1の隔壁108P−Aの上部幅TWAと底部幅BWAは、第2の隔壁108P−Bの上部幅TWBと底部幅BWBより大きい。また、いくつかの実施形態では、第1の隔壁108P−Aと第2の隔壁108P−Bは、同じ高さHを有する。実施形態では、カラーフィルタセグメント120−B〜120−Dを囲む第2の隔壁108P−Bは、同じ上部幅TWBと同じ底部幅BWBを有する。いくつかの他の実施形態では、カラーフィルタセグメント120−B〜120−Dを囲む第2の隔壁108P−Bは、互いに異なる上部幅と異なる底部幅を有することができる。
図4Cは、本開示のいくつかの実施形態に係る、図4Aに示された断面線4−4’に沿った、固体撮像装置100の部分隔壁グリッド108’で囲まれた複数のカラーフィルタセグメント120−A〜120−Dを含むユニット150の断面図である。実施形態では、第1の隔壁108P−Aは、上部幅TWA対底部幅BWAの比率が1に等しい比率を有する。第2の隔壁108P−Bは、上部幅TWB対底部幅BWBの比率が1より小さい比率を有する。第1の隔壁108P−Aは、矩形断面および垂直側壁を有する。第2の隔壁108P−Bは、テーパー状断面および傾斜側壁を有する。
第1の隔壁108P−Aの上部幅TWAは、第2の隔壁108P−Bの上部幅TWBより大きい。第1の隔壁108P−Aの底部幅BWAは、第2の隔壁108P−Bの底部幅BWBと等しい、または底部幅BWBより小さいことができる。いくつかの実施形態では、第1の隔壁108P−Aと第2の隔壁108P−Bは、同じ高さHを有する。いくつかの他の実施形態では、第1の隔壁108P−Aと第2の隔壁108P−Bは、異なる高さを有する。実施形態では、カラーフィルタセグメント120−B〜120−Dを囲む第2の隔壁108P−Bは、同じ上部幅と底部幅を有する。いくつかの他の実施形態では、カラーフィルタセグメント120−B〜120−Dを囲む第2の隔壁108P−Bは、互いに異なる上部幅と異なる底部幅を有することができる。
図4Cの実施形態では、カラーフィルタセグメント120−Aを囲む第1の隔壁108P−Aは、カラーフィルタセグメント120−B〜120−Dを囲む第2の隔壁108P−Bの上部幅TWBより大きい上部幅TWAを有する。また、第1の隔壁108P−Aは、第2の隔壁108P−Bの傾斜側壁で生成された全反射効果より良い全反射効果を生成する垂直側壁を有する。従って、第1の隔壁108P−Aを有する固体撮像装置100の画素の感度と量子効率(QE)は、第1の隔壁108P−Aのより大きい上部幅TWAおよび垂直側壁により向上する。
いくつかの実施形態では、固体撮像装置100の赤色と青色にある画素の感度と量子効率(QE)は、赤色、青色、および緑色の画素にある隔壁の寸法設計によって、緑色の画素の感度と量子効率と一致するように調整されることができる。いくつかの実施形態では、固体撮像装置100の特定領域にある画素の感度と量子効率(QE)は、特定領域の隔壁の寸法設計によって、固体撮像装置100の他の領域にある画素の感度と量子効率より高くなるように調整されることができる。固体撮像装置100の特定領域は、製品の要件によって決まる。
図4A〜図4Cの実施形態では、画素アレイの各画素は、1つのカラーフィルタセグメントと1つの隔壁を含む。いくつかの実施形態では、画素アレイの全ての画素は、同じサイズである。いくつかの他の実施形態では、画素アレイの画素は、異なるサイズである。例えば、カラーフィルタセグメント120−A〜120−Dに対応する画素は、4つの異なるサイズを有することができる。
図5は、いくつかの実施形態に係る各種の隔壁の上部幅GW1〜GW5、例えば、GW1=0.1nm、 GW2=0.15nm、 GW3=0.2nm、 GW4=0.25nm、 および GW5=0.3nmを有する固体撮像装置のR、G、B、およびW画素の量子効率(QE)対波長の曲線のグラフである。図5に示された結果のように、隔壁のより大きい上部幅、例えばGW2〜GW5を有するR、G、B、およびW画素は、より高いQE値を有する。従って、隔壁のより大きい上部幅は、固体撮像装置100の画素のQEを向上させることができる。
図6Aは、本開示の隔壁グリッドの寸法設計がない画素応答対入射光の角度の曲線のグラフを示している。図6Aに示されるように、画素応答は、0度の角度の垂直入射光で照射された画素アレイの中心では、1に等しい。画素応答は、+/−40度の角度の傾斜入射光で照射された画素アレイの端部では、0.2より低い。
図6Bは、本開示のいくつかの実施形態に係る隔壁グリッドの寸法設計がある画素応答対入射光の角度の曲線のグラフを示している。図6Bに示されるように、画素応答は、0度の角度の垂直入射光で照射された画素アレイの中心では、1に等しい。画素応答は、+/−40度の角度の傾斜入射光で照射された画素アレイの端部では、0.2より高い。
図6Aと図6Bに示された結果のように、図6Bの画素アレイの端部の画素応答は、図6Bの画素応答より高い。また、画素アレイの端部の図6Bの画素応答は、対称的である。よって、本開示の隔壁グリッドの寸法設計に従って、固体画像装置の角度応答(AR)も改善する。
実施形態に係る、固体撮像装置の画素アレイの端部に配置された隔壁グリッドの隔壁は、隔壁グリッドの他の隔壁の上部幅より大きい上部幅を有する。隔壁グリッドの材料は、入射光を隔壁に通過させて、固体撮像装置の光電変換素子により集光されることができる低屈折率(n)材料である。従って、より大きい上部幅を有する画素アレイの端部に配置された隔壁は、画素アレイの端部にある画素の感度と量子効率(QE)を向上させることができる。
また、実施形態では、隔壁グリッドは、カラーフィルタ層の屈折率より低い屈折率を有する。従って、全反射が隔壁グリッドの隔壁とカラーフィルタ層のカラーフィルタセグメントとの間のインターフェースで生じる。実施形態に係る、固体撮像装置の画素アレイの端部に配置された隔壁グリッドの隔壁は、垂直側壁を有する。隔壁の垂直側壁は、隔壁の傾斜側壁で生成された全反射の角度より大きい全反射の角度を有する。より大きい全反射の角度は、大量の入射光を集光する固体撮像装置の光電変換素子に有利である。従って、垂直側壁を有する画素アレイの端部に配置された隔壁は、画素アレイの端部にある画素の感度と量子効率(QE)を向上させることができる。
また、より大きい上部幅を有する画素アレイの端部に配置された隔壁の寸法設計は、固体画像装置の角度応答(AR)も改善することができる。従って、固体撮像装置の画素アレイの端部にある画素の色彩効果とそのほかの性能は、一致し、且つ対照的である。
本実施形態は、FSIとBSI撮像装置に用いられて、画素アレイの端部にある画素の感度と量子効率(QE)を向上させ、且つ固体撮像装置の角度応答(AR)を更に向上させることができる。
本発明は、実施例の方法及び望ましい実施の形態によって記述されているが、本発明は開示された実施形態に限定されるものではない。逆に、当業者には自明の種々の変更及び同様の配置をカバーするものである。よって、添付の請求の範囲は、最も広義な解釈が与えられ、全てのこのような変更及び同様の配置を含むべきである。
100 固体撮像装置
102 基板
102F 表面
102R 裏面
104 配線層
106 フォトダイオード
107 パッシベーション層
108 隔壁グリッド
108’ 部分隔壁グリッド
108P、108P−1、108P−2、108P−3、108P−4、108P−5、108P−CL、108P−E 隔壁
108P−A 隔壁
108P−B 隔壁
110 画素アレイ
120 カラーフィルタ層
120−S、120−A、120−B、120−C、120−D カラーフィルタセグメント
130 マイクロレンズ構造
140、141 入射光線
150 ユニット
P、Pixel 画素
C、center 画素アレイの中心部
E、edge 画素アレイの端部
CL 画素アレイの中心線
CL、W、TW1、TW2、TW3、TW4、TW5、TWA、TWB 上部幅
BW1、BW2、BW3、BW4、BW5、BWA、BWB 底部幅
H、H1、H2、H3、H4、H5 高さ
A1 第1の領域
A2 第2の領域

Claims (7)

  1. 画素アレイ内に配置された複数の光電変換素子を含む基板、
    前記光電変換素子の上方に配置された複数のカラーフィルタセグメントを含むカラーフィルタ層、および
    複数の隔壁を含み、各前記隔壁は、2つの隣接するカラーフィルタセグメントの間に配置された隔壁グリッドを含み、
    前記カラーフィルタ層と前記隔壁グリッドは、同じ層に配置され、
    前記隔壁は、前記画素アレイの中心線に配置された第1の隔壁と前記画素アレイの端部に配置された第2の隔壁を含み、前記第2の隔壁は、垂直側壁と、前記第1の隔壁の上部幅より大きい上部幅を有し、
    前記隔壁グリッドは、前記カラーフィルタ層の屈折率より低い屈折率を有し、
    前記画素アレイの前記中心線から前記端部の隔壁は、互いに異なる高さを有し、前記隔壁の高さは、前記画素アレイの中心線から端部へ徐々に増加する固体撮像装置。
  2. 前記画素アレイの前記中心線から前記端部の隔壁は、互いに異なる上部幅を有し、前記隔壁の上部幅は、前記画素アレイの中心線から端部へ徐々に増加する請求項1に記載の固体撮像装置。
  3. 画素アレイ内に配置された複数の光電変換素子を含む基板、
    前記光電変換素子の上方に配置された複数のカラーフィルタセグメントを含むカラーフィルタ層、および
    複数の隔壁を含み、各前記隔壁は、2つの隣接するカラーフィルタセグメントの間に配置された隔壁グリッドを含み、
    前記カラーフィルタ層と前記隔壁グリッドは、同じ層に配置され、
    前記隔壁は、前記画素アレイの中心線に配置された第1の隔壁と前記画素アレイの端部に配置された第2の隔壁を含み、前記第2の隔壁は、垂直側壁と、前記第1の隔壁の上部幅より大きい上部幅を有し、
    前記隔壁グリッドは、前記カラーフィルタ層の屈折率より低い屈折率を有し、
    前記画素アレイの第1の領域に配置された前記隔壁は、第1の上部幅を有し、前記画素アレイの第2の領域に配置された前記隔壁は、第2の上部幅を有し、入射光は、0から±20度の角度で前記第1の領域を照射し、前記入射光は、±20度より大きい角度で前記第2の領域を照射し、前記第2の上部幅は、前記第1の上部幅より大きく、前記画素アレイの前記第1の領域に配置された前記隔壁は、第1の底部幅を有し、前記画素アレイの前記第2の領域に配置された前記隔壁は、第2の底部幅を有し、前記第1の上部幅は、前記第1の領域の前記第1の底部幅より小さく、前記第2の上部幅は、前記第2の領域の前記第2の底部幅と等しい固体撮像装置。
  4. 画素アレイ内に配置された複数の光電変換素子を含む基板、
    前記光電変換素子の上方に配置された複数のカラーフィルタセグメントを含むカラーフィルタ層、および
    複数の隔壁を含み、各前記隔壁は、2つの隣接するカラーフィルタセグメントの間に配置された隔壁グリッドを含み、
    前記カラーフィルタ層と前記隔壁グリッドは、同じ層に配置され、
    前記隔壁は、前記画素アレイの中心線に配置された第1の隔壁と前記画素アレイの端部に配置された第2の隔壁を含み、前記第2の隔壁は、垂直側壁と、前記第1の隔壁の上部幅より大きい上部幅を有し、
    前記隔壁グリッドは、前記カラーフィルタ層の屈折率より低い屈折率を有し、
    前記画素アレイの第1の領域に配置された前記隔壁は、互いに異なる上部幅を有し、前記画素アレイの第2の領域に配置された前記隔壁は、互いに異なる上部幅を有し、入射光は、0から±20度の角度で前記第1の領域を照射し、前記入射光は、±20度より大きい角度で前記第2の領域を照射し、前記第2の領域の前記隔壁の前記上部幅は、前記第1の領域の前記隔壁の前記上部幅より大きく、前記第1の領域と前記第2の領域の隔壁の前記上部幅は、前記画素アレイの中心線から端部の方向に沿って徐々に増加し、
    前記画素アレイの前記第1の領域の前記隔壁の各々は、前記隔壁の前記上部幅より大きい底部幅を有し、前記画素アレイの前記第2の領域の前記隔壁の各々は、前記隔壁の前記上部幅と等しい底部幅を有する固体撮像装置。
  5. 前記隔壁の各々は、前記上部幅対底部幅の比率を有し、前記隔壁の比率は、前記画素アレイの前記中心線から前記端部へ徐々に増加し、前記画素アレイの前記端部にある前記隔壁の比率は、1に等しい請求項1に記載の固体撮像装置。
  6. 画素アレイ内に配置された複数の光電変換素子を含む基板、
    前記光電変換素子の上方に配置された複数のカラーフィルタセグメントを含むカラーフィルタ層、および
    複数の隔壁を含み、各前記隔壁は、1つのカラーフィルタセグメントを囲む隔壁グリッドを含み、
    前記カラーフィルタ層と前記隔壁グリッドは、同じ層に配置され、
    前記隔壁グリッドは、前記カラーフィルタ層の屈折率より低い屈折率を有し、
    前記カラーフィルタ層は、複数のカラーフィルタセグメントのユニットを有し、前記ユニットの1つのカラーフィルタセグメントは、第1の隔壁で囲まれ、前記ユニットのもう1つのカラーフィルタセグメントは、第2の隔壁で囲まれ、前記第2の隔壁の上部幅対底部幅の比率が1より小さく、前記第1の隔壁の上部幅対底部幅の比率は1に等しい固体撮像装置。
  7. 前記隔壁グリッドの材料は、ケイ素酸化物または有機フォトレジストを含む請求項1に記載の固体撮像装置。
JP2016013140A 2014-05-01 2016-01-27 固体撮像装置 Active JP6214691B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP201414267480 2014-05-01
US14/861,378 2015-09-22
US14/861,378 US9634049B2 (en) 2014-05-01 2015-09-22 Solid-state imaging devices with enhanced angular response

Publications (2)

Publication Number Publication Date
JP2017063171A JP2017063171A (ja) 2017-03-30
JP6214691B2 true JP6214691B2 (ja) 2017-10-18

Family

ID=58448232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013140A Active JP6214691B2 (ja) 2014-05-01 2016-01-27 固体撮像装置

Country Status (1)

Country Link
JP (1) JP6214691B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181276A1 (ja) 2017-03-28 2020-02-06 学校法人慶應義塾 ヒト組織幹細胞及びその使用
JP7310130B2 (ja) * 2018-12-17 2023-07-19 凸版印刷株式会社 固体撮像素子及びその製造方法
US11631709B2 (en) * 2020-03-10 2023-04-18 Visera Technologies Company Limited Solid-state image sensor
US20220149097A1 (en) * 2020-11-12 2022-05-12 Visera Technologies Company Limited Solid-state image sensor
US20230110102A1 (en) * 2021-10-07 2023-04-13 Visera Technologies Company Limited Solid-state image sensor
WO2023068172A1 (ja) * 2021-10-20 2023-04-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置
WO2023119860A1 (ja) * 2021-12-22 2023-06-29 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478043B2 (ja) * 2008-09-11 2014-04-23 富士フイルム株式会社 固体撮像素子及び撮像装置
JP2010192705A (ja) * 2009-02-18 2010-09-02 Sony Corp 固体撮像装置、電子機器、および、その製造方法
JP5736755B2 (ja) * 2010-12-09 2015-06-17 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP4872023B1 (ja) * 2011-04-22 2012-02-08 パナソニック株式会社 固体撮像装置およびその製造方法
JP4872024B1 (ja) * 2011-04-22 2012-02-08 パナソニック株式会社 固体撮像装置およびその製造方法
US9093579B2 (en) * 2011-04-28 2015-07-28 Semiconductor Components Industries, Llc Dielectric barriers for pixel arrays
WO2013031160A1 (ja) * 2011-09-02 2013-03-07 パナソニック株式会社 固体撮像装置及びその製造方法
JP2013156463A (ja) * 2012-01-31 2013-08-15 Fujifilm Corp 撮像素子
JP2013251292A (ja) * 2012-05-30 2013-12-12 Panasonic Corp 固体撮像装置およびその製造方法
TW201415613A (zh) * 2012-08-02 2014-04-16 Sony Corp 固體攝像裝置、固體攝像裝置之製造方法及電子機器
US9502453B2 (en) * 2013-03-14 2016-11-22 Visera Technologies Company Limited Solid-state imaging devices
US20140339606A1 (en) * 2013-05-16 2014-11-20 Visera Technologies Company Limited Bsi cmos image sensor
JP6262496B2 (ja) * 2013-11-08 2018-01-17 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2017063171A (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
TWI591811B (zh) 固態成像裝置
JP6214691B2 (ja) 固体撮像装置
US10054719B2 (en) Methods for farbricating double-lens structures
US9349766B2 (en) Solid-state imaging device
JP6242022B2 (ja) イメージセンサ
US9704901B2 (en) Solid-state imaging devices
JP5856587B2 (ja) 固体撮像素子
JP6141024B2 (ja) 撮像装置および撮像システム
US10170511B1 (en) Solid-state imaging devices having a microlens layer with dummy structures
US10804306B2 (en) Solid-state imaging devices having flat microlenses
JP2009026808A (ja) 固体撮像装置
JP2006303468A (ja) 固体撮像素子及び撮像装置
KR102497910B1 (ko) 솔리드-스테이트 이미지 센서
JP6445048B2 (ja) 固体撮像装置
US20120261731A1 (en) Image sensor
TWI813643B (zh) 攝像元件及攝像裝置
JP2017050467A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2014239183A (ja) 光電変換装置
JPWO2022220271A5 (ja)
JP2008010879A (ja) 固体撮像装置
JP2014165226A (ja) 固体撮像素子及び撮像装置
JP2011187990A (ja) 固体撮像素子及び撮像装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6214691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250