JP6205329B2 - 系統安定度監視装置および系統安定度監視システム - Google Patents

系統安定度監視装置および系統安定度監視システム Download PDF

Info

Publication number
JP6205329B2
JP6205329B2 JP2014178778A JP2014178778A JP6205329B2 JP 6205329 B2 JP6205329 B2 JP 6205329B2 JP 2014178778 A JP2014178778 A JP 2014178778A JP 2014178778 A JP2014178778 A JP 2014178778A JP 6205329 B2 JP6205329 B2 JP 6205329B2
Authority
JP
Japan
Prior art keywords
information
measurement
fluctuation
shaking
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014178778A
Other languages
English (en)
Other versions
JP2016054584A (ja
Inventor
山崎 潤
潤 山崎
昌洋 谷津
昌洋 谷津
澄人 戸邊
澄人 戸邊
佐藤 康生
康生 佐藤
友部 修
友部  修
英佑 黒田
英佑 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014178778A priority Critical patent/JP6205329B2/ja
Priority to US15/507,397 priority patent/US10628896B2/en
Priority to PCT/JP2015/065366 priority patent/WO2016035399A1/ja
Publication of JP2016054584A publication Critical patent/JP2016054584A/ja
Application granted granted Critical
Publication of JP6205329B2 publication Critical patent/JP6205329B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、系統安定度監視装置に関する。
電力系統は、多くの発電機、負荷、送配電機器および制御装置から構成されている。定常状態においては、負荷変動および系統切替などによる微小な外乱が電力系統に加えられる。系統の地絡や短絡のような事故発生時には、大きな外乱が電力系統に加えられる。これらの外乱を原因として、複数の動揺成分を持つ電力動揺が発生する。
この動揺モード成分が小さい場合又は高速に減衰する場合には、外乱発生後に系統動揺は十分小さい範囲に保たれるため、電力系統は安定な状態にある。しかし動揺が大きくなったり、減衰が収束せず持続や発散する場合は、結果として発電機が停止したり、広域停電が発生したりして、安定運用が不可能となる可能性がある。
電力系統規模の拡大とともに、電源容量増大、遠隔地化、偏在化およびこれに伴う送電線の長距離化、重潮流化が進む傾向にある。これらの変化による影響は電力系統の安定度を低下させる方向に働くため、系統故障時の発電機脱調を発端とした大規模電源脱落および広域停電への連鎖的な影響の拡大が懸念される。
そのため系統の安定度を常時監視し、広域停電への波及を未然に予防、予測するオンラインによる系統安定度評価手法が必要となる。
近年、GPS(Global Positioning System)を用いた同期計測により、ほぼリアルタイムに電力系統の母線電圧位相角を測定する位相検出器PMU(Phasor Measurement Unit)が普及しつつある。位相検出器PMUにより計測した系統母線電圧などのオンライン計測値を用いて、電力動揺現象をリアルタイムに把握することが可能になりつつある。
上記の背景の元、電力系統を運用する事業者が系統の状態を監視するための系統安定度監視技術が考案されている。例えば、特許文献1には、「電力系統の電力動揺モードの解析が可能となるように区分された複数のサブシステムにそれぞれ設けられ各々のサブシステムの系統母線電圧の大きさおよび位相角を測定する位相計測装置と、前記複数のサブシステムのうち何れか一つを基準とし基準以外の各々のサブシステムについて前記位相計測装置で計測された各々のサブシステム毎の系統母線電圧の大きさおよび位相角を時系列的に入力するとともに前記位相角に基づいて基準のサブシステムの位相角および周波数を基準とした位相角偏差および周波数偏差を求めるデータ入力処理手段と、前記データ入力処理手段で得られた各々のサブシステム毎の系統母線電圧の位相角偏差および周波数偏差を観測データとして記憶する観測データ記憶部と、前記観測データ記憶部の観測データに対して予め定めた同一の期間幅のメインウインドウの幅より幅が小さく幅の大きさが異なる複数のサブウインドウで各サブシステムの観測データをランダムに取り出す観測データ取出手段と、前記観測データ取出手段で取り出した観測データの位相角偏差および周波数偏差を状態変数とする状態遷移方程式をサブウインドウ毎に作成する状態遷移方程式作成手段と、前記状態遷移方程式作成手段で作成されたサブウインドウ毎の前記状態遷移方程式の係数行列の固有値を求める固有値算出手段と、前記固有値算出手段で算出されたサブウインドウ毎の固有値群の分布を複素平面として表示出力する出力処理手段とを備えたことを特徴とする」という記載がある。
特開2009−077589号公報
近年、太陽光発電や風力発電に代表される再生可能エネルギーが系統に大量導入されつつある。それらの再生可能エネルギーは急峻かつ事前想定困難な発電出力変動を伴い、この結果として、系統特性が大きく変化する可能性がある。例えば、風速がある閾値を超えた場合、機器の安全性を保つために自動的に風力発電を停止し、発電出力をゼロとするカットアウトという動作が発生する。このような事象は、従来の系統においても発生した短絡・地絡故障と比較して発生頻度が高く、発電機が近接した地域に密集して設置された場合には、複数の発電機において同時発生する可能性が高いと予想される。
再生可能エネルギーの導入量が増大するにつれ、上記のような急峻な出力変動イベントによる系統へのインパクトが増大し、広域の動揺モードが不安定化する懸念がある。これに対処するため、出力変動イベント直後数秒から十数秒程度の中間領域における高速・高精度の安定判別が必要となる。
高速な安定判別のためには、従来よりも計測値の入力データ長を短縮することが必要である。しかし、入力データを短縮した場合、系統の動揺モードに対するノイズの影響が相対的に大きくなり、動揺モードの高精度な検出が困難となる。また、フーリエ変換の不確定性原理により、入力データ長とのトレードオフで周波数分解能が低下するため、周波数の近い複数の動揺モードを分離して検出することが困難となる。
従って、動揺周波数の近い複数の動揺モードが同時に存在する場合、計測地点によっては複数の動揺が打ち消し合い、高精度な動揺モードの検出が困難となる地点が生じる可能性がある。このような場合に、特許文献1に記載の技術では、高速かつ高精度な安定判別を実現することが困難である。
本発明の目的は、動揺周波数の近い複数の動揺成分が同時に存在する場合において、高速かつ高精度な安定判別を実現することである。
上記課題を解決するために、本発明の一態様である系統安定度監視装置は、電力系統における安定度を監視する系統安定度監視装置であって、前記電力系統内の複数の計測地点の位置関係を示す地点情報を記憶する記憶部と、前記複数の計測地点の夫々に設けられる計測装置により計測された、時系列の計測情報を受信する受信部と、前記計測情報から電力の動揺の周波数成分を検出し、前記周波数成分に基づいて前記複数の計測地点の中の計測地点である計測地点群候補を選択し、前記地点情報に基づいて前記計測地点群候補の間の電気的距離を取得し、前記電気的距離に基づいて前記計測地点群候補を少なくとも一つの計測地点群に分類する演算部と、を備える。
本実施形態の系統安定度監視装置の機能構成を示す。 本実施形態の系統安定度監視システムの構成を示す。 系統安定度判別処理を示す。 検出動揺情報テーブルを示す。 動揺影響地点抽出処理を示す。 周波数動揺情報テーブルを示す。 計測地点間距離算出処理を示す。 ノード情報を示す。 送電線情報を示す。 計測地点情報を示す。 領域動揺情報テーブルを示す。 動揺影響度算出処理を示す。 動揺影響度算出処理の概念を示す。 過去動揺情報テーブルを示す。 過去動揺情報算出処理を示す。 不安定地点検出処理を示す。 動揺伝播算出処理の概念図を示す。 表示画面を示す。
以下、本発明の実施形態について説明する。尚、下記はあくまでも実施の例に過ぎず、下記具体的内容に発明自体が限定されることを意図する趣旨ではない。
本発明の実施形態について、図面を参照しながら以下説明する。
図1は、本実施形態の系統安定度監視装置の機能構成を示す。
本実施形態における系統安定度監視装置200は、系統安定度算出部10と、情報記憶部30と、を含む。系統安定度算出部10は、系統計測部20に接続されている。系統計測部20は、複数の地点の計測情報を計測する。情報記憶部30は、地点情報DB(Database)を格納する。
以下、符号のアルファベットによって要素を区別する必要がない場合、符号のアルファベットを省略することがある。
系統安定度算出部10は、計測情報収集部11と、動揺検出部12と、動揺影響地点抽出部13と、動揺影響度算出部14と、不安定地点検出部15と、を含む。
計測情報収集部11は、系統計測部20において計測された計測情報(系統状態量)を、情報通信ネットワークを介して受信し、収集する。
動揺検出部12は、計測情報収集部11により収集された計測情報に基づいて、特定の種別の計測情報(計測種別)に対し、計測地点毎に、電力の動揺の周波数成分である動揺成分を示す検出動揺情報を算出する。
動揺影響地点抽出部13は、検出動揺情報の周波数成分に基づいて複数の計測地点の中の計測地点である計測地点群候補を選択し、地点情報DBに基づいて計測地点群候補の間の電気的距離を取得し、電気的距離に基づいて計測地点群候補を少なくとも一つの計測地点群に分類し、その計測地点群の検出動揺情報から領域動揺情報を生成する。例えば、動揺影響地点抽出部13は、二つの計測地点で同一と見なせる動揺周波数が検出された場合、二つの計測地点の間の電気的距離が近ければ、二つの計測地点を一つの計測地点群と認識し、二つの計測地点の間の電気的距離が遠ければ、二つの計測地点を二つの計測地点群と認識する。
動揺影響度算出部14は、動揺検出部12において算出された領域動揺情報を用いて、領域動揺情報毎に、領域動揺情報の動揺成分が系統の安定度に与える影響の大きさを示す動揺影響度を算出する。
不安定地点検出部15は、動揺影響度算出部14において算出された動揺影響度を用いて、複数の計測地点の中から、現在不安定であると判定される地点、あるいは将来不安定になると予測される地点を検出する。
系統計測部20は、系統内の計測地点における計測情報を計測し、計測情報収集部11に送信する。計測情報は、有効電力潮流、無効電力潮流、系統電圧、系統電流、電圧位相の中の少なくとも一つの種別を含む。系統計測部20は、複数の計測地点に夫々配置された計測装置21a、21b、・・・、21nを含む。計測装置21は、例えばPMU等であり、電力に関する定期的な計測を行い、時系列の計測情報を送信する。
情報記憶部30は、電力系統に連系している系統要素の接続情報を示す地点情報DBを格納する。地点情報DBには、計測地点の近傍に連系している発電機、負荷、調相機器など系統内の各ノードに接続される系統要素(電力機器)の特性を示す情報と、各ノード間を接続する送電線のインピーダンス等を示す情報と、複数の計測地点の緯度及び経度やトポロジー等の位置関係を示す情報との何れかが含まれる。これにより、計測地点間の電気的距離を算出することができ、計測地点を電気的距離で分類することができる。
図2は、本実施形態の系統安定度監視システムの構成を示す。
図2に示すように、本実施形態における系統安定度監視システムは、発電機101と、変電所102と、調相機器103と、電力負荷104と、外部電力系統105と、計測装置21a、21b、・・・と、情報通信ネットワーク108と、系統安定度監視装置200と、を含む。以下、発電機101と、変電所102と、調相機器103と、電力負荷104と、計測装置21a、21b、・・・を含む電力系統を自系統と呼ぶことがある。
発電機101は、発電力を生じる発電機であり、火力発電、水力発電、原子力発電、太陽光発電、風力発電、バイオマス発電、潮流発電を含む何れかの発電手法により発電力を生じる発電機である。発電機101aは、電力系統において変電所102の高電圧側に設置される火力発電、水力発電、原子力発電などを含む大規模発電機であり、計測装置21aおよび情報通信ネットワーク108を通じて発電量を含む系統状態量を系統安定度監視装置200に送信する。また、発電機101aは、計測装置21aおよび情報通信ネットワーク108を通じて系統安定度監視装置200より送信された制御指令情報を受信し、制御指令情報に応じて発電量を含む系統状態量を変化させる。発電機101bは、電力系統において変電所102の低電圧側に設置される太陽光発電、風力発電、コジェネレーションなどを含む中小規模発電機であり、計測装置21bおよび情報通信ネットワーク108を通じて発電量を含む系統状態量を系統安定度監視装置200に送信する。
変電所102は、電力系統内の送電線間に設置され、大規模発電機である発電機101aが設置される高電圧側より送電される電力の電圧値を変更し、電力負荷104が設置されている低電圧側に送電する。変電所102には、電力コンデンサ、分路リアクトルなどの調相機器103が接続される。
調相機器103は、電力系統内における無効電力を変化させることにより、電力系統内の電圧分布を制御する機器であり、電力コンデンサ、分路リアクトル、STATCOM(Static Synchronous Compensator:自励式無効電力補償装置)、SVC(Static Var Compensator:静止型無効電力補償装置)、などを含む。一部の調相機器103は、計測装置21cおよび情報通信ネットワーク108を通じて系統安定度監視装置200より送信された制御指令情報を受信し、制御指令情報に応じて発電量を含む系統状態量を変化させる。
電力負荷104は、電力を消費する電動機や照明器具などを含む施設であり、家庭、工場、ビルなどの施設を表す。
外部電力系統105は、系統安定度監視装置200からの制御が不可能である外部の電力系統であり、連系線により自系統と接続されている。
計測装置21a、21b、・・・は、発電機101aにおける発電量、調相機器103における調相量、送電線における潮流値、電圧値、などの系統状態量を計測するセンサを含み、計測した系統状態量を、情報通信ネットワーク108を通じて系統安定度監視装置200に送信する。
情報通信ネットワーク108は、双方向にデータを伝送可能なネットワークである。情報通信ネットワーク108は、例えば、有線ネットワーク若しくは無線ネットワーク、又はそれらの組合せである。情報通信ネットワーク108は、いわゆるインターネットであっても良いし、専用線のネットワークであっても良い。
系統安定度監視装置200は、図1に示す系統安定度監視機能を実現するための装置である。系統安定度監視装置200は、計測装置21a、21b、・・・において計測された系統状態量を、情報通信ネットワーク108を通じて受信する。また、系統安定度監視装置200は、送信された系統の系統状態量および内部に蓄積された情報を用いて算出した制御指令情報を、情報通信ネットワーク108を通じて計測装置21に送信する。
系統安定度監視装置200の内部構成として、CPU(Central Processing Unit)201と、表示装置202と、通信手段203と、入力手段204と、メモリ205と、記憶装置206と、がバス線211に接続されている。CPU201は、記憶装置206に格納された計算プログラムを実行して、系統状態の算出や、制御信号の生成、画像データの生成などを行い、画像データを表示装置202に表示させる。メモリ205は、表示用の画像データ、系統状態の算出結果データなどを一旦格納するメモリであり、例えば、RAM(Random Access Memory)などである。通信手段203は、情報通信ネットワーク108を通じて計測装置21から潮流値、電圧値などの系統状態量を取得する。計測情報収集部11は、通信手段203を用いて、複数の計測装置21で計測された時系列の計測情報を受信する。
系統安定度監視装置200のユーザ(管理者)は、入力手段204の所定のインタフェースを通じて各種閾値などのパラメータを設定又は変更し、自系統の系統安定度監視装置200の動作を適切に設定できる。また、ユーザは、入力手段204の所定のインタフェースを通じて確認したいデータの種類を選択し、表示装置202に表示させることができる。
記憶装置206は、各種プログラムおよびデータを保持する。記憶装置206は、例えば、HDD(Hard Disk Drive)又はフラッシュメモリ等である。記憶装置206は、例えば、後述する各種機能を実現し得るプログラムおよびデータ等を保持する。記憶装置206に記憶されているプログラムおよびデータは、必要に応じてCPU201に読み出されて実行される。なお、記憶装置206は、情報記憶部30を実現し、各種のデータベース(DB)を格納する。
ここでは、系統安定度監視装置200による系統安定度判別処理について説明する。
図3は、系統安定度判別処理を示す。
まず、動揺検出部12は、系統計測部20により計測された複数地点の計測情報を用いて、検出動揺情報を算出する(S31)。ここで、系統計測部20により計測された複数地点の計測情報は、有効電力潮流、無効電力潮流、系統電圧、系統電流、電圧位相のうち少なくとも一つの計測種別の情報を含む。系統安定度監視装置200は、特定の一つの計測種別に対して系統安定度判別処理を行ってもよいし、複数の計測種別に対して系統安定度判別処理を行ってもよい。本処理における検出動揺情報の算出には、周波数解析に用いるアルゴリズム、すなわち、フーリエ解析、ウェーブレット解析、プローニー法、Matrix Pencil法、HTLS(Hankel Total Least Squares)法を例とするアルゴリズムのうちの少なくとも一つを適用する。
以下、プローニー法による動揺情報算出アルゴリズムについて説明する。
解析窓幅のデータ数N、モード次数nは、事前に設定される。
動揺検出部12は、各地点の計測情報である入力データy(k) (k=0,1,…,N−1)を用いて、以下の(数式1)〜(数式4)から、行列a=(a,a,…,aを算出する。ただし、上付き文字の”T”は転置行列を、上付き文字の”−1”は逆行列を示す。
Figure 0006205329
Figure 0006205329
Figure 0006205329
Figure 0006205329
動揺検出部12は、(数式1)〜(数式4)から、算出したa,a,…,aを以下の(数式5)に代入する。その後、動揺検出部12は、(数式5)のZに、(数式6)及び(数式7)の形式で表されるZを代入し、固有値λ、減衰係数(減衰率)σ[1/sec]、動揺周波数f[Hz]=ω/2πを算出する。ここでΔtはサンプリング周期を表す。
(数式5)は、Zを解とするn次の多項式(特性方程式)であり、n個のZ、σ、fがそれぞれ解として求められる。
Figure 0006205329
Figure 0006205329
Figure 0006205329
動揺検出部12は、入力データy(k) (k=0,1,…,N−1)、および算出したZ (i=1,2,…,n)を用いて、以下の(数式8)〜(数式11)から、行列b=(B,B,…,Bを算出する。
Figure 0006205329
Figure 0006205329
Figure 0006205329
Figure 0006205329
動揺検出部12は、(数式8)〜(数式11)から算出したB,B,…,Bから、(数式12)で表される絶対値R、偏角θを求める。このとき、絶対値Rが振幅を、偏角θが初期位相を意味する。
Figure 0006205329
以上の処理により、動揺周波数、減衰係数、振幅、初期位相を含む検出動揺情報が得られる。検出動揺情報が、動揺周波数、減衰係数、及び振幅の一つを含むことにより、各計測地点における動揺成分を表すことができる。また、このような検出動揺情報を用いることにより、将来の動揺成分を予測することができる。
図4は、検出動揺情報テーブルを示す。
検出動揺情報テーブルは、検出動揺情報毎のエントリを有する。一つの検出動揺情報に対応するエントリは、当該検出動揺情報を識別するための検出動揺識別情報(図中の動揺名称)と、当該検出動揺情報により表される動揺の特性を示す動揺特性とを含む。検出動揺識別情報は、入力データに対応する計測地点の名称と、当該検出動揺情報のモードを示す検出動揺情報番号(No.)とを含む。上記のプローニー法を用いて検出動揺情報が算出される場合、1計測地点の1種別の計測情報につき、モード次数nと同数の検出動揺情報が算出される。従って、p個の地点(p≧1)の各地点において、q個の種別(q≧1)の計測情報を使用した場合、n×p×q個の検出動揺情報が算出される。動揺特性は、算出された動揺周波数、減衰係数、振幅、初期位相を含む。
次に、動揺影響地点抽出部13は、検出動揺情報と、情報記憶部30に格納された地点情報DBとに基づき、同一と判別される動揺成分毎に関連する複数計測地点を抽出する動揺影響地点抽出処理を行う(S32)。
図5は、動揺影響地点抽出処理を示す。
まず、動揺検出部12により算出された複数の検出動揺情報を動揺周波数で分類し、その結果を周波数動揺情報として情報記憶部30に保存する(S71)。
図6は、周波数動揺情報テーブルを示す。
周波数動揺情報テーブルは、周波数動揺情報毎のエントリを含む。一つの周波数動揺情報に対応するエントリは、当該周波数動揺情報に対応する動揺成分の動揺周波数と、検出動揺識別情報(図中の動揺名称)と、当該動揺周波数に近い動揺周波数を有する少なくとも一つの検出動揺情報の特性を示す動揺特性とを含む。検出動揺識別情報は、検出動揺情報の検出動揺識別情報と同様である。動揺特性は、減衰係数と、振幅と、初期位相とを含む。この周波数動揺情報テーブルの例において、0.18に近い動揺周波数を有する周波数動揺情報には、計測地点PMU1におけるNo.1の検出動揺情報と、および計測地点PMU2におけるNo.1の検出動揺情報とが含まれている。同様に、0.65に近い動揺周波数を有する周波数動揺情報には、計測地点PMU1におけるNo.2の検出動揺情報が含まれている。以後、一つの周波数動揺情報に含まれる計測地点を計測地点群候補と呼ぶことがある。
このとき、動揺影響地点抽出部13は、事前に定められた動揺周波数の差を示す周波数幅を用い、動揺周波数の差が周波数幅以内である検出動揺情報を、同じ動作周波数の周波数動揺情報に分類しても良い。
前述の検出動揺情報テーブルの例において、計測地点PMU2のNo.1の検出動揺情報の動揺周波数は0.19であり、計測地点PMU1におけるNo.1の検出動揺情報の動揺周波数は0.18であるが、これらは同じ周波数動揺情報に分類されている。動揺周波数が周波数幅内にある検出動揺情報を同じ周波数動揺情報に分類することで、各検出動揺情報に、ノイズに起因する誤差が含まれる場合においても、各動揺の系統内の分布を正確に推定できる。ここで、同じ分類に含める動揺周波数の範囲を定める周波数幅は、入力データとして用いられる計測情報の数に基づいて定められても良い。例として、同じ周波数動揺情報に含める動揺周波数の周波数幅Δfを数式13に示す。ここで、Nを検出動揺情報の算出に用いた計測情報の入力データ数とし、Δfsを計測情報のサンプリング周波数、αを事前に指定される定数とする。一般に、周波数解析における周波数分解能は入力データのサンプリング周波数が小さい場合に高く、データ数が大きい場合に高くなるため、数式13により、同じ周波数動揺情報に含める動揺周波数の周波数幅Δfを適切に選択することができる。
Figure 0006205329
次に、動揺影響地点抽出部13は、情報記憶部30に格納された地点情報DBに基づいて計測地点間距離を算出する計測地点間距離算出処理を行う(S72)。
図7は、計測地点間距離算出処理を示す。
動揺影響地点抽出部13は、計測情報収集部11により取得された計測情報の計測地点から順に、2個の計測地点を選択する(S61)。
次に、動揺影響地点抽出部13は、選択された2個の計測地点間の計測地点間距離を、情報記憶部30に格納された地点情報DBに基づき算出する(S62)。地点情報DBは、ノード情報と、送電線情報と、計測地点情報とを含む。
図8は、ノード情報を示す。
ノード情報は、電力系統におけるノード毎に、ノードを識別するためのノード名称と、当該ノードの位置を示す位置情報と、当該ノードに接続される発電機、電力負荷、調相機器の特性とを含む。この図の例では、ノードAおよびBに発電機が連系している。ノードAにはG1という名称の定格容量が100である火力発電機が連系しており、ノードBにはG2という名称の定格容量が200である風力発電機が連系している。また、この図の例では、ノードAAおよびBBに電力負荷が連系している。ノードAAにはL1という名称の定格容量が1000である住宅が連系しており、ノードBBにはL2という名称の定格容量が2000である工場が連系している。また、この図の例では、ノードAAAおよびBBBのノードに調相機器が連系している。ノードAAAにはD1という名称の定格容量が10であるSC(Static Condenser:電力用コンデンサ)が連系しており、ノードBBBにはD2という名称の定格容量が20であるShR(Shunt Reactor:分路リアクトル)が連系している。
図9は、送電線情報を示す。
送電線情報は、電力系統における送電線毎に、送電線を識別するための送電線名称と、当該送電線の両端のノードを示す両端ノードと、当該送電線の正相抵抗、正相リアクタンス、及び正相キャパシタンスとを含む。この図の例では、送電線aが、ノードAとノードBの間に存在し、送電線aの正相抵抗が0.01、正相リアクタンスが0.2、正相キャパシタンスが0.1である。
図10は、計測地点情報を示す。
計測地点情報、電力系統内の計測地点毎に、二つの計測地点の識別情報と、それらの間の計測地点間距離とを含む。計測地点とは、計測装置21a、21b、・・・が接続される地点を示す。この図の例では、計測地点の識別情報は、計測装置21を示す計測地点名称と、ノード情報に含まれるノード名称とを含む。PMU1という計測地点名称の計測地点はノードAに接続されており、PMU2という計測地点名称の計測地点はノードBに接続されている。また、計測地点間距離は、2つの計測地点の間の電気的距離と、2つの計測地点の近傍に連系された発電機、電力負荷、調相機器などの系統要素とに基づいて算出される値である。例えば、計測地点間距離Dは以下の(数式14)により算出される。
Figure 0006205329
ここで、Dは2つの計測地点の間のインピーダンスに比例する電気的距離を示す。nは2つの計測地点の何れかから、ある閾値で定める電気的距離の範囲内に連系される発電機、電力負荷、調相機器などの系統要素の数を示す。Cは2つの計測地点の何れかから、ある閾値で定める電気的距離の範囲内に連系されるi番目の系統要素の定格容量を示す。α、βは係数を示す。二つの計測地点の間の電気的距離を用いることにより、二つの計測地点の動揺成分が同一であるか否かを判定することができる。
これらの地点情報DBの図に示されたデータ構成は一例であり、情報記憶部30は、さらに詳細な地点情報を格納しても良い。例えば、ノード情報は、火力発電機が連系するノードの情報として、ガバナ定数などの発電機動特性を含んでも良い。また、ノード情報は、風力発電機などの自然エネルギーによる発電機が連系するノードの情報として、過去の履歴を用いた統計分析により算出した確率的な発電量変動特性を含んでも良い。また、計測地点情報における計測地点間距離の算出において、動揺影響地点抽出部13は、(数式1)の係数βを、上記の発電機動特性に基づき定めて良い。また、動揺影響地点抽出部13は、インピーダンスや発電機、電力負荷、調相機器などの系統要素の情報を用いず、ノード情報に含まれる緯度経度情報を用いて、計測地点間の距離を算出して、その値を計測地点間距離Dとして良い。
次に、動揺影響地点抽出部13は、計測情報収集部11により取得された計測情報の計測地点について、全ての2地点の組合せについて計測地点間距離を算出したかどうかを判断する(S63)。全ての2地点の組合せについて計測地点間距離を算出したと判定された場合(Yes)、動揺影響地点抽出部13は、計測地点間距離算出処理を終了する。計測地点間距離を算出していない計測地点の組合せがある場合(No)、動揺影響地点抽出部13は、別の2計測地点についてS61、S62を繰り返す。以上の処理により、全ての2計測地点の組合せについて計測地点間距離を算出する。
動揺影響地点抽出処理においてS72の後、動揺影響地点抽出部13は、S71で得られた周波数動揺情報を計測地点間距離で分類し、その結果を領域動揺情報として情報記憶部30に保存する(S73)。このとき、動揺影響地点抽出部13は、周波数動揺情報(動揺周波数)毎に、計測地点間距離を用いて、ウォード法、k-means法に代表されるクラスタリング手法を用いて周波数動揺情報を分類して良い。
図11は、領域動揺情報テーブルを示す。
領域動揺情報テーブルは、計測地点間距離により分類された領域動揺情報毎のエントリを含む。一つの領域動揺情報に対応するエントリは、当該領域動揺情報により表される動揺成分を示す動揺番号(No.)と、当該領域動揺情報に対応する周波数動揺情報の動揺周波数と、当該領域動揺情報に対応する周波数動揺情報の計測地点を示す計測地点名称と、当該動揺成分の特性を示す動揺特性とを含む。動揺特性は、周波数動揺情報の動揺特性と同様、減衰係数と、振幅と、初期位相とを含む。この図の例において、計測地点PMU1において観測された動揺周波数0.18の検出動揺情報と、計測地点PMU3において観測された同じく動揺周波数0.18の検出動揺情報とは、互いに異なる領域動揺情報に分類されている。これは、計測地点PMU1と計測地点PMU3との計測地点間距離が、他の計測地点間距離に比べて、相対的に大きいためである。このように、周波数動揺情報は地点情報DBを用いて分類される。
複数の計測地点で検出された動揺成分の動揺周波数の差が予め定められた範囲内である場合、地点情報DBに基づいて複数の計測地点の間の電気的距離により複数の計測地点を分類し、それぞれの分類に属する計測地点を計測地点群として抽出することにより、各動揺成分が存在する領域を特定することができる。
系統安定度判別処理においてS32の後、動揺影響度算出部14は、領域動揺情報を用いて動揺影響度を算出する動揺影響度算出処理を行う(S33)。
図12は、動揺影響度算出処理を示す。
まず、動揺影響度算出部14は、領域動揺情報毎に、領域動揺情報に含まれる計測地点を抽出する(S81)。前述の領域動揺情報テーブルの例において、動揺影響度算出部14は、動揺番号「1」で動揺周波数「0.18」の動揺成分を検出した計測地点「PMU1」、「PMU3」、…を抽出する。同様に、動揺影響度算出部14は、動揺番号「2」で動揺周波数「0.65」の動揺成分を検出した計測地点「PMU1」、…を抽出する。
次に、動揺影響度算出部14は、S81で抽出された計測地点に対応する動揺特性から、領域動揺情報毎の動揺影響度を算出する(S82)。
動揺影響度を算出することにより、各動揺成分が電力系統の安定度へ与える影響の大きさを表すことができる。
図13は、動揺影響度算出処理の概念を示す。
ここで、Jijkを計測地点iにおける領域動揺情報j及び計測種別kの動揺影響度とし、xijkを計測地点iにおける領域動揺情報jで計測種別kの計測情報とし、t1、t2(t1<t2)を事前に指定する時刻とし、Bijkを数式12により算出された動揺の振幅とし、σijkを数式7により算出された減衰係数とする。動揺影響度算出部14は、領域動揺情報毎の動揺影響度Jijkを数式15より算出する。
Figure 0006205329
ここで、解析の基準とする時刻を0と定義し、0>t2>t1と設定すると、解析基準時刻より過去の領域動揺情報の動揺影響度が算出される。同様に、t2>0>t1と設定すると、解析基準時刻を含む現在の領域動揺情報の動揺影響度が算出され、t2>t1>0と設定すると、解析基準時刻より将来の領域動揺情報の動揺影響度が算出される。例えば、t2>t1>0と設定することにより、或る計測地点における将来の動揺成分の時間変化を予測し、予測された動揺成分に基づいて動揺影響度を算出し、その動揺影響度により、その計測地点が将来、不安定になるか否かを判定することができる。動揺影響度に振幅及び減衰係数を用いることにより、将来の動揺影響度を予測することができる。
数式15の定義により動揺影響度Jijkを算出することで、振幅Bijkが大きく、かつ減衰係数σijkが悪い(減衰係数σijkが大きい)領域動揺情報の動揺影響度が大きくなる。ここで、数式15による動揺影響度の代わりに、振幅Bijkあるいは減衰係数σijk自体の値を動揺影響度として定義しても良い。
また、動揺影響度算出部14は、過去の領域動揺情報を参照し、過去の領域動揺情報の中から、現在の領域動揺情報の計測地点群の状況に対応する過去の領域動揺情報を選択し、選択された過去の領域動揺情報の動揺成分の継続時間を考慮して動揺影響度Jijkを算出しても良い。例えば、動揺影響度算出部14は、過去の領域動揺情報において、同じ動揺周波数を持つ動揺成分が継続して存在する期間が予め定められた期間閾値以上である場合、動揺影響度Jijkを大きく設定し、同じ動揺周波数を持つ動揺成分が継続して存在する期間が期間閾値以下である場合、動揺影響度Jijkを小さく設定して良い。このように動揺影響度Jijkを定めることにより、瞬間的に系統動揺に含まれるノイズの影響による動揺を排除し、定常的に存在する動揺成分を優先的に監視することができる。
図14は、過去動揺情報テーブルを示す。
過去動揺情報テーブルは、事例毎のエントリを有する。一つの事例のエントリは、事例を示す事例詳細と、その事例に対応する少なくとも一つの領域動揺情報を含む。事例詳細は、時刻、日付又は曜日、月又は季節、イベント種別等を含む。領域動揺情報は、動揺番号、動揺周波数、動揺影響度、計測地点、減衰係数、振幅、初期位相を含む。
動揺影響度算出部14は、過去の領域動揺情報を事例毎に分類し、統計処理した情報を、過去動揺情報として情報記憶部30に格納する。動揺影響度算出部14は、検出動揺情報の算出に用いた計測情報の時刻、日付、曜日、月、季節、イベント種別の情報に基づいて、事例を設定する。
動揺影響度算出部14は、時刻を用いて事例を設定することにより、1日の中の系統内の潮流状況の変動影響を領域動揺情報の統計処理に反映することができる。この場合の潮流状況の変動は、朝夕の出勤退勤時刻で区切られる勤務時間帯を一例とする1日の中の生活行動を原因としている。この図の例において、事例No.1では8:00−10:00が、事例No.2では12:00−14:00が設定されている。
動揺影響度算出部14は、日付または曜日を用いて事例を設定することにより、1週間の中の系統内の潮流状況の変動影響を領域動揺情報の統計処理に反映することができる。この場合の潮流状況の変動は、平日および休日を一例とする曜日毎の生活行動を原因としている。この図の例において、事例No.1では土日が、事例No.2では月−金が設定されている。
動揺影響度算出部14は、月または季節を用いて事例を設定することにより、1年間の中の系統内の潮流状況の変動影響を領域動揺情報の統計処理に反映することができる。この場合の潮流状況の変動は、夏季における冷房需要、冬季における暖房需要を一例とする月または季節毎の生活行動を原因としている。この図の例において、事例No.1では3月−5月が、事例No.2では7月−9月が設定されている。
動揺影響度算出部14は、イベント種別を用いて事例を設定することにより、系統故障、系統切替などのイベントによる系統内の潮流状況の変動影響を領域動揺情報の統計処理に反映することができる。この図の例において、事例No.1ではイベントなしが、事例No.2ではノードAAの1LGが設定されている。
動揺影響度算出部14は、上記の事例の設定方法に加えて、事前に監視対象として設定したノードまたは送電線の潮流量、発電機の発電量、晴れ・曇り・雨の区分または気温情報を含む気象情報、を分類項目とした事例を設定し、領域動揺情報の統計処理を実施して良い。
ここでは、動揺影響度算出部14が過去動揺情報を算出する過去動揺情報算出処理について説明する。
図15は、過去動揺情報算出処理を示す。
まず、動揺影響度算出部14は、複数時点の計測情報を格納する(S141)。
次に、動揺影響度算出部14は、格納した計測情報を用いて、複数時点における領域動揺情報及びその動揺影響度を算出する(S142)。このとき、動揺影響度算出部14は、前述のS31〜S33の工程に従って、領域動揺情報及びその動揺影響度を算出する。
次に、動揺影響度算出部14は、事例の分類を設定する(S143)。このとき、動揺影響度算出部14は、分類項目として、過去動揺情報に示す時刻、日付、曜日、月、季節、イベント種別の情報のうち少なくとも一つを用いる。動揺影響度算出部14は、使用する分類項目のそれぞれについて、期間の始端及び終端、イベント種別の分類名、あるいは数値情報の最小値・最大値を決定し、分類区分を設定する。
次に、動揺影響度算出部14は、S143で設定した事例の分類に基づき、事例毎の領域動揺情報、動揺影響度を算出する(S144)。このとき、動揺影響度算出部14は、S142で領域動揺情報、動揺影響度を算出した解析時刻を事例毎に分類し、同一事例に分類された複数時刻における領域動揺情報および動揺影響度の情報に統計処理を施して算出した代表値を、各事例の領域動揺情報、動揺影響度とする。動揺影響度算出部14は、代表値として、領域動揺情報、動揺影響度毎の平均値、中間値を用いる。
以上が過去動揺情報算出処理である。動揺影響度算出処理において、動揺影響度算出部14は、過去動揺情報算出処理により算出された過去動揺情報を参照して、解析時刻の状況に最も近い事例を抽出し、抽出した事例の動揺影響度を適用してよい。動揺影響度算出部14は、過去の領域動揺情報の統計処理結果を用いることにより、解析時刻において系統動揺に含まれる瞬間的なノイズの影響による動揺を排除し、優先的に監視する動揺成分を正確に選択することができる。
S82の後、動揺影響度算出部14は、数式16に従って、計測地点iにおける領域動揺情報jの動揺影響度Jijを算出する(S83)。ここで、βは計測情報種別kに対して設定される係数である。βは各計測種別kの定格値の逆数として良い。動揺影響度算出部14は、各計測種別の定格値を用いることにより、複数の種別の計測情報における動揺影響度を、定格に対する比率で正規化して算出することができる。また、特定の計測種別の動揺影響度を抽出するために、当該計測種別kに対応する係数βの値を他種別に対する係数に比して大きく設定しても良い。
Figure 0006205329
さらに、動揺影響度算出部14は、計測地点iにおける全ての領域動揺情報を考慮した動揺影響度Jを以下の数式17により算出して良い。ここでγは領域動揺情報jに対して設定される係数である。ある領域動揺情報jに対する係数γを大きくすることで、特定の領域動揺情報を重視した動揺影響度を算出することができる。
Figure 0006205329
以上の動揺影響度算出処理により、計測地点iにおける領域動揺情報jの動揺影響度Jij、または計測地点iの動揺影響度Jが算出される。
系統安定度判別処理においてS33の後、不安定地点検出部15は、動揺影響度を用いて不安定地点を検出する(S34)。不安定地点検出部15は、或る計測地点の動揺影響度が予め定められた動揺影響度閾値Jthrより大きい場合、その計測地点を不安定地点と判定する。これにより、位置関係により分類された動揺成分毎に、安定判別を行うことにより、安定判別の精度を高めることができる。
また、不安定地点検出部15は、動揺成分の伝播状況をモデル化することで、将来発生する不安定地点を含めて検出する不安定地点検出処理を行うことができる。
図16は、不安定地点検出処理を示す。
まず、不安定地点検出部15は、安定を判別する対象地点(特定地点)を選択する(S101)。このとき、不安定地点検出部15は、対象地点は電力系統内の地点であり、地点情報DBの中から、計測地点以外の地点を対象地点として選択しても良い。
次に、不安定地点検出部15は、S101で選択した対象地点の周辺の計測地点における動揺影響度JijまたはJから、対応する動揺成分の伝播速度である動揺伝播速度およびその動揺成分の伝播方向である動揺伝播方向を算出する動揺伝播算出処理を行う(S102、S103)。
図17は、動揺伝播算出処理の概念図を示す。
この図は、位置関係300と、PMU1の動揺影響度の時間変化301と、PMU2の動揺影響度の時間変化302と、PMU4の動揺影響度の時間変化304とを示す。不安定地点検出部15がPoint1を対象地点としたとき、対象地点の周辺にPMU1〜PMU5の5個の計測地点が配置されている。ここでは、各計測地点の動揺影響度がJthrより大きくなった場合を不安定な状態と定義する。この図に示す通り、計測地点PMU1において、不安定となる時刻である不安定時刻をt1とする。同様に、計測地点PMU2において、不安定時刻をt2とし、計測地点PMU4において、不安定時刻をt4とする。
不安定地点検出部15は、地点情報DBに含まれる系統構成情報を用いて、対象地点Point1を基準とし、対象地点における送電線の接続方向により計測地点を分類する(S102)。この図の例において、5個の計測地点は、対象地点Point1に対し、南側送電線を介して接続されるPMU1、PMU2、PMU4の計測地点群と、北側送電線を介して接続されるPMU3、PMU5の計測地点群とに分類される。このとき、不安定地点検出部15は、地点情報DBに含まれる各地点の緯度・経度を用いて、対象地点Point1を基準とした各計測地点の配置方向を算出し、配置方向により計測地点を複数の計測地点群に分類しても良い。
次に、不安定地点検出部15は、S102により分類された計測地点群毎に、動揺伝播速度を算出する(S103)。この処理において不安定地点検出部15は、計測地点間の電気的距離および不安定時刻を用いて動揺伝播速度を算出する。不安定地点検出部15は、計測地点m、n間の動揺伝播速度Vmnを数式18により算出する。ここで、dmnを計測地点m、n間の電気的距離とし、t、tを夫々計測地点m、nにおける不安定時刻とする。
Figure 0006205329
ここで、不安定地点検出部15は、計測地点群内の計測地点間に対し、数式18に基づいて計測地点間の動揺伝播速度を算出し、その平均値を伝播速度として良い。前述の動揺伝播算出処理の概念図に示す例で、不安定地点検出部15は、PMU1―PMU2間、PMU2−PMU4間の夫々で動揺伝播速度を算出し、それらの平均値を動揺伝播速度とする。
次に、不安定地点検出部15は、S103で求めた動揺伝播速度を用いて、対象地点の不安定時刻tを求める(S104)。tを以下の数式19より算出する。ここで、Vを動揺伝播速度とし、dを計測地点mと対象地点間の電気的距離とし、tを計測地点mの不安定時刻とする。
Figure 0006205329
ここで、不安定地点検出部15は、計測地点群内の複数の計測地点に対し、数式19に基づいて複数のtpを夫々算出し、それらの平均値を対象地点の不安定時刻として良い。
動揺影響度の伝播状況を算出することにより、対象地点において将来に不安定となる時刻を算出することができる。これにより、計測地点以外においても、実際に不安定となる前に不安定となる時刻を見積もることができるため、迅速かつ正確な判断に基づく制御が可能となる。また動揺伝播速度及び動揺伝播方向を用いることにより、電力系統内の任意の地点を対象地点とすることができる。
図18は、表示画面を示す。
不安定地点検出部15は、特定の時刻において動揺影響度の高い領域動揺情報を選択する。不安定地点検出部15は、選択された領域動揺情報を示す表示画面を表示装置202に表示させる。表示画面は、選択された領域動揺情報に含まれる計測地点を区別して表示する、例えば、系統図上で領域動揺情報毎に色分けして表示する。例えば、表示画面は、画面の左側の欄410に系統図を表示し、その系統図上に計測地点PMU1〜PMU5を表示する。表示画面はさらに、領域動揺情報に基づき、破線あるいは一点鎖線で囲んだ領域で、各領域動揺情報に含まれる計測地点を表す。この図の例では、一つの領域動揺情報にPMU1、PMU2、PMU4が含まれ、もう一つの領域動揺情報にPMU1、PMU3、PMU5が含まれる。
また、表示画面は、右側上の欄420に領域動揺情報の詳細、および広域動揺現象に影響を及ぼす近隣地域にて発生した地絡・短絡故障情報や、発電機脱落情報等を表示する。領域動揺情報の詳細は、動揺影響度の高い領域動揺情報を優先的に表示する。さらに、表示画面は、右側下の欄430に、オペレータ(管理者)により選択された計測地点及び種別の計測情報の時系列データをグラフ上に表示する。オペレータは、時系列データの表示時間帯として、最新情報又は過去情報を選択することができる。この表示画面の例に示された情報の他に、各領域動揺情報に含まれる動揺周波数や、減衰係数の時系列データを表示しても良い。管理者は、表示画面により現在または将来の不安定地点を認識した場合、不安定地点に関する発電所を切るなどの対処を行うことができる。なお、表示画面は、選択された計測地点又は計測地点群の動揺影響度の時間変化を示してもよい。
以上の実施形態によれば、動揺周波数が近い複数の動揺成分が同時に存在する場合においても、計測地点間の電気的距離に基づいて、関連する複数の計測地点を抽出することで、異なる動揺成分を区別し、動揺成分毎に安定判別できるため、高速かつ高精度な安定判別を実現することが可能となる。
本発明の表現のための用語について説明する。系統安定度監視装置として、系統安定度監視装置200等が用いられてもよい。計測装置として、計測装置20等が用いられてもよい。記憶部として、記憶装置206等が用いられてもよい。受信部として、通信手段203等が用いられてもよい。演算部として、系統安定度算出部10等が用いられてもよい。地点情報として、地点情報DB等が用いられてもよい。通信線として、情報通信ネットワーク108等が用いられてもよい。動揺情報として、検出動揺情報等が用いられてもよい。監視装置として、系統安定度監視装置200等が用いられてもよい。
10…系統安定度算出部 11…計測情報収集部 12…動揺検出部 13…動揺影響地点抽出部 14…動揺影響度算出部 15…不安定地点検出部 20…系統計測部 21…計測装置 30…情報記憶部 101…発電機 102…変電所 103…調相機器 104…電力負荷 105…外部電力系統 108…情報通信ネットワーク 200…系統安定度監視装置

Claims (12)

  1. 電力系統における安定度を監視する系統安定度監視装置であって、
    前記電力系統内の複数の計測地点の位置関係を示す地点情報を記憶する記憶部と、
    前記複数の計測地点の夫々に設けられる計測装置により計測された、時系列の計測情報を受信する受信部と、
    前記計測情報から電力の動揺の周波数成分を検出し、前記周波数成分に基づいて前記複数の計測地点の中の計測地点である計測地点群候補を選択し、前記地点情報に基づいて前記計測地点群候補の間の電気的距離を取得し、前記電気的距離に基づいて前記計測地点群候補を少なくとも一つの計測地点群に分類する演算部と、
    を備える系統安定度監視装置。
  2. 前記演算部は、前記周波数成分の動揺周波数、減衰係数、及び振幅の少なくとも何れか一つを、前記周波数成分の動揺情報として算出する、
    請求項1に記載の系統安定度監視装置。
  3. 前記演算部は、前記動揺情報に基づいて、前記周波数成分が前記電力系統の安定度へ与える影響の大きさを示す動揺影響度を算出する、
    請求項2に記載の系統安定度監視装置。
  4. 前記演算部は、前記動揺影響度に基づいて、前記計測地点群が不安定であるか否かを判定する、
    請求項3に記載の系統安定度監視装置。
  5. 前記地点情報は、前記複数の計測地点の夫々の緯度及び経度と、前記複数の計測地点の間のトポロジーと、前記複数の計測地点の間のインピーダンスと、前記複数の計測地点の夫々の近傍に連系している電力機器の特性との、少なくとも何れか一つを示す、
    請求項4に記載の系統安定度監視装置。
  6. 前記演算部は、前記複数の計測地点のうち、検出された動揺周波数の差が予め定められた範囲内である計測地点を計測地点群候補とする、
    請求項5に記載の系統安定度監視装置。
  7. 前記演算部は、前記動揺影響度の時間変化を予測し、前記動揺影響度の時間変化に基づいて、前記電力系統内の特定地点が将来、不安定になるか否かを判定する、
    請求項3に記載の系統安定度監視装置。
  8. 前記演算部は、前記動揺影響度の時間変化に基づいて前記動揺影響度の伝播状況を算出し、前記伝播状況に基づいて、前記特定地点が不安定になる時刻を算出する、
    請求項7に記載の系統安定度監視装置。
  9. 前記記憶部は、過去の動揺情報を記憶し、
    前記演算部は、前記計測地点群の状況に対応する前記過去の動揺情報を選択し、前記選択された過去の動揺情報における周波数成分の継続時間に基づいて、前記動揺影響度を算出する、
    請求項3に記載の系統安定度監視装置。
  10. 前記演算部は、前記複数の計測地点の中の二つの計測地点の間の電気的距離は、前記二つの計測地点の間のインピーダンスに比例する、
    請求項1に記載の系統安定度監視装置。
  11. 前記演算部は、前記地点情報に基づいて、前記電力系統の系統図及び地図の何れかと共に前記計測地点群を示す画面を表示装置に表示させる、
    請求項1乃至10の何れか一項に記載の系統安定度監視装置。
  12. 電力系統における安定度を監視する系統安定度監視システムであって、
    前記電力系統内の複数の計測地点に夫々設けられる複数の計測装置と、
    通信線を介して前記複数の計測装置に接続される監視装置と、
    を備え、
    前記監視装置は、
    前記複数の計測地点の位置関係を示す地点情報を記憶する記憶部と、
    前記複数の計測装置の夫々で計測された時系列の計測情報を受信する受信部と、
    前記計測情報から電力の動揺の周波数成分を検出し、前記周波数成分に基づいて前記複数の計測地点の中の計測地点である計測地点群候補を選択し、前記地点情報に基づいて前記計測地点群候補の間の電気的距離を取得し、前記電気的距離に基づいて前記計測地点群候補を少なくとも一つの計測地点群に分類する演算部と、
    を含む、
    系統安定度監視システム。
JP2014178778A 2014-09-03 2014-09-03 系統安定度監視装置および系統安定度監視システム Active JP6205329B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014178778A JP6205329B2 (ja) 2014-09-03 2014-09-03 系統安定度監視装置および系統安定度監視システム
US15/507,397 US10628896B2 (en) 2014-09-03 2015-05-28 System stability monitoring device and system stability monitoring system
PCT/JP2015/065366 WO2016035399A1 (ja) 2014-09-03 2015-05-28 系統安定度監視装置および系統安定度監視システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178778A JP6205329B2 (ja) 2014-09-03 2014-09-03 系統安定度監視装置および系統安定度監視システム

Publications (2)

Publication Number Publication Date
JP2016054584A JP2016054584A (ja) 2016-04-14
JP6205329B2 true JP6205329B2 (ja) 2017-09-27

Family

ID=55439473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178778A Active JP6205329B2 (ja) 2014-09-03 2014-09-03 系統安定度監視装置および系統安定度監視システム

Country Status (3)

Country Link
US (1) US10628896B2 (ja)
JP (1) JP6205329B2 (ja)
WO (1) WO2016035399A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397760B2 (ja) * 2014-12-26 2018-09-26 株式会社日立製作所 電力系統安定化装置および方法
JP6360977B2 (ja) * 2015-08-07 2018-07-18 株式会社日立製作所 監視装置、監視方法、および監視プログラム
US10739396B2 (en) * 2016-10-03 2020-08-11 General Electric Technology Gmbh Enhanced disturbance management of a power grid system
JP6713937B2 (ja) * 2017-01-30 2020-06-24 株式会社日立製作所 系統運用意思決定支援装置および方法
JP7008798B2 (ja) * 2017-08-10 2022-01-25 ランディス・ギア イノベーションズ インコーポレイテッド 下流イベントおよび測定値に基づいた送電網アセットの順位付け
JP7038011B2 (ja) * 2018-06-22 2022-03-17 株式会社日立製作所 電力系統運用支援装置および方法、並びに振動抑制システム
US11355930B2 (en) * 2019-06-18 2022-06-07 Alliance For Sustainable Energy, Llc Phase identification using statistical analysis
CN113553547A (zh) * 2021-07-15 2021-10-26 广西电网有限责任公司电力科学研究院 一种架空线路时变故障概率计算系统及方法
CN117134502B (zh) * 2023-10-23 2023-12-22 国网四川雅安电力(集团)股份有限公司荥经县供电分公司 电力数据监控方法和监控系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799742A (ja) * 1993-09-27 1995-04-11 Toshiba Corp Crt表示装置
JPH07107666A (ja) * 1993-09-30 1995-04-21 Hitachi Ltd 電力系統状態表示装置
JPH08130828A (ja) * 1994-11-04 1996-05-21 Hitachi Ltd 電力系統の電圧安定度監視方法およびその装置
JP2001352679A (ja) * 2000-06-09 2001-12-21 Hitachi Ltd 電力系統の安定化装置及び監視装置
JP4061412B2 (ja) * 2005-01-28 2008-03-19 国立大学法人九州工業大学 電力系統の系統安定度監視方法及びシステム
JP5040553B2 (ja) 2007-09-21 2012-10-03 東京電力株式会社 電力動揺モード観測装置
JP5949073B2 (ja) * 2012-04-05 2016-07-06 東京電力ホールディングス株式会社 電力系統解析用データベース運用システム
DE102013106393A1 (de) * 2012-06-22 2013-12-24 Sma Solar Technology Ag Netzplanerstellung und Betriebsführung
DE102012106466B4 (de) * 2012-07-18 2021-07-01 Sma Solar Technology Ag Steuerung von Betriebsmitteln über Beeinflussung der Netzspannung
CA2906717A1 (en) * 2013-03-14 2014-09-25 The Powerwise Group, Inc. Autonomous smart grid demand measurement system and method

Also Published As

Publication number Publication date
WO2016035399A1 (ja) 2016-03-10
JP2016054584A (ja) 2016-04-14
US10628896B2 (en) 2020-04-21
US20170278200A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6205329B2 (ja) 系統安定度監視装置および系統安定度監視システム
JP6177208B2 (ja) 電力系統監視装置および電力系統監視システム
JP6348862B2 (ja) 系統安定化制御装置および電力系統制御システム
EP2537222B1 (en) Energy generating system and control thereof
CN105353256A (zh) 一种输变电设备状态异常检测方法
WO2020162937A1 (en) Automated model validation system for electrical grid
Lashgari et al. Fast online decision tree-based scheme for predicting transient and short-term voltage stability status and determining driving force of instability
JP5923454B2 (ja) 電力系統管理装置、及び方法
WO2020171814A1 (en) Event selection for power grid disturbance
Hua et al. Fast unscented transformation-based transient stability margin estimation incorporating uncertainty of wind generation
Konakalla et al. Feature based grid event classification from synchrophasor data
JP6244247B2 (ja) 系統安定度監視装置及び方法
Shahriyari et al. A novel fast transient stability assessment of power systems using fault-on trajectory
Shahriyari et al. A Deep Learning-Based Approach for Comprehensive Rotor Angle Stability‎ Assessment‎
CN105958474B (zh) 一种电网调控系统用输电线路动态增容方法和系统
US20220284156A1 (en) Real-time update of power system models for dynamic security assessment
Balangó et al. Overview of a new dynamic line rating system, from modelling to measurement
Wu et al. Monitoring power system transient stability using synchrophasor data
Zhang et al. Particle swarm optimization pattern recognition neural network for transmission lines faults classification
JP6818658B2 (ja) 電力系統監視システム、電力系統監視方法、及びプログラム
Dimitrovska et al. Transient stability contingency screening and ranking based on data mining
JP2019193387A (ja) 電力系統監視装置および電力系統監視方法
Dey et al. Detecting power grid frequency events from μPMU voltage phasor data using machine learning
Zhang et al. Evaluation of a Grid-connected Wind Turbine Generator System Based on Improved Degradation Model
Pepiciello et al. Wide area monitoring protection and control systems: the enablers for enhancing renewable energy hosting capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6205329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150