JP6201768B2 - 液体回路装置 - Google Patents

液体回路装置 Download PDF

Info

Publication number
JP6201768B2
JP6201768B2 JP2014005160A JP2014005160A JP6201768B2 JP 6201768 B2 JP6201768 B2 JP 6201768B2 JP 2014005160 A JP2014005160 A JP 2014005160A JP 2014005160 A JP2014005160 A JP 2014005160A JP 6201768 B2 JP6201768 B2 JP 6201768B2
Authority
JP
Japan
Prior art keywords
water
outdoor
temperature
liquid
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014005160A
Other languages
English (en)
Other versions
JP2015132444A (ja
Inventor
真浩 秦
真浩 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014005160A priority Critical patent/JP6201768B2/ja
Publication of JP2015132444A publication Critical patent/JP2015132444A/ja
Application granted granted Critical
Publication of JP6201768B2 publication Critical patent/JP6201768B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、液体回路装置に関する。
下記特許文献1には、ポンプと暖房機器とを配管で接続することにより水循環経路を構成し、上記ポンプを駆動することによって、加熱源により加熱された温水を水循環経路内に循環供給するよう構成した暖房装置において、配管温度を検知するための温度検知手段を設け、上記配管温度が凍結防止ポンプ運転開始温度よりも低いときに、上記ポンプを駆動して、水循環経路内の温水を循環させる場合に、上記ポンプを定常運転時の回転数よりも低い回転数で駆動する技術が開示されている。また、下記特許文献2には、凍結防止運転時にポンプの出力を下げ、電力の浪費を防ぐことが開示されている。
特開2001−336769号公報 特開昭60−226633号公報
上述した従来の技術では、凍結防止運転でのポンプの回転数を低くすることで電力を節減している。しかしながら、ポンプの回転数を低くすると室外を流れる水の流速が遅くなるため、外気温が極めて低い場合など、室外の状況によっては、室外を流れる水の温度が急激に低下し、凍結による流路の閉塞を防止できない可能性がある。
本発明は、上述のような課題を解決するためになされたもので、液体回路の室外部分の凍結による閉塞を閉塞防止運転により確実に防止することと、閉塞防止運転の消費エネルギーを節減することを両立できる液体回路装置を提供することを目的とする。
本発明に係る液体回路装置は、室内に配置される室内機と、室外に配置される室外機と、室内機と室外機との間で、熱媒体となる液体を循環ポンプにより循環させる液体回路と、室外を流れる液体の温度である室外液温を計測または推定する室外液温取得手段と、室外の液体の凍結による液体回路の閉塞を防止する閉塞防止運転で循環ポンプを駆動するとき、室外液温が予め設定された閾値に比べて低い場合には、室外液温が低くなるにつれて循環ポンプのポンプ流量が高くなるように制御する制御手段と、を備え、室外液温をθ、ポンプ流量をQ、液体回路が閉塞に至るまでの時間をt、液体回路の室外部分の流路の体積をVとしたとき、時間tは、室外液温θが低いほど短く、かつ、ポンプ流量Qが低いほど短くなり、閉塞防止運転においてQ≧V/tを満足するものである。
本発明によれば、液体回路の室外部分の凍結による閉塞を閉塞防止運転により確実に防止することと、閉塞防止運転の消費エネルギーを節減することを両立することが可能となる。
本発明の実施の形態1の液体回路装置を示す構成図である。 比較例における通常運転時および閉塞防止運転時のポンプ流量Qと室外水温θとの関係の一例を示す図である。 本発明の実施の形態1における通常運転時および閉塞防止運転時のポンプ流量Qと室外水温θとの関係を示す図である。 本発明の実施の形態1の変形例における通常運転時および閉塞防止運転時のポンプ流量Qと室外水温θとの関係を示す図である。 室外水温θと、ポンプ流量Qと、閉塞時間tとの関係を示す図である。 Q≧V/tなる条件を満足する閉塞防止運転時の室外水温θとポンプ流量Qとの関係を示す図である。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
図1は、本発明の実施の形態1の液体回路装置を示す構成図である。図1に示す液体回路装置1は、第一冷暖房負荷21、第二冷暖房負荷22および第三冷暖房負荷23へ冷水または温水を流すことで冷房または暖房を実施する機能と、貯湯タンク14内に設けられた配管コイル19へ温水を流すことで貯湯タンク14内の生活用水を加熱する機能とを有するヒートポンプ式温水装置である。この液体回路装置1は、室内に配置される室内機2と、室外に配置される室外機3と、室内機2と室外機3との間で熱媒体となる液体(本実施の形態1では水)を水循環ポンプ11により循環させる液体回路(本実施の形態1では水回路)とを有する。本実施の形態1の液体回路装置1は、熱媒体となる液体として、例えば水道水等の水を使用する。ただし、本発明では、熱媒体として使用する液体は水に限定されるものではなく、ブライン(例えば塩化カルシウム水溶液、エチレングリコール水溶液、アルコールなど)を使用しても良い。また、本実施の形態1の液体回路装置1の水回路は、後述するように、水配管28−38によって各機器を接続することで構成される。
室外機3は、冷媒回路の冷媒と水回路の水とを熱交換する冷媒−水熱交換器4を有するヒートポンプ式室外機である。冷媒−水熱交換器4には、冷媒の温度を計測する冷媒温度検知サーミスタ5が取り付けられている。図示を省略するが、室外機3は、冷媒−水熱交換器4のほかに、冷媒を圧縮する圧縮機、冷媒を膨張させる膨張弁等の膨張装置、外気などの外部の熱源と冷媒とを熱交換する室外熱交換器などを搭載し、これらを冷媒配管で接続することで冷媒回路が構成される。室外機3は、冷媒−水熱交換器4が凝縮器になり室外熱交換器が蒸発器になるように冷媒回路を作動させることで、冷媒−水熱交換器4で温水を生成することができる。また、室外機3は、冷媒−水熱交換器4が蒸発器になり室外熱交換器が凝縮器になるように冷媒回路を作動させることで、冷媒−水熱交換器4で冷水を生成することができる。
室内機2には、水回路内電気ヒータ6、圧力逃し弁7、圧力計8、空気抜き弁9、膨張タンク10、水循環ポンプ11、出湯温度検知サーミスタ12、戻り水温サーミスタ25、ストレーナ26、水回路用排水栓27および制御部50が搭載されている。室内機2には、水配管を介して、貯湯タンク14、第一冷暖房負荷21、第二冷暖房負荷22および第三冷暖房負荷23が接続されている。貯湯タンク14の下部には生活用水配管15aが接続され、貯湯タンク14の上部には生活用水配管15bが接続されている。水道等から供給される生活用水は、生活用水配管15aを通って貯湯タンク14に流入する。貯湯タンク14内に貯留された生活用水は、生活用水配管15bを通って、温水の使用先へ送られる。
貯湯タンク14には、前述した配管コイル19のほか、貯湯タンク14内の水温を計測する貯湯タンク温度検知サーミスタ16と、貯湯タンク用電気ヒータ17と、貯湯タンク14内の水を抜くときに使用する貯湯タンク用排水栓18とが設けられている。本実施の形態1では、配管コイル19へ温水を流すことで貯湯タンク14内の水を加熱するほかに、貯湯タンク用電気ヒータ17に通電することで貯湯タンク14内の水を加熱することもできる。
室内機2と室外機3とは、水配管28,29を介して接続されている。室内機2から水が水配管28を通って室外機3へ送られ、冷媒−水熱交換器4に流入する。冷媒−水熱交換器4から流出した水は、水配管29を通って室外機3から室内機2へ戻る。水配管29から室内機2内に戻った水は、水配管30、水回路内電気ヒータ6、および水配管31を通って、水循環ポンプ11に吸入される。水回路内電気ヒータ6は、室外機3の加熱能力が不足する場合等に、水回路の水をさらに加熱することができる。水循環ポンプ11から吐出された水は、水配管32を通って、三方弁13のaポートに流入する。水配管32の途中に出湯温度検知サーミスタ12が設置されている。
圧力逃し弁7、空気抜き弁9および膨張タンク10は、水配管33を介して、水回路内電気ヒータ6に接続されている。圧力逃し弁7は、水回路内の圧力が規定値以内になるように過大な圧力を逃がす。圧力計8は、圧力逃し弁7に接続され、水回路内の圧力を計測する。空気抜き弁9は、水回路内に発生した空気を排出する。膨張タンク10は、加熱等に伴い水回路内の水の体積が変化した場合に余剰の水を貯留することで、体積変化の影響を吸収する。
三方弁13は、aポートをbポートに連通させてcポートを遮断する状態と、aポートをcポートに連通させてbポートを遮断する状態とを切り替えることのできる流路切替手段である。三方弁13のbポートと、配管コイル19の入口とは、水配管34を介して接続されている。三方弁13のcポートには、水配管35の一端が接続されている。水配管35の他端側は、3本に分岐し、第一冷暖房負荷21の入口、第二冷暖房負荷22の入口、および第三冷暖房負荷23の入口にそれぞれ接続されている。第一冷暖房負荷21の入口、第二冷暖房負荷22の入口、および第三冷暖房負荷23の入口と、水配管35との接続部分には、温水または冷水の流入量を制御する温度調節バルブ20がそれぞれ設置されている。第一冷暖房負荷21、第二冷暖房負荷22および第三冷暖房負荷23は、室内または床などに設置され、冷暖房を行う。
配管コイル19の出口には、水配管36の一端が接続されている。水配管37の一端側は、3本に分岐し、第一冷暖房負荷21の出口、第二冷暖房負荷22の出口、および第三冷暖房負荷23の出口にそれぞれ接続されている。水配管36の他端と、水配管37の他端とは、合流し、水配管38の一端に接続されている。水配管38の他端側は、室内機2の内部を経由し、水配管28に接続されている。戻り水温サーミスタ25、ストレーナ26、および水回路用排水栓27は、室内機2の内部の水配管38の途中に設置されている。戻り水温サーミスタ25は、配管コイル19、第一冷暖房負荷21、第二冷暖房負荷22および第三冷暖房負荷23から室内機2に戻る水の温度を計測する。ストレーナ26は、水回路内の異物(スケール等)を除去する。水回路用排水栓27は、水回路内の水を抜く際に使用される。
制御部50は、液体回路装置1の運転動作を制御する制御手段である。制御部50は、例えばマイクロコンピュータ等により構成され、ROM、RAM、不揮発性メモリ等を含む記憶部と、記憶部に記憶されたプログラムに基いて演算処理を実行する演算処理装置(CPU)と、演算処理装置に対して外部の信号を入出力する入出力ポートとを備える。制御部50には、上述した室外機3、冷媒温度検知サーミスタ5、水回路内電気ヒータ6、圧力計8、水循環ポンプ11、出湯温度検知サーミスタ12、三方弁13、貯湯タンク温度検知サーミスタ16、貯湯タンク用電気ヒータ17、戻り水温サーミスタ25を含む各種のセンサおよびアクチュエータがそれぞれ電気的に接続される。制御部50は、水循環ポンプ11の回転数を例えばパルス幅変調制御等により制御することで、水循環ポンプ11のポンプ流量Qを制御することができる。
制御部50は、貯湯タンク14内の生活用水を加熱する加熱運転を行う場合には、室外機3を稼動させて温水を生成し、三方弁13のaポートとbポートとを連通させる状態とし、室外機3で生成された温水を水循環ポンプ11により配管コイル19に循環させるように運転制御する。この加熱運転により、貯湯タンク14内の生活用水が配管コイル19により加熱される。制御部50は、冷房運転を行う場合には、室外機3を稼動させて冷水を生成し、三方弁13のaポートとcポートとを連通させる状態とし、室外機3で生成された冷水を水循環ポンプ11により第一冷暖房負荷21、第二冷暖房負荷22および第三冷暖房負荷23に循環させるように運転制御する。制御部50は、暖房運転を行う場合には、室外機3を稼動させて温水を生成し、三方弁13のaポートとcポートとを連通させる状態とし、室外機3で生成された温水を水循環ポンプ11により第一冷暖房負荷21、第二冷暖房負荷22および第三冷暖房負荷23に循環させるように運転制御する。以下の説明では、上述した加熱運転、冷房運転および暖房運転を総称して「通常運転」と呼ぶ。
液体回路装置1が通常運転をしていない運転停止時に、外気温が低い場合には、水回路の室外に存在する部分(以下「水回路の室外部分」と称する)に滞留した水が外気により冷却され、この水が凍結することで水回路が閉塞する可能性がある。制御部50は、外気温が所定の判定値に比べて低くなった場合には、凍結による水回路の閉塞を防止するために水循環ポンプ11を駆動して水回路の水を循環させる閉塞防止運転を行う。閉塞防止運転を行うことで、室内機2側の水回路内にある比較的温度の高い水が、水回路の室外部分へ送られるので、凍結による水回路の閉塞を抑制できる。閉塞防止運転時においては、室外機3の冷媒回路および水回路内電気ヒータ6は停止状態とされる。なお、本実施の形態1の場合、水配管28,29の室外に存在する部分と、冷媒−水熱交換器4とが「水回路の室外部分」に相当する。
本実施の形態1において、制御部50は、閉塞防止運転を行うとき、室外を流れる液体(すなわち本実施の形態1では水)の温度である室外液温θ(以下、本実施の形態1では「室外水温θ」と称する)に基づいて、水循環ポンプ11のポンプ流量Qを制御する。本実施の形態1では、制御部50は、出湯温度検知サーミスタ12または冷媒温度検知サーミスタ5により室外水温θを計測または推定する。すなわち、出湯温度検知サーミスタ12または冷媒温度検知サーミスタ5が室外液温取得手段に相当する。出湯温度検知サーミスタ12の検出温度は、冷媒−水熱交換器4から水配管29を通って室内機2に戻ってきた直後の水の温度であるため、冷媒−水熱交換器4内を流れる水の温度にほぼ等しい。このため、出湯温度検知サーミスタ12の検出温度を室外水温θとして代用できる。または、出湯温度検知サーミスタ12の検出温度と、水が冷媒−水熱交換器4から出湯温度検知サーミスタ12まで流れる間の受熱量とに基づいて室外水温θを推定しても良い。また、冷媒温度検知サーミスタ5は冷媒−水熱交換器4に取り付けられているため、室外機3の冷媒回路が停止している閉塞防止運転時には、冷媒温度検知サーミスタ5の検出温度は、冷媒−水熱交換器4内を流れる水の温度にほぼ等しい。このため、冷媒温度検知サーミスタ5の検出温度を室外水温θとして代用できる。また、冷媒温度検知サーミスタ5の検出温度に基づいて室外水温θを推定しても良い。
一般に、水回路の室外部分が凍結によって閉塞する場合、流路断面の幅が最も狭い箇所で最も早く閉塞が発生する。流路断面が狭いほど、氷の結晶が流路を閉塞させるまでに成長する時間が短いからである。本実施の形態1では、水回路の室外部分において、冷媒−水熱交換器4内の流路断面の幅が最も狭い。このため、本実施の形態1では、凍結により水回路が閉塞すると仮定した場合、冷媒−水熱交換器4内で最も早く閉塞が発生する。室外水温θは、凍結により水回路が閉塞すると仮定した場合に閉塞が最も早く発生する箇所の水温、すなわち流路断面の幅が最も狭い箇所の水温になるべく近い温度であることが望ましい。なお、室外水温θがゼロ度より低くなると水が局所的に凍り始める可能性があるが、短時間であれば水回路の閉塞には至らない。
図2は、比較例における通常運転時および閉塞防止運転時のポンプ流量Qと室外水温θとの関係の一例を示す図である。図2に示す例では、通常運転時の室外水温θの範囲を、θからθとする。通常運転時は、室外水温θによらず、ポンプ流量Qを一定値Qとして運転する。閉塞防止運転時の室外水温θの範囲は、通常運転時に比べて、低い範囲となる。この比較例では、閉塞防止運転時は、室外水温θによらず、ポンプ流量Qを、Qに比べて十分に低い一定値Qとして運転する。
上記比較例では、閉塞防止運転時のポンプ流量Qを、通常運転時のポンプ流量Qに比べて十分に小さい値Qとすることにより、閉塞防止運転での水循環ポンプ11の消費エネルギー(消費電力)を節減できる。しかしながら、外気温度が特に低い場合など、室外の状況によっては、水回路の室外部分を流れる水が急速に冷却されて温度が急低下する。このため、閉塞防止運転時のポンプ流量Qが小さいと、凍結による水回路の閉塞を防止できない可能性がある。特に、室外水温θがゼロ度より低くなった場合には、凍結による水回路の閉塞が発生する可能性が増す。
図3は、本実施の形態1における通常運転時および閉塞防止運転時のポンプ流量Qと室外水温θとの関係を示す図である。図3に示すように、本実施の形態1の通常運転時は、制御部50は、比較例と同様に、室外水温θがθからθの範囲で、室外水温θによらず、ポンプ流量Qを一定値Qとして運転する。
一方、本実施の形態1の閉塞防止運転時には、制御部50は、室外水温θに応じて、ポンプ流量Qを以下のように制御する。室外水温θが、予め設定された凍結閾値(本実施の形態1ではゼロ度)以上の場合には、ポンプ流量Qを、通常運転時のポンプ流量Qに比べて十分に低い一定の必要最小流量Qとして運転する。一方、室外水温θが凍結閾値(ゼロ度)より低い場合には、室外水温θが低くなるにつれてポンプ流量Qが直線的に増大するように制御する。室外水温θが−θのとき、ポンプ流量Qは、通常運転時のポンプ流量Qに等しくなる。室外水温θが−θより低い場合には、ポンプ流量Qを一定値Qとする。
本実施の形態1の閉塞防止運転では、上述した制御により、以下のような効果が得られる。
(1)外気温度が特に低い場合など、室外の状況によっては、水回路の室外部分を流れる水が急速に冷却されて温度が急低下する。このため、室外水温θが低いほど、凍結による水回路の閉塞を確実に防止するために必要なポンプ流量Qが大きくなる。本実施の形態1では、室外水温θが凍結閾値(ゼロ度)より低い場合に、室外水温θが低いほどポンプ流量Qを高くする。このため、閉塞防止運転中に外気温度が低下するなどの原因で、室外水温θが低下した場合には、ポンプ流量Qを増加させることができるので、凍結による水回路の閉塞を確実に防止できる。一方、閉塞防止運転中に室外水温θが上昇し、閉塞の危険性が低下した場合には、それに応じてポンプ流量Qを低下させるので、閉塞防止運転での水循環ポンプ11の消費エネルギー(消費電力)を十分に節減できる。このようにして、本実施の形態1によれば、凍結による水回路の閉塞を確実に防止しつつ、閉塞防止運転での水循環ポンプ11の消費エネルギー(消費電力)を合理的に節減できる。
(2)室外水温θが凍結閾値(ゼロ度)以上である場合には、凍結による水回路の閉塞が発生する可能性は低い。この場合には、本実施の形態1では、ポンプ流量Qを必要最小流量Qに制御することで、閉塞防止運転での水循環ポンプ11の消費エネルギー(消費電力)を大きく節減できる。
図4は、本実施の形態1の変形例における通常運転時および閉塞防止運転時のポンプ流量Qと室外水温θとの関係を示す図である。本実施の形態1では、図4に示すように、閉塞防止運転時に、制御部50は、室外水温θが凍結閾値(ゼロ度)から−θの範囲にあるとき、室外水温θが低くなるにつれてポンプ流量Qが多段的に増大するように制御しても良い。この図4に示す変形例の場合にも、上記と同様の効果が得られる。
次に、閉塞防止運転時の室外水温θとポンプ流量Qとの関係を定める方法の一例について説明する。凍結により水回路が閉塞すると仮定した場合、前述したように、流路断面の幅が最も狭い冷媒−水熱交換器4内で最も早く閉塞が発生する。冷媒−水熱交換器4内で氷の結晶が成長することで冷媒−水熱交換器4内の流路が閉塞に至るまでの時間を以下「閉塞時間」と称し、記号tで表す。図5は、室外水温θと、ポンプ流量Qと、閉塞時間tとの関係を示す図である。図5には、室外水温θを横軸、閉塞時間tを縦軸とし、ポンプ流量Qが所定値Q’であるときの室外水温θと閉塞時間tとの関係を示す第1の曲線、ポンプ流量Qが所定値Q’であるときの室外水温θと閉塞時間tとの関係を示す第2の曲線、および、ポンプ流量Qが所定値Q’であるときの室外水温θと閉塞時間tとの関係を示す第3の曲線が描かれている。ただし、Q’<Q’<Q’である。図5中の斜線で示す領域は、ポンプ流量Q=Q’のときに冷媒−水熱交換器4内の流路の閉塞が発生する領域である。図5において、上記第1、第2および第3の曲線は、室外水温θ=ゼロ度の直線に漸近する。
図5において、例えば、ポンプ流量Q=Q’のとき、室外水温θ=−θ’の状態で、閉塞時間t’以上の時間が経過すると、冷媒−水熱交換器4内の流路が凍結して閉塞に至ることを意味する。同様にして、ポンプ流量Q=Q’のとき、室外水温θ=−θ’の状態で、閉塞時間t’以上の時間が経過すると、冷媒−水熱交換器4内の流路が凍結して閉塞に至ることを意味する。また、ポンプ流量Q=Q’のとき、室外水温θ=−θ’の状態で、閉塞時間t’以上の時間が経過すると、冷媒−水熱交換器4内の流路が凍結して閉塞に至ることを意味する。ただし、−θ’>−θ’>−θ’であり、t’>t’>t’である。このように、閉塞時間tは、室外水温θが低いほど短くなり、かつ、ポンプ流量Qが低いほど短くなる。
ここで、水回路の室外部分の流路の体積をVとする。また、水回路の室外部分の水がすべて置換されるのにかかる時間を置換時間と称し、記号Tで表す。置換時間Tは、T=V/Qとなる。閉塞防止運転においては、置換時間Tが閉塞時間t以下であることが望ましい。置換時間Tが閉塞時間t以下であれば、閉塞時間t以内に、水回路の室外部分のすべての水が、室内機2側から流入する比較的温度の高い水によって置換される。このため、置換時間Tが閉塞時間t以下であれば、水回路の室外部分に凍結による閉塞が発生することをより確実に防止できる。以上のことから、閉塞防止運転時の制御では、t≧T=V/Q、すなわちQ≧V/tを満足するようにポンプ流量Qを定めることが望ましい。
図6は、上述したQ≧V/tなる条件を満足する閉塞防止運転時の室外水温θとポンプ流量Qとの関係を示す図である。ここで、図5において、次式を満足するように、Q’、Q’、Q’、t’、t’、t’を設定する。
V=Q’×t’=Q’×t’=Q’×t
上記式より、V/t’=Q’、V/t’=Q’、V/t’=Q’がそれぞれ成り立つ。したがって、Q≧V/tなる条件を満足するには、室外水温θ=−θ’のときにはQ≧Q’、室外水温θ=−θ’のときにはQ≧Q’、室外水温θ=−θ’のときにはQ≧Q’、をそれぞれ満足すれば良い。したがって、図6において、閉塞防止運転時のポンプ流量Qが斜線部分より上側であれば、上述した条件を満足できる。
室外水温θを独立変数、ポンプ流量Qを従属変数、aを比例係数とした場合、図6中の直線の関数は、Q=−a×θで表される。この関数の次数は1である。これに対し、図6の斜線部分の境界となる曲線の関数は、室外水温θを独立変数、ポンプ流量Qを従属変数とした場合、次数は1より小さい値となる。したがって、図3に示すように、閉塞防止運転時のポンプ流量Qを室外水温θに応じて変化させる場合の関数の次数を1にする、すなわち室外水温θに応じてポンプ流量Qを直線的に変化させるようにすれば、上述した条件を満足できるので、凍結による閉塞の発生を確実に防止できる。また、図4に示すように、室外水温θに応じてポンプ流量Qを多段的に変化させる場合にも、次数が1の関数すなわち直線に沿うようにポンプ流量Qを段階的に変化させることで、上述した条件を満足でき、凍結による閉塞の発生を確実に防止できる。
なお、上述した実施の形態1では、室外機3がヒートポンプ式室外機であるものとして説明したが、本発明における室外機は、ヒートポンプ式のものに限定されるものではなく、太陽熱集熱式のもの、ヒートポンプ式と太陽熱集熱式とを併用するものなど、いかなる構成でも良い。
1 液体回路装置、2 室内機、3 室外機、4 冷媒−水熱交換器、5 冷媒温度検知サーミスタ、6 水回路内電気ヒータ、7 圧力逃し弁、8 圧力計、9 空気抜き弁、10 膨張タンク、11 水循環ポンプ、12 出湯温度検知サーミスタ、13 三方弁、14 貯湯タンク、15a,15b 生活用水配管、16 貯湯タンク温度検知サーミスタ、17 貯湯タンク用電気ヒータ、18 貯湯タンク用排水栓、19 配管コイル、20 温度調節バルブ、21 第一冷暖房負荷、22 第二冷暖房負荷、23 第三冷暖房負荷、25 戻り水温サーミスタ、26 ストレーナ、27 水回路用排水栓、28,29,30,31,32,33,34,35,36,37,38 水配管、50 制御部

Claims (3)

  1. 室内に配置される室内機と、
    室外に配置される室外機と、
    前記室内機と前記室外機との間で、熱媒体となる液体を循環ポンプにより循環させる液体回路と、
    室外を流れる前記液体の温度である室外液温を計測または推定する室外液温取得手段と、
    室外の前記液体の凍結による前記液体回路の閉塞を防止する閉塞防止運転で前記循環ポンプを駆動するとき、前記室外液温が予め設定された閾値に比べて低い場合には、前記室外液温が低くなるにつれて前記循環ポンプのポンプ流量が高くなるように制御する制御手段と、
    を備え
    前記室外液温をθ、前記ポンプ流量をQ、前記液体回路が閉塞に至るまでの時間をt、前記液体回路の室外部分の流路の体積をVとしたとき、前記時間tは、前記室外液温θが低いほど短く、かつ、前記ポンプ流量Qが低いほど短くなり、前記閉塞防止運転においてQ≧V/tを満足する液体回路装置。
  2. 前記制御手段は、前記室外液温が前記閾値に比べて低い場合には、前記室外液温が低くなるにつれて前記ポンプ流量が直線的または多段的に増大するように制御する請求項1に記載の液体回路装置。
  3. 前記室外機は、冷媒回路の冷媒と前記液体とを熱交換する熱交換器を有する請求項1または請求項2に記載の液体回路装置。
JP2014005160A 2014-01-15 2014-01-15 液体回路装置 Expired - Fee Related JP6201768B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014005160A JP6201768B2 (ja) 2014-01-15 2014-01-15 液体回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014005160A JP6201768B2 (ja) 2014-01-15 2014-01-15 液体回路装置

Publications (2)

Publication Number Publication Date
JP2015132444A JP2015132444A (ja) 2015-07-23
JP6201768B2 true JP6201768B2 (ja) 2017-09-27

Family

ID=53899774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014005160A Expired - Fee Related JP6201768B2 (ja) 2014-01-15 2014-01-15 液体回路装置

Country Status (1)

Country Link
JP (1) JP6201768B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111059658A (zh) * 2019-12-11 2020-04-24 珠海格力电器股份有限公司 冷水机组、冰蓄冷空调设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568139A (zh) * 2015-10-09 2017-04-19 宁夏琪凯节能设备有限公司 一种节能型中央空调热水锅炉
WO2017221383A1 (ja) * 2016-06-23 2017-12-28 三菱電機株式会社 熱媒体循環システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733914U (ja) * 1980-08-05 1982-02-23
JPH0448416Y2 (ja) * 1987-12-23 1992-11-16
JP2001336769A (ja) * 2000-05-31 2001-12-07 Daikin Ind Ltd 暖房装置の凍結防止機構
JP5220045B2 (ja) * 2010-02-15 2013-06-26 三菱電機株式会社 冷却装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111059658A (zh) * 2019-12-11 2020-04-24 珠海格力电器股份有限公司 冷水机组、冰蓄冷空调设备
CN111059658B (zh) * 2019-12-11 2021-03-19 珠海格力电器股份有限公司 冷水机组、冰蓄冷空调设备

Also Published As

Publication number Publication date
JP2015132444A (ja) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6570746B2 (ja) 熱媒体循環システム
EP2789933B1 (en) Heat pump type heating/hot-water supply system
RU2672995C1 (ru) Система и способ автономного и бесперебойного размораживания
KR101222331B1 (ko) 히트 펌프식 급탕기
JP5657110B2 (ja) 温度調節システム及び空気調和システム
JP5121747B2 (ja) 地中熱ヒートポンプ装置
JP5501279B2 (ja) ヒートポンプシステム及びヒートポンプシステムの制御方法
JP5816422B2 (ja) 冷凍装置の排熱利用システム
JP2009236403A (ja) 地熱利用ヒートポンプ装置
JP5981396B2 (ja) ヒートポンプ熱源機
JP6201768B2 (ja) 液体回路装置
JP2009236392A (ja) 空気調和機
JP5981880B2 (ja) ヒートポンプシステム
CN104165422A (zh) 水侧换热系统、水源热泵空调及其控制方法
JP6768977B2 (ja) 地熱ヒートポンプシステム、及び地熱ヒートポンプシステムの制御方法
JP6529579B2 (ja) ヒートポンプシステム
JP5326890B2 (ja) 蓄熱利用システム
JP2009264714A (ja) ヒートポンプ温水システム
US20230221032A1 (en) Freecooling unit for temperature management system
JP6492580B2 (ja) 給湯空調システム
JP5646300B2 (ja) 冷凍装置
KR101633089B1 (ko) 열교환부와 바이패스부를 갖는 열교환코일의 제어방법
JP2006275343A (ja) 給湯暖房機
JP5899344B2 (ja) ヒートポンプシステム
CN210014499U (zh) 空调系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees