JP6195227B2 - レドックスフロー電池システム - Google Patents

レドックスフロー電池システム Download PDF

Info

Publication number
JP6195227B2
JP6195227B2 JP2014031156A JP2014031156A JP6195227B2 JP 6195227 B2 JP6195227 B2 JP 6195227B2 JP 2014031156 A JP2014031156 A JP 2014031156A JP 2014031156 A JP2014031156 A JP 2014031156A JP 6195227 B2 JP6195227 B2 JP 6195227B2
Authority
JP
Japan
Prior art keywords
standby
circulation
battery system
battery
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014031156A
Other languages
English (en)
Other versions
JP2015156325A (ja
Inventor
貴浩 隈元
貴浩 隈元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014031156A priority Critical patent/JP6195227B2/ja
Publication of JP2015156325A publication Critical patent/JP2015156325A/ja
Application granted granted Critical
Publication of JP6195227B2 publication Critical patent/JP6195227B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電池ユニットを備えるレドックスフロー電池システム、およびレドックスフロー電池システムの運転方法に関する。特に、電解液の循環を停止させて待機状態とした際に発生する電池ユニットの温度上昇を抑制することができるレドックスフロー電池システム、およびレドックスフロー電池システムの運転方法に関する。
昨今、地球温暖化への対策として、太陽光発電、風力発電といった自然エネルギー(所謂、再生可能エネルギー)を利用した発電が世界的に活発に行なわれている。これらの発電出力は、天候などの自然条件に大きく左右される。そのため、全ての発電電力に占める自然エネルギー由来の電力の割合が増えると、電力系統の運用に際しての問題、例えば周波数や電圧の維持が困難になるといった問題が予測される。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の蓄電、負荷平準化などを図ることが挙げられる。
大容量の蓄電池の一つにレドックスフロー電池(以下、RF電池という)がある。RF電池10は、図6に示す形態のものが知られている。RF電池10は、正極電極104を内蔵する正極セル102と負極電極105を内蔵する負極セル103との間に隔膜101を介在させた電池セル100と、循環機構110とを備え、この循環機構110により正極電解液及び負極電解液を電池セル100に循環させて充放電を行う。循環機構110は、正極電解液を貯留する正極タンク111と、正極タンク111と電池セル100とを繋ぐ導管115,116と、負極電解液を貯留する負極タンク112と、負極タンク112と電池セル100とを繋ぐ導管117,118と、両電解液を循環させるポンプ113,114とを備える。電解液には、代表的には、酸化還元により価数が変化するバナジウムイオンといった金属イオンを含有する水溶液が利用される。図6において両タンク111,112内のイオンは例示である。また、図6において実線矢印は、充電、破線矢印は放電を意味する。
上記電池セル100は通常、図7の下図に示すように、セルスタックと呼ばれる積層体200の内部に形成される。セルスタック200は、図7の上図に示すように、額縁状の枠体122に一体化された双極板121を備えるセルフレーム120、正極電極104、隔膜101、および負極電極105を、この順番で積層した構成を備える。この構成では、隣接する各セルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。
セルスタック200における電池セル100への電解液の流通は、枠体122に形成される給液口123,124と、排液口125,126により行われる。正極用電解液は、給液口123から枠体122の一面側(紙面表側)に形成される溝を介して双極板121の一面側に配置される正極電極104に供給される。その正極用電解液は、枠体122の上部に形成される溝を介して排液口125に排出される。同様に、負極用電解液は、給液口124から枠体122の他面側(紙面裏側)に形成される溝を介して双極板121の他面側に配置される負極電極105に供給される。その負極用電解液は、枠体122の上部に形成される溝を介して排液口126に排出される。
RF電池は、一定の電圧を確保するために、2以上の積層体が電気的に直列接続された電池ユニットを備えることが一般的である。電池ユニットとしては、上記のセルスタックを電気的に直列接続したものが代表的である(例えば、特許文献1)。このようなRF電池10は、図6に示すように、交流/直流変換器(AC/DC)300を備えるRF電池システムとして用いられる。RF電池システムは、交流/直流変換器300を変電設備500などに接続し、この変電設備500を介して、発電部400(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)と電力系統や需要家などの負荷600とに接続され、発電部400を電力供給源として充電を行い、負荷600を電力提供対象として放電を行う。
特開2002−367659号公報 特開2006−313691号公報
RF電池システムが負荷平準化用途などに用いられる場合、需要家などの負荷の電力要求に応じて、充電運転及び放電運転を行わない運転待機状態となることがある。例えば、電力消費が比較的少ない夜間や休日などには運転待機状態となることが多い。運転待機状態では、特許文献2に記載されるように循環機構を停止させて両電解液の循環を停止させることで、ポンプの駆動に伴うエネルギー損失(ポンプロス)を低減することができ、結果として、RF電池の運転効率を高められる。
この電解液の循環を停止した積層体内には電解液が残存し、その電解液が経時的に自己放電を起こし得る。自己放電が生じると、自己放電に伴う反応熱によって積層体内の温度が上昇し、隔膜などの積層体の構成部材の熱劣化が加速するおそれがある。特に、RF電池を充電運転させた後は、積層体内の電解液の充電状態(SOC、State of Charge)が高いため、積層体内の電解液に含まれる電気エネルギーが大きい。このような場合、自己放電に起因する温度上昇が大きく、構成部材の熱劣化が生じ易くなる。
このような問題を解決するRF電池システムとして、特許文献2に記載のRF電池システムがある。このシステムでは、一つの積層体のみを備え、その積層体に停止時用負荷が接続されている。そして、この積層体を運転待機状態とした際に、積層体に残存する電解液の電気エネルギーを停止時用負荷に放電して消費させることで、自己放電に起因する温度上昇を抑制できるとしている。
しかし、複数の積層体が電気的に直列接続された電池ユニットを備えるRF電池システムにおいて、待機状態とした複数の積層体内の電解液に残存する電気エネルギーを消費させる場合には、温度上昇の抑制効果が積層体間で不均一になるおそれがある。
したがって、本発明の目的の一つは、複数の積層体が電気的に直列接続された電池ユニットを備えるRF電池システムにおいて、待機状態とした各積層体の温度上昇を均一的に抑制することができるRF電池システムを提供することにある。
本発明の他の目的は、複数の積層体が電気的に直列接続された電池ユニットを備えるRF電池システムを運転するのに際し、待機状態となった各積層体の温度上昇を均一的に抑制することができるRF電池システムの運転方法を提供することにある。
本発明のRF電池システムは、電池ユニットと、循環機構と、待機時用負荷と、切替部と、交流/直流変換器とを備える。電池ユニットは、複数の電池セルを積層して形成される2以上の積層体が電気的に直列接続される。循環機構は、正極電解液と負極電解液とを前記電池ユニットに循環させる。待機時用負荷は、前記積層体のそれぞれに電気的に接続され、前記両電解液の循環を停止させて待機状態とした前記積層体内の前記両電解液に残存する電気エネルギーの少なくとも一部を消費させる。切替部は、前記待機状態とした積層体と前記待機時用負荷との間にそれぞれ配置され、前記待機時用負荷への電気エネルギーの供給及び停止を切替える。交流/直流変換器は、前記電池ユニットを単位として電気的に接続される。
本発明のレドックスフロー電池システムの運転方法は、複数の電池セルが積層された2以上の積層体が電気的に直列接続された電池ユニットに正極電解液と負極電解液とを循環させて充放電を行うレドックスフロー電池システムの運転方法であって、循環停止ステップと、消費ステップとを備える。循環停止ステップでは、前記2以上の積層体の少なくとも一つへの前記両電解液への循環を停止させる。消費ステップでは、前記両電解液の循環が停止されて待機状態となった積層体内に残存する電気エネルギーの少なくとも一部を、前記待機状態となった積層体のそれぞれに電気的に接続された待機時用負荷に供給して消費させる。
本発明のRF電池システムによれば、2以上の積層体が電気的に直列接続された電池ユニットを備えるRF電池システムにおいて、待機状態における各積層体の温度上昇を抑制することができる。
本発明のRF電池システムの運転方法によれば、待機状態となった各積層体の温度上昇を抑制することができる。
実施形態1に係るRF電池システムの概略構成図である。 実施形態1に係るRF電池システムの運転方法の手順を説明するフローチャートである。 実施形態2に係るRF電池システムの概略構成図である。 実施形態3に係るRF電池システムの概略構成図である。 実施形態4に係るRF電池システムの概略構成図である。 RF電池システムの概略原理図である。 RF電池システムが備えるセルスタックの概略構成図である。
[本発明の実施形態の説明]
以下に本発明の実施形態の内容を列記して説明する。
(1)実施形態のRF電池システムは、電池ユニットと、循環機構と、待機時用負荷と、切替部と、交流/直流変換器とを備える。電池ユニットは、複数の電池セルを積層して形成される2以上の積層体が電気的に直列接続される。循環機構は、正極電解液と負極電解液とを前記電池ユニットに循環させる。待機時用負荷は、前記積層体のそれぞれに電気的に接続され、前記両電解液の循環を停止させて待機状態とした前記積層体内の前記両電解液に残存する電気エネルギーの少なくとも一部を消費させる。切替部は、前記待機状態とした積層体と前記待機時用負荷との間にそれぞれ配置され、前記待機時用負荷への電気エネルギーの供給及び停止を切替える。交流/直流変換器は、前記電池ユニットを単位として電気的に接続される。
複数の積層体が電気的に直列接続された電池ユニットを備えるRF電池システムで一般的な充放電運転を行うと、各積層体の部品特性の経時変化などに起因して各積層体の電圧の差が大きくなる場合がある。このようなRF電池システムにおいて、電池ユニットへの電解液の供給を停止して待機状態とし、各積層体内の両電解液に残存する電気エネルギーを低減することを検討した。具体的には、電池ユニットを単位として待機時用負荷を電気的に接続し、電池ユニット全体に対して上記電気エネルギーの消費を終止する電圧(以下、全体設定電圧)を設定して、電気エネルギーを待機時用負荷に消費させた。この場合、電圧の低い積層体では、上記電気エネルギーを待機時用負荷に十分に消費させることができ、個々の積層体で温度上昇が問題とならない所定の電圧(以下、個別設定電圧という)とすることができる。一方で、電圧の高い積層体は、この個別設定電圧となる前に、電池ユニット全体の電圧が全体設定電圧に達してしまうことがある。その結果、電圧の高い積層体が個別設定電圧となるまで上記電気エネルギーを低減することができず、この積層体の温度上昇の抑制が不十分になる。本実施形態のRF電池システムでは、電池ユニットを単位として待機時用負荷を電気的に接続するのではなく、複数の積層体のそれぞれに待機時用負荷を電気的に接続することで、待機状態にある各積層体のそれぞれの上記電気エネルギーを低減することができる。これにより、各積層体を個別設定電圧とすることができるので、各積層体の温度上昇を抑制し、各積層体を構成する電極や隔膜などの構成部材の熱的劣化を抑制することができる。
(2)実施形態のRF電池システムとして、前記循環機構が並列循環機構を含む形態が挙げられる。並列循環機構は、一組のタンクにそれぞれ貯留された前記両電解液を2以上の前記積層体に対して並列に循環させる。
循環機構が並列循環機構を含むことで、電池ユニットを形成する積層体の数を増加させても、この積層体の増加数に対応してポンプやタンクといった循環機構を構成する各部材の点数を増加させる必要がない。これにより、循環機構の設置スペースを削減できるので、RF電池システムを小型化することができると期待される。また、各部材の点数を削減できることで、経済性にも優れると期待される。
(3)実施形態のRF電池システムとして、前記循環機構が単一循環機構を含む形態が挙げられる。単一循環機構は、一組のタンクにそれぞれ貯留された前記両電解液を1つの前記積層体に循環させる。
循環機構が単一循環機構を含むことで、電池ユニットを形成する積層体の数を増加させても、シャントカレントによる電流損失や電解液の圧力損失を上記した並列循環機構よりも抑制しやすいと期待される。また、単一循環機構を停止させることにより、その単一循環機構につながる積層体を容易に積層体単位で待機状態とすることができる。
(4)実施形態のRF電池システムとして、前記電池ユニットは2以上の積層体が電気的に並列接続された並列部を含み、前記並列部を前記待機時用負荷が接続される一つの積層体とみなす形態が挙げられる。
電池ユニットが並列部を含むことで、高出力なRF電池システムとすることができる。また、待機時用負荷が並列部に対して電気的に接続されることで、並列された複数の積層体のそれぞれの電気エネルギーを一つの待機時用負荷により消費させることができる。よって、各積層体のそれぞれに待機時用負荷を電気的に接続する場合と比べて、待機時用負荷の数を削減でき、経済性に優れるものと期待される。
(5)実施形態のRF電池システムとして、循環停止機構とバイパス回路とを備える形態が挙げられる。循環停止機構は、前記両電解液の循環を前記積層体単位で停止させる。バイパス回路は、前記電池ユニットに含まれる複数の積層体のうち、前記循環停止機構により前記両電解液の循環を停止した積層体を待機積層体とするとき、前記待機積層体を電気的に迂回することで前記待機積層体以外の積層体による充放電を確保する。
循環停止機構とバイパス回路とを備えることで、RF電池システムの充放電運転を中断することなく、一部の積層体への電解液の循環を停止させることができる。これにより、待機積層体以外の積層体による充放電を行いながら待機積層体単位でのメンテナンス等を行いやすい。
(6)実施形態のRF電池システムの運転方法は、複数の電池セルが積層された2以上の積層体が電気的に直列接続された電池ユニットに正極電解液と負極電解液とを循環させて充放電を行うレドックスフロー電池システムの運転方法であって、循環停止ステップと、消費ステップとを備える。循環停止ステップでは、前記2以上の積層体の少なくとも一つへの前記両電解液への循環を停止させる。消費ステップでは、前記両電解液の循環が停止されて待機状態となった積層体内に残存する電気エネルギーの少なくとも一部を、前記待機状態となった積層体のそれぞれに電気的に接続された待機時用負荷に供給して消費させる。
実施形態のRF電池システムの運転方法は、上記の各ステップを備えることで、待機状態となった各積層体のそれぞれを確実に放電させることができる。これにより、各積層体の温度上昇を抑制することができ、各積層体を構成する電極や隔膜などの構成部材の熱的劣化を抑制することができる。
[本発明の実施形態の詳細]
以下、図面を参照して、実施形態のRF電池システム、および、実施形態のRF電池システムの運転方法について説明する。本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。また、図において同一符号は、同一名称物を示す。
<実施形態1>
〔RF電池システムの概要〕
図1を参照して、実施形態1のRF電池システム1Aを説明する。RF電池システム1Aは、代表的には、交流/直流変換器(AC/DC)300に電気的に接続された変電設備(図示せず)などを介して、発電部(図示せず)と電力系統や需要家などの負荷(図示せず)とに接続され充放電運転を行う。
RF電池システム1Aは、電池ユニット20を形成する複数の積層体(セルスタック)200のそれぞれに待機時用負荷150が接続されている点を特徴の一つとする。各待機時用負荷150は、RF電池システム1Aが充放電を行わない運転待機状態において、各積層体200内の電気エネルギーを確実に低減するために設けられる。このRF電池システム1Aは、図6、図7を参照して説明した従来のRF電池システムと共通する基本構成を備えるため、以下の説明は待機状態となった各積層体200の電気エネルギーの消費に関連する構成を中心に行う。基本構成に関わる点については図6、図7を参照する。
(電池ユニット)
電池ユニット20は、2以上の積層体200を電気的に直列接続して形成される集合体である。本実施形態では、積層体200として、同一の構成を備える4つのセルスタック200a〜200dが電気的に直列接続されて電池ユニット20が形成される。電池ユニット20を形成する積層体200の数は、所望の電圧を出力できるように調整すればよく、積層体200の数が多いほど高電圧を出力可能なRF電池システム1Aとすることができる。
〈積層体〉
積層体200は、複数の電池セル100(図7)を積層して形成される。電池セル100は、両電極104,105と両電解液により電池反応を行う最小単位である。積層体200としては、代表的には本実施形態のようにセルスタック200a〜200dを用いることが挙げられる。
このセルスタック200a〜200dは、所定数の電池セルを一つの纏まりの積層体とし、この積層体の一端面に配置される正極電解液用の給排板と、他端面に配置される負極電解液用の給排板とを備える。複数のセルスタックを積層して締付機構などで一体にした場合、個々のセルスタックをサブセルスタックと呼ぶことがある。各サブセルスタックは、電気的に直列接続されることで、セルスタック全体として一定の電圧を出力できるように形成されている。本実施形態でも、セルスタック200a〜200dは、複数のサブセルスタックを更に積層して締付機構で一体に形成されている。サブセルスタックにおける電池セルの積層数などは、RF電池システム1Aが所望の特性を有するように適宜選択することができる。
本実施形態のように、複数のセルスタック200a〜200dが電気的に直列接続されて電池ユニット20が形成される場合には、個々のセルスタック200a〜200dが一つの積層体に相当する。この場合、各セルスタック200a〜200dに待機時用負荷150がそれぞれ電気的に接続される。一方、RF電池システムが、2以上のサブセルスタックを電気的に直列接続した一つのセルスタックを備える場合には、一つのサブセルスタックが一つの積層体に相当する。この場合、電池ユニットは、2以上のサブセルスタックから形成されるセルスタックであり、各サブセルスタックに待機時用負荷がそれぞれ電気的に接続されることが望ましい。
RF電池システム1Aは、必要に応じて、両電解液が循環供給されるモニタセル250(250a〜250d)を備える。モニタセル250とセルスタック200とには共通の電解液が流れる。モニタセル250を構成する電池セルは、充放電に利用されず、セルスタック200の開路電圧の測定に利用される。開路電圧の測定には、モニタセル250a〜250dに接続した電圧計190a1〜190d1が用いられる。開路電圧を測定することで、充放電運転の際のセルスタック200の充電状態をより正確に測定することができる。ここでは、セルスタック200の一部の電池セル100をモニタセル250としている。モニタセル250の構成は、上記のようにセルスタック200の一部のセル100を利用する構成以外にも、セルスタックとは別個のモニタセルを設けるなど、公知の構成を採用しうる。
(循環機構)
循環機構110は、電池ユニット20に両電解液を循環させることで積層体200に充放電反応を行わせる機構である。通常、循環機構は、両電解液をそれぞれ貯留する正極タンクおよび負極タンクと、両タンクの電解液を電池ユニットに圧送するポンプと、タンク、ポンプ、および電池ユニットをつないで電解液の循環路を形成する導管とを備える。この循環機構には、主に一組のタンクに対応する積層体の数により、並列循環機構と単一循環機構(詳細については後述)とが挙げられる。本実施形態では、循環機構110は同一の構成の2つの並列循環機構110aから形成される。並列循環機構とは、一組のタンクにそれぞれ貯留された両電解液を2以上の積層体に対して並列に循環させる機構である。本実施形態の並列循環機構110aは、一組のタンク111a,112aと、一組のポンプ113a,114aと、これらと2つのセルスタック200a,200b(200c,200d)をつないで往路と復路を構成する複数の導管115a〜118aから構成されている。正極側の往路は、セルスタック200a、200bを例とすれば、正極タンク111aからポンプ113aを介して伸びる導管115aを分岐し、各分岐端をセルスタック200a、200bに接続して構成される。正極側の復路は、セルスタック200a、200bから延びる導管116aを集約して正極タンク111aへと接続することで構成される。セルスタック200c、200dや負極側に関しても、同様に往路と復路が構成される。このような循環機構のポンプ113a,114aの運転により、タンク111a,112aから2つのセルスタック200a,200b(200c,200d)に導管115a〜118aを介して両電解液が循環されることで充放電運転を行う。
並列循環機構は、上記の構成に限らず、例えば、一組のタンクのそれぞれに積層体と同数のポンプを設置し、一つの積層体に一組のポンプから両電解液が循環される構成等としてもよい。この場合、一組のポンプで複数の積層体に両電解液を循環させる場合と比べて、ポンプ1つあたりの負荷を低減できる。また、複数の積層体に対して1組のタンクを備える構成であるので、積層体の数に応じてタンクを設置する場合に比べてタンクの設置スペースを削減できると期待される。
〔待機時用負荷〕
待機時用負荷150は、両電解液の循環を停止させて待機状態とした積層体200内に残存する両電解液の電気エネルギーの少なくとも一部を消費させる部材である。本実施形態では、各セルスタック200a〜200dのそれぞれ1つずつに待機時用負荷150a〜150dが接続されている。つまり、電池ユニット20を単位として1つの待機時用負荷150が接続されるのではなく、電池ユニット20を形成するセルスタック200a〜200dのそれぞれに待機時用負荷150a〜150dが電気的に接続されている。
待機時用負荷150としては、待機状態とした積層体200に残存する電気エネルギーの少なくとも一部を消費可能であれば、種々の構成のものが利用できる。例えば、単なる抵抗でもよく、本実施形態でもこの抵抗に待機状態とした各セルスタック200a〜200d内の電気エネルギーを供給して発熱させることで、各セルスタック200a〜200d内の電気エネルギーを低減している。他にも、待機時用負荷150としてファンなどの強制冷却装置を用いると、待機状態とした各セルスタック200a〜200dを冷却でき、発熱に起因するセルスタック200a〜200dの構成部材の熱劣化をさらに抑制できると期待される。待機時用負荷150は、着脱自在とし、任意のときに所望の機能を有するものや所望の構成を有するものに変更可能な構成としてもよい。
待機時用負荷150は、待機状態としてから1時間以内に各積層体200内の両電解液に残存する電気エネルギーを温度上昇が問題とならない所定の値まで低減できる構成であることが好ましい。積層体200の各積層体内の電気エネルギー量にもよるが、隔膜101の性能劣化などがある場合には、ポンプの停止後30分程度以降から3時間程度以内の範囲で、自己放電が急速に進み、積層体200内の電解液の温度上昇が顕著となる場合があるからである。好ましくは45分以内、より好ましくは30分以内に温度上昇が問題とならない所定の値まで待機状態とした積層体200内の電気エネルギーを低減できると、さらに温度上昇の抑制効果が大きいと期待される
各セルスタック200において、両電解液の電気エネルギーの量は、各セルスタック200の充電状態(SOC:State of charge)と相関する物理量を指標として検知することができる。この物理量には端子電圧(閉路電圧)が利用できる。本実施形態では、モニタセル250a〜250dを除く各セルスタック200a〜200dに接続された各待機時用負荷150a〜150dとそれぞれ電気的に並列接続された電圧計190a2〜190d2により、各セルスタックの端子電圧を測定している。端子電圧を測定することで、各セルスタック200が待機状態となっても、各セルスタック200に残存する両電解液の電気エネルギーの量を概略的に検知できる。
温度上昇が問題とならない各積層体200の電気エネルギー量は、積層体200の満充電時のSOCの50%以下、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下、特に好ましくは10%以下とすることができる。上記の自己放電に起因する温度上昇を効果的に抑制できるからである。一方で、電気エネルギーを消費させた後の各積層体200内に電気エネルギーが存在すれば、RF電池システム1Aを運転待機状態から充放電運転に移行する際に、各積層体200内の電気エネルギーで充放電運転への移行動作や初動動作を行わせたり、運転待機状態のRF電池システム1Aの監視等を行ったりできると期待される。この場合、電気エネルギーを消費させた後の各積層体200内に残存させる電気エネルギー(設定電圧)は、電池ユニット20を形成する各積層体200の数や電池容量にもよるが、満充電時のSOCの10%以上、好ましくは15%以上、より好ましくは20%以上とすると、各積層体200の温度上昇を抑制しつつ、上記の充放電運転への移行やRF電池システム1Aの監視に必要な電気エネルギーを供給できると期待される。
〔切替部〕
切替部160は、両電解液の循環停止中にのみ待機時用負荷150に各積層体200内の電気エネルギーが供給されるように、各積層体(セルスタック)200の放電対象を切り替える機構である。本実施形態では、各セルスタック200a〜200dと各待機時用負荷150a〜150との間にそれぞれ1つずつ切替部160a〜160dが設けられている。図1に示すように、RF電池システム1Aが運転待機状態となった場合に、各切替部160a〜160dにより各セルスタック200a〜200dと各待機時用負荷150a〜150dとが電気的に接続される一方で、各セルスタック200a〜200d間の電気的な接続が解除される。
一方、充放電運転の際、すなわち両電解液の循環中は、各切替部160a〜160dにより各セルスタック200a〜200dと各待機時用負荷150a〜150dとの電気的な接続を解除する一方で、各セルスタック200a〜200d間を電気的に直列接続する。各セルスタック200a〜200dと各待機時用負荷150a〜150dとの電気的な接続の解除により、各セルスタック200a〜200dから各待機時用負荷150a〜150dに電気エネルギーが供給されないようにできる。これにより、充放電運転中は各待機時用負荷150による電気エネルギーの消費が行われないようにできるので、エネルギー効率に優れたRF電池システム1Aとすることができる。切替部160として、例えば、スイッチ、コンタクタ、リレー、およびブレーカ等の市販のものを利用できる。
〔交流/直流変換器〕
交流/直流変換器300は、交直変換、昇圧・降圧などを行う半導体素子(図示せず)などを備える回路基盤(図示せず)を備える。交流/直流変換器は、例えば、RF電池システム1Aが充電運転を行う場合、発電部の交流電力を直流電力に変換したり、降圧したりし、変換などした電力を電池ユニット20に充電させる。放電運転を行う場合には、交流/直流変換器300は、電池ユニット20の直流電力を交流電力に変換したり、昇圧したりし、変換などした電力を負荷に放電させる。運転待機状態においては、交流/直流変換器300は、変電設備との電気的な接続を解除する場合もある。
〔制御部〕
運転状態の変更や、運転待機状態における切替部160の切り替え等といったRF電池システム1Aの一連の動作は制御部180により行われる。本実施形態では、上記一連の動作を、コンピュータを利用した制御部180により自動的に行っている。制御部180は、例えばRF電池システム1Aの運転を制御するための制御用回路基盤(図示せず)を備え、上述した交流/直流変換器300の回路基盤、ポンプ113,114、電圧計190a1〜190d1,190a2〜190d2などの各部材と配線によって接続される。制御部180は、これらからの信号(情報)を、上記配線を介して受け取って種々の判定、演算、記憶などを行い、判定結果や演算結果などの信号を各部材に伝送してRF電池システム1Aの制御を行う。例えば、各電圧計190a1〜190d1,190a2〜190d2の計測信号Va1〜Vd1,Va2〜Vd2を制御部180に入力して各セルスタック内の充電状態の検知に供したり、ポンプの動作・停止信号P1〜P4を各ポンプ113a,114aに対して指令したりする。この制御部180によるRF電池システム1Aの運転方法の詳細は、後述するRF電池システムの運転方法において説明する。なお、制御部180による一連の動作は作業者が手作業により行う構成としてもよい。この点は他の実施形態においても同様である。
〔RF電池システムの運転方法〕
RF電池システム1Aは、一般的なRF電池システムと同様に、電池ユニット20に循環機構110により両電解液を循環させることで、通常の充放電運転を行う。この充放電運転は、制御部180が交流/直流変換器300や各ポンプ113,114を制御することで行われる。この制御は、例えば、発電部400の発電状態や負荷600の電力要求状態、あらかじめプログラムされた運転スケジュールなどに応じて変更される。
上述したように、RF電池システム1Aでは、通常の充放電運転の他、少なくとも一部の積層体200が充放電を行わない運転待機状態となる場合がある。本実施形態のRF電池システム1Aでは、待機状態とした各セルスタック200a〜200d内の電気エネルギーを待機時用負荷150a〜150dにそれぞれ供給して、各セルスタック200a〜200d内の電気エネルギーを低減する運転を行うことができる。ここでは、各セルスタック200a〜200d内の電気エネルギーを低減するRF電池システムの運転方法を説明する
実施形態1の運転方法は、循環停止ステップと、消費ステップとを備える。循環停止ステップでは、電池ユニット20を形成している積層体200(セルスタック200a〜200d)の少なくとも一つへの両電解液への循環を停止させる。消費ステップでは、両電解液の循環が停止されて待機状態となった積層体内に残存する電気エネルギーの少なくとも一部を、待機状態となったセルスタック200a〜200dのそれぞれに電気的に接続された待機時用負荷150に供給して消費させる。以下、図2に示すフローチャートを参照して各ステップの具体的な処理をより詳細に説明する。
(循環停止ステップ)
循環停止ステップでは、前記2以上のセルスタック200a〜200dの少なくとも一つへの前記両電解液への循環を停止させる。本実施形態では、RF電池システム1Aが運転待機状態に変更されたとき、制御部180から配線を介して上述した各ポンプ113a,113a,114a,114aへ停止信号を送る。これにより、各ポンプ113a,113a,114a,114aを停止させることで、各セルスタック200a〜200dへの両電解液の循環を停止させる(ステップS1)。このポンプ113a(114a)の停止により、電解液の循環が停止された積層体には電解液が滞留された状態となる。
(消費ステップ)
消費ステップでは、循環停止ステップにより両電解液の循環が停止されて待機状態となったセルスタック200a〜200d内に残存する電気エネルギーの少なくとも一部を、セルスタック200a〜200dのそれぞれに電気的に接続された待機時用負荷150a〜150dに供給して消費させる。より具体的には、制御部180は、各ポンプ113a,113a,114a,114aへの停止信号に同期して、各セルスタック200a〜200dと各待機時用負荷150a〜150dとの間に配置された各切替部160a〜160dにより、各セルスタック200a〜200dと各待機時用負荷150a〜150dとを接続する(ステップS2−1)。これにより、待機状態となった各セルスタック200から各待機用負荷150a〜150dに電気エネルギーを供給して、各セルスタック200a〜200d内の電気エネルギーを各停止時用負荷150a〜150dにより消費させる。
更に、この例では、温度上昇が問題とならない所定の電圧(設定電圧)Viが制御部180に記憶されている。各セルスタック200a〜200dの電気エネルギーの残存量として、各セルスタック200a〜200dに接続された各待機時用負荷150a〜150dとそれぞれ電気的に並列接続された電圧計190a2〜190d2により、各セルスタック200a〜200dの端子電圧を測定する(ステップS2−2)。この測定した端子電圧(Vc)と設定電圧(Vi)とを比較する(ステップS2−3)。そして、各セルスタック200a〜200dの端子電圧が設定電圧以下となったところで、各切替部160a〜160dにより各セルスタック200a〜200dと各待機時用負荷150a〜150dとを切り離す(ステップS2−4)。この切り離しにより、通常の充放電運転が可能になる。
待機時用負荷への電気エネルギーの供給(放電)の停止をどのように決定するかは、上述した端子電圧を測定する手法の他、次の手法が挙げられる。いずれの手法においても待機時用負荷150は定抵抗である。
本実施形態のように、RF電池システム1Aがモニタセル250を備えることによりセルスタック200の開路電圧を測定可能な場合、この開路電圧と待機時用負荷150への電気エネルギーの供給時間(以下、放電時間という)を利用できる。放電時間を利用する場合、あらかじめ満充電状態のセルスタック200から待機時用負荷150へ放電した際の放電時間と電流値との関係を求めておく。この放電時間と電流値との関係では、待機時用負荷150への放電を停止する電流値、つまり個々のセルスタック200で温度上昇が問題とならない所定の電気エネルギーの量となる電流値(以下、設定電流値という)を規定しておく。
そして、待機状態となった直後のセルスタック200の開路電圧をモニタセル250により測定し、待機時用負荷150への放電を開始した直後(以下、放電開始時という)のセルスタック200の充電状態を把握する。この開路電圧と待機時用負荷150の抵抗値及びセルスタック200の内部抵抗から待機時用負荷150へ放電開始時の電流値を演算し、この電流値を上記放電時間と電流値との関係に参照する。これにより、待機時用負荷150への放電開始時の電流値と設定電流値とから必要な放電時間を求める。待機時用負荷150への放電は、必要放電時間が経過すれば切替部160の動作により停止すればよい。この手法によれば、端子電圧を測定するための電圧計190を省略できるので、RF電池の構成を簡略化できる。
その他、セルスタック200から待機時用負荷150に供給される電流値を利用してもよい。この例では、RF電池システムに用いるセルスタック200と待機時用負荷150とに直列に接続される電流計を用いる。この場合も、予め、上述した放電時間と電流値との関係を利用して設定電流値を規定しておく。待機状態のセルスタック200が待機時用負荷150への放電を開始したら、上記電流計で電流値を経時的に計測する。電流計で計測した電流値が設定電流値になれば、待機時用負荷150への放電を切替部160の動作により停止すればよい。
〔作用・効果〕
以上説明した本実施形態のRF電池システム1Aは以下の効果を奏する。
(1)各セルスタック200a〜200dに待機時用負荷150a〜150dがそれぞれ接続されることで、待機状態とした各セルスタック200a〜200d内に残存する両電解液の電気エネルギーをセルスタック毎に確実に所定の値まで低減させることができる。これにより、電池ユニット20内に温度上昇の抑制が不十分なセルスタックが含まれることを防止できる。
(2)セルスタック200a〜200dと待機時用負荷150a〜150dとの間に切替部160a〜160dを配置することにより、充放電運転中は待機時用負荷150a〜150dによる電気エネルギーの消費が行われないようにできる。これにより、エネルギー効率に優れたRF電池システムとすることができる。また、各セルスタック200a〜200dが待機状態となった場合に、隣接するセルスタックからの電気エネルギー(電流)の流入を遮断でき、各セルスタック200a〜200d内の電気エネルギーの消費を促進できる。
(3)循環機構110が並列循環機構110aを含むことにより、電池ユニット20を形成するセルスタック200の数を増加させても、この増加数に対応して両極タンク111,112やポンプ113,114といった循環機構を構成する各部材の点数を増加させる必要がない。これにより、循環機構110の設置スペースを削減できるので、RF電池システム1Aを小型化することができると期待される。また、各部材の点数を削減できることで、経済性にも優れると期待される。
また、以上説明した本実施形態のRF電池システム1Aの運転方法は、循環停止ステップと消費ステップとを備えることで、待機状態となった各積層体200のそれぞれを確実に放電させることができる。これにより、各積層体200の温度上昇を抑制することができ、各積層体200を構成する両電極104,105や隔膜101などの構成部材の熱的劣化を抑制することができる。
<実施形態2>
実施形態2では、図3を参照し、実施形態1のRF電池システムと異なる構成を備えるRF電池システム1Bについて説明する。本実施形態のRF電池システムは、循環機構110が複数の単一循環機構110bから形成される点、および、切替部160の構成が異なる点を特徴の一つとする。その他の点は、実施形態1のRF電池システムと同様の構成を備えるので、以下では実施形態1のRF電池システムとの主たる相違点である単一循環機構110bおよび、切替部160について説明する。
(単一循環機構)
本実施形態では、循環機構110は2つの単一循環機構110bから形成される。単一循環機構とは、一組のタンクにそれぞれ貯留された両電解液を1つの積層体に対してのみ循環させる機構である。本実施形態の単一循環機構110bは、一組のタンク111b,112bと、一組のポンプ113b,114bと、これらとセルスタック200a(200b)を繋ぐ複数の導管115b〜118bから構成されている。RF電池システム1Bは、ポンプ113b,114bの運転により、タンク111b,112bから1つのセルスタック200a(200b)に導管115b〜118bを介して両電解液が循環されることで充放電運転を行う。
循環機構110が単一循環機構110bを含むことで、電池ユニット20を形成するセルスタック200a,200bの数を増加させても、シャントカレントによる電流損失や電解液の圧力損失を上記した並列循環機構よりも抑制しやすいと期待される。単一循環機構110bにつながる積層体の電解液は、他の積層体の電解液の影響を受けないため、他の積層体の構成部材に劣化が生じたりした場合でも、健全な状態を保持することができる。また、単一循環機構を停止させることにより、その単一循環機構につながる積層体を容易に積層体単位で待機状態とすることができる。
〔切替部〕
本実施形態では、各セルスタック200a,200bに対してそれぞれ2つずつの切替部160a1,160a2(160b1,160b2)が設けられている。各セルスタック200と各待機時用負荷150との間にそれぞれ配置されている。図3に示すように、RF電池システム1Bが運転待機状態となった場合に、各切替部160a1,160a2(160b1,160b2)により各セルスタック200a,200bと各待機時用負荷150a,150bとが電気的に接続される。一方、充放電運転の際、すなわち両電解液の循環中は、各切替部160a1,160a2(160b1,160b2)により各セルスタック200a,200bと各待機時用負荷150a,150bとの電気的な接続を解除する。
以上、実施形態2のRF電池システム1Bについて説明したが、切替部160の構成は、上記の実施形態1と同様にセルスタック200と待機時用負荷150との間に1つの切替部を設ける構成としてもよい。もちろん、他の実施形態において、切替部160の構成を本実施形態と同様としてもよい。
<実施形態3>
実施形態3では、図4を参照し、実施形態1と異なる構成を備えるRF電池システム1Cについて説明する。本実施形態のRF電池システム1Cは、電池ユニット20が2以上の積層体200が電気的に並列接続された並列部25を含む点を特徴の一つとする。その他の点は、実施形態1のRF電池システムと同様の構成を備えるので、以下では実施形態1のRF電池システムとの主たる相違点である並列部25、およびこの並列部25に対する待機時用負荷150の接続について説明する。
(並列部)
並列部25は、電池ユニット20において2以上の積層体が電気的に並列接続された箇所である。本実施形態では、電池ユニット20は3つのセルスタック200a〜200cから形成され、そのうちの2つのセルスタック200a,200bが電気的に並列接続されることで並列部25を形成している。並列部25の一端(−側)は隣接するセルスタック200の一端(+側)に接続されることで、電池ユニット20全体としては電気的に直列な回路となっている。並列部25の他端(+側)と、隣接する積層体200cの他端(−側)はそれぞれ交流/直流変換器300に電気的に接続される。
本実施形態のように、並列部25を有する場合は、並列部25を一つの積層体200とみなす。すなわち、1つの並列部25には、一つの待機時用負荷150aが接続される。これにより、待機状態となった2つのセルスタック200a,200bに残存する電気エネルギーを1つの待機時用負荷150aに供給することで消費させることができる。いわば、待機状態のセルスタック200a,200bを電源、待機時用負荷150aを抵抗とみなした場合に、2つの電源を並列繋ぎし、ひとつの抵抗と接続した回路が形成される。これにより、一つの待機時用負荷150aで両セルスタック200a,200bのそれぞれに残存する電解液の電気エネルギーを同時に消費させることができる。
本実施形態では、並列部25を2つのセルスタック200a,200bから形成しているが、3以上のセルスタックを電気的に並列接続して形成してもよい。この場合でも、一つの並列部25に対しては、一つの待機時用負荷150が接続される。並列部25は、電池ユニット20のいずれの箇所に設けられる構成としてもよく、その数も限定されない。例えば、電池ユニットを2つの並列部から構成し、各並列部に待機時用負荷を接続してもよい。この場合、並列部同士が直列接続されることで、電池ユニット全体としては直列接続された状態となる。
(作用・効果)
電池ユニット20が並列部25を含むことで、電池ユニット20全体の電流量が上昇するので、高出力なRF電池システムとすることができる。また、待機時用負荷150が並列部25に対して電気的に接続されることで、並列された複数のセルスタック200a,200bのそれぞれの電気エネルギーを一つの待機時用負荷150により消費させることができる。よって、各セルスタック200a,200bのそれぞれに待機時用負荷150を電気的に接続する場合と比べて、待機時用負荷150の数を削減でき、経済性に優れるものと期待される。一方、セルスタック200cを待機状態とした場合、その残存するエネルギーを待機時用負荷150bに放電して消費できることは勿論である。
<実施形態4>
実施形態4では、図5を参照し、実施形態1と異なる構成のRF電池システム1Dについて説明する。本実施形態のRF電池システム1Dは、循環機構110が循環停止機構119を備える点、およびバイパス回路170を備える点を特徴の一つとする。その他の点は、実施形態1のRF電池システムと同様の構成を備えるので、以下では実施形態1のRF電池システムとの主たる相違点である循環停止機構119、およびバイパス回路170について説明する。
〈循環停止機構〉
循環停止機構119は、両電解液の循環を積層体200(セルスタック200a〜200d)単位で停止させる機構である。通常、一組のポンプから導管を介して両電解液を複数のセルスタック200a〜200dへ供給する際には、この導管に分岐が設けられる。循環停止機構119は、この分岐点に配置され、各セルスタック200a〜200dに接続される各導管への電解液の供給と停止とをそれぞれ切り替え可能な部材である。循環機構110が循環停止機構119を備えることで、セルスタック200a〜200d毎に電解液の循環を停止させることができる。以下、循環停止機構119により両電解液の循環を停止した積層体(セルスタック)を待機積層体(待機セルスタック)とする。本実施形態では、セルスタック200a(200c)と一組のポンプ113a(113a)とを接続する導管115aを分岐させている箇所およびセルスタック200b(200d)と一組のポンプ114a(114a)とを接続する導管117aを分岐させている箇所に、循環停止機構119である三方弁119a〜119dを設けている。
図5の左方における並列循環機構110aを例として循環停止機構119(三方弁)の機能を説明すると、この三方弁119により、(1)セルスタック200bには両電解液を循環させる一方で、セルスタック200aには両電解液を循環させず、セルスタック200aを待機セルスタックとする、(2)セルスタック200aには両電解液を循環させる一方で、セルスタック200bには両電解液を循環させず、セルスタック200bを待機積層体とする、(3)セルスタック200aにもセルスタック200bにも両電解液を循環させず、両者を待機積層体とすることが可能となる。図5の右方における並列循環機構110aにおいても同様であり、循環機構110全体としては、各セルスタック200a〜200dへの電解液の循環をセルスタック200ごとに停止させることができるようになっている。すなわち、両電解液の循環を停止させる単位は積層体毎とすることができ、待機積層体の総数は単数でも複数でもよい。本実施形態では、セルスタック200aのみが待機セルスタックとなるように、三方弁119aが調整されている。循環停止機構は、三方弁のほか、導管115aの分岐点から各分岐端までの間にそれぞれ個別に弁(バルブ)を設けることで形成してもよい。
複数の並列循環機構110aごとに待機積層体を設定する場合には、ポンプ114,115を停止させることが好ましい。ポンプの動力の分だけ、エネルギーの消費を低減でき、RF電池システム1D全体としてのエネルギー効率に優れるからである。換言すれば、循環機構110が並列循環機構110aを備える場合において、並列循環機構110aにより電解液が循環される複数の積層体200を単位として待機積層体とする場合には、ポンプを停止させることで循環停止機構とすることができる。RF電池システム1Dが単一循環機構を含む場合も同様である。
(バイパス回路)
バイパス回路170は、待機積層体(ここではセルスタック200a)を電気的に迂回することで待機積層体以外の積層体(ここではセルスタック200b〜200d)による充放電を確保する。通常、バイパス回路170は、待機セルスタックを迂回するように配置される配線171とバイパス切替部172とで構成される。バイパス回路170を備えることで、電池ユニット20内に待機積層体が含まれても、電池ユニット20内の待機積層体以外の積層体の直列接続を維持することができる。本実施形態では、実施形態1と同様に電池ユニット20を形成する各セルスタック単位で待機積層体を設定できる構成としているので、各セルスタック200a〜200dを迂回するように複数のバイパス回路170a〜170dが形成されている。
バイパス切替部172は、待機積層体を両電解液の循環停止中にのみ待機時用負荷150に各積層体200内の電気エネルギーが供給されるように、各積層体200と各待機時用負荷150との間にそれぞれ配置される部材である。本実施形態では、各セルスタック200a〜200dにそれぞれ1つずつバイパス切替部172a〜172dが設けられている。バイパス切替部172として、例えば、スイッチ、コンタクタ、リレー、およびブレーカ等の市販のものを利用できる。本実施形態では、上述したように、セルスタック200aのみを待機積層体とするので、バイパス切替部172aが配線171a側につながることでセルスタック200aがバイパスされ、電池ユニット20からセルスタック200aが分離される。一方で、他のセルスタック200b〜200dによる充放電は、バイパス回路170aにより交流/直流変換器300を介して確保される。セルスタック200aは、待機時用負荷150aと電気的に接続されることで待機用負荷150aに電気エネルギーが供給され、セルスタック200a内の電気エネルギーを停止時用負荷150aにより消費させることができる。
(作用・効果)
循環調整機構119とバイパス回路170とを備えることで、RF電池システム1Dの充放電運転を中断することなく、一積層体200(セルスタック200a〜200d)単位で電解液の循環を停止させることができる。これにより、RF電池システム1Dの充放電運転を停止することなく、セルスタック200a〜200d単位でのメンテナンス等を行うことができるので、RF電池システム1Dを運用しやすいと期待される。
以上、各実施形態により本発明を説明したが、例えば、循環機構は並列循環機構と単一循環機構とを組合せて構成してもよい。また、正極電解液及び負極電解液は、上記した両極の電解液がバナジウムイオンを含むV系一液形態以外にも、(1)正極電解液がマンガンイオンを含み、負極電解液がチタンイオンを含むTi/Mn系二液形態、(2)正極電解液がマンガンイオンとチタンイオンとを含み、負極電解液がチタンイオンを含むTi/Mn系形態、(3)両極の電解液がマンガンイオンとチタンイオンとを含むTi/Mn系一液形態などの、公知の電解液を利用することができる。
本発明のレドックスフロー電池システムは、自然エネルギーを利用した発電機の出力変動の平滑化、余剰電力の貯蔵、負荷平準化などを図ることを目的とした大容量蓄電池として好適に利用可能である。
1A〜1D レドックスフロー電池システム(RF電池システム)
10 レドックスフロー電池
20 電池ユニット
25 並列部
200 積層体
200a,200b,200c,200d セルスタック
250,250a,250b,250c,250d モニタセル
100 電池セル
101 隔膜 102 正極セル 103 負極セル
104 正極電極 105 負極電極
120 セルフレーム 121 双極板 122 枠体
123,124 給液口 125,126 排液口
110 循環機構
110a 並列循環機構 110b 単一循環機構
111,111a,111b 正極タンク
112,112a,112b 負極タンク
113,113a,113b,114,114a,114b ポンプ
115,115a,115b,116,116a,116b,
117,117a,117b118,118a,118b 導管
119,119a,119b,119c,119d 循環停止機構(三方弁)
150,150a,150b,150c,150d 待機時用負荷(抵抗)
160,160a,160b,160c,160d,
160a1,160a2,160b1,160b2 切替部
170,170a,170b,170c,170d バイパス回路
171,171a,171b,171c,171d 配線
172,172a,172b,172c,172d バイパス切替部
180 制御部
190,190a1,190a2,190b1,190b2,
190c1,190c2,190d1,190d2 電圧計
300 交流/直流変換器(AC/DC)
400 発電部 500 変電設備 600 負荷

Claims (4)

  1. 複数の電池セルを積層して形成される2以上の積層体が電気的に直列接続された電池ユニットと、
    正極電解液と負極電解液とを前記電池ユニットに循環させる循環機構と、
    前記積層体のそれぞれに電気的に接続され、前記両電解液の循環を停止させて待機状態とした前記積層体内の前記両電解液に残存する電気エネルギーの少なくとも一部を消費させる待機時用負荷と、
    前記待機状態とした積層体と前記待機時用負荷との間にそれぞれ配置され、前記待機時用負荷への電気エネルギーの供給及び停止を切替える切替部と、
    前記電池ユニットを単位として電気的に接続される交流/直流変換器とを備え、
    前記循環機構が、前記両電解液の循環を前記積層体単位で停止させる循環停止機構を備え、
    前記電池ユニットに含まれる複数の積層体のうち、前記循環停止機構により前記両電解液の循環を停止した積層体を待機積層体とするとき、前記待機積層体を電気的に迂回することで前記待機積層体以外の積層体による充放電を確保するバイパス回路を備えるレドックスフロー電池システム。
  2. 前記循環機構が、一組のタンクにそれぞれ貯留された前記両電解液を2以上の前記積層体に対して並列に循環させる並列循環機構を含む請求項1に記載のレドックスフロー電池システム。
  3. 前記循環機構が、一組のタンクにそれぞれ貯留された前記両電解液を1つの前記積層体に循環させる単一循環機構を含む請求項1または請求項2に記載のレドックスフロー電池システム。
  4. 前記電池ユニットは、2以上の積層体が電気的に並列接続された並列部を含み、
    前記並列部を前記待機時用負荷が接続される一つの積層体とみなす請求項1から請求項3のいずれか1項に記載のレドックスフロー電池システム。
JP2014031156A 2014-02-20 2014-02-20 レドックスフロー電池システム Active JP6195227B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031156A JP6195227B2 (ja) 2014-02-20 2014-02-20 レドックスフロー電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031156A JP6195227B2 (ja) 2014-02-20 2014-02-20 レドックスフロー電池システム

Publications (2)

Publication Number Publication Date
JP2015156325A JP2015156325A (ja) 2015-08-27
JP6195227B2 true JP6195227B2 (ja) 2017-09-13

Family

ID=54775529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031156A Active JP6195227B2 (ja) 2014-02-20 2014-02-20 レドックスフロー電池システム

Country Status (1)

Country Link
JP (1) JP6195227B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075366A (zh) 2016-04-21 2018-12-21 住友电气工业株式会社 容器型电池
GB2576182B (en) * 2018-08-08 2022-04-06 Renewable Energy Dynamics Tech Ltd Flow battery
JP7017253B2 (ja) * 2019-07-04 2022-02-08 株式会社岐阜多田精機 レドックスフロー電池
JP2022187240A (ja) * 2021-06-07 2022-12-19 三菱重工業株式会社 レドックスフロー電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644996A (ja) * 1992-07-23 1994-02-18 Sumitomo Electric Ind Ltd 電解液流通型電池装置
JP3507818B2 (ja) * 2001-09-07 2004-03-15 住友電気工業株式会社 レドックスフロー電池の運転方法
JP2006024525A (ja) * 2004-07-09 2006-01-26 Kansai Electric Power Co Inc:The 蓄電蓄熱方法とそのシステム
JP2006313691A (ja) * 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd レドックスフロー電池システム
JP2007311210A (ja) * 2006-05-18 2007-11-29 Sumitomo Electric Ind Ltd レドックスフロー電池の劣化状態検知方法

Also Published As

Publication number Publication date
JP2015156325A (ja) 2015-08-27

Similar Documents

Publication Publication Date Title
JP5633478B2 (ja) 蓄電池
JP6725647B2 (ja) 無停電電源装置
KR101412742B1 (ko) 독립형 마이크로그리드 제어 시스템 및 그 제어방법
US9112247B2 (en) Battery system
JP4856692B2 (ja) 電力供給システム及び電力切替装置
US20120176095A1 (en) Electric power management system
US9583943B2 (en) Power supply system, power distribution apparatus, and power control method
WO2015182339A1 (ja) レドックスフロー電池システム、及びレドックスフロー電池システムの運転方法
JP4253598B2 (ja) 電力貯蔵機能を備えた太陽光発電システム
JP2011120449A (ja) 発電システム、制御装置および切替回路
JPWO2018087876A1 (ja) 無停電電源装置
US11329484B2 (en) Electric energy supply device comprising a plurality of usage units which are connected in order to form strands, and method for operating such an energy supply device
US20100178533A1 (en) Redox flow battery
WO2011068133A1 (ja) 充放電システム、発電システムおよび充放電制御装置
JP6195227B2 (ja) レドックスフロー電池システム
RU2013148374A (ru) Система выработки энергии, резервное электропитание, способ монтирования центра обработки данных, контроллер системы выработки энергии, энергетическая система и способ эксплуатации системы выработки энергии
US20190260050A1 (en) Flow battery regulation and control method, regulation and control system thereof, and flow battery
JP2012175864A (ja) 蓄電システム
TW201832442A (zh) 不斷電系統(ups)之轉換電路裝置
JP2015033234A (ja) 電源システム
JP2004357377A (ja) 分散型発電システム
JP2015156266A (ja) レドックスフロー電池システム、及びレドックスフロー電池の運転方法
EP2797198A1 (en) Charging/discharging device and charging/discharging system using same
JP2017118598A (ja) 電力供給システム
CN112204804A (zh) 用于液流电池的电池管理架构

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6195227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170806

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250