JP6189979B2 - Circulating transfer device - Google Patents

Circulating transfer device Download PDF

Info

Publication number
JP6189979B2
JP6189979B2 JP2016003535A JP2016003535A JP6189979B2 JP 6189979 B2 JP6189979 B2 JP 6189979B2 JP 2016003535 A JP2016003535 A JP 2016003535A JP 2016003535 A JP2016003535 A JP 2016003535A JP 6189979 B2 JP6189979 B2 JP 6189979B2
Authority
JP
Japan
Prior art keywords
supply
path
collection
conveyance
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016003535A
Other languages
Japanese (ja)
Other versions
JP2017124882A (en
Inventor
光 古田
光 古田
山田 泰
泰 山田
順一 原
順一 原
神戸 祐二
祐二 神戸
誠 赤岩
誠 赤岩
山本 篤史
篤史 山本
和紀 百瀬
和紀 百瀬
恭弘 皆川
恭弘 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Co Ltd
Original Assignee
Daiichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Co Ltd filed Critical Daiichi Co Ltd
Priority to JP2016003535A priority Critical patent/JP6189979B2/en
Priority to KR1020160141024A priority patent/KR101741371B1/en
Priority to CN201710003111.1A priority patent/CN106956900B/en
Priority to TW106100905A priority patent/TWI651249B/en
Publication of JP2017124882A publication Critical patent/JP2017124882A/en
Application granted granted Critical
Publication of JP6189979B2 publication Critical patent/JP6189979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/04Load carriers other than helical or spiral channels or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • B65G27/24Electromagnetic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/34Jigging conveyors comprising a series of co-operating units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2812/00Indexing codes relating to the kind or type of conveyors
    • B65G2812/03Vibrating conveyors
    • B65G2812/0384Troughs, tubes or the like
    • B65G2812/0388Troughs, tubes or the like characterised by the configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Jigging Conveyors (AREA)
  • Attitude Control For Articles On Conveyors (AREA)

Description

本発明は循環式搬送装置に係り、特に、搬送物を整列路上で整列させながら、整列路から排除された搬送物を上流側へ戻して再び整列路に供給するようにした循環式搬送装置の搬送体の構造に関する。   The present invention relates to a circulation type conveyance device, and more particularly, to a circulation type conveyance device in which a conveyance object removed from the alignment path is returned to the upstream side and supplied to the alignment path again while the conveyance objects are aligned on the alignment path. It relates to the structure of the carrier.

一般に、搬送装置では、搬送途中の搬送物の姿勢を制御することにより、搬送物を所望の姿勢に揃えた整列状態で搬送するように構成されたものがある。この種の搬送装置としては、例えば、パーツフィーダやリニアフィーダなどと呼ばれる振動式搬送装置が知られている。このような搬送装置においては、搬送物を整列路上で搬送しつつ、所望の姿勢にない搬送体を振り落としたり、気流によって吹き飛ばしたりすることにより、選別したり、反転などのように姿勢を変更したりし、整列路の出口に供給される全ての搬送物を所望の姿勢に揃えるようにしている。   In general, there is a transport apparatus configured to transport a transported object in an aligned state in a desired posture by controlling the posture of the transported object in the middle of transport. As this type of conveyance device, for example, a vibration type conveyance device called a parts feeder or a linear feeder is known. In such a transport device, while transporting the transported object on the alignment path, the posture is changed such as sorting or reversing by shaking off the transport body that is not in the desired posture or blowing it away with an air current. In other words, all the conveyed items supplied to the exit of the alignment path are aligned in a desired posture.

上記の搬送物の整列過程においては、整列路上から不適切な姿勢にある搬送物が排除されるため、この搬送物を回収して上流側へ戻し、再び整列路上へ供給するための回収側搬送体を備えた循環式搬送装置が知られている(例えば、以下の特許文献1及び2参照)。この循環式搬送装置では、供給側搬送体と、回収側搬送体とが並行して設けられ、供給側搬送体には、搬送物を整列状態で供給するための供給側整列路と、この供給側整列路に並列し、供給側整列路から排除された搬送物を受け入れて供給側整列路の下流側へ搬送する供給側搬送路とが形成され、回収側搬送体には、供給側搬送路の下流端部から搬送物を受け入れて供給側整列路の上流側へ搬送する回収側搬送路が形成されている。また、供給側搬送体と回収側搬送体の間には、搬送物の移動に支障のない程度の間隙及び段差を有して両搬送体が対面する構造をそれぞれ備えた、供給側搬送路から回収側搬送路へ搬送物を移乗させる回収移乗部と、回収側搬送路から供給側整列路及び供給側搬送路へ搬送物を移乗させる供給移乗部とが設けられる。   In the alignment process of the transported object, the transported object in an inappropriate posture is excluded from the alignment path, so that the recovery side transport for collecting the transported object, returning it to the upstream side, and supplying it to the alignment path again. A circulation type conveyance device provided with a body is known (for example, refer to patent documents 1 and 2 below). In this circulation type conveyance device, a supply side conveyance body and a collection side conveyance body are provided in parallel, and the supply side conveyance body is provided with a supply side alignment path for supplying a conveyance object in an aligned state, and this supply A supply-side conveyance path is formed in parallel with the side alignment path, and receives a conveyance object excluded from the supply-side alignment path and conveys the conveyance object to the downstream side of the supply-side alignment path. A collection-side conveyance path is formed for receiving a conveyed product from the downstream end of the sheet and conveying it to the upstream side of the supply-side alignment path. In addition, between the supply-side transport body and the collection-side transport body, a supply-side transport path having a structure in which both transport bodies face each other with gaps and steps that do not hinder the movement of the transported object. A collection transfer unit that transfers the conveyed product to the collection side conveyance path and a supply transfer unit that transfers the conveyance item from the collection side conveyance path to the supply side alignment path and the supply side conveyance path are provided.

特開2001−063816号公報JP 2001-063816 A 特開2002−068460号公報JP 2002-068460 A

しかしながら、近年の電子部品では急激な微細化が進行してきており、現状では0604(0.6mm×0.4mm)や0402(0.4mm×0.2mm)サイズの立方体状の電子部品(電気抵抗、コンデンサ、インダクタ、ダイオード、トランジスタなど)が多く用いられるようになってきているが、次世代の部品サイズとしては、0201(0.25mm×0.125mm)サイズが検討されるなど、今後、ますます電子部品の微細化が進むことが予想されている。このように搬送物が微細化すると、ごみなどによって搬送物が搬送経路において詰まったり、搬送面に貼り付いたりする搬送不良や、搬送物に汚れが付着することにより不具合が生ずる搬送汚染などの問題が生じやすくなる。また、両搬送体が僅かな間隙及び段差を有して対面する上述の回収移乗部及び供給移乗部において、搬送物がかみこんだり塵埃が詰まったりして搬送動作に支障が生ずる場合もある。   However, rapid miniaturization has progressed in recent electronic components, and at present, cubic electronic components (electrical resistance) of 0604 (0.6 mm × 0.4 mm) or 0402 (0.4 mm × 0.2 mm) size. , Capacitors, inductors, diodes, transistors, etc.) are increasingly being used, but as the next-generation component size, 0201 (0.25 mm x 0.125 mm) size will be considered, and more in the future It is expected that electronic components will be further miniaturized. If the transported material becomes finer in this way, the transported product may become clogged in the transport path due to dust or the like, or may be stuck to the transport surface, or the transport contamination may cause problems due to dirt on the transported material. Is likely to occur. Further, in the above-described collection transfer section and supply transfer section where both transport bodies face each other with a slight gap and a level difference, the transported object may be jammed or clogged with dust, resulting in trouble in the transport operation.

また、上記のような電子部品の微細化とともに、電子システムの製造ラインではライン速度の高速化が進んでいるため、搬送装置にも搬送速度の高速化及び搬送態様の高密度化が要求されるとともに、不適切な姿勢の電子部品を誤って供給したときの復旧のためのライン停止時間による損害が増大しているため、搬送物の整列精度に対する要求水準も高くなってきている。   In addition, along with the miniaturization of electronic components as described above, the line speed of the electronic system production line is increasing. Therefore, the transfer apparatus is also required to increase the transfer speed and increase the density of the transfer mode. At the same time, since the damage due to the line stop time for recovery when electronic components having an inappropriate posture are supplied by mistake is increasing, the required level for the alignment accuracy of the conveyed objects is also increasing.

そこで、本発明は上記問題点を解決するものであり、その課題は、搬送物の微細化に伴う搬送不良や搬送汚染を軽減できるとともに、搬送速度の高速化や搬送態様の高密度化にも寄与できる循環式搬送装置を実現することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is that it is possible to reduce the conveyance failure and conveyance contamination accompanying the miniaturization of the conveyed product, and also to increase the conveyance speed and the density of the conveyance mode. It is to realize a circulation type conveying apparatus that can contribute.

斯かる実情に鑑み、本発明に係る循環式搬送装置は、搬送物を所定の供給方向へ搬送するための振動態様を呈する、給側整列路を備えた供給側搬送体と、搬送物を前記供給方向と逆向きの回収方向へ搬送するための振動態様を呈するとともに、前記供給側整列路から排除された搬送物を受け入れて前記回収方向に搬送し、当該搬送物の少なくとも一部を前記供給側整列路の上流側へ戻す回収側搬送路を備えた回収側搬送体とを具備する。   In view of such a situation, the circulation type conveying device according to the present invention has a supply-side conveyance body having a supply side alignment path that exhibits a vibration mode for conveying a conveyance object in a predetermined supply direction, and the conveyance object. It exhibits a vibration mode for transporting in the collection direction opposite to the supply direction, accepts the transported object excluded from the supply side alignment path, transports it in the recovery direction, and supplies at least a part of the transported object to the supply A collection-side conveyance body including a collection-side conveyance path that returns to the upstream side of the side alignment path.

本発明において、前記供給側整列路から排除された搬送物を前記回収側搬送路へ移乗させる回収移乗部と、前記回収側搬送路により搬送されてきた搬送物を前記供給側整列路へ移乗させる供給移乗部とが設けられ、前記回収移乗部において、前記供給側整列路からの搬送物の排除経路の下流端部が前記回収側搬送路の上流部の上方に間隔を有して張り出すか、或いは、前記供給移乗部において、前記回収側搬送路の下流端部が前記供給側整列路の上流部の上方に間隔を有して張り出すことが好ましい。これによれば、回収移乗部又は供給移乗部において、それぞれ供給側整列路からの排除経路又は回収側搬送路の下流端部が回収側搬送路の上流部又は供給側整列路の上流部の上方に間隔を有して張り出すため、搬送物が微細化しても、回収移乗部又は供給移乗部において搬送物が供給側搬送体と回収側搬送体の間隙に搬送物や塵埃がかみこんで両搬送体が干渉を起こしたり、搬送物が破損したり、塵埃などが発生したりすることを防止できる。この場合に、回収移乗部において、供給側整列路からの排除経路の下流端部が回収側搬送路の上流部の上方に間隔を有して張り出すとともに、供給移乗部において、回収側搬送路の下流端部が供給側整列路の上流部の上方に間隔を有して張り出すことが望ましいことはもちろんである。   In the present invention, the collection transfer unit that transfers the conveyed product excluded from the supply side alignment path to the collection side conveyance path, and the conveyance item conveyed by the collection side conveyance path is transferred to the supply side alignment path. A supply transfer unit is provided, and in the recovery transfer unit, the downstream end portion of the transported material removal path from the supply side alignment path projects above the upstream part of the recovery side transport path with a gap. Alternatively, in the supply transfer unit, it is preferable that the downstream end portion of the collection side conveyance path projects above the upstream portion of the supply side alignment path with a gap. According to this, in the collection transfer unit or the supply transfer unit, the exclusion path from the supply side alignment path or the downstream end of the collection side conveyance path is located above the upstream part of the collection side conveyance path or the upstream part of the supply side alignment path, respectively. Therefore, even if the transported object is miniaturized, the transported object or dust is trapped in the gap between the supply-side transport body and the recovery-side transport body in the collection transfer section or the supply transfer section. It is possible to prevent the conveyance body from causing interference, the conveyance object from being damaged, and dust from being generated. In this case, in the collection transfer section, the downstream end portion of the exclusion path from the supply side alignment path projects with an interval above the upstream section of the collection side conveyance path, and in the supply transfer section, the collection side conveyance path Of course, it is desirable that the downstream end portion of the first and second end portions protrude above the upstream portion of the supply side alignment path with a gap.

本発明において、前記回収移乗部における張り出し構造(供給側搬送体の排除経路の下流端部が回収側搬送体の回収搬送路の上流部に対して上方に間隔を有して張り出す構造、以下同様。)は、前記供給側搬送体の前記供給側整列路からの前記排除経路の下流端部が形成された部分の下方へ向けて側方に突出する上流側突出部が前記回収側搬送体に設けられることにより構成されることが好ましい。また、前記供給移乗部における張り出し構造(回収側搬送体の回収搬送路の下流端部が供給側搬送体の供給側整列路の上流部に対して上方に間隔を有して張り出す構造、以下同様。)は、前記供給側搬送体の前記供給側整列路の上流部が形成された部分の上方へ向けて側方に突出する下流側突出部が前記回収側搬送体に設けられることにより構成されることが好ましい。これによれば、回収移乗部及び供給移乗部の張り出し構造が、いずれも、回収側搬送体において、供給側搬送体の上方若しくは下方に向けて側方に突出する上流側突出部及び下流側突出部を設けることによって構成されることにより、供給側搬送体の搬送構造を優先して設計できるので、供給側整列路上の搬送物の搬送状態を安定化させるとともに、搬送性能や整列性能を高めることができる。特に、供給側搬送体を対称的な形状に構成しやすくなることにより、振動による搬送態様の安定性を確保しつつ搬送速度を高めることができる。また、両搬送体の内側部同士の側方間隔を確保しつつ、装置のコンパクト化を図ることができる。特に、前記回収側搬送体の前記上流側突出部と前記下流側突出部の間にある領域では、前記供給側搬送体の内側面と前記回収側搬送体の内側面とは、相互に側方へ間隔を隔てて対面するように配置され、前記上流側突出部は前記内側面の間の間隙の延長範囲を越えて前記供給搬送体の側へ突出する一方で、前記供給側搬送体の前記下流端部は前記間隙の延長範囲内に対して前記回収側搬送体の側へ突出せず、前記下流側突出部は前記間隙の延長範囲を越えて前記供給側搬送体の側へ突出する一方で、前記供給側搬送体の前記上流部は前記間隙の延長範囲内に対して前記回収側搬送体の側へ突出しないことが望ましい。 In the present invention, the overhang structure in the recovery transfer section (the structure in which the downstream end portion of the supply-side transport body exclusion path projects above the upstream portion of the collection-side transport path of the recovery-side transport body with an interval above, Similarly, the upstream projecting portion projecting sideways toward the lower side of the portion where the downstream end portion of the exclusion path from the supply side alignment path of the supply side transport body is formed is the recovery side transport body. It is preferable that it is comprised by providing in. Further, a projecting structure in the supply transfer section (a structure in which the downstream end of the collection transport path of the collection side transport body projects with an interval upward from the upstream portion of the supply side alignment path of the supply side transport body, below) The same applies to the case where the upstream side of the supply side alignment path of the supply side transport path is formed on the recovery side transport body. It is preferred that According to this, the protruding structures of the recovery transfer section and the supply transfer section are both upstream and downstream protrusions that protrude laterally toward the upper side or lower side of the supply side transport body in the recovery side transport body. By providing a part, it is possible to preferentially design the conveyance structure of the supply-side conveyance body, so that the conveyance state of the conveyance object on the supply-side alignment path is stabilized and the conveyance performance and alignment performance are improved. Can do. In particular, since it becomes easy to configure the supply-side transport body in a symmetrical shape, the transport speed can be increased while ensuring the stability of the transport mode due to vibration. In addition, the apparatus can be made compact while ensuring the lateral distance between the inner portions of both transport bodies. In particular, in an area between the upstream projecting portion and the downstream projecting portion of the recovery side transport body, the inner side surface of the supply side transport body and the inner side surface of the recovery side transport body are lateral to each other. The upstream projecting portion protrudes toward the supply side transport body beyond the extension range of the gap between the inner side surfaces, while facing the supply side transport body. The downstream end portion does not protrude toward the collection-side conveyance body with respect to the extension range of the gap, and the downstream-side protrusion portion protrudes toward the supply-side conveyance body beyond the extension range of the gap. On the other hand, it is desirable that the upstream portion of the supply-side transport body does not protrude toward the collection-side transport body with respect to the extension range of the gap.

本発明において、前記供給側搬送体には、前記供給側整列路と並行し、前記供給側整列路から排除された搬送物を受け入れて前記供給方向へ搬送した先に前記回収側搬送路の上流部との間に前記回収移乗部を構成する下流端部を前記排除経路の下流端部として備えた供給側搬送路がさらに設けられることが好ましい。これによれば、供給側整列路から排除された搬送物は、上記排除経路としての供給側搬送路により供給方向に搬送され、その下流端部において回収移乗部を介して回収側搬送路の上流部に移乗されるため、回収移乗部を限定した範囲に設けても、供給側整列路における搬送物の排除を行う選別領域を広く確保することができる。   In the present invention, the supply-side transport body is parallel to the supply-side alignment path, and accepts a transported object removed from the supply-side alignment path and transports it in the supply direction to the upstream side of the recovery-side transport path. It is preferable that a supply-side conveyance path provided with a downstream end portion constituting the recovery transfer section as a downstream end portion of the exclusion path is further provided between the first and second sections. According to this, the conveyed product excluded from the supply-side alignment path is conveyed in the supply direction by the supply-side conveyance path as the exclusion path, and upstream of the collection-side conveyance path via the collection transfer unit at the downstream end thereof. Therefore, even if the collection transfer unit is provided in a limited range, a wide selection area for removing the conveyed product on the supply side alignment path can be secured.

この場合においては、前記回収移乗部において、前記供給側搬送路の前記下流端部が前記回収側搬送路の上流部の上方に間隔を有して張り出すことが好ましい。また、この張り出し構造は、前記供給側搬送体の前記供給側搬送路の前記下流端部が形成された部分の下方へ向けて側方に突出する前記上流側突出部が前記回収側搬送体に設けられることにより構成されることが望ましい。   In this case, it is preferable that the downstream end portion of the supply-side transport path protrudes above the upstream portion of the recovery-side transport path with a gap in the recovery transfer section. Further, the projecting structure is such that the upstream projecting portion projecting sideways toward the lower side of the portion where the downstream end portion of the supply side transport path of the supply side transport body is formed on the recovery side transport body. It is desirable to be configured by being provided.

本発明において、前記供給移乗部として、前記回収側搬送路の下流端部と前記供給側整列路の上流部との間において、前記回収側搬送路により搬送されてきた搬送物を前記供給側整列路に移乗させる外周側供給移乗部を設け、これに加えて、前記回収側搬送路の下流端部と前記供給側搬送路の上流部との間において、前記回収側搬送路により搬送されてきた搬送物を前記供給側搬送路に移乗させる内周側供給移乗部が、第2の回収移乗部として設けられることが好ましい。上記の外周側供給移乗部では、前記回収側搬送路の外周側下流端部が前記供給側整列路の上流部の上方に間隔を有して張り出すことが好ましい。この張り出し構造は、前記供給側搬送体の前記供給側整列路の上流部が形成された部分の上方へ向けて側方に突出する下流側外周突出部が前記回収側搬送体に設けられることにより構成されることが望ましい。また、上記の内周側供給移乗部では、前記回収側搬送路の内周側下流端部が前記供給側搬送路の上流部の上方に間隔を有して張り出すことが好ましい。この張り出し構造は、前記供給側搬送体の前記供給側搬送路の上流部が形成された部分の上方へ向けて側方に突出する下流側内周突出部が前記回収側搬送体に設けられることにより構成されることが望ましい。   In the present invention, as the supply transfer section, a transported object transported by the recovery-side transport path between the downstream end portion of the recovery-side transport path and the upstream portion of the supply-side alignment path is the supply-side alignment. In addition to this, an outer peripheral side supply transfer section for transferring to the path has been provided, and in addition, it has been transported by the recovery side transport path between the downstream end portion of the recovery side transport path and the upstream portion of the supply side transport path. It is preferable that an inner peripheral side supply transfer unit that transfers the conveyed product to the supply side transfer path is provided as a second recovery transfer unit. In the outer periphery side supply transfer unit, it is preferable that the outer periphery side downstream end portion of the recovery side conveyance path projects above the upstream portion of the supply side alignment path with a gap. In this overhang structure, the recovery-side transport body is provided with a downstream outer peripheral protrusion that protrudes sideways toward the upper side of the portion where the upstream portion of the supply-side alignment path of the supply-side transport body is formed. Desirably configured. Further, in the above-described inner periphery side supply transfer section, it is preferable that the inner periphery side downstream end portion of the collection side conveyance path projects with an interval above the upstream portion of the supply side conveyance path. In this overhanging structure, the recovery-side transport body is provided with a downstream inner peripheral protrusion that protrudes sideways toward the upper side of the portion where the upstream portion of the supply-side transport path of the supply-side transport body is formed. It is desirable to be constituted by.

本発明において、前記回収側搬送路の少なくとも下流側領域には、外周側に形成されて搬送物を選別して通過させる外周側選別路部と、該外周側選別路部の下流側に引き続いて形成され、前記外周側下流端部に至る外周側搬送路部と、前記外周側選別路部の内側に並行して形成され、前記内周側下流端部に至る内周側搬送路部とが設けられることが好ましい。この場合に、外周側選別路部は、搬送路の幅制限や高さ制限等によって選別、単列化、単層化、姿勢選択、姿勢転換などを行うことにより、搬送物の搬送態様を制御する。これにより、搬送物の供給量、姿勢、搬送密度などが回収側搬送路内において制御されて供給側整列路に戻されるため、供給側整列路における搬送物の量や整列状態の安定性を高めることができ、高速・高密度搬送化と、整列状態の高精度化を図ることができる。   In the present invention, at least in the downstream side region of the collection-side conveyance path, an outer peripheral side selection path part that is formed on the outer peripheral side for sorting and passing the conveyed product, and subsequently downstream of the outer peripheral side selection path part. An outer peripheral side conveyance path portion that is formed and reaches the outer peripheral side downstream end portion, and an inner peripheral side conveyance path portion that is formed in parallel with the outer peripheral side sorting path portion and reaches the inner peripheral side downstream end portion. It is preferable to be provided. In this case, the outer perimeter sorting path section controls the transport mode of the transported object by performing sorting, single-rowing, single-layering, posture selection, posture switching, etc. by limiting the width or height of the transport path. To do. As a result, the supply amount, posture, conveyance density, etc., of the conveyed product are controlled in the collection-side conveyance path and returned to the supply-side alignment path, thereby improving the stability of the quantity and alignment state of the conveyed product in the supply-side alignment path. Therefore, high-speed and high-density conveyance and high accuracy of the alignment state can be achieved.

本発明において、前記回収移乗部と前記供給移乗部との間において、前記供給側搬送体の供給側内側部と前記回収側搬送体の回収側内側部とが相互に側方内側に対面し、前記供給側内側部には、前記回収側内側部よりも上方に伸びる仕切壁が設けられることが好ましい。この場合に、前記仕切壁には、前記供給側内側部と前記回収側内側部の間の間隙を上方から覆う形状を備えた被覆部が設けられることが望ましい。これによれば、供給側内側部と回収側内側部が相互に側方に対面する形に構成されることによって、回収移乗部において回収側搬送路の上流部を供給側整列路の排除経路の下流端部の下方に間隔を有して配置しつつ、回収側搬送路を供給側整列路に対して相対的に徐々に上昇させていき、供給移乗部において、回収側搬送路の下流端部を供給側整列路の上流部の上方に間隔を有して配置させることができる。また、供給側内側部に、回収側内側部より上方へ伸びる仕切壁を設けることにより、供給側整列路から排除された搬送物が供給側内側部と回収側内側部との対面領域の間隙内に落下することが抑制される。特に、この仕切壁に、供給側内側部と回収側内側部の間の間隙を上方から覆う形状を備えた被覆部が設けられることにより、供給側整列路から排除されて供給側搬送路へ受け入れられる搬送物が、供給側内側部と回収側内側部との対面領域の間隙内に落下することがさらに確実に防止される。ここで、上記被覆部は、仕切壁から連続して回収側搬送体の側に張り出すように形成されることが望ましい。   In the present invention, between the recovery transfer unit and the supply transfer unit, the supply side inner portion of the supply side transport body and the recovery side inner portion of the recovery side transport body face each other laterally inside, It is preferable that the supply side inner part is provided with a partition wall extending upward from the recovery side inner part. In this case, it is desirable that the partition wall is provided with a covering portion having a shape that covers the gap between the supply side inner portion and the recovery side inner portion from above. According to this, the supply side inner portion and the collection side inner portion are configured to face each other sideways, so that the upstream portion of the collection side conveyance path is connected to the supply side alignment path exclusion path in the collection transfer section. The collection-side transport path is gradually raised relative to the supply-side alignment path while being arranged with a gap below the downstream end, and the downstream end of the collection-side transport path in the supply transfer section Can be arranged above the upstream portion of the supply side alignment path with a gap. In addition, by providing a partition wall extending upward from the collection side inner part on the supply side inner part, the transported object excluded from the supply side alignment path is placed in the gap in the facing region between the supply side inner part and the collection side inner part. It is suppressed that it falls to. In particular, the partition wall is provided with a covering portion having a shape that covers the gap between the supply-side inner portion and the collection-side inner portion from above, so that it is excluded from the supply-side alignment path and received by the supply-side conveyance path. The conveyed product is further reliably prevented from falling into the gap in the facing area between the supply side inner part and the collection side inner part. Here, it is desirable that the covering portion is formed so as to continuously protrude from the partition wall toward the collection side transport body.

本発明において、前記供給側整列路(及び、設けられる場合には前記供給側搬送路)は直線状に構成され、前記回収側搬送路は前記上流側突出部に設けられた上流部及び前記下流側突出部に設けられた下流部が前記供給側搬送体の側の側方に突出した、](square bracket)形、若しくは、〕(tortoise shell bracket)形の平面形状を備えていることが好ましい。これによれば、供給側搬送体を直線状に構成できるとともに供給方向の左右に対称的に構成しやすくなることから、供給側整列路の整列性能を確保することが容易になるとともに、搬送性能を向上させやすくなり、搬送態様も安定化しやすくなる。特に、供給側搬送体の左右方向の非対称性を低減することにより、理想的な振動態様を精密に実現できるため、搬送性能を高めることができる。この一方で、回収側搬送体の概略構造は回収方向の左右に非対称になるものの、上記の張り出し構造によって上下方向に重なり合う部分を除いて供給側搬送体との干渉を避けることができるため、両搬送体の内側部同士の左右方向の間隔を十分に確保しつつ、装置全体を小幅化、小型化を図ることが容易になる。   In the present invention, the supply-side alignment path (and the supply-side conveyance path, if provided) is configured in a straight line, and the recovery-side conveyance path includes an upstream portion and a downstream portion provided in the upstream-side protruding portion. It is preferable that the downstream portion provided in the side protruding portion has a planar shape of a] (square bracket) shape or a] (tortoise shell bracket) shape that protrudes to the side of the supply side conveyance body. . According to this, since the supply-side transport body can be configured linearly and easily configured symmetrically to the left and right of the supply direction, it is easy to ensure the alignment performance of the supply-side alignment path and the transport performance. It becomes easy to improve, and it becomes easy to stabilize a conveyance aspect. In particular, by reducing the asymmetry in the left-right direction of the supply-side transport body, an ideal vibration mode can be precisely realized, so that the transport performance can be improved. On the other hand, although the schematic structure of the collection-side transport body is asymmetrical to the left and right in the collection direction, the above projecting structure can avoid interference with the supply-side transport body except for portions that overlap in the vertical direction. It becomes easy to reduce the width and the size of the entire apparatus while ensuring a sufficient space in the left-right direction between the inner portions of the carrier.

本発明において、前記供給側搬送体と前記回収側搬送体の間の間隙の最小値は、前記搬送物の最大寸法値よりも大きいことが好ましい。これによれば、上記間隙に搬送物がかみこんで両搬送体が干渉したり、上記間隙に塵埃が詰まったりすることによる不具合の発生を抑制できる。ここで、上記最大寸法値とは、搬送物について種々の方向に測った長さのうちの最大値を言う。また、本発明において、前記供給側搬送体を振動させる供給側加振手段と、前記回収側搬送体を振動させる回収側加振手段とを別々に有することが好ましい。また、前記供給側加振手段により振動する前記供給側搬送体の振動周波数は、前記回収側加振手段による振動する前記回収側搬送体の振動周波数よりも高いことが望ましい。さらに、前記供給側搬送体の振動の上下動及び振幅は、前記回収側搬送体の振動の上下動及び振幅より小さいことが望ましい。   In the present invention, it is preferable that a minimum value of a gap between the supply side transport body and the recovery side transport body is larger than a maximum dimension value of the transported object. According to this, it is possible to suppress the occurrence of troubles due to the conveyance object biting into the gap and the two conveyance bodies interfering with each other or the gap being clogged with dust. Here, the said maximum dimension value means the maximum value of the length measured in various directions about the conveyed product. Moreover, in this invention, it is preferable to have separately the supply side vibration means to vibrate the said supply side conveyance body, and the collection | recovery side vibration means to vibrate the said collection side conveyance body. Moreover, it is desirable that the vibration frequency of the supply-side conveyance body that vibrates by the supply-side vibration means is higher than the vibration frequency of the collection-side conveyance body that vibrates by the collection-side vibration means. Furthermore, it is desirable that the vertical movement and amplitude of the vibration of the supply side transport body are smaller than the vertical movement and amplitude of the vibration of the collection side transport body.

本発明によれば、搬送物の微細化に伴う搬送不良や搬送汚染を軽減できるとともに、搬送速度の高速化や搬送態様の高密度化にも寄与できる循環式搬送装置を実現することができるという優れた効果を奏し得る。   According to the present invention, it is possible to realize a circulation type conveying apparatus that can reduce conveyance defects and conveyance contamination associated with the miniaturization of conveyed items, and that can contribute to higher conveyance speed and higher conveyance mode density. An excellent effect can be achieved.

本発明に係る循環式搬送装置の実施形態の全体構成を斜め前方の回収側搬送体の側から見た様子を示す斜視図(a)、及び、斜め前方の供給側搬送体の側から見た様子を示す斜視図(b)である。The perspective view (a) which shows a mode that the whole structure of embodiment of the circulation type conveying apparatus which concerns on this invention was seen from the side of the collection | recovery side conveyance body of diagonally forward, and the side of the supply side conveyance body of diagonally forward was seen. It is a perspective view (b) which shows a mode. 同実施形態の(図3の2倍に拡大した)拡大平面図である。FIG. 4 is an enlarged plan view (enlarged twice as large as FIG. 3) of the same embodiment. 同実施形態の左側面図(a)、正面図(b)、及び、右側面図(c)である。It is the left view (a), the front view (b), and the right view (c) of the embodiment. 同実施形態の図2のA−A線に沿った断面を矢印の方向に示す断面矢視図である。It is a cross-sectional arrow view which shows the cross section along the AA line of FIG. 2 of the embodiment in the direction of the arrow. 同実施形態の図2のB−B線に沿った断面を矢印の方向に示す断面矢視図である。It is a cross-sectional arrow view which shows the cross section along the BB line of FIG. 2 of the embodiment in the direction of the arrow. 同実施形態の図2のC−C線に沿った断面を矢印の方向に示す断面矢視図である。It is a cross-sectional arrow view which shows the cross section along CC line of FIG. 2 of the embodiment in the direction of an arrow. 同実施形態の図2のD−D線に沿った断面を矢印の方向に示す断面矢視図である。It is a cross-sectional arrow view which shows the cross section along the DD line of FIG. 2 of the embodiment in the direction of an arrow. 同実施形態の図2のE−E線に沿った断面を矢印の方向に示す断面矢視図である。It is a cross-sectional arrow view which shows the cross section along the EE line of FIG. 2 of the embodiment in the direction of an arrow.

次に、添付図面を参照して本発明に係る循環式搬送装置の実施形態について詳細に説明する。図1乃至図3は、本実施形態の装置全体を示す外観図、図4乃至図8は、図2に示す各部の拡大断面図である。   Next, an embodiment of a circulating transfer device according to the present invention will be described in detail with reference to the accompanying drawings. FIGS. 1 to 3 are external views showing the entire apparatus of this embodiment, and FIGS. 4 to 8 are enlarged sectional views of respective parts shown in FIG.

本実施形態の循環式搬送装置10は、供給側加振機構13の上部に搭載された供給側搬送体11と、回収側加振機構14の上部に搭載された回収側搬送体12とを備える。供給側搬送体11と回収側搬送体12は、相互に並行する姿勢で取り付けられている。供給側搬送体11は、供給側加振機構13の上部に搭載されたベースブロック11Eと、このベースブロック11Eの上部に取り付けられたアタッチメントブロック11Fとによって構成される。供給側加振機構13は、図示しないベースプレート上に、供給方向に対して斜め前方に向くようにやや傾斜した姿勢の板ばねを、それぞれ前後二か所に介して弾性支持された図示しないトッププレートを有し、このトッププレートが図示しない圧電駆動体(圧電素子)や電磁駆動体(電磁石)などからなる加振源により供給方向Fの前方へ斜め上方に向かう往復振動を発生させるように構成される。そして、供給側搬送体11(実際には上記ベースブロック11E)は、上記トッププレート上に搭載されている。   The circulation type conveyance device 10 of the present embodiment includes a supply side conveyance body 11 mounted on the upper side of the supply side vibration mechanism 13 and a recovery side conveyance body 12 mounted on the upper side of the recovery side vibration mechanism 14. . The supply-side transport body 11 and the collection-side transport body 12 are attached in a posture parallel to each other. The supply side conveyance body 11 is comprised by the base block 11E mounted in the upper part of the supply side vibration mechanism 13, and the attachment block 11F attached to the upper part of this base block 11E. The supply-side vibration mechanism 13 is a top plate (not shown) that is elastically supported via two front and rear positions on a base plate (not shown) in a slightly inclined posture so as to face obliquely forward with respect to the supply direction. The top plate is configured to generate a reciprocating vibration that is obliquely upwardly directed forward in the supply direction F by an excitation source including a piezoelectric driving body (piezoelectric element) or an electromagnetic driving body (electromagnet) (not shown). The The supply-side transport body 11 (actually, the base block 11E) is mounted on the top plate.

上記供給側加振機構13の側方には、上記回収側搬送体12を搭載した回収側加振機構14が配置される。この回収側加振機構14も、供給側加振機構13と共通のベースプレート上に、供給側加振機構13と同様の図示しない弾性支持用の板ばね及びトッププレートを有し、上記と同様の加振源により上記と同様に往復振動を発生させるように構成される。そして、回収側搬送体12は、このトッププレート上に搭載されている。ただし、この回収側加振機構14によって発生する振動は、上記供給方向Fとは逆向きの回収方向Bの前方へ斜め上方に向かう往復振動である。これによって、供給側搬送体11上の供給側整列路11a及び供給側搬送路11bでの搬送物の搬送の向きである供給方向Fと、回収側搬送体12上の回収側搬送路12aでの搬送物の搬送の向きである回収方向Bとは、相互に逆向きとなる。   A collection-side vibration mechanism 14 on which the collection-side transport body 12 is mounted is disposed on the side of the supply-side vibration mechanism 13. The collection-side vibration mechanism 14 also has a plate spring and a top plate for elastic support (not shown) similar to the supply-side vibration mechanism 13 on the same base plate as the supply-side vibration mechanism 13. A reciprocating vibration is generated by the vibration source in the same manner as described above. The collection-side transport body 12 is mounted on this top plate. However, the vibration generated by the collection-side vibration mechanism 14 is a reciprocating vibration that is directed obliquely upward in the collection direction B opposite to the supply direction F. As a result, the supply direction F, which is the direction of conveyance of the conveyed product on the supply side alignment path 11 a and the supply side conveyance path 11 b on the supply side conveyance body 11, and the recovery side conveyance path 12 a on the collection side conveyance body 12. The collection direction B, which is the direction of conveyance of the conveyed product, is opposite to each other.

なお、供給側加振機構13は、一般に、供給側整列路11aにおいて搬送物が安定した姿勢で高速に搬送されるように、高い振動周波数(例えば、300Hz〜1.5kHz)で、相対的に振動の上下動を小さくするとともに振幅も小さくすることにより、搬送方向以外の振動モードをほとんど含まないように安定した振動を供給側搬送体11に与えるように構成される。これにより、搬送中において搬送物が上下に暴れにくくなり、搬送姿勢も安定したものとなる。一方、回収側搬送体12は、後述するように供給側整列路11aや供給側搬送路11bを基準としたときに回収側搬送路12aを相対的に上流側から下流側へ向けて上り勾配となるように形成しなければならないため、回収側加振機構14により与えられた振動の上下動や振幅も相対的に大きくしないと、搬送物が滞留しやすくなり、効率的な搬送ができない。そこで、回収側加振機構14では、上り勾配の回収側搬送路12aにおいて効率的に搬送物を移動させるために、低い振動周波数(例えば、50〜200Hz程度)の振動を与えるとともに、当該振動の上下動や振幅をある程度大きくすることが好ましい。なお、振動式搬送装置では当然の前提事項ではあるが、本実施形態では、上述のように供給側搬送体11と回収側搬送体12とが別々の振動態様を呈するように駆動されるため、両搬送体11と12は動作時において互いに接触しないように、所定の間隙(少なくとも搬送物の最大寸法値より大きい間隙)を有するように配置されている。   Note that the supply-side vibration mechanism 13 generally has a relatively high vibration frequency (for example, 300 Hz to 1.5 kHz) at a relatively high speed so that the conveyed product is conveyed at a high speed in a stable posture in the supply-side alignment path 11a. By reducing the vertical movement of the vibration and reducing the amplitude, the supply-side transport body 11 is configured to give stable vibration so as not to include vibration modes other than the transport direction. As a result, the conveyed product is less likely to move up and down during conveyance, and the conveyance posture is also stable. On the other hand, as will be described later, the collection-side transport body 12 has an upward slope relative to the collection-side transport path 12a from the upstream side to the downstream side when the supply-side alignment path 11a and the supply-side transport path 11b are used as a reference. Therefore, unless the vertical movement and amplitude of the vibration applied by the collection-side vibration mechanism 14 are relatively increased, the conveyed product tends to stay and efficient conveyance cannot be performed. Therefore, the collection-side vibration mechanism 14 applies a vibration with a low vibration frequency (for example, about 50 to 200 Hz) in order to efficiently move the transported object in the upward-gradient collection-side transport path 12a and It is preferable to increase the vertical movement and amplitude to some extent. In addition, although it is a natural prerequisite in the vibration type transfer device, in the present embodiment, as described above, the supply-side transfer body 11 and the collection-side transfer body 12 are driven so as to exhibit different vibration modes. Both conveying bodies 11 and 12 are arranged so as to have a predetermined gap (at least a gap larger than the maximum dimension value of the conveyed object) so as not to contact each other during operation.

供給側搬送体11の上記ベースブロック11Eには、供給方向Fに沿った延長形状のアタッチメントブロック11Fを取り付けるための取付座部と、この取付座部の側方に、供給方向Fとほぼ平行に伸びるように構成された直線状の供給側搬送路11bとが形成されている。また、上記取付座部に取り付けられた上記アタッチメントブロック11Fには、供給方向Fに伸びるように構成された直線状の供給側整列路11aが形成される。供給側整列路11aは、基本的には単層、単列に整列された搬送物を直線状に搬送していくものであり、上流部で受け入れた搬送物を単層、単列化するため或いは選別するための、搬送物に対する幅制限構造や高さ制限構造、搬送物の姿勢や形状等を検出するセンサ出力に応じて動作する排除用気流の吹き付け構造11pや反転用気流の吹き付け構造などを、V溝状やR溝状のトラック構造と組み合わせた構成を有する公知の選別領域11Dを備えている。なお、供給側整列路11aは、特に限定されるものではないが、確実な搬送状態の制御や高効率搬送を実現するために、基本的に水平に伸びるように設定される。   The base block 11E of the supply-side transport body 11 has a mounting seat portion for attaching an attachment block 11F having an extended shape along the supply direction F, and the side of the mounting seat portion is substantially parallel to the supply direction F. A linear supply-side transport path 11b configured to extend is formed. The attachment block 11F attached to the attachment seat is formed with a linear supply side alignment path 11a configured to extend in the supply direction F. The supply-side alignment path 11a basically transports the transported objects arranged in a single layer and single row in a straight line, and in order to make the transported material received in the upstream part into a single layer and a single row. Alternatively, a width-limiting structure or a height-limiting structure for a transported object for sorting, a discharge airflow blowing structure 11p that operates according to a sensor output that detects the posture or shape of the transported object, a reverse airflow blowing structure, or the like Is provided with a known sorting region 11D having a configuration combined with a V-groove or R-groove track structure. The supply side alignment path 11a is not particularly limited, but is basically set to extend horizontally in order to realize reliable control of the conveyance state and high-efficiency conveyance.

また、アタッチメントブロック11Eにおいては、上記供給側整列路11aに対して供給側搬送路11b側に隣接する部分に、供給側整列路11aから上記各構造によって排除された搬送物を供給側搬送路11bに向けて落下させるための傾斜面(搬送物が滑落する面)11sが形成されている。そして、供給側搬送路11bの搬送底面と、この傾斜面11sとには、搬送物の貼り付き防止のために、いずれも、搬送物が移動していく方向に沿って伸びるように形成された複数のR溝がストライプ状に平行に形成されている。ここで、R溝の間の平坦部の幅は搬送物のサイズ以下となるように構成することが望ましい。また、このR溝構造の代わりに、或いは、このR溝構造とともに、ショットブラストなどによる他の貼り付き防止加工や低摩擦樹脂コーティングなどを搬送面や傾斜面に施してもよい。上述のように、供給側搬送体11は高い振動周波数の小さな上下動及び振幅を備えた振動により搬送物を供給方向Fに向けて移動させていくので、微小な電子部品などの微細で軽量の搬送物では搬送面に搬送物が貼り付きやすく、スムーズに移動しにくく、滞留しやすくなるため、上記のような対策をとることが特に有効である。   In addition, in the attachment block 11E, a transported object that has been excluded from the supply-side alignment path 11a by the above-described structures in a portion adjacent to the supply-side transport path 11b with respect to the supply-side alignment path 11a. An inclined surface (a surface on which the conveyed product slides) 11s for dropping toward the surface is formed. And in order to prevent sticking of a conveyance thing, all were formed in the conveyance bottom face of the supply side conveyance path 11b, and this inclined surface 11s so that a conveyance thing may move along the direction which moves. A plurality of R grooves are formed in parallel in a stripe shape. Here, it is desirable that the width of the flat portion between the R grooves is configured to be equal to or smaller than the size of the conveyed product. Further, instead of this R groove structure or together with this R groove structure, other sticking prevention processing such as shot blasting or low friction resin coating may be applied to the transport surface or the inclined surface. As described above, the supply-side transport body 11 moves the transported object in the supply direction F by vibration with a small vertical movement and amplitude with a high vibration frequency, so that it is fine and lightweight such as a minute electronic component. In the case of a conveyed product, the conveyed item is likely to stick to the conveyance surface, and is difficult to move smoothly and is likely to stay. Therefore, it is particularly effective to take the above measures.

本実施形態の循環式搬送装置10において搬送する搬送物は、特に限定されるものではないが、一例として、電気抵抗、コンデンサ(積層セラミックコンデンサ)、インダクタ、ダイオード、トランジスタなどの電子部品であって、角部が丸められた立方体形状を備えたものを想定している。この搬送物の寸法は、一般に0201と呼ばれるサイズを有し、具体的には長さL=0.25mm、厚さ及び幅d=0.125mmである。ここで、上述のような立方体形状の搬送物の場合、上記搬送物の最大寸法値は、長さ方向の一方の端部の四つの頂点のうちの一つの頂点と、他方の端部の四つの頂点のうちの、前記一つの頂点とは対角位置にある頂点(すなわち、前記一つの頂点から一つの稜線のみ若しくは一つの表面のみを通過して到達することができない頂点)とを結ぶ方向に計測した、上記二つの頂点間の距離に相当する長さを言う。また、上記搬送物に対応する本実施形態の装置サイズは、供給方向の全長が200mm程度である。   The transported material to be transported in the circulating transport device 10 of the present embodiment is not particularly limited, but examples include electronic components such as an electric resistance, a capacitor (multilayer ceramic capacitor), an inductor, a diode, and a transistor. Suppose a cube with rounded corners. The size of the conveyed product has a size generally called 0201, specifically, a length L = 0.25 mm, a thickness and a width d = 0.125 mm. Here, in the case of a cube-shaped conveyance object as described above, the maximum dimension value of the conveyance object is one vertex of four vertices at one end in the length direction and four at the other end. Of the two vertices, the one vertex is connected to a vertex in a diagonal position (that is, a vertex that cannot be reached from the one vertex through only one ridge line or only one surface). The length corresponding to the distance between the two vertices is measured. Moreover, the apparatus size of this embodiment corresponding to the said conveyed product has a full length of a supply direction of about 200 mm.

本実施形態において、上記供給側搬送路11bは直線状に構成され、上記供給側整列路11aと並行するように形成されている。ここで、供給側搬送路11bの供給方向Fに見た勾配は、上記供給側整列路11aと同様に水平であってもよいが、搬送物をより高速かつ確実に移動させるために、図示のように若干の下り勾配となるように形成してもよい。また、供給側搬送路11bでは、上流部から下流部までは樋状の断面溝を備えた直線状に形成されているが、その下流端部11beは、側方に向けて開口し、しかも、やや下り勾配となるように形成された搬送面を備えている。なお、この下流端部11beの搬送底面にも上記の複数のR溝が形成されているが、それらのR溝は、供給側搬送路11bの他の部分のように供給方向Fに伸びた形ではなく、下り勾配に沿った方向、すなわち、隣接する回収側搬送路12aに向かう側方に延長された形状を備える。供給側搬送路11bの下流端部11beと回収側搬送路12aの上流部は、後述する回収移乗部Xを構成する。   In the present embodiment, the supply-side transport path 11b is configured in a straight line and is formed in parallel with the supply-side alignment path 11a. Here, the gradient seen in the supply direction F of the supply side conveyance path 11b may be horizontal as in the case of the supply side alignment path 11a. Thus, it may be formed to have a slight downward slope. Further, in the supply-side transport path 11b, the upstream end portion to the downstream portion is formed in a straight line shape having a bowl-shaped cross-sectional groove, but the downstream end portion 11be opens sideways, A conveying surface formed to have a slight downward slope is provided. The plurality of R grooves are also formed on the conveyance bottom surface of the downstream end portion 11be, but these R grooves extend in the supply direction F like other portions of the supply side conveyance path 11b. Instead, it has a shape extending in the direction along the downward gradient, that is, in the side toward the adjacent collection-side transport path 12a. The downstream end portion 11be of the supply side conveyance path 11b and the upstream portion of the collection side conveyance path 12a constitute a collection transfer unit X described later.

なお、供給側搬送路11bの下流端部11beは、供給側搬送体11の振動方向によって定まる供給方向Fとほぼ直交する方向に伸びるため、搬送物を回収側搬送路12aにスムーズに排出するために、搬送底面を所定の角度βだけ、回収側搬送路12aに向けて傾斜させ、下り勾配となるように形成している。図示例では、角度βは5度−10度程度である。   The downstream end portion 11be of the supply-side transport path 11b extends in a direction substantially orthogonal to the supply direction F determined by the vibration direction of the supply-side transport body 11, so that the transported material can be smoothly discharged to the collection-side transport path 12a. In addition, the conveyance bottom surface is inclined by a predetermined angle β toward the collection-side conveyance path 12a to form a downward gradient. In the illustrated example, the angle β is about 5 degrees to 10 degrees.

本実施形態において、上記回収側搬送路12aは、供給側搬送路11bの下流端部11beの下方に配置される上流部を備え、回収方向に向けて僅かな上り勾配となるように形成されている。回収側搬送路12aは全体として樋状断面を有するが、図4に示すように、下流部に達するまでは外周側に向けて幅方向に傾斜した搬送底面12adを備えている。回収側搬送路12aの上記搬送底面12adは幅方向外側へ傾斜した状態のままで図5に示すように下流側に向けて徐々に上昇していく。そして、回収側搬送路12aの下流部分には、図6に示すように、回収側搬送路12aの幅方向の外周側に、上流側から絞り込まれ、狭幅化された細幅の外周側選別路部12bが上記搬送底面12adの下流側に連続して形成される。また、この外周側選別路部12bの下流側に引き続いて、図7に示すように、凹状(樋状)の断面構造を有するように形成された外周側搬送路部12cが形成される。この外周側搬送路部12cは外周側下流端部12ceまで達し、搬送物を上記供給側整列路11aの上流部に移乗させる外周側供給移乗部Yoを構成する。また、回収側搬送路12aには、上記外周側選別路部12bと並行して凹状(樋状)の断面構造を有するように形成された内周側搬送路部12dが形成される。この内周側搬送路部12dは内周側下流端部12deまで達し、搬送物を上記供給側搬送路11bの上流部に移乗させる内周側供給移乗部Yiを構成する。なお、外周側供給移乗部Yoと内周側供給移乗部Yiは、上記の供給移乗部Yを構成する。   In the present embodiment, the collection-side conveyance path 12a includes an upstream portion disposed below the downstream end portion 11be of the supply-side conveyance path 11b, and is formed to have a slight upward gradient toward the collection direction. Yes. The collection-side conveyance path 12a has a bowl-shaped cross section as a whole, but includes a conveyance bottom surface 12ad inclined in the width direction toward the outer peripheral side until reaching the downstream portion as shown in FIG. The conveyance bottom surface 12ad of the collection-side conveyance path 12a is gradually raised toward the downstream side as shown in FIG. Then, in the downstream portion of the collection-side conveyance path 12a, as shown in FIG. 6, the narrow-side narrowed outer circumferential side is narrowed down from the upstream side to the outer circumferential side in the width direction of the collection-side conveyance path 12a. A path portion 12b is continuously formed on the downstream side of the conveyance bottom surface 12ad. Further, subsequently to the downstream side of the outer peripheral side sorting path portion 12b, as shown in FIG. 7, an outer peripheral side transport path portion 12c formed so as to have a concave (樋 -shaped) cross-sectional structure is formed. This outer peripheral side conveyance path part 12c reaches the outer peripheral side downstream end part 12ce, and constitutes an outer peripheral side supply transfer part Yo for transferring the conveyed product to the upstream part of the supply side alignment path 11a. In addition, the recovery-side transport path 12a is formed with an inner-periphery-side transport path portion 12d formed so as to have a concave (tubular) cross-sectional structure in parallel with the outer-periphery-side sorting path portion 12b. The inner circumferential conveyance path portion 12d reaches the inner circumferential downstream end portion 12de, and constitutes an inner circumferential supply transfer section Yi that transfers the conveyed product to the upstream portion of the supply conveyance path 11b. The outer periphery side supply transfer unit Yo and the inner periphery side supply transfer unit Yi constitute the supply transfer unit Y described above.

図4に示すように、回収側搬送体12は、回収側搬送路12aの上流部分に対応する箇所が供給側搬送体11に向けて側方へ突出し、供給側搬送体11の供給側搬送路11bの下流端部11beの下方に配置される上流側突出部12Eを備えている。この上流側突出部12Eの上面には、上記回収方向Bに沿った直線状の回収側搬送路12aの端部に、当該回収方向Bに対して屈折した向き、すなわち、供給側搬送体11に向けてまっすぐに、或いは、斜めに、それぞれ伸びる上流端部12aeが形成されている。回収側搬送路12aの上流端部12aeの搬送底面は、その下流側の回収側搬送路12aの他の部分と同様に、外周側、すなわち、供給側搬送体11から離れる側に向けて下り勾配(角度α)となるように構成されている。ここで、当該角度αは、搬送物を回収側搬送路12a内の外周側箇所へ寄せ集め、後述する外周側選別路部12bに沿って搬送物を高密度に整列させるためである。角度αは通常5度−10度程度である。なお、図示例の回収側搬送路12aの搬送底面12adは、供給側搬送路11bとは異なり、複数のR溝構造を備えていない。これは、回収側搬送体12の振動の上下動や振幅が供給側搬送体11のそれよりも大きいため、搬送物の搬送底面12adへの貼り付きや一部箇所における搬送物の滞留が生じにくいからである。   As shown in FIG. 4, the collection-side transport body 12 has a portion corresponding to the upstream portion of the collection-side transport path 12 a protruding sideways toward the supply-side transport body 11, and the supply-side transport path of the supply-side transport body 11. An upstream protrusion 12E is provided below the downstream end 11be of 11b. On the upper surface of the upstream protruding portion 12E, the end of the linear collection side conveyance path 12a along the collection direction B is refracted with respect to the collection direction B, that is, on the supply side conveyance body 11. An upstream end portion 12ae extending straightly or obliquely is formed. The bottom surface of the upstream end portion 12ae of the collection-side conveyance path 12a is inclined downward toward the outer peripheral side, that is, the side away from the supply-side conveyance body 11, similarly to the other parts of the collection-side conveyance path 12a on the downstream side. (An angle α). Here, the angle α is for gathering the transported objects to the outer peripheral side in the collection-side transport path 12a and aligning the transported objects with high density along the outer peripheral side sorting path portion 12b described later. The angle α is usually about 5 to 10 degrees. Note that the conveyance bottom surface 12ad of the collection-side conveyance path 12a in the illustrated example does not include a plurality of R-groove structures unlike the supply-side conveyance path 11b. This is because the vertical movement and amplitude of the vibration of the collection-side transport body 12 is larger than that of the supply-side transport body 11, so that the transported object is less likely to stick to the transport bottom surface 12ad and the transported object stays in some places. Because.

上記構造により、回収移乗部Xにおいて、供給側搬送路11bの下流端部11beは、回収側搬送路12aの上流部(図示例では上流端部12ae)の上方に間隔を有して張り出した構造とされる。すなわち、上記下流端部11beを構成する供給側搬送体11の一部分は、側方に突出することにより、回収側搬送路12aの上流端部12aeを備えた回収側搬送体12の上流側突出部12Eに対して、上方に離間した状態で配置されている。これにより、下流端部11beから上流端部12aeに落下した搬送物は、供給側搬送体11と回収側搬送体12との間の間隙に入り込みにくくなるとともに、仮に当該間隙に搬送物や塵埃などが入り込んでも、両搬送体の間にかみこまれることがないように構成される。例えば、図4に示すように、上記の張り出し構造において、両搬送体11と12の間の上下方向の間隙Gtxは、搬送物の寸法の最大寸法より大きく確保することが好ましい。ただし、この上下方向の間隙Gtxは、供給側搬送体11と回収側搬送体12のそれぞれの振動の上下動のストロークを考慮し、両搬送体の振動が逆相となったときに振動の上下動によって搬送物がかみこまれる虞がないように、搬送物の最大寸法値よりも大きい値に設計される。例えば、搬送物が上述の0201サイズとすれば、上述の振動の上下動のストロークをも考慮すると、0.4mm以上であることが好ましく、図示例では、上記間隙Gtxを0.4mm−0.5mm程度の値にしている。このようにすると、搬送物だけでなく、塵埃などが詰まったりすることも防止できる。   With the above-described structure, in the recovery transfer section X, the downstream end portion 11be of the supply side transport path 11b protrudes above the upstream portion of the recovery side transport path 12a (upstream end portion 12ae in the illustrated example) with a gap. It is said. That is, a part of the supply-side transport body 11 constituting the downstream end portion 11be projects sideways, whereby the upstream-side projecting portion of the recovery-side transport body 12 including the upstream end portion 12ae of the recovery-side transport path 12a. 12E is arranged in a state of being spaced upward. As a result, the conveyed product that has fallen from the downstream end portion 11be to the upstream end portion 12ae is less likely to enter the gap between the supply-side conveyance body 11 and the collection-side conveyance body 12, and the conveyance object, dust, or the like temporarily enters the gap. Even if it enters, it is configured so that it will not be caught between both transport bodies. For example, as shown in FIG. 4, in the overhang structure described above, it is preferable that the vertical gap Gtx between the transport bodies 11 and 12 is secured to be larger than the maximum dimension of the transported object. However, the vertical gap Gtx takes into account the vertical movement strokes of the supply-side transport body 11 and the collection-side transport body 12, and when the vibrations of both transport bodies are in opposite phases, It is designed to have a value larger than the maximum dimension value of the conveyed product so that the conveyed product is not trapped by the movement. For example, if the transported object is the above-mentioned 0201 size, it is preferably 0.4 mm or more in consideration of the above-described vertical stroke of vibration, and in the illustrated example, the gap Gtx is set to 0.4 mm-0. The value is about 5 mm. In this way, it is possible to prevent clogging of not only conveyed objects but also dust and the like.

一方、図7及び図8に示すように、回収側搬送体12は、下流側の端部付近において、供給側搬送体11の側(側方)へ突出し、供給側搬送体11の供給側整列路11a及び供給側搬送路11bの上流部の上方に配置される下流側突出部12Fを備えている。この下流側突出部12Fには、上記の外周側移乗部Yoにおいて、外周側搬送路部12cの上記外周側下流端部12ceを構成する外周側突出部12Foと、上記の内周側移乗部Yiにおいて、内周側搬送路部12dの上記内周側下流端部12deを構成する内周側突出部12Fiとを有する。ここで、外周側突出部12Foに形成された外周側下流端部12ceは、供給側整列路11aの上流部の上方に間隔を有して張り出した構造を有し、内周側突出部12Fiに形成された内周側下流端部12deは、供給側搬送路11bの上流部の上方に間隔を有して張り出した構造を有する。ここで、供給側整列部11aは供給側搬送路11bよりも回収側搬送体11から離間した位置にあるため、外周側突出部12Foは内周側突出部12Fiよりも側方への突出(張出)量が大きい。なお、この供給移乗部Y(外周側供給移乗部Yo及び内周側供給移乗部Yi)においても、上下方向の間隙Gtyo(図8参照)とGtyi(図7参照)は、上記間隙Gtxと同様であり、搬送物の最大寸法値より大きい値、例えば、0.4mm以上とすることが好ましく、図示例では、それぞれ、0.5mm−0.6mm程度の値に設計されている。   On the other hand, as shown in FIGS. 7 and 8, the collection-side transport body 12 projects toward the supply-side transport body 11 (side) near the downstream end, and the supply-side transport body 11 is aligned on the supply side. A downstream projecting portion 12F is provided above the upstream portion of the path 11a and the supply-side transport path 11b. The downstream protrusion 12F includes an outer peripheral protrusion 12Fo that constitutes the outer peripheral downstream end 12ce of the outer peripheral transport path 12c and the inner peripheral transfer part Yi in the outer peripheral transfer part Yo. The inner circumferential side projecting portion 12Fi constituting the inner circumferential side downstream end portion 12de of the inner circumferential side conveyance path portion 12d. Here, the outer peripheral side downstream end portion 12ce formed in the outer peripheral side protruding portion 12Fo has a structure protruding above the upstream portion of the supply side alignment path 11a with a gap, and the inner peripheral side protruding portion 12Fi has The formed inner peripheral downstream end 12de has a structure protruding above the upstream portion of the supply-side transport path 11b with a gap. Here, since the supply side alignment portion 11a is located at a position farther from the collection side conveyance body 11 than the supply side conveyance path 11b, the outer peripheral side protrusion portion 12Fo protrudes to the side from the inner peripheral side protrusion portion 12Fi. Out) Large amount. In this supply transfer unit Y (outer peripheral side transfer transfer unit Yo and inner peripheral supply transfer unit Yi), the vertical gaps Gtyo (see FIG. 8) and Gtyi (see FIG. 7) are the same as the gap Gtx. It is preferable that the value is larger than the maximum dimension value of the conveyed product, for example, 0.4 mm or more. In the illustrated example, each value is designed to be about 0.5 mm to 0.6 mm.

図8に示すように、外周側搬送路部12cの下流端部12ceは、回収方向Bとほぼ直交する方向に伸びるため、当該下流端部12ceの搬送面上を搬送物が円滑に移動し、上記供給側整列路11aに移乗できるように、張り出し先に向けて下り勾配(角度γ)になるように形成されている。この角度γは通常5度−10度程度である。   As shown in FIG. 8, the downstream end 12ce of the outer peripheral side conveyance path portion 12c extends in a direction substantially orthogonal to the collection direction B, so that the conveyed product smoothly moves on the conveyance surface of the downstream end portion 12ce, In order to be able to transfer to the supply side alignment path 11a, it is formed so as to have a downward slope (angle γ) toward the overhang destination. This angle γ is usually about 5 degrees to 10 degrees.

本実施形態において、回収側搬送体12に形成される回収側搬送路12aが、上流端部12aeにおいては供給側搬送体11に形成される供給側搬送路11bの下流端部11beよりも低い位置にあり、外周側下流端部12ce及び内周側下流端部12deにおいては供給側搬送体11に形成される供給側整列路11aの上流部及び供給側搬送路11bの上流部よりも高い位置にある。このため、回収側搬送体12は、供給側搬送体11の側方において上流部と下流部の途中で搬送面の高さを逆転させるように構成されなければならない。このため、回収側搬送体12の上記上流側突出部12Eと下流側突出部12Fの間にある領域では、回収側搬送体12の内側部と供給側搬送体11の内側部とは、図5及び図6に示すように、相互に側方に間隔を隔てて対面するように配置されている。   In the present embodiment, the collection-side conveyance path 12a formed in the collection-side conveyance body 12 is lower at the upstream end portion 12ae than the downstream end portion 11be of the supply-side conveyance path 11b formed in the supply-side conveyance body 11. In the outer peripheral side downstream end portion 12ce and the inner peripheral side downstream end portion 12de, the upstream side of the supply side alignment path 11a formed in the supply side transport body 11 and the upstream portion of the supply side transport path 11b are higher. is there. For this reason, the collection-side transport body 12 must be configured to reverse the height of the transport surface in the middle of the upstream portion and the downstream portion on the side of the supply-side transport body 11. For this reason, in the area | region between the said upstream protrusion part 12E and the downstream protrusion part 12F of the collection | recovery side conveyance body 12, the inner side part of the collection | recovery side conveyance body 12 and the inner side part of the supply side conveyance body 11 are FIG. And as shown in FIG. 6, it arrange | positions so that it may mutually face mutually spaced apart.

このとき、供給側整列路11aから排除された搬送物が供給側搬送路11bに落下するとき、気流などの勢いが強すぎて上記内側面の間の左右方向の間隙Gsに搬送物が落下したり、かみこんだりする虞がある。同様に、搬送物ではなくとも、塵埃などが間隙Gsに詰まったりする虞もある。このため、本実施形態においては、左右方向の間隙Gsを上記間隙Gtx、Gtyo、Gtyiと同様に、搬送物をかみこまないように、搬送物の最大寸法値よりも大きい値となるように設定している。図示例では、Gsを0.5mm−1.0mm程度に設計している。また、搬送物が間隙Gsに向けて落下しないように、供給側搬送体11の内側部において、すなわち、上記供給側搬送路11bの内側(回収側搬送体12と対面する側)に、回収側搬送体12の内側部よりも高い仕切壁11tを形成している。また、この仕切壁11tの上部には、上記間隙Gsを上方から覆うようにカバーする被覆部11taを形成している。この被覆部11taを設けることによって、搬送物や塵埃などが間隙Gsに入り込む余地を完全に無くすことができる。図示例では、被覆部11taは、仕切壁11t(好ましくはその上端)から連続して供給側搬送体12の側に張り出した構造を備えている。   At this time, when the transported object removed from the supply side alignment path 11a falls to the supply side transport path 11b, the transported object drops in the left-right gap Gs between the inner side surfaces due to too strong momentum such as airflow. There is a risk of biting. Similarly, there is a possibility that dust or the like may be clogged in the gap Gs even if it is not a conveyed product. For this reason, in the present embodiment, the gap Gs in the left-right direction is set to a value larger than the maximum dimension value of the conveyed object so as not to bite the conveyed object, similarly to the gaps Gtx, Gtyo, and Gtyi. doing. In the illustrated example, Gs is designed to be about 0.5 mm to 1.0 mm. Further, in order to prevent the conveyed product from dropping toward the gap Gs, on the inner side of the supply-side conveyance body 11, that is, on the inner side of the supply-side conveyance path 11b (the side facing the collection-side conveyance body 12), the collection side A partition wall 11t that is higher than the inner side of the carrier 12 is formed. A covering portion 11ta that covers the gap Gs from above is formed on the upper portion of the partition wall 11t. By providing the covering portion 11ta, it is possible to completely eliminate room for a conveyed product or dust to enter the gap Gs. In the illustrated example, the covering portion 11ta includes a structure that continuously protrudes from the partition wall 11t (preferably the upper end thereof) toward the supply-side transport body 12.

回収側搬送体12は、図2に示すように、平面的に見たときに、回収側搬送路12aが]若しくは〕の形状になるように形成される。このような平面形状により、両搬送体11と12とが干渉しないように間隙を十分に確保しつつ、上述のように回収側搬送路12aの上流端と下流端においてそれぞれ上下に間隔を有して張り出した回収移乗部Xと供給移乗部Yとを形成できる。このような構造は、回収側搬送体12が上流側突出部12E及び下流側突出部12Fを備えることにより、供給方向F及び回収方向Bと直交する断面に沿って見たときにも、回収側搬送体12が]若しくは〕の形状になることを意味する。このような構造は、両搬送体11と12の間隙を確保しつつ、装置全体をコンパクトに構成するのに役立つ。なお、排出部12pは搬送物のロット替えなどにおいて残存した搬送物を排出するために設けられる。また、循環式搬送装置10の外部から新たな搬送物を与える場合には、ホッパー等を用いて、回収側搬送路12aの外周側下流端部12ceや外周側選別路部12bよりも上流側の中途位置などに搬送物を供給すればよい。   As shown in FIG. 2, the collection-side transport body 12 is formed such that the collection-side transport path 12 a has a shape of] or] when viewed in a plan view. With such a planar shape, a sufficient gap is ensured so that the transport bodies 11 and 12 do not interfere with each other, and the upstream end and the downstream end of the collection-side transport path 12a are vertically spaced as described above. Thus, the recovery transfer portion X and the supply transfer portion Y that are projected can be formed. Such a structure is such that the collection-side transport body 12 includes the upstream-side protruding portion 12E and the downstream-side protruding portion 12F, so that even when viewed along a cross section orthogonal to the supply direction F and the collection direction B, It means that the carrier 12 has a shape of] or]. Such a structure is useful for compactly configuring the entire apparatus while ensuring a gap between the two carriers 11 and 12. Note that the discharge unit 12p is provided to discharge the remaining transported object after changing the lot of the transported object. In addition, when a new conveyed product is given from the outside of the circulation type conveying device 10, a hopper or the like is used to provide an upstream side of the outer peripheral side downstream end portion 12ce and the outer peripheral side sorting path portion 12b of the collection side conveying path 12a. What is necessary is just to supply a conveyed product to a halfway position etc.

以上説明した本実施形態によれば、回収移乗部X、並びに、供給移乗部Y(外周側供給移乗部Yo及び内周側供給移乗部Yi)において、それぞれ上述の張り出し構造が設けられることによって、搬送物が微細化しても、搬送物や塵埃のかみこみを防止し、搬送物に損傷を与えたり、塵埃を発生したり、振動態様に影響を与えたりすることを回避できる。また、上記張り出し構造は、回収移乗部X、並びに、供給移乗部Y(外周側供給移乗部Yo及び内周側供給移乗部Yi)において、供給側搬送体11と回収側搬送体12との間に大きな上下方向及び左右方向の間隙Gtx,Gtyo,Gtyi,Gsを与えることを可能にするため、供給側搬送体11の振動態様と、回収側搬送体12の振動態様とが大きく異なる場合、或いはまた、回収側搬送体12の振動の上下動及び振幅が大きい場合でも、各移乗部での段差や間隙の変動による搬送物への影響を考慮する必要がなくなる。   According to the present embodiment described above, in the recovery transfer unit X and the supply transfer unit Y (the outer peripheral side supply transfer unit Yo and the inner peripheral side supply transfer unit Yi), the above-described overhang structure is provided, Even if the transported object is miniaturized, the transported object or dust can be prevented from being entrained, and the transported object can be prevented from being damaged, generating dust, or affecting the vibration mode. Further, the overhang structure is formed between the supply-side transport body 11 and the recovery-side transport body 12 in the recovery transfer unit X and the supply transfer unit Y (the outer peripheral side supply transfer unit Yo and the inner peripheral side supply transfer unit Yi). In order to make it possible to provide large vertical and horizontal gaps Gtx, Gtyo, Gtyi, Gs, the vibration mode of the supply-side transport body 11 and the vibration mode of the recovery-side transport body 12 are greatly different, or Further, even when the vertical movement and amplitude of the vibration of the collection-side transport body 12 are large, it is not necessary to consider the influence on the transported object due to the difference in level difference or gap in each transfer section.

また、本実施形態では、供給側搬送体11に供給側整列路11aと並行する供給側搬送路11bを設けるとともに、回収側搬送体12の上流側突出部12E及び下流側突出部12Fを供給側搬送体11に向けて側方へ突出させることにより、回収移乗部X及び供給移乗部Yを構成しているため、供給側搬送路11bの下流端部11beや回収側搬送路11aの下流端部(外周側下流端部12ce及び内周側下流端部12de)を供給方向F及び回収方向Bに限定した範囲に形成した場合でも、確実に搬送物を移乗させることができる。このため、上記各下流端部の幅を限定した分だけ、供給側整列路11aにおける選別処理に用いることのできる供給方向Fの範囲である選別領域11D(図2参照)を相対的に広く確保することができるという利点がある。   In the present embodiment, the supply-side transport body 11 is provided with a supply-side transport path 11b parallel to the supply-side alignment path 11a, and the upstream-side protrusion 12E and the downstream-side protrusion 12F of the collection-side transport body 12 are supplied to the supply side. Since the recovery transfer portion X and the supply transfer portion Y are configured by projecting sideways toward the transport body 11, the downstream end portion 11be of the supply side transport path 11b and the downstream end portion of the recovery side transport path 11a Even when the (outer peripheral downstream end portion 12ce and inner peripheral downstream end portion 12de) are formed in a range limited to the supply direction F and the recovery direction B, the conveyed product can be reliably transferred. For this reason, the sorting region 11D (see FIG. 2), which is a range in the supply direction F that can be used for the sorting process in the supply side alignment path 11a, is secured relatively wide by the limited width of each downstream end. There is an advantage that you can.

特に、近年は、供給すべき搬送物の搬送距離をなるべく限定することによって、搬送物の汚れなどを軽減したいという要求が強くなってきているため、搬送装置全体のサイズ(特に、供給方向F及び回収方向Bに見たときの装置の全長)を小さくしたいが、一方で選別精度の要求水準も高くなっているため、選別領域11Dの長さをある程度確保しなければならない。本実施形態では、上記構造によって装置全長を小さくしても選別領域11Dの設定割合を大きく確保できるため、選別精度を確保しつつ、搬送物の搬送距離を削減することが可能になる。   In particular, in recent years, there has been an increasing demand for reducing the contamination of the conveyed product by limiting the conveyance distance of the conveyed product to be supplied as much as possible. Although it is desired to reduce the total length of the apparatus when viewed in the collection direction B, on the other hand, since the required level of sorting accuracy is also high, the length of the sorting region 11D must be ensured to some extent. In this embodiment, even if the overall length of the apparatus is reduced by the above structure, a large set ratio of the sorting area 11D can be secured, so that it is possible to reduce the transport distance of the transported object while securing the sorting accuracy.

尚、本発明の循環式搬送装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、供給側搬送体11に供給側搬送路11bを設け、回収側搬送路12aに外周側選別路部12b、外周側搬送路部12c及び内周側搬送路部12dを形成しているが、これらの少なくとも一つを設けないで構成することも可能である。   In addition, the circulation type conveying apparatus of the present invention is not limited to the above-described illustrated examples, and it is needless to say that various changes can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the supply-side transport body 11 is provided with the supply-side transport path 11b, and the collection-side transport path 12a is formed with the outer-periphery-side sorting path portion 12b, the outer-periphery-side transport path portion 12c, and the inner-periphery-side transport path portion 12d. However, it is possible to configure without providing at least one of these.

10…循環式搬送装置、11…供給側搬送体、11a…供給側整列路、11b…供給側搬送路、11be…下流端部、11s…傾斜面、11D…選別領域、11E…ベースブロック、11F…アタッチメントブロック、11…仕切壁11t…被覆部、12…回収側搬送体、12a…回収側搬送路、12b…外周側選別路部、12c…外周側搬送路部、12ce…外周側下流端部、12d…内周側搬送路部、12de…内周側下流端部、12E…上流側突出部、12F…下流側突出部、12Fo…外周側突出部、12Fi…内周側突出部、13…供給側加振機構、14…回収側加振機構、 DESCRIPTION OF SYMBOLS 10 ... Circulation type conveying apparatus, 11 ... Supply side conveyance body, 11a ... Supply side alignment path, 11b ... Supply side conveyance path, 11be ... Downstream end part, 11s ... Inclined surface, 11D ... Sorting area | region, 11E ... Base block, 11F ... Attachment block, 11 t ... Partition wall , 11 t a ... Covering part, 12 ... Collection side transport body, 12a ... Collection side transport path, 12b ... Outer peripheral side sorting path section, 12c ... Outer peripheral side transport path section, 12ce ... Outer peripheral side Downstream end, 12d ... inner peripheral side conveyance path, 12de ... inner peripheral downstream end, 12E ... upstream protruding part, 12F ... downstream protruding part, 12Fo ... outer peripheral side protruding part, 12Fi ... inner peripheral side protruding part , 13 ... supply side vibration mechanism, 14 ... collection side vibration mechanism,

Claims (7)

搬送物を所定の供給方向へ搬送するための振動態様を呈する、供給側整列路を備えた供給側搬送体と、搬送物を前記供給方向と逆向きの回収方向へ搬送するための振動態様を呈するとともに、前記供給側整列路から排除された搬送物を受け入れて前記回収方向に搬送し、当該搬送物の少なくとも一部を前記供給側整列路の上流側へ戻す回収側搬送路を備えた回収側搬送体とを具備する循環式搬送装置において、
前記供給側整列路から排除された搬送物を前記回収側搬送路へ移乗させる回収移乗部と、前記回収側搬送路により搬送されてきた搬送物を前記供給側整列路へ移乗させる供給移乗部とが設けられ、
前記回収移乗部において、前記供給側整列路からの搬送物の排除経路の下流端部が前記回収側搬送路の上流部の上方に間隔を有して張り出すとともに、
前記供給移乗部において、前記回収側搬送路の下流端部が前記供給側整列路の上流部の上方に間隔を有して張り出し、
前記回収移乗部における張り出し構造は、前記供給側搬送体の前記供給側整列路からの前記排除経路の下流端部が形成された部分の下方へ向けて側方に突出する上流側突出部が前記回収側搬送体に設けられることにより構成され、
前記供給移乗部における張り出し構造は、前記供給側搬送体の前記供給側整列路の上流部が形成された部分の上方へ向けて側方に突出する下流側突出部が前記回収側搬送体に設けられることにより構成され、
前記回収側搬送体の前記上流側突出部と前記下流側突出部の間にある領域では、前記供給側搬送体の内側面と前記回収側搬送体の内側面とは、相互に側方へ間隔を隔てて対面するように配置され、
前記上流側突出部は前記内側面の間の間隙の延長範囲を越えて前記供給搬送体の側へ突出する一方で、前記供給側搬送体の前記下流端部は前記間隙の延長範囲内に対して前記回収側搬送体の側へ突出せず、
前記下流側突出部は前記間隙の延長範囲を越えて前記供給側搬送体の側へ突出する一方で、前記供給側搬送体の前記上流部は前記間隙の延長範囲内に対して前記回収側搬送体の側へ突出しない、
ことを特徴とする循環式搬送装置。
A supply-side transport body having a supply-side alignment path that exhibits a vibration mode for transporting a transported object in a predetermined supply direction, and a vibration mode for transporting the transported material in a collection direction opposite to the supply direction. A collection side having a collection side conveyance path that accepts the conveyance object removed from the supply side alignment path, conveys the conveyance object in the collection direction, and returns at least a part of the conveyance object to the upstream side of the supply side alignment path. In the circulation type transport device comprising the side transport body,
A collection transfer unit that transfers the conveyed product that has been excluded from the supply side alignment path to the collection side conveyance path; and a supply transfer unit that transfers the conveyance item that has been conveyed by the collection side conveyance path to the supply side alignment path; Is provided,
In the collection transfer section, a downstream end portion of the conveyance path of the conveyed product from the supply side alignment path projects above the upstream section of the collection side conveyance path with an interval, and
In the supply transfer unit, a downstream end portion of the collection-side conveyance path projects above the upstream portion of the supply-side alignment path with an interval,
The overhanging structure in the recovery transfer unit includes an upstream projecting portion projecting sideways toward a lower side of a portion where the downstream end portion of the exclusion path from the supply side alignment path of the supply side transport body is formed. It is configured by being provided on the collection side transport body,
The overhang structure in the supply transfer unit is provided with a downstream protrusion that protrudes laterally toward the upper side of the portion where the upstream part of the supply side alignment path of the supply side transport body is formed. Configured by
In the region between the upstream projecting portion and the downstream projecting portion of the recovery side transport body, the inner side surface of the supply side transport body and the inner side surface of the recovery side transport body are spaced apart from each other laterally. Arranged to face each other,
The upstream projecting portion projects beyond the extension range of the gap between the inner side surfaces toward the supply- side transport body, while the downstream end portion of the supply-side transport body is within the extension range of the gap. On the other hand, it does not protrude toward the collection side transport
The downstream projecting portion projects beyond the extension range of the gap toward the supply-side transport body, while the upstream portion of the supply-side transport body transports the recovery side relative to the extension range of the gap. Does not protrude to the side of the body,
A circulation type conveying apparatus characterized by that.
前記供給側搬送体と前記回収側搬送体の間の前記間隙の最小値は、前記搬送物の最大寸法値よりも大きい、
ことを特徴とする請求項1に記載の循環式搬送装置。
The minimum value of the gap between the supply-side transport body and the collection-side transport body is larger than the maximum dimension value of the transported object,
The circulation type conveying apparatus according to claim 1.
前記供給側搬送体には、前記供給側整列路と並行し、前記供給側整列路から排除された搬送物を受け入れて前記供給方向へ搬送した先に前記回収側搬送路の上流部との間に前記回収移乗部を構成する下流端部を前記排除経路の下流端部として備えた供給側搬送路がさらに設けられる、
ことを特徴とする請求項1又は2に記載の循環式搬送装置。
In parallel with the supply side alignment path, the supply side transport body receives a transported object removed from the supply side alignment path and transports it in the supply direction between the upstream portion of the recovery side transport path A supply-side conveyance path provided with a downstream end portion constituting the recovery transfer section as a downstream end portion of the exclusion path,
The circulation type conveying apparatus according to claim 1 or 2, characterized in that.
前記供給移乗部として、前記回収側搬送路の外周側下流端部と前記供給側整列路の上流部との間において、前記回収側搬送路により搬送されてきた搬送物を前記供給側整列路に移乗させる外周側供給移乗部が設けられ、
第2の供給移乗部として、前記回収側搬送路の内周側下流端部と前記供給側搬送路の上流部との間において、前記回収側搬送路により搬送されてきた搬送物を前記供給側搬送路に移乗させる内周側供給移乗部が設けられる、
ことを特徴とする請求項3に記載の循環式搬送装置。
As the supply transfer section, a transported object transported by the recovery side transport path between the outer peripheral side downstream end of the recovery side transport path and the upstream part of the supply side alignment path is used as the supply side alignment path. An outer periphery side supply transfer section for transfer is provided,
As the second supply transfer section, the transported object transported by the recovery side transport path between the inner peripheral downstream end of the recovery side transport path and the upstream section of the supply side transport path is the supply side. An inner peripheral side supply transfer unit for transferring to the conveyance path is provided.
The circulation type conveying device according to claim 3 characterized by things.
前記回収側搬送路の少なくとも下流側領域には、
外周側に形成されて搬送物を選別して通過させる外周側選別路部と、
該外周側選別路部の下流側に引き続いて形成され、前記外周側下流端部に至る外周側搬送路部と、
前記外周側選別路部の内側に並行して形成され、前記内周側下流端部に至る内周側搬送路部と、
が設けられる、
ことを特徴とする請求項4に記載の循環式搬送装置。
In at least the downstream area of the collection side conveyance path,
An outer peripheral side selection path portion formed on the outer peripheral side for selecting and passing the conveyed product;
An outer peripheral side conveying path portion formed downstream from the outer peripheral side sorting path portion and reaching the outer peripheral side downstream end portion;
Formed in parallel to the outer periphery side sorting path portion, the inner periphery side transport path portion reaching the inner periphery side downstream end, and
Is provided,
The circulation type conveyance device according to claim 4 characterized by things.
前記回収移乗部と前記供給移乗部との間において、前記供給側搬送体の供給側内側部と前記回収側搬送体の回収側内側部とが相互に側方内側に対面し、
前記供給側内側部には、前記回収側内側部よりも上方に伸びる仕切壁が設けられる、
ことを特徴とする請求項1〜5のいずれか一項に記載の循環式搬送装置。
Between the recovery transfer unit and the supply transfer unit, the supply side inner portion of the supply side transport body and the recovery side inner portion of the recovery side transport body face each other laterally inside,
The supply side inner portion is provided with a partition wall extending upward from the collection side inner portion.
The circulation type conveying apparatus according to any one of claims 1 to 5, wherein:
前記仕切壁に、前記供給側内側部と前記回収側内側部の間の前記間隙を上方から覆う形状を備えた被覆部が設けられる、
ことを特徴とする請求項6に記載の循環式搬送装置。
The partition wall is provided with a covering portion having a shape that covers the gap between the supply side inner portion and the recovery side inner portion from above.
The circulation type conveying apparatus according to claim 6.
JP2016003535A 2016-01-12 2016-01-12 Circulating transfer device Active JP6189979B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016003535A JP6189979B2 (en) 2016-01-12 2016-01-12 Circulating transfer device
KR1020160141024A KR101741371B1 (en) 2016-01-12 2016-10-27 Circular conveying apparatus
CN201710003111.1A CN106956900B (en) 2016-01-12 2017-01-04 Circulating conveying device
TW106100905A TWI651249B (en) 2016-01-12 2017-01-12 Circulating conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016003535A JP6189979B2 (en) 2016-01-12 2016-01-12 Circulating transfer device

Publications (2)

Publication Number Publication Date
JP2017124882A JP2017124882A (en) 2017-07-20
JP6189979B2 true JP6189979B2 (en) 2017-08-30

Family

ID=59053255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016003535A Active JP6189979B2 (en) 2016-01-12 2016-01-12 Circulating transfer device

Country Status (4)

Country Link
JP (1) JP6189979B2 (en)
KR (1) KR101741371B1 (en)
CN (1) CN106956900B (en)
TW (1) TWI651249B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107983658B (en) * 2017-11-27 2020-08-07 苏州迪纳精密设备有限公司 Automatic sorting equipment for special-shaped sheet parts
JP7068572B2 (en) * 2018-01-12 2022-05-17 シンフォニアテクノロジー株式会社 Parts feeder
JP7071623B2 (en) * 2018-02-07 2022-05-19 シンフォニアテクノロジー株式会社 Parts supply equipment
CN113277291B (en) * 2021-05-28 2022-06-21 深圳市深科达半导体科技有限公司 Feeding device and feeding system
CN114604580B (en) * 2022-03-24 2023-07-25 深圳市晶展鑫电子设备有限公司 Reciprocating type conveying device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133109A (en) * 1983-01-18 1984-07-31 Shinko Electric Co Ltd Circulation type vibrating parts feeder
JPS6246807A (en) * 1985-08-23 1987-02-28 Hitachi Ltd Circulating linear feeder
JP4635281B2 (en) * 1999-08-25 2011-02-23 シンフォニアテクノロジー株式会社 Circulating linear feeder
JP4660843B2 (en) * 2000-08-23 2011-03-30 日東工業株式会社 Feeder for aligning and conveying chips in a single row
JP3704314B2 (en) * 2002-01-15 2005-10-12 株式会社ダイシン Vibrating parts feeder

Also Published As

Publication number Publication date
TWI651249B (en) 2019-02-21
JP2017124882A (en) 2017-07-20
KR101741371B1 (en) 2017-05-29
CN106956900A (en) 2017-07-18
CN106956900B (en) 2019-06-14
TW201725160A (en) 2017-07-16

Similar Documents

Publication Publication Date Title
JP6189979B2 (en) Circulating transfer device
JP5406682B2 (en) Electronic component feeder
JP4525514B2 (en) Bulk feeder and electronic component mounting equipment
JP5769479B2 (en) Work supply device and its front / back alignment separation device
JP4287328B2 (en) Vibrating parts feeder
JP2008273714A (en) Oscillating conveying device
JP2002302230A (en) Rectilinear advance vibration feeder
JP6726934B2 (en) Transfer device
JP2011011850A (en) Vibration chute and vibration feeder having the same
JP2007022780A (en) Vibrating type parts feeder
JP2011184156A (en) Workpiece feeding device
JP6730322B2 (en) Article supplying method and apparatus
JP5080994B2 (en) Combination weighing device
WO2022224553A1 (en) Component supply device, component mounting device, and component supply method
JP6482908B2 (en) Article supply equipment
JPWO2019138480A1 (en) Parts supply device
TWI851792B (en) Vibration conveyance device
KR101233151B1 (en) Vertical transporting and returning apparatus for vibratory parts feeding machine
JP5904029B2 (en) Work aligning and conveying device
JP7330527B2 (en) parts feeder
JP7504714B2 (en) Bowl Feeder
JP7102177B2 (en) Board detection device and board processing device
KR101131686B1 (en) Led feeder
JP2002265033A (en) Vibrational component supply device
JP2022165693A (en) Component supply device, component mounting device, and component supply method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6189979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250